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Abstract—Juncaginaceae are a small monocot family of mostly coastal and wet-
land herbs of almost cosmopolitan distribution. A phylogenetic analysis of the
family and members of Alismatales was conducted to clarify the circumscription
of Juncaginaceae and to understand intrafamilial relationships. For the first
time, all genera associated with the family in the past were analysed together.
Two plastid (rbcL and matK) and one mitochondrial gene (atpA) were sequenced.
The separate and combined analysis of the three markers showed that Juncagi-
naceae are not monophyletic in their current circumscription. The family is
re-circumscribed to exclude Maundia which is proposed to belong to a separate
family Maundiaceae. In the new classification Juncaginaceae comprise three
genera: Tetroncium, Cycnogeton, and Triglochin. Tetroncium is weakly supported
as sister to the rest of the family. The reinstated Cycnogeton (formerly included
in Triglochin) is highly supported as sister to Triglochin s.s. The enigmatic Lilaea
is nested within Triglochin s.s. and highly supported as sister to the T. bulbosa
complex. The results of the molecular analysis are discussed in combination
with morphological characters. A key to the genera of the family is presented,
and six new combinations are proposed: Cycnogeton alcockiae, Cycnogeton
dubium, Cycnogeton microtuberosum, Cycnogeton multifructum, Cycno-
geton rheophilum, and Triglochin scilloides.

Keywords—Alismatales, Cycnogeton, Lilaea, Maundia, Tetroncium, Triglochin.

1 This article is dedicated to the memory of Dr. Surrey W. L. Jacobs (1946-2009) in appreciation
of his outstanding contributions to the knowledge of Australian water plants and in grateful

acknowledgment of his support of the project described here.
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The order Alismatales (14 families with ca. 4490 species; Stevens 2001 on-
wards), one of the earliest-diverging lineages of monocotyledons (Janssen and
Bremer 2004), comprises mainly aquatic and wetland plants. While several
groups of Alismatales have received considerable attention (e.g., seagrasses: e.g.,
den Hartog 1970; Les et al. 1997; Araceae: e.g., Mayo et al. 1997; Cabrera et al.
2008), some smaller families of the order have not been studied in detail. One
of these are Juncaginaceae (Arrow-grass family), part of the so-called aquatic
clade (Judd et al. 2007) or core Alismatales (Stevens 2001 onwards).

As currently circumscribed, Juncaginaceae comprise four genera, Triglochin,
Lilaea, Maundia, and Tetroncium. (Haynes et al. 1998; Stevens 2001 onwards) with
together approximately 25-35 annual or perennial species. Despite its small size,
the family shows considerable ecological diversity. Members of Juncaginaceae
are wind-pollinated, grass-like herbs which can be found in freshwater (slow-
flowing rivers, bogs, fens), in brackish water (e.g., estuaries), and in salt marshes,
but also in only seasonally wet terrestrial sites (e.g., annual species of Triglochin,
T. bulbosa L. subspp.). The family has an almost cosmopolitan distribution with
Australia as centre of specific diversity (Fig. 1).

Triglochin is the largest genus of the family and is distributed almost world-
wide. Widely circumscribed (in the following called Triglochin s.l.) it comprises
the mostly halophytic arrow-grasses (Triglochin s.s.) and the water-ribbons (T
procera R.Br. and related species of the T. procera complex) which are important
components of Australian freshwater communities. The latter complex is some-
times segregated from Triglochin as Cycnogeton. The number of recognized species
in Triglochin varies greatly in the literature, ranging from 12 to 24 (e.g., Haynes
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Fig.1. Geographical distribution of the currently recognized genera of Juncaginaceae. Map prepared
using Online Map Creation (Weinelt 1996 onwards).
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et al. 1998; Stevens 2001 onwards; Govaerts 2008; Mabberley 2008). However, re-
cent revisions (Aston 1995; Kocke et al., in press; H. I. Aston, pers. comm.) have
revealed considerably higher numbers of probably more than 30 species.

