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People have liked the numbers 12 and 24 for a long time:

But their real magic is only becoming clear now.



Around 1735, Leonhard Euler gave a bizarre ‘proof’ that

1 + 2 + 3 + 4 + · · · = −
1

12

Later the mathematician Abel wrote:

The divergent series are
the invention of the devil,

and it is a shame to base on them
any demonstration whatsoever.

But Euler’s equation has been made rigorous —
and it explains why bosonic string theory works well

only in 24 + 2 = 26 dimensions!



In 1875, Édouard Lucas challenged his readers to prove this:

A square pyramid of cannon balls contains a square
number of cannon balls only when it has 24 cannon
balls along its base.

12 + 22 + · · ·+ 242 = 702



Indeed, the only integer solution of

12 + 22 + · · ·+ n2 = m2

not counting the silly ones n = 0 and n = 1, is n = 24!

It looks like a curiosity, but this solution gives the densest
lattice packing of spheres in 24 dimensions! And when we

combine this idea with bosonic string theory in 26
dimensions, all heaven breaks loose!

But we’re getting ahead of ourselves....



EULER’S CRAZY CALCULATION

Euler started with this:

1 + x+ x2 + x3 + · · · =
1

1− x
He differentiated both sides:

1 + 2x+ 3x2 + · · · =
1

(1− x)2

He set x = −1 and got this:

1− 2 + 3− 4 + · · · =
1

4



Then Euler considered this function:

ζ(s) = 1−s + 2−s + 3−s + 4−s + · · ·

He multiplied by 2−s:

2−sζ(s) = 2−s + 4−s + 6−s + 8−s + · · ·

Then he subtracted twice the second equation from the first:

(1− 2 · 2−s)ζ(s) = 1−s − 2−s + 3−s − 4−s + · · ·



Taking this result:

(1− 2 · 2−s)ζ(s) = 1−s − 2−s + 3−s − 4−s + · · ·

and setting s = −1, he got:

−3(1 + 2 + 3 + 4 + · · · ) = 1− 2 + 3− 4 + · · ·

Since he already knew the right-hand side equals 1/4, he
concluded:

1 + 2 + 3 + 4 + · · · = −
1

12



Euler’s calculation looks crazy, but it can be made rigorous!
The sum

1−s + 2−s + 3−s + 4−s + · · ·

converges for Re(s) > 1 to an analytic function: the Riemann
zeta function, ζ(s).

This function can be analytically continued to s = −1, and
one can prove

ζ(−1) = −
1

12

But why does this make bosonic string theory work well in
26 dimensions?



GROUND STATE ENERGY

According to quantum mechanics, a harmonic oscillator
that vibrates with frequency ω can have energy

1

2
ω, (1 +

1

2
)ω, (2 +

1

2
)ω, (3 +

1

2
)ω, . . .

in units where Planck’s constant equals 1.

The lowest energy is not zero! It’s 1
2ω. This is called the

ground state energy of the oscillator.



A violin string that only wiggles up and down can still
vibrate with different frequencies:

In suitable units, these are ω = 1, 2, 3, . . .



So, a string that can only wiggle in one direction is the
same as an infinite collection of oscillators with frequencies

ω = 1, 2, 3, . . . .

When we have a bunch of oscillators, their ground state
energies add. So, the ground state energy of the string

seems to be:

1

2
(1 + 2 + 3 + · · · ) = ∞

This is the simplest example of how quantum theory is
plagued by infinities.



But Euler’s crazy calculation gives a different answer!

1

2
(1 + 2 + 3 + · · · ) = −

1

24

Indeed, this seems to be the correct ground state energy
for a string that can wiggle in one direction!

Experiments have confirmed equally crazy-looking
calculations.



A string that can wiggle in n directions has n times as
much ground state energy.

A string in 26-dimensional spacetime can wiggle in all
24 directions perpendicular to its 2-dimensional surface.

So, its ground state energy is simply

−1

But what’s so great about this?



If a string loops around in time, its surface will be a torus:

Different shapes of torus happen with different
probabilities, or more precisely, amplitudes.

Let’s see the formula for these amplitudes —
and see why it’s only consistent when the string can wiggle

in 24 directions perpendicular to its surface!



If our torus is formed by curling up this parallelogram:

then its amplitude is

Z(t) =
∑
k

e−iEk t

where Ek are the energies the string can have,
summed over all states with a definite energy.



This function:

Z(t) =
∑
k

e−iEk t

is called the partition function of the string.

