
Yuichi Komori λρ-calculus
Arato Cho

abstract. In [K02], one of the authors introduced the system λρ-calculus and stated without

proof that the strong normalization theorem hold. We have discovered an elegant lemma(Lemma

4.10). Here we prove the strong normalization theorem by the lemma. While the typed λ-

calculus gives a natural deduction for intuitionistic implicational logic (cf. [H97]), the typed

λρ-calculus gives a natural deduction for classical implicational logic. Our system is simpler

than Parigot’s λµ-calculus (cf. [P92]).

Keywords: λ-calculus, typed λ-calculus, normalization theorem, classical logic, λρ-calculus,

λµ-calculus, LK.

1 The type free λρ-calculus

Definition 1.1 (λρ-terms). Assume to have an infinite sequence of λ-variables
and an infinite sequence of ρ-variables. Then the linguistic expressions called
λρ-terms are defined as:

1. each λ-variable is a λρ-term, called atom or atomic term,

2. if M and N are λρ-term then (MN) is a λρ-term called application,

3. if M is a λρ-term and a is a ρ-variable then (aM) is a λρ-term called
absurd,

4. if M is a λρ-term and f is a λ-variable or a ρ-variable then (λf.M) is a
λρ-term called abstract. (If f is a λ-variable or a ρ-variable, then (λf.M)
is a λ-abstract or a ρ-abstract respectively.)

λ-variables are denoted by “u”, “v”, “w”, “x”, “y”, “z”. ρ-variables are
denoted by “a”, “b”, “c”, “d”. A term-variable is a λ-variable or a ρ-variable.
Term-variables are denoted by “f”, “g”, “h”. Distinct letters denotes distinct
variables unless stated otherwise.

A term λa.M is sometimes denoted by ρa.M if the variable a is a ρ-variable.
Arbitrary λρ-terms are denoted by “L”, “M”, “N”, “P”, “Q”, “R”, “S”,

“T”.

Definition 1.2 (Free variables). The set FV (M) of all term variables free in
M , is defined as:

1. FV (x) = {x},

2. FV ((MN)) = FV (M) ∪ FV (N),

3. FV ((aM)) = FV (M) ∪ {a},

4. FV ((λf.M)) = FV (M) − {f}.

1



Definition 1.3 (ρβ-contraction). A ρβ-redex is any λρ-term of form (aM)N ,
(λx.M)N or (λa.M)N ; its contractum is (aM), [N/x]M or λb.([λx.b(xN)/a]M)N
respectively. The re-write rules are

(aM)N ¤1a (aM),
(λx.M)N ¤1β [N/x]M,

(λa.M)N ¤1ρ λb.([λx.b(xN)/a]M)N , where b is the first ρ-variable
and x is the first λ-variable such that b and x do
not occur in aMN ,

M ¤1ρβ N if M ¤1a N,M ¤1β N or M ¤1ρ N.

If P contains a ρβ-redex-occurence R and Q is the result of replacing this by
its contractum, we say that P ρβ-contracts to Q (P ¤1ρβ Q), and we call the
triple 〈P,R,Q〉 a ρβ-contraction of P .

Definition 1.4 (ρβ-reduction). A ρβ-reduction of a term P is a possibly empty
sequence of ρβ-contractions with form

〈P1, R1, Q1〉, 〈P2, R2, Q2〉, . . .

where P1 ≡α P and Qi ≡α Pi+1 for i = 1, 2, . . .. We say a finite reduction is
from P to Q if either it has n ≥ 1 contractions and Qn ≡α Q or it is empty and
P ≡α Q. A reduction from P to Q is said to terminate or end to Q. If there is
a reduction from P to Q we say that P ρβ-reduces to Q, in symbols

P ¤ρβ Q.

Note that α-conversions are allowed in a ρβ-reduction.

Theorem 1.5 (Church-Rosser threorem for ρβ-reduction). If M ¤ρβ P and
M ¤ρβ Q, then there exists T such that

P ¤ρβ T and Q ¤ρβ T .

Proof. Similar to the case of β-reduction, see [HS86]. ¥

2 Typed λρ-terms

Definition 2.1 (Types). An infinite sequence of type-variables is assumed to
given, distinct from the term-variables. Types are linguistic expressions defined
thus:

1. each type-variable is a type called an atom;

2. if σ and τ are types then (σ→τ) is a type called a composite type.