While Triglochin is distributed almost worldwide, the monotypic genera Tet-
ronciwm and Maundia are restricted to relatively small areas in southern South
America and eastern Australia, respectively (Fig. 1). Tetroncium magellanicum is a
typical component of Sphagnum L. bogs in Patagonia and Tierra del Fuego, and
on some subantarctic islands (Falkland Islands, Gough Island). Maundia triglochi-
noides is found in swamps, creeks, or shallow freshwater in coastal Queensland
and New South Wales. Lilaea, the third monotypic genus, is distributed from
southern South America to southern Canada (Fig. 1). Lilaea scilloides grows
emergent or submerged in shallow water of seasonal pools or neighbouring
mud flats. This species is also naturalised in Australia (Aston 1967, 1977; Aus-
tralian Plant Census 2009; H. I. Aston, pers. comm.) and the Iberian Peninsula
(Gonzilez 1968; Nava et al. 2000; Romero Bujan 2007).

The circumscription of Juncaginaceae has changed throughout history. The
most important historical classifications are summarized in Table 1. In older
classifications the genus Scheuchzeria L. was included in the family. Morphologi-
cal (e.g., Tomlinson 1982; Posluszny 1983) and more recently molecular data (Les
et al. 1997) have shown the distinctness of Scheuchzeria, which is now commonly
placed in its own monotypic family Scheuchzeriaceae. The correct placement of
Lilaea has also been problematic. This genus has often been treated as the only
member of Lilaeaceae Dumortier because of its divergent floral morphology (e.g.,
Taylor 1909; Tomlinson 1982). Results of karyological (Larsen 1966), embryo-
logical (Agrawal 1952; Yamashita 1970), and molecular studies (Les et al. 1997)
have, however, shown the close relationship between Lilaea and Juncaginaceae,
resulting in the inclusion of Lilzea in Juncaginaceae by most modern authors
(e.g., Haynes et al. 1998; Stevens 2001 onwards). Some authors (e.g., Novelo and
Lot 2001; Novelo 2003), however, retain Lilaeaceae as a separate family. Finally,
the monotypic Maundia has been treated also as a separate family, Maundiaceae
Nakai (1943). Subsequently, this family was accepted only by Takhtajan (1997).

Generic limits within Juncaginaceae also have been assessed differently by
different authors (Table 1). The status of Cycnogeton and Maundia has changed
several times through history. Both taxa were originally described as mono-
typic genera, but later treated either as sections (Micheli 1881) or subgenera
of a broadly circumscribed Triglochin (subg. Cycnogeton (Endl) Buchenau and
subg. Pseudotriglochin (Micheli) Buchenau, respectively; Buchenau and Hierony-
mus 1889). While Cycnogeton in subsequent treatments usually was included in
Triglochin without recognition as subgenus (e.g., Aston 1977, 1995; Haynes et al.
1998), Maundia was generally accepted as a separate genus (Aston 1977; Haynes
et al. 1998).

No molecular study of all genera of Juncaginaceae has yet been published. Mo-
lecular studies of monocots or Alismatales included only very few representatives
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of the family and sometimes none at all. An analysis of Alismatales based on rbcL
sequence data (Les et al. 1997) contained only three species (Triglochin maritima L.,
Cycnogeton procerum, and Lilaea scilloides which formed a strongly supported clade
with Cycnogeton as sister to a strongly supported Lilaea/Triglochin clade. In a bio-
geographical study of hydrophytes (Les et al. 2003), ITS sequences of Tetroncium
and Cycnogeton were used to estimate divergence times, but not to reconstruct
the phylogeny of these taxa. Thus, although the position of Juncaginaceae within
Alismatales is relatively unambiguous, phylogenetic relationships among genera
of Juncaginaceae are still unclear mainly because Maundia and Tetroncium have
never been included in molecular phylogenetic analyses and because the sample
of Triglochin s.1. has been too small. Even though some anatomical information
is available for Maundia (Tomlinson 1982) the knowledge of this latter genus and
Tetroncium is fragmentary and mainly limited to Flora treatments (e.g., Thomp-
son 1961; Correa 1969; Aston 1977; Broughton and McAdam 2005).