To calculate it quickly, we’ll use two facts:

1) The partition function makes sense for any system with
discrete energy levels.

2) When we combine a bunch of systems, we can multiply
their partition functions to get the partition function of the
combined system.



First: what’s the partition function of a harmonic oscillator?
An oscillator with frequency ω can have energies

1

2
ω, (1 +

1

2
)ω, (2 +

1

2
)ω, (3 +

1

2
)ω, . . .

So, its partition function is:

∞∑
k=0

e−i(k+1
2)ωt

Summing the geometric series, we get:

e−
i
2 ωt

1− e−iωt



Next, what’s the partition function of a string that can wiggle
in one direction? It’s just like a bunch of oscillators with
frequencies 1, 2, 3, . . . , so its partition function is a product:

∞∏
n=1

e−
i
2nt

1− e−int
= e−

i
2(1+2+3+··· )t

∞∏
n=1

1

1− e−int

According to Euler’s crazy calculation, this equals

e
i

24t
∞∏
n=1

1

1− e−int

This is the reciprocal of the Dedekind eta function —
which was introduced in 1877, long before string theory!



However, the torus coming from this parallelogram:

is the same as the torus coming from this one:



So: our calculation only gives consistent answers if the
partition function

Z(t) = e
i

24t
∞∏
n=1

1

1− e−int

is unchanged when we add 2π to t. Alas, it does change:

Z(t+ 2π) = e
2πi
24
Z(t)

But Z(t)24 does not change! This is the partition function of
24 strings with one direction to wiggle — which is just like
one string with 24 directions to wiggle.

So, bosonic string theory works best
when spacetime has 24 + 2 = 26 dimensions!



The function Z(t)24 was famous long before string theory.
Its reciprocal is called the discriminant of an elliptic curve.

An elliptic curve is a torus formed by curling up a
parallelogram.

The discriminant is the simplest function of elliptic curves
that vanishes when the parallelogram gets infinitely skinny.

Why does the number 24 automatically show up
when we study these ideas?
The answer is easy to state...

but not easy to grasp.



Two types of lattice in the plane
have more symmetry than the rest!

One has 4-fold symmetry:

One has 6-fold symmetry:



...and believe it or not, it all boils down to this:

4× 6 = 24



A full explanation would be quite long... so instead, let’s
see how Lucas’ cannonball puzzle gets involved!

12 + 22 + · · ·+ 242 = 702



THE LEECH LATTICE

A lattice is a discrete subset L ⊂ Rn that’s closed under
addition and subtraction.

We can use any lattice as a recipe for packing spheres.



The lattice that gives the densest sphere packing in 24
dimensions is called the Leech lattice.

In the Leech lattice, each sphere touches 196, 560 others!

How can we get this lattice?



Start with this dot product for vectors in R26:

a · b = a1b1 + · · ·+ a25b25 − a26b26

Sitting inside R26 there’s the lattice II25,1, where the ai are
integers or all integers plus 1/2, and a1 +a2 + · · ·+a25−a26
is even. This contains the vector

v = (0, 1, 2, 3, . . . , 24, 70) ∈ Z26

Let
v⊥ = {a ∈ II25,1 : a · v = 0}

This is a 25-dimensional lattice. Since

v · v = 02 + 12 + · · ·+ 242 − 702 = 0

we have v ∈ v⊥. The quotient v⊥/v is a 24-dimensional
lattice: the Leech lattice, Λ.



THE MONSTER

Bosonic strings like 24 extra dimensions — besides their
own 2 — to wiggle around in! So, let’s cook up a theory
where these extra directions form a 24-dimensional torus

built from the Leech lattice:

T = R24/Λ

Even better, let’s use T/Z2, where we count points x and
−x as the same. In 1986, Richard Borcherds showed the

resulting string theory has a colossal group of symmetries.

This group is called the Monster.



The Monster has

808017424794512875886459904961710757005754368000000000

or approximately

8× 1053

elements.

It’s the largest ‘sporadic finite simple group’. Fischer and
Griess predicted its existence in 1973, and Griess

constructed it in 1981.

The Monster has profound but puzzling connections to
elliptic curves. People call this subject

Monstrous Moonshine.

It may take another century to fully understand this.



So: different numbers have different ‘personalities’.

Some seem boring.

Others take us on amazing journeys.

My favorite is



APPENDIX: QUATERNIONS,
THE TETRAHEDRON, AND THE NUMBER 24

In the second appendix of my talk on the number 8, we saw
how the unit quaternions link the dodecahedron to the E8
lattice. Now let’s see how unit quaternions link the tetrahe-
dron to the number 24 and elliptic curves.