2



Type-variables are denoted by “p”, “q”, “r” with or without number-subscripts,
and distinct letters denote distinct variables unless otherwise stated.

Aribitrary types are denoted by lower-case Greek letters except “λ” and “ρ”.
Parentheses will often (but not always) be omitted from types, and the reader

should restore omitted ones in the way of association to the right.
Any term-variables is assumed to have one type. For any type τ , an infinite

sequence of λ-variables with type τ and an infinite sequence of ρ-variable with
type τ are assumed to exist.

Definition 2.2 (Typed λρ-terms). We shall define typed λρ-terms and Type(M)(An
assertion type(M) = τ is denoted by M : τ) simultaneously:

1. A λ-variable x with type τ is a typed λρ-term, called an atom, and x : τ .

2. if M and N are typed λρ-terms and M : σ → τ and N : σ, then the
expression (MN) is a typed λρ-term called an application and (MN) : τ ,

3. if M is a typed λρ-term and M : τ and a is a ρ-variable with type τ , then
the expression (aM)σ is a typed λρ-term called an absurd and (aM)σ : σ,

4. if M is a typed λρ-term and M : τ and x is a λ-variable with a type σ,
then the expression (λx.M) is a typed λρ-term called a λ-abstract and
(λx.M) : σ→τ ,

5. if M is a typed λρ-term and M : τ and a is a ρ-variable with the type
τ , then the expression (λa.M) is a typed λρ-term called a ρ-abstract and
(λa.M) : τ .

Typed λρ-terms will be abbriviated using the same conventions as for λρ-terms.

Definition 2.3 (Free variables in a typed λρ-term). Let M be a typed λρ-term.
FV (M), which is the set of all term variables with a type free in M , is defined
thus:

1. FV (x) = {x},

2. FV ((MN)) = FV (M) ∪ FV (N),

3. FV ((aM)σ) = FV (M) ∪ {a},

4. FV ((λf.M)) = FV (M) − {f},

FVλ(M) and FVρ(M) denote the set of all λ-variables in FV (M) and the set
of all ρ-variables in FV (M), respectively.

Example 2.4 (Peirce’s Law).

λxa.x(λy.(ay)β), where x : (α→β)→α, y : α and a : α.

On the other, the proof of Peirce’s Law is λxa.[a](x(λyb.[a]y)) in Parigot’s sys-
tem. We think that proofs of our system are generally simpler than those of
Parigot’s system.

3



The above typed λρ-terms is writen in a tree form as follows:

x : (α→β)→α

a : α y : α

β

α→β
λy

α
α λa

((α→β)→α)→α
λx

,

or in more a redundant form as follows:

x : (α→β)→α

a : α y : α

ay : β

λy.ay : α→β

x(λy.ay) : α

λa.x(λy.ay) : α

λxa.x(λy.ay) : ((α→β)→α)→α

Definition 2.5 (Type-erasure and typability). We assume the existance of two
mappings j and k such that j is an one-to-one onto mapping from the set of
all λ-variables and g is one-to-one onto mapping from the set of all ρ-variables
with a type to the set of all ρ-variables. For the simplicity, we write x and a for
j(x) and k(a), respectively. The type-erasure er(M) of a typed λρ-term M is
the λρ-term obtained by erasing all types from M . er(M) is defined as follows:

1. er(x) ≡ x,

2. er((MN)) ≡ (er(M)er(N)),

3. er((aM)σ) ≡ (aer(M)),

4. er((λx.M)) ≡ (λx.er(M)),

5. er((λa.M)) ≡ (λa.er(M)).

A λρ-term M is called typable iff there exists a typed λρ-term N such that
er(N) ≡α M .

For typed λρ-terms M , N and a λ-variable x with the type Type(N), the
substitution of N for x in M [N/x]M is defined as the usual. For a typed λρ-
term M and ρ-variables a, b such that Type(a) = Type(b), the substitution of b
for a in M [b/a]M is defined also as the usual.

To define ρβ-contraction for typed λρ-terms, we have to define the substi-
tution of an expression λx.b(xN) for a ρ-variable. Remark that the expression
λx.b(xN) is not a typed λρ-term.