The objective of this study is to provide a comprehensive phylogenetic analy-
sis of Juncaginaceae based on molecular data. This phylogeny will be interpreted
on the background of the morphology of the family as far as known. To obtain
a better understanding of relationships among genera presently assigned to
Juncaginaceae, and to evaluate the delimitation of the family, we used the chlo-
roplast (cp) genes rbcL and matK as well as the mitochondrial (mt) gene atpA.
In this study we will (1) investigate the monophyly of the family Juncaginaceae
in its current circumscription, (2) clarify relationships among the genera of the
family, and (3) propose a revised classification of Juncaginaceae where clear
evidence from molecular and other data is available.

Materials and Methods

Taxon Sampling—Altogether, nine species currently recognized as members of
Juncaginaceae, the monotypic Lilaea, Maundia, Tetroncium, and six species consid-
ered representative of Triglochin, plus Scheuchzeria palustris L. (Scheuchzeriaceae)
were included in our analysis. Our molecular studies (S. von Mering and J. W.
Kadereit, unpubl. data) have shown that several members of the morphologi-
cally well-defined Australian Triglochin procera complex (water-ribbons) form a
monophyletic group. Difficulties in obtaining high quality DNA prevented the
inclusion of an annual species of Triglochin in this study. However, species of
this group formed a monophyletic clade within Triglochin s.s. (S. von Mering
and J. W. Kadereit, unpubl. data). Sequences of members of all other families
of Alismatales were downloaded from GenBank. Voucher information and
GenBank accession numbers are given in Appendix I.

Molecular Marker—The plastid vbcL gene was chosen in this study because
rbcL sequences are available for members of all other families of Alismatales,
providing a rich source for outgroups. Additionally, matK was used to improve
resolution and/or support, and the atpA gene has been used in the analysis
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of monocot and Alismatales relationships (e.g., Davis et al. 1998, 2004, 2006;
Petersen et al. 2006).

DNA Extraction, Amplification, and Sequencing—Total genomic DNAs were
extracted either from silica-dried leaves, from material preserved in saturated
NaCl-CTAB solution supplemented with 200 mM sodium ascorbate (Thomson
2002), or from herbarium material using NucleoSpin® plant DNA extraction
kits (Macherey-Nagel, Diiren, Germany) following the manufacturer’s protocol.
The standard 25 pl PCR reaction mix consisted of the following: 2.5 mM MgClz,
200 pM dNTPs, 1 pM per primer, 0.025 U/ul Tag polymerase, 1-2 pl of DNA
extract in the reaction buffer provided by the manufacturer of the polymerase,
and 1% BSA. PCR reactions were carried out in a Biometra® T3 or a PTC 100™
thermocycler (M] Research, Inc., MA, U.S.A.) using the programme: 60 sec at
94°C, followed by 35 cycles of 18 sec at 94°C, 30 sec at 52°C, 60 sec at 72°C
and a post-treatment of 8 min at 72°C for rbcL. The programme used for the
amplification of the matK and atpA sequences differed in the higher annealing
temperature (55°C) and a longer elongation time (90 sec).