Rotational symmetries of a regular tetrahedron give all even
permutations of its 4 vertices, so these symmetries form what
is called the ‘alternating group’ A4, with

4!/2 = 12

elements.



Since the group of unit quaternions is the double cover of the
3d rotation group, there are

2× 12 = 24

unit quaternions that give rotational symmetries of the tetra-
hedron. These form a group usually called the binary tetra-
hedral group.

(In case you’re wondering, the binary tetrahedral group is not
isomorphic to the 24-element permutation group S4, just as
the binary icosahedral group is not isomorphic to the 120-
element permutation group S5.)



The 24 unit quaternions in the binary tetrahedral group are
also the Hurwitz integers of norm 1, which I described in my
last talk. There are 8 like this...

±1, ±i, ±j, ±k



and 16 like this...

±
1

2
±
i

2
±
j

2
±
k

2



...for a total of 24:

These 24 points are also the vertices of a regular polytope
called the 24-cell.



But the really interesting thing is how the binary tetrahedral
group is related to elliptic curves!

The space of all elliptic curves is H/SL(2,Z), where H is
the upper half of the complex plane, where our variable t
lived. But SL(2,Z) doesn’t act freely on H, because there
are elliptic curves with extra symmetries corresponding to
the square and hexagonal lattices.



However, the subgroup Γ(3) does act freely. This subgroup
consists of integer matrices(

a b
c d

)
with determinant 1, such that each entry is congruent to the
corresponding entry of (

1 0
0 1

)
modulo 3.

The quotient H/Γ(3) is a nice space without any ‘points of
greater symmetry’. In the theory of elliptic curves it’s called
X(3): it’s the space of elliptic curves equipped with a basis
for their 3-torsion.



The group
SL(2,Z)/Γ(3) = SL(2,Z/3)

acts on H/Γ(3). To get the moduli space of elliptic curves
from H/Γ(3), we just need to mod out by the action of this
group.

But in fact, this group has 24 elements.

It’s the binary tetrahedral group!



CREDITS AND NOTES

1. SoftCurve 4-inch brass numbers 2 and 4, available from Home Depot,
http://www.polyvore.com/cgi/thing?id=464459 and http://www.polyvore.

com/cgi/thing?id=262780

2. 12/24 hour wall clock made by Skilcraft, available from AbilityOne,
http://www.jwodcatalog.com/products.aspx?sid=15

3. Text, John Baez

4. Cannonball puzzle by Édouard Lucas, Question 1180, Nouv. Ann.
Math. Ser. 2 (1875), 336. Picture of stacked cannonballs, source un-
known.

5. Information on the cannonball puzzle from Mathworld article Cannon-
ball Problem.

6. Euler’s argument as summarized by Jeffrey Stopple, A Primer of An-
alytic Number Theory, from Pythagoras to Riemann, Cambridge U.
Press, Cambridge, 2003.

http://www.polyvore.com/cgi/thing?id=464459
http://www.polyvore.com/cgi/thing?id=262780
http://www.polyvore.com/cgi/thing?id=262780
http://www.jwodcatalog.com/products.aspx?sid=15
http://mathworld.wolfram.com/CannonballProblem.html
http://mathworld.wolfram.com/CannonballProblem.html


7. Euler’s argument as summarized in A Primer of Analytic Number
Theory, op. cit.

8. Euler’s argument as summarized in A Primer of Analytic Number
Theory, op. cit.

9. Rigorous proofs that ζ(−1) = −1/12 can be found in many sources,
including A Primer of Analytic Number Theory, op. cit. For an
easy introduction to the history of the Riemann zeta function, try K.
Sabbagh, Dr. Riemann’s Zeros, Atlantic Books, 2002. Also try the
Wikipedia article Riemann zeta function.

10. For an introduction to the quantum harmonic oscillator try any decent
textbook on quantum mechanics, for example R. Shankar, Principles
of Quantum Mechanics, Springer, 1994. Also try the Wikipedia article
Quantum harmonic oscillator.

http://en.wikipedia.org/wiki/Riemann_zeta_function
http://en.wikipedia.org/wiki/Quantum_harmonic_oscillator


11. Picture of string vibrational modes by ‘Qef’ from Wikicommons.

The picture here is a bit misleading since it shows a violin string with
its ends tied down, but we’re really interested in ‘closed strings’ —
that is, closed loops of string. However, both have vibrational modes
with frequencies ω = 1, 2, 3, . . . . The closed string also has a mode
with ω = 0, but we ignore this in our simplified treatment. In fact,
we only consider ‘right-movers’: modes corresponding to the functions
exp(iω(t − x)) for ω = 1, 2, 3, . . . . For more details, an easy starting-
point is Barton Zwiebach, A First Course in String Theory, Cambridge
U. Press, Cambridge, 2004.