Definition 2.6 (Substitution an expression λx.b(xN) for a ρ-variable). For
typed λρ-terms M , N , a ρ-variable b, we define [λx.b(xN)/a]M to be the result
of substituting λx.b(xN) for every free occurrence of a in M , where Type(x) =
Type(a) = α→β, b : β and N : α.

4



1. [λx.b(xN)/a]M ≡ M if a /∈ FV (M),

2. [λx.b(xN)/a](MR) ≡ ([λx.b(xN)/a]M [λx.b(xN)/a]R) if a ∈ FV (MR),

3. [λx.b(xN)/a](λy.M) ≡ λy.[λx.b(xN)/a]M if a ∈ FV (M) and y /∈
FV (λx.b(xN)),

4. [λx.b(xN)/a](λy.M) ≡ λz.[λx.b(xN)/a][z/y]M if a ∈ FV (M) and y ∈
FV (λx.b(xN)),

5. [λx.b(xN)/a](cM)σ ≡ (b[λx.b(xN)/a]M)σ if a ∈ FV (M) and c 6≡ a,

6. [λx.b(xN)/a](aM)σ ≡ (λx.(b(xN))σ)[λx.b(xN)/a]M ,

7. [λx.b(xN)/a](λc.M) ≡ λc.[λx.b(xN)/a]M if a ∈ FV (λc.M) and c /∈
FV (bN),

8. [λx.b(xN)/a](λc.M) ≡ λd.[λx.b(xN)/a][d/c]M if a ∈ FV (λc.M) and
c ∈ FV (bN).

(In 4 z is the first λ-variable with the type Type(y) which does not occur in
xNM . In 8 d is the first ρ-variable with the type Type(c) which does not occur
in bNM .)

Definition 2.7 (ρβ-contraction for typed λρ-terms). A ρβ-redex is any typed
λρ-term of form (aM)σ→τN , (λx.M)N or (λa.M)N ; its contractum is (aM)τ ,
[N/x]M or λb.([λx.b(xN)/a]M)N respectively. The re-write rules are

(aM)σ→τN ¤1a (aM)τ ,

(λx.M)N ¤1β [N/x]M,

(λa.M)N ¤1ρ λb.([λx.b(xN)/a]M)N , where b is the first ρ-variable
and x is the first λ-variable such that b : Type(MN),
x : Type(a) and b and x do not occur in aMN ,

M ¤1ρβ N if M ¤1a N,M ¤1β N or M ¤1ρ N.

If P contains a ρβ-redex-occurence R and Q is the result of replacing this by
its contractum, we say P ρβ-contracts to Q (P ¤1ρβ Q), and we call the triple
〈P,R, Q〉 a ρβ-contraction of P .

A ρβ-reduction for typed λρ-terms is defined in the same way as a ρβ-
reduction for type free λρ-terms.

Theorem 2.8 (Church-Rosser threorem for typed λρ-terms). Let M , P and Q
be typed λρ-terms. If M ¤ρβ P and M ¤ρβ Q, then there exists a typed λρ-term
T such that

P ¤ρβ T and Q ¤ρβ T .

Proof. Simmlar to the case of β-reduction, see [HS86]. ¥

5



3 Subject-reduction theorem for typed λρ-calculus

Lemma 3.1. If P and Q are typed λρ-terms and x is a λ-variable with the type
Type(Q), then [Q/x]P is a typed λρ-term and Type([Q/x]P ) = Type(P ) and
FV ([Q/x]P ) ⊆ (FV (P ) − {x}) ∪ FV (Q).

Proof. By induction on the length of P . ¥

Lemma 3.2. If P and Q are typed λρ-terms, Type(x) = Type(a) = σ → τ ,
b : τ , Q : σ and x /∈ FV (Q), then [λx.b(xQ)/a]P is a typed λρ-term and
Type([λx.b(xQ)/a]P ) = Type(P ) and FV ([λx.b(xQ)/a]P ) ⊆ (FV (P ) − {a}) ∪
FV (Q) ∪ {b}.