The primers used for amplification of the three markers are summarized
in Table 2. RbcL sequences were amplified in three overlapping fragments with
slightly modified standard rbcL primers: IF and 579R, 507F and 994R, and 95sF
and 1460R. To amplify and sequence the matK region one primer was modified
after Miiller and Borsch (2005): JUmatK 480F, and the standard primer trnK 2R
was used as reverse primer (Johnson and Soltis 1994). The following primers were
used for amplification of atpA: atpA F-A1 and atpA B-A1 (Davis et al. 2004). PCR
products were checked on 0.8% agarose gels and purified directly using a PCR
purification kit (QIAGEN GmbH, Hilden, Germany). Purified PCR products

Primer name Sequence

rbcl IF 5’-ATG TCA CCA CAA ACA GAA ACT AAA GCA-3’
rbel 579R 5’-AAA TCA AGT CCA CCR CG-3’

rbel 507F* 5’-TAT TGG GAT GTA CTATTA AAC-3’

rbcl 994R* 5’-CCT TCY AGT TTA CCT AC-3’

rbel 955F* 5’-CGY ATG TCT GGT GGA GAT C-3’

rbcl 1460R 5’-CCT TTA GTA AAA GAT TGG GCC GAG-3’
JUmatK 480F 5’-CAT CTY GAAATHTTG GTT C-3’

trnK 2R 5’-AAC TAG TCG GAT GGA GTA G-3’

atpA F-Ai 5’-CAG TTG GAG ATG GGATTG CAC G-3’
atpA B-Ai 5’-GGC AGT GGT TCA TAT TGT GGT TG-3’

Table 2. Primers used in PCR and sequencing. * Slightly modified standard primer.
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were cycle-sequenced with the ABI Prism Dye Terminator Cycle Sequencing
Ready Reaction Kit (BD 3.0 in 10 pl reactions) by Perkin Elmer using the PCR
primers listed above and following the manufacturer’s protocol. Products were
purified and analysed by GENterprise (Mainz, Germany). Forward and reverse
sequences were manually edited and merged into consensus sequences using
Sequencer 4.1.2 (GeneCodes Corp., Ann Arbor, Michigan), and aligned manually
in MacClade 4.1 (Maddison and Maddison 2000). Alignment of rbcL and atpA
was straightforward. The matK sequences downloaded from GenBank were
pre-aligned automatically using the programme ClustalX (Thompson et al.
1997) and afterwards adjusted manually. Due to difficulties with amplification
and sequencing some sequences are not available for all taxa and only partial
sequences could be generated for matK and atpA.

Morphological Data—Morphological characters of Juncaginaceae and relat-
ed families of Alismatales were compiled from numerous sources, mainly from
Buchenau (1903), Aston (1977, 1993, 1995), Tomlinson (1982), Dahlgren et al. (1985),
Kubitzki (1998), Igersheim et al. (2001), Stevens (2001 onwards), and Mabberley
(2008). These were supplemented by own observations of living and/or preserved
material of some genera of Juncaginaceae. We have not coded the morphological
data for phylogenetic analysis because the available information is fragmentary
for some taxa and coding would have resulted in an incomplete data matrix.

Phylogenetic Analysis—All datasets were separately analysed using Maximum
Parsimony (MP) and Maximum Likelihood (ML) implemented in PAUP* 4.10b
(Swoftord 2003). The atpA data set showed little sequence variation and resulted
in a poorly resolved tree. The same applies to the matK data set with slightly
higher resolution. Therefore, a Partition Homogeneity Test (Farris et al. 1994;
implemented in PAUP¥*) with 100 homogeneity replicates, 10 random addition
sequences, tree-bisection-reconnection (TBR) branch swapping on, best only and
MULTREES on was performed to test whether the three data sets (rbcL, matK,
atpA) could be combined. No significant incongruence was detected between
the data sets (pairwise ILD test: p = 0.85 for rbcL and matK, p = 0.13 for rbcL and
atpA, p = 0.04 for matK and atpA). In consequence, we also analysed a combined
data matrix of the cpDNA data and all three genes. All phylogenetic data sets
were deposited in TreeBASE (study accession number S2667).

Maximum Parsimony (MP) analyses were performed using PAUP* with 1000
replicated heuristic searches using the same heuristic search settings as described
above for the Partition Homogeneity Test. Gaps were treated as missing and gaps
were not coded. Branch support was assessed with 100 bootstrap (BS) replicates
with 10 random taxon additions each and TBR and MULTREES on.