Also: a string with tension = 1 has integer frequencies if its length is
2π, not 1 as shown here. On page 15 we switch to a string of length
2π.

12. Text, John Baez.

13. Text, John Baez.

14. Text, John Baez

https://commons.wikimedia.org/wiki/File:Harmonic_partials_on_strings.svg


15. Picture of torus by ‘Kieff’ from Wikipedia article Torus.

16. Picture of parallelogram, John Baez.

17. Text, John Baez. For an introduction to partition functions see any
decent introduction to statistical physics, for example F. Reif, Funda-
mentals of Statistical and Thermal Physics, McGraw Hill, New York,
1965. In quantum field theory the partition function is∑

k

e−iEkt = tr(exp(−iHt))

where H is an operator called the Hamiltonian, whose eigenvalues are
the energies Ek. In statistical physics we work instead with tr(exp(−Ht))
with t > 0. However, on page 18 we’ll take t to lie in the upper half of
the complex plane! When it’s purely imaginary, we’re doing statistical
mechanics as usual.

http://en.wikipedia.org/wiki/Torus


18. This calculation (with t replacing it) is what convinced Planck that
quantum mechanics was a good idea in the first place. It helped him
solve the ‘ultraviolet catastrophe’. For more, try M. S. Longair, The-
oretical Concepts in Physics, Cambridge U. Press, Cambridge, 1986.

Also see the Wikipedia article Planck’s law of blackbody radiation. In
the derivation there, vibrational modes are indexed by three numbers.
That’s because they’re considering a 3d box of light, instead of a 1d
string. They also use t where we have it, as explained above.

19. For basic facts on the Dedekind eta function see the Wikipedia arti-
cle Dedekind eta function. Our variable t corresponds to the more
commonly used variable 2πτ .

For more, try Neal Koblitz, Introduction to Elliptic Curves and Mod-
ular Forms, Springer, Berlin, 1993.

20. Pictures of parallelograms, John Baez. Similar pictures can be found
in any book on elliptic curves, but with the number 1 replacing the
number 2π, because we use t = 2πτ where others use τ . See for
example Anthony W. Knapp, Elliptic Curves, Princeton University
Press, Princeton 1992.

http://en.wikipedia.org/wiki/Planck%27s_law_of_black-body_radiation
http://en.wikipedia.org/wiki/Dedekind_eta_function


We can think of an elliptic curve as a torus equipped with a base point
and a conformal structure (a way of measuring oriented angles). Two
elliptic curves count as ‘the same’ if there’s a conformal mapping be-
tween them that preserves the basepoint. So, rescaling a parallelogram
doesn’t change the elliptic curve it defines. This is why we can assume
without loss of generality that our parallelogram has ‘width’ equal to
1 — or 2π, if we prefer.

21. Here we are secretly saying that the 24th power of the Dedekind eta
function is a modular form. See the Wikipedia article Modular form.
For more, see Introduction to Elliptic Curves and Modular Forms,
op. cit.

We’ve seen that any point in the upper half-plane H determines an
elliptic curve, but different points of H can give the same elliptic curve.
The space of all elliptic curves — the so-called moduli space of elliptic
curves — can be identified with H modulo this action of SL(2,Z):

τ 7→
aτ + b

cτ + d
.

http://en.wikipedia.org/wiki/Modular_form


Modular forms are functions on H that change in a specific way un-
der these transformations. But for physics, what ultimately matters
is that the partition function of the string be invariant under these
transformations: only then is it a well-defined function on the moduli
space of elliptic curves. The 24th power of the Dedekind eta function
is not invariant. To get a partition function with this property, we
would have to consider not just right-movers (see the note to page 11)
but also left-movers and the mode with ω = 0.

One might wonder whether we could simply ignore the string’s ground
state energy and leave out the pesky factor of exp( i

24
t). However, the

24th power of that factor is ultimately required to obtain a partition
function that is well-defined on the moduli space of elliptic curves.

For more on these issues see John Baez, This Week’s Finds in Math-
ematical Physics, Week 126 and Week 127.