Proof. By induction on the length of P . The only nontrivial case P ≡ (aP1)γ .
Then P1 : σ→τ and [λx.b(xQ)/a](aP1)γ ≡ (λx.(b(xQ))γ)[λx.b(xQ)/a]P1. Now
we have Type([λx.b(xQ)/a]P ) =
Type(P ) = γ and FV ([λx.b(xQ)/a]P ) = FV ([λx.b(xQ)/a]P1)∪FV (Q)∪{b} ⊆
(FV (P ) − {a}) ∪ FV (Q) ∪ {b}. ¥

Theorem 3.3 (Subject-reduction theorem). If P¤ρβQ, then Type(Q) = Type(P )
and FV (Q) ⊆ FV (P ).

Proof. By Lemma 3.1, it is enough to take care of the case that P is a redex and
Q is its contractum. It is enough to prove that if P ¤1ρβ Q, then Type(Q) =
Type(P ) and FV (Q) ⊆ FV (P ).
Case 1: P ≡ (aP1)σ→τP2 and Q ≡ (aP1)τ . It is obvious that Type(P ) =
Type(Q) = τ . Then we have FV (Q) = FV (P1) ∪ {a} ⊆ FV (P1) ∪ {a} ∪
FV (P2) = FV (P ).
Case 2: P ≡ (λx.P1)P2 and Q ≡ [P2/x]P1. By Lemma 3.1, we have Type(Q) =
Type(P ) and FV (Q) ⊆ FV (P ).
Case 3: P ≡ (λa.P1)P2 and Q ≡ λb.([λx.b(xP2)/a]P1)P2. By Lemma 3.2, we
have Type(Q) = Type(P ) and FV (Q) ⊆ FV (P ). ¥

4 Strong Normalization Theorem for typed λρ-
terms

We prove the strong normalization theorem for typed λρ-terms ,that is, for every
typed λρ-term M , all reductions starting at M are finite. To prove the theorem,
we introduce ∗-expansion and use the strong normalization theorem for typed
λ-terms.

Definition 4.1 (◦-translation). For every typed λρ-term (λa.M), where M : τ ,
we define ◦-translation as follows:

1. if τ is an atomic type, then (λa.M)◦ ≡ (λa.M),

6



2. if τ ≡ α→β, then (λa.M)◦ ≡ (λy.(λb.[λx.b(xy)/a]My)◦), where x, y and
b are the first λ-variable with the type α→β, the second λ-variable with
the type α and the first ρ-variable with the type β which do not occur in
aM .

By the above definition, if M : σ1 → · · · → σn → p, then (λa.M)◦ ¤β

λy1 · · · ynb.[λx.b(xy1 · · · yn)/a]My1 · · · yn where x : σ1→· · ·→σn→p,
y1 : σ1 · · · yn : σn and b : p.

Lemma 4.2. Type((λa.M)◦) = Type(λa.M) and FV ((λa.M)◦) = FV (λa.M).

Proof. By induction on the length of Type(λa.M). If Type(λa.M) is an atom,
then (λa.M)◦ ≡ λa.M , so Type(λa.M) = Type((λa.M)◦) and FV (λa.M) =
FV ((λa.M)◦). If λa.M : α→β, then

(λa.M)◦ ≡ (λy.(λb.[λx.b(xy)/a]My)◦) where x : α→β and y : α.

Since M : α→β, [λx.b(xy)/a]My : β by Lemma 3.2 and λb.[λx.b(xy)/a]My : β.
Hence by the induction hypothesis, (λb.[λx.b(xy)/a]My)◦ : β and
FV ((λb.[λx.b(xy)/a]My)◦) = FV (λb.[λx.b(xy)/a]My) = (FV (M) − {a}) ∪
{y}. Therefore we have Type(λa.M) = Type((λa.M)◦) and FV (λa.M) =
FV ((λa.M)◦). ¥

Definition 4.3 (∗-expansion). For every typed λρ-term, we define its ∗-expansion
as follows:

1. (x)∗ ≡ x ,

2. (MN)∗ ≡ (M∗N∗) ,

3. (λx.M)∗ ≡ λx.M∗ ,

4. ((aM)τ )∗ ≡ (aM∗)τ ,

5. (λa.M)∗ ≡ (λa.M∗)◦ .

Lemma 4.4. Type(M∗) = Type(M) and FV (M∗) = FV (M).