For Maximum Likelihood (ML), the appropriate model of DNA substitution
for the inference of phylogenetic relationships under ML was estimated using
Modeltest 3.06 (Posada and Crandall 1998). Best-fit models were selected by the
Akaike Information Criterion (Posada and Buckley 2004) and implemented
in the corresponding data matrices (see Results). ML heuristic searches and
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bootstrap branch support (BS) were performed in PAUP* with 100 replicated
heuristic searches and the same settings as in the MP analysis.

Following Chase et al. (2000) in presenting and discussing the results, boot-
strap support of 50%-74% is considered low, 75%-84% moderate, and > 85% high.

Results

Molecular Data - Phylogenetic Analysis—Relationships within Juncaginaceae
and the delimitation of the family within Alismatales were reconstructed based
on variation in the plastid genes rbcL and matK, the mitochondrial gene atpA,
and a combination of these. Statistics for all analyses are summarised in Table
3. An overview of all results is given in Fig. 2, where simplified trees including
MP and ML bootstrap values are provided.

CcPDNA DATA—The rbcL data set comprised 38 species of all families of Alis-
matales plus Acorus (Acoraceae) as outgroup. Of the 1177 nucleotide positions
included in the alignment, 358 were variable and 235 parsimony informative.
The MP analysis resulted in six shortest trees (consistency index, CI = 0.476;
retention index, RI = 0.649) with a length of 1033 steps (Table 3). The ML analysis
(GTR+I+G, y-shape parameter = 0.5070, base frequencies 0.2850 0.1876 0.2184,
rate matrix 1.0354 3.9222 0.5658 1.0758 5.3542) yielded one best tree. No major
incongruencies were found when comparing the topologies of the MP strict
consensus tree and the ML tree when only clades with good support were con-
sidered. The ML tree is illustrated in Fig. 3 and described here.

In this tree (Fig. 3), members of the families Araceae and Tofieldiaceae are
sister to all other Alismatales (core Alismatales). These strongly supported core
Alismatales (ML BS 93%, MP BS 95%) comprise two subclades: 1) members of
the families Alismataceae (incl. Limnocharitaceae), Butomaceae, and Hydro-
charitaceae form a highly supported clade (ML BS 92%, MP BS 96%), and 2) a
large clade in which Scheuchzeria and Aponogeton L.f. are moderately (to weakly)
supported (ML BS 77%, MP BS 57%) as sister groups to a clade comprising
Juncaginaceae and several aquatic families (Potamogetonaceae, Zosteraceae,
Cymodoceaceae, Posidoniaceae, Ruppiaceae). The latter clade plus Maundia is
sister to all other Juncaginaceae. This clade, in the following called Maundia/
Potamogeton clade, is weakly supported in this data set (ML BS 68%, MP BS 71%)
and not well-resolved. Tetroncium is weakly supported (ML BS 66%, MP BS 64%)
as sister to the remaining Juncaginaceae. The latter clade, here called Triglochin
s.L, is highly supported (ML BS 98%, MP BS 98%) and can be divided into T.
rheophila (T. procera complex) and a clade comprising several other Triglochin
spp. (Triglochin s.s.). Lilaea is nested within Triglochin s.s. (ML BS 100%, MP BS
100%), and is highly supported as sister to members of the T. bulbosa complex
(ML BS 94%, MP BS 97%).