22. See the section on the Modular discriminant in the Wikipedia article
Weierstrass’s elliptic function. For more, try Introduction to Elliptic
Curves and Modular Forms and also Elliptic Curves, op. cit.

23. Pictures of lattices, John Baez.

http://math.ucr.edu/home/baez/week126.html
http://math.ucr.edu/home/baez/week127.html
http://en.wikipedia.org/wiki/Weierstrass%27s_elliptic_functions#Modular_discriminant
http://en.wikipedia.org/wiki/Weierstrass%27s_elliptic_functions


24. Here I’m secretly alluding to the ‘moduli stack’ of elliptic curves, and
how the Gaussian and Eisenstein integers give points on this stack with
extra symmetry, giving an interesting Picard group. For more details
see John Baez, This Week’s Finds in Mathematical Physics, Week
125.

25. Picture of stacked cannonballs, source unknown.

26. Pictures of hexagonal circle packing, John Baez.

27. Leech lattice information from John H. Conway and Neil J. A. Sloane,
Sphere Packings, Lattices and Groups, Springer, Berlin, 1998.

The Leech lattice was first announced by John Leech, Notes on sphere
packings, Canad. J. Math. 19 (1967), 251–267. (Apparently Ernst
Witt discovered it in 1940, but did not publish his discovery.)

28. Leech lattice information from Sphere Packings, Lattices and Groups,
op. cit.

http://math.ucr.edu/home/baez/week125.html
http://math.ucr.edu/home/baez/week125.html


29. For a quick introduction to the Monster see the Wikipedia article Mon-
ster group. For details, see Sphere Packings, Lattices and Groups,
op. cit. The works of Richard Borcherds can be found on his webpage,
http://math.berkeley.edu/~reb/papers/index.html

The first construction of the Monster appears in Robert L. Griess, Jr.,
The friendly giant, Invent. Math. 69 (1982), 1–102.

For a nice history of Monstrous Moonshine, not assuming any knowl-
edge of mathematics, try Mark Ronan, Symmetry and the Monster,
Oxford University Press, Oxford, 2006.

To dig deeper try Terry Gannon, Monstrous Moonshine: The first
twenty-five years, available as arXiv:math/0402345.

For even more try Terry Gannon’s wonderful book Moonshine beyond
the Monster: The Bridge Connecting Algebra, Modular Forms and
Physics, Cambridge U. Press, Cambridge, 2006. Enjoy!

30. Text, John Baez.

31. SoftCurve 4-inch brass numbers 2 and 4, available from Home Depot,
op. cit.

32. Text, John Baez

http://en.wikipedia.org/wiki/Monster_group
http://en.wikipedia.org/wiki/Monster_group
http://math.berkeley.edu/~reb/papers/index.html
http://arxiv.org/abs/math/0402345


33. Text, John Baez

34. Picture from John Baez, On Quaternions and Octonions: Their
Geometry, Arithmetic, and Symmetry, by John H. Conway and Derek
A. Smith, review in Bull. Amer. Math. Soc. 42 (2005), 229–243. Also
available at http://math.ucr.edu/home/baez/octonions/conway_smith/.

35. Picture from review of On Quaternions and Octonions: Their
Geometry, Arithmetic, and Symmetry, op. cit.

36. Picture from review of On Quaternions and Octonions: Their
Geometry, Arithmetic, and Symmetry, op. cit.

For information on the 24-cell see the Wikipedia article 24-cell. For
more on 4d regular polytopes and the quaternions see John Baez, Pla-
tonic solids in all dimensions, http://math.ucr.edu/home/baez/platonic.
html.

37. See Elliptic Curves, op. cit.

38. The group Γ(N) is called the principal congruence subgroup of level
N . For a quick introduction see the Wikipedia article Modular curve.

http://math.ucr.edu/home/baez/octonions/conway_smith/
http://en.wikipedia.org/wiki/24-cell
http://math.ucr.edu/home/baez/platonic.html
http://math.ucr.edu/home/baez/platonic.html
http://en.wikipedia.org/wiki/Modular_curve


39. For a bit of information about X(N) see the Wikipedia article Modular
curve. For much more see F. Diamond and J. Shurman, A First Course
in Modular Forms, Springer, Berlin, 2005. Also see Stephan Stolz’s
remarks in This Week’s Finds in Mathematical Physics, Week 197.

http://en.wikipedia.org/wiki/Modular_curve
http://en.wikipedia.org/wiki/Modular_curve
http://math.ucr.edu/home/baez/week197.html