Proof. By induction on the length of M . The only nontrivial case is M ≡ λa.N .
By the induction hypothesis, Type(N∗) = Type(N) and FV (N∗) = FV (N).
In this case we prove the claim by induction on the length of Type(N). If
Type(N) is an atom, then M∗ ≡ λa.N∗. Therefore we have Type(M∗) =
Type(N∗) = Type(N) = Type(M) and FV (M∗) = FV (N∗)−{a} = FV (N)−
{a} = FV (N). Let Type(N) is a composite type α → β. Since Type(N∗) =
α→β, Type([λx.b(xy)/a]N∗) = α→β by Lemma 3.2 where x : α→β, y : α and
b : β. Hence

Type(M∗) = Type((λa.N∗)◦)
= Type(λy.(λb.[λx.b(xy)/a]N∗y)◦)
= α→Type((λb.[λx.b(xy)/a]N∗y)◦)
= α→Type(λb.[λx.b(xy)/a]N∗y) (by Lemma 4.2)
= α→Type([λx.b(xy)/a]N∗y)
= α→β = Type(M).

7



Similarly, we can get FV (M∗) = FV (M). ¥

Lemma 4.5. If λa.M and N are typed λρ-terms and x is a λ-variable with the
type Type(N), then

[N/x](λa.M)◦ ≡α ([N/x](λa.M))◦.

Proof. By induction on the length of Type(λa.M). ¥

Lemma 4.6. If M and N are typed λρ-terms and Type(N) = Type(x), then

[N∗/x]M∗ ≡α ([N/x]M)∗.

Proof. By induction on the length of M . The only nontrivial case is M ≡ λa.R.
By the induction hypothesis, [N∗/x]R∗ ≡α ([N/x]R)∗. We assume that a /∈
FV (N). If Type(R) is an atom, then

[N∗/x](λa.R)∗ ≡ [N∗/x](λa.R∗)◦

≡ [N∗/x](λa.R∗) (as Type(R) is an atom)
≡α λa.[N∗/x]R∗

≡α λa.([N/x]R)∗ (by the induction hypothesis)
≡ (λa.([N/x]R)∗)◦ (as Type(R) is an atom)
≡ (λa.([N/x]R))∗

≡ ([N/x](λa.R))∗.

Let Type(R) be a composite type α→β. Then

[N∗/x](λa.R)∗ ≡ [N∗/x](λz.(λb.[λy.b(yz)/a]R∗z)◦)
≡ λz.[N∗/x](λb.[λy.b(yz)/a]R∗z)◦

≡α λz.([N∗/x](λb.[λy.b(yz)/a]R∗z))◦ (by Lemma 4.5)
≡ λz.(λb.[λy.b(yz)/a][N∗/x]R∗z)◦

≡α λz.(λb.[λy.b(yz)/a]([N/x]R)∗z)◦ (by the induction hypothesis)
≡ (λa.([N/x]R))∗

≡ ([N/x](λa.R))∗.

¥

Lemma 4.7. If M and N are typed λρ-terms, then

[λx.a(xN∗)/a]M∗ ≡α ([λx.a(xN)/a]M)∗.

Proof. Similar to that of Lemma 4.6. ¥

Definition 4.8 (aβ-contraction for typed λρ-terms). An aβ-redex is an a-redex
or a β-redex, that is

M ¤1aβ N if M ¤1a N or M ¤1β N.

8



If P contains an aβ-redex-occurence R and Q is the result of replacing R by
its contractum, we say P aβ-contracts to Q (P ¤1aβ Q), and we call the triple
〈P,R, Q〉 an aβ-contraction of P .

An aβ-reduction for typed λρ-terms is defined in the same way as a ρβ-
reduction for type free λρ-terms.

Theorem 4.9 (Strong normalization theorem for aβ-reduction). For any typed
λρ-term M , all aβ-reductions starting at M are finite.

Proof. Similar to the case of typed λ-calculus, see [HS86]. ¥

The following lemma is the key result to prove strong normalization for
ρβ-reduction.

Lemma 4.10. For any typed λρ-terms M and n, if M ¤1ρβ N then M∗¤1aβ N∗.

Proof. Case 1: The redex is (λx.P )Q.

((λx.P )Q)∗ ≡ (λx.P ∗)Q∗

¤1aβ [Q∗/x]P ∗

≡ ([Q/x]P )∗ (by Lemma 4.6).

Case 2: The redex is (aP )σ→τQ.