The matK data set comprised 31 taxa and 911 characters of which 478 were
variable and 309 parsimony informative (Table 3). The MP analysis resulted in
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Fig. 2. Phylogenetic analyses of rbcL, matK, atpA, and the combined data sets. MP and ML boot-
strap values given above and below branches, respectively. Only bootstrap values higher than 70%
indicated. Dash (-): clade not recovered in MP analysis. ' - Triglochin barrelieri, T. elongata, Lilaea scil-
loides, T. maritima, T. palustris, T. striata. > - Potamogeton distinctus, Heterozostera tasmanica, Zostera noltii,
Z. marina, Phyllospadix torreyi. 3 = Amphibolis antarctica, Cymodocea serrulata, Ruppia maritima, Halodule
uninervis, Posidonia oceanica. 4 — Halodule uninervis, Potamogeton distinctus, Heterozostera tasmanica, Zostera
noltii, Phyllospadix torreyi/iwatensis. s - as ' incl. T. laxiflora and excl. T. palustris. © - Scheuchzeria palustris,
Butomus umbellatus, Ottelia acuminata, Caldesia oligococca, Sagittaria latifolia. 7 - as ' excl. T. palustris.
Missing parts of the tree (dashed line): Aponogeton fenestralis<, Scheuchzeria palustris>d=, Hydrocharis
dubiab-4, Limnobium laevigata >4, Najas marina?, Vallisneria americana?, Ottelia acuminata®> e, Stratiotes
aloides®4, Butomus umbellatus®><-, Hydrocleys nymphoides®®-d, Limnocharis flava>-d, Alisma plantago-aquatica
abd, Caldesia oligococca®P9<, Arisaema triphyllum/tortuosum®b-<de, Gymnostachys anceps>b-<e, Orontium
aquaticum®b-e-de, Pleea tenuifoliab-ode, Tofieldia calyculata®<de, Acorus calamus®b.c-d.e.
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Fig. 3. ML phylogram of the rbcL data set of Alismatales. MP and ML bootstrap values given above and

below branches, respectively. Only bootstrap values higher than 70% indicated. Currently recognized
taxa of Juncaginaceae in bold. Dash (-): clade not recovered in MP analysis.
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two shortest trees (CI = 0.576, RI = 0.701) of 1190 steps. The ML reconstruction
(TVM+G, y-shape parameter = 0.6700, base frequencies 0.3160 0.1483 0.1578, rate
matrix 1.4885 2.9422 0.1615 1.2022 2.9422) resulted in one tree. This and the MP
strict consensus tree are congruent, but differ in resolution. The ML tree resolves
a trichotomy of Triglochin s.1., Tetroncium, and the Maundia/Potamogeton clade (ML
BS 73%), whereas the MP tree essentially resulted in a polytomy of Triglochin s..,
Tetroncium, the Maundia/Potamogeton clade, Aponogeton, and Scheuchzeria (Fig. 2).

MTDNA DATA—The atpA data set comprised 23 taxa and 903 characters of
which 209 were variable and 141 parsimony informative (Table 3). The MP
analysis resulted in ten shortest trees (CI = 0.760, RI = 0.869) of 346 steps. The
ML reconstruction (TVM+G, y-shape parameter = 0.7648, base frequencies
0.2934 0.2118 0.2387, rate matrix 1.7514 2.0460 0.7166 0.4594 2.0460) resulted in
one tree.

Resolution in the atpA data set was poor. Tetroncium is weakly supported
as sister to a highly supported Triglochin s.I. (ML BS 100%, MP BS 100%). This
group is part of a large polytomy including members of most families of core
Alismatales (Fig. 2). The ML tree and the MP strict consensus tree are similar
except for the position of Potamogeton L. In the ML tree this genus is sister to
all other core Alismatales, while it is part of the polytomy in the MP analysis.

COMBINED MOLECULAR DATA—The combined cp data set (rbcL and matK)
comprised 31 taxa and 2088 characters of which 804 were variable and 527 par-
simony informative (Table 3). The MP analysis resulted in one shortest tree (CI
= 0.543, RI = 0.672) of 2075 steps. The ML reconstruction (GTR+I+G, y-shape
parameter = 0.8140, base frequencies 0.2953 0.1713 0.1908, rate matrix I.4697T 3.3168
0.3026 1.0491 3.7757) resulted in one tree. The three gene data set (rbcL, matK,
and atpA) comprised 19 taxa and 2985 characters of which 9oo were variable and
514 parsimony informative (Table 3). The MP analysis resulted in one shortest
tree (CI = 0.651, RI = 0.685) of 1783 steps. The ML reconstruction (GTR+I+G,
y-shape parameter = 0.7257, base frequencies 0.2890 0.1898 0.2121, rate matrix
1.6790 3.2857 0.3953 0.8581 3.8972) resulted in one tree.