((aP )σ→τQ)∗ ≡ (aP ∗)σ→τQ∗

¤1aβ (aP ∗)τ

≡ ((aP )τ )∗.

Case 3: The redex is (λa.P )Q.

((λa.P )Q)∗ ≡ (λy.(λb.[λx.b(xy)/a]P ∗y)◦)Q∗

¤1aβ [Q∗/y]((λb.[λx.b(xy)/a]P ∗y)◦)
≡ ([Q∗/y]λb.[λx.b(xy)/a]P ∗y)◦ (by Lemma 4.5)
≡ (λb.[λx.b(xQ∗)/a]P ∗Q∗)◦

≡ (λb.([λx.b(xQ)/a]P )∗Q∗)◦ (by Lemma 4.7)
≡ (λb.(([λx.b(xQ)/a]P )Q)∗)◦

≡ (λb.(([λx.b(xQ)/a]P )Q))∗.

¥

Theorem 4.11 (Strong normalization theorem for ρβ-reduction). For any typed
λρ-term M , all ρβ-reductions starting at M are finite.

Proof. Let M1,M2, . . . be an infinite ρβ-reduction. By Lemma 4.10, we can get
an infinite aβ-reduction M∗

1 , M∗
2 , . . .. It contradicts Theorem 4.9. ¥

9



5 Subformula property for normal typed λρ-terms

Definition 5.1 (Subterms). The set Subt(M) of all subterm of a typed λρ-term
M is defined by induction on the length of M as follows:

1. if M is an atom, Subt(M) = {M},

2. Subt((PQ)) = Subt(P ) ∪ Subt(Q) ∪ {(PQ)},

3. Subt((aP )σ) = Subt(P ) ∪ {a} ∪ {(aP )σ}

4. Subt((λf.P )) = Subt(P ) ∪ {(λf.P )}.

ρ-variables are not λρ-terms but ρ-variables may be in Subt(M). Subt(M) is
a set of λρ-terms and ρ-variables. Let S be a set of λρ-terms and ρ-variables.
Type(S) denotes the set {Type(M) | M ∈ S}.

Notation 5.2. Let Γ be a set of types. If a type δ has an occurrence in α, or
in a type in Γ, we write as δ ≤ α, or δ ≤ Γ respectively.

Theorem 5.3 (Subformula property for typed λρ-terms in the normal form).
Let a typed λρ-term M be a ρβ-normal form. Then for every type δ in
Type(Subt(M)), δ ≤ Type(FV (M) ∪ {M}).

Proof. By induction on the length of M . The only nontrivial case is when M
is of the form PQ. Since PQ is a ρβ-normal form, so are P and Q, and hence
by the induction hypothesis, for every type σ in Type(Subt(P )) and every type
τ in Type(Subt(Q)), σ ≤ Type(FV (P ) ∪ {P}) and τ ≤ Type(FV (Q) ∪ {Q}).
Now, since PQ is a ρβ-normal form, P must be in the form xP1 · · ·Pn. Hence
Type(P ) ≤ Type(x) and for every type δ in Type(Subt(M)), δ ≤ Type({x} ∪
FV (M)). Therefore for every type δ in Type(Subt(M)), δ ≤ Type(FV (M) ∪
{M}). ¥

6 Gentzen’s LK and Typed λρ-terms

In this section, we shall prove that a typed λρ-term is a proof of the classical
implicational logic and prove simultaneously the cut elimination theorem for the
implicational fragment LK→ of LK by using the strong normalization theorem
for typed λρ-terms.

The calculus LK→ that we use here is the following:

Definition 6.1. Let Γ, Θ, ∆ and Λ be sets of types. Γ, ∆ denotes the set Γ∪∆
and Γ\α denotes the set Γ − {α}.

1. axiom: (I) α ⇒ α.

2. rules:
Γ ⇒ Θ

α,Γ ⇒ Θ
(w ⇒)

,
Γ ⇒ Θ

Γ ⇒ Θ, α
(⇒ w)

,

10



Γ ⇒ Θ, α α, ∆ ⇒ Λ
Γ, ∆ ⇒ Θ, Λ

(cut)
,

Γ ⇒ Θ, α β, ∆ ⇒ Λ
α→β, Γ,∆ ⇒ Θ, Λ

(→⇒)
,

Γ ⇒ Θ, β

Γ\α ⇒ Θ, α→β
(⇒→)

.

Theorem 6.2. If Γ ⇒ Θ is provable the system LK→, then there exists a typed
λρ-term M such that Γ ⊇ Type(FVλ(M)) and Θ ⊇ Type(FVρ(M) ∪ {M}).

Proof. By induction on the length of the LK→ proof of Γ ⇒ Θ. ¥

Lemma 6.3. For any ρβ-normal typed λρ-term M , Type(FVλ(M)) ⇒
Type(FVρ(M) ∪ {M}) is provable without cut in the system LK→.

Proof. By induction on the length of M . The only nontrivial case is when M is
of the form (PQ). Since M is normal, P ≡ yP1 · · ·Pn for some λ-variable y and
normal λρ-terms P1, . . . , Pn. Let Type(x) be σ1→· · ·→σn→τ →γ. Then we
have Type(P1) = σ1. By the induction hypothesis, there exists a cut free deduc-
tion in LK→ proving Type(FVλ(P1)) ⇒ Type(FVρ(P1)), σ1. Let z be a new λ-
variable with a type σ2→· · ·→σn→τ→γ. The λρ-term zP2 · · ·PnQ is normal.
Hence, by the induction hypothesis, there exists a cut free deduction of LK prov-
ing σ2→· · ·→σn→τ→γ, Type(FVλ(P2 · · ·PnQ)) ⇒ Type(FVρ(P2 · · ·PnQ)), γ.
By the rule (→⇒), we get a a cut free deduction of LK proving σ1→· · ·→σn→
τ→γ, Type(FVλ(P1 · · ·PnQ)) ⇒ Type(FVρ(P1 · · ·PnQ)), γ. As
Type(FVλ(M)) ≡ σ1→· · ·→σn→τ→γ, Type(FVλ(P1 · · ·PnQ)) and
Type(FVρ(M)∪{M}) ≡ Type(FVρ(P1 · · ·PnQ)), γ, we get a cut free deduction
of LK proving Type(FVλ(M)) ⇒ Type(FVρ(M) ∪ {M}). ¥

Lemma 6.4. For any typed λρ-term M , Type(FVλ(M)) ⇒ Type(FVρ(M) ∪
{M}) is provable without cut in the system LK→.

Proof. By Theorem 4.11, there exists a ρβ-normal form M∗ of M . By Lemma
6.3, Type(FVλ(M∗)) ⇒ Type(FVρ(M∗)∪{M∗}) is provable without cut in the
system LK→. By Theorem 3.3, Type(FV (M)∪{M}) ⊇ Type(FV (M∗)∪{M∗}).
Hence, by the weakening rules (w ⇒) and (⇒ w), we can get a cut free deduction
of Type(FVλ(M)) ⇒ Type(FVρ(M) ∪ {M}). ¥

Theorem 6.5. Γ ⇒ Θ is provable the system LK→ if and only if there exists a
typed λρ-term M such that Γ ⊇ Type(FVλ(M)) and Θ ⊇ Type(FVρ(M)∪{M}).

Proof. By Lemma 6.2 and Lemma 6.4. ¥

Theorem 6.6. If Γ ⇒ Θ is provable in the system LK→, then Γ ⇒ Θ is provable
without cut in the system LK→.

Proof. By Lemma 6.2 and Lemma 6.4. ¥

11



References

[H97] J. Roser Hindley. Basic Simple Type Theory, Vol. 42 of Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, 1997.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to combinators
and λ-calculus, Vol. 1 of London Mathematical Society Student Texts, Cam-
bridge University Press, 1986.

[P92] Michel Parigot. λµ-CALCULUS: AN ALGORITHMIC INTERPRETA-
TION OF CLASSICAL NATURAL DEDUCTION, Lecture Notes in Com-
puter Science 624, 190-201, 1992.

[K02] Yuichi Komori. λρ-Calculus: A Natural Deduction for Classical Logic,
BULLETIN OF THE SECTION OF LOGIC, VOL. 31, No. 2, 65-70, 2002.

Yuichi KOMORI

Chiba University

Inaga-ku Chiba

263-8522 JAPAN

komori@math.s.chiba-u.ac.jp

Arato CHO

aratoc@g.math.s.chiba-u.ac.jp

12