In the two combined data sets, the topologies of the MP and ML trees are
identical (Fig. 2) and differ only in branch support. As in the rbcL data set,
Scheuchzeria and Aponogeton are the first diverging lineages in the larger subclade
of the core Alismatales. Reconstruction of the two gene and the three gene data
set differ mainly in the position of Tetroncium. Whereas in the less resolved cp-
DNA data set Tetroncium forms a trichotomy with Triglochin s.1. and the Maundia/
Potamogeton clade, the three gene data set moderately supports Tetroncium as
sister to Triglochin s.1. (ML BS 73%, MP BS 76%). In both data sets, Triglochin s.1.
can be divided into T. rheophila and a highly supported clade comprising several
species of Triglochin s.s. and Lilaea (ML BS 100%, MP BS 100%). This sister group
relationship is highly supported (ML BS 100%, MP BS 100%). The position of
Maundia as sister to a clade containing members of the aquatic families is better
supported in the cpDNA.
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Character

Lilaea

Triglochin s.str.

Triglochin procera complex

(= Cycnogeton)

Habitat seasonal pools marshes, often saline, freshwater
brackish water, seasonal
pools
Cyanogenic + + -
Chromosome number 2n =12 2n =12, 18, 24, 36, 48, etc. 2n =16, 32, 64
(up to 144)
Habit annual annual or perennial perennial
Leaves ligulate ligulate, auriculate eligulate
Carpels 1 3-6, fused 3-6, free (to fused)
Carpophore n/a mostly present absent

nuclear

nuclear

?

Endosperm formation

Table 5. Comparison of Lilaea, Triglochin s.s. and the T. procera complex (= Cycnogeton). ? — unknown.

Morphological Data—Selected morphological characters for Juncaginaceae
and related families are compiled in Table 4, and for Lilaea, Triglochin s.s., and
the Triglochin procera complex (Cycnogeton) in Table s.

Discussion

Circumscription of Juncaginaceae and Intrafamilial Relationships—The cir-
cumscription of Juncaginaceae has changed through time particularly with re-
spect to the inclusion or exclusion of Scheuchzeria, Lilaea, and Maundia (Table 1).

SCHEUCHZERIA—Scheuchzeria palustris is a rare species that is native to cool
temperate regions of the Northern hemisphere, where it grows in wet Sphagnum
bogs. It shares this habitat with Tetroncium, which has a similar ecology, but is
confined to the Southern hemisphere. Even though the genus has been included
in Juncaginaceae in earlier classifications, it is now generally acknowledged (and
also supported by our data) that Scheuchzeria belongs to a separate family.

Recently the family Juncaginaceae has been considered to consist of four
genera, Triglochin, Tetroncium, Maundia, and Lilaea (e.g. Haynes et al. 1998; Stevens
2001 onwards). In this circumscription, it is difficult to detect any convincing
morphological synapomorphies for the family.

In this study, for the first time, all genera at some point affiliated with Jun-
caginaceae were analysed together. Our results clearly show that Juncaginaceae
as currently circumscribed are not monophyletic (Figs. 2, 3).

MAUNDIA—Maundia does not group with the remaining taxa of the family in
any of our analyses. The genus is moderately supported as part of a clade com-
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prising members of Posidoniaceae, Ruppiaceae, Cymodoceaceae, Zosteraceae,
and Potamogetonaceae (here called Potamogeton clade). Some morphological
characters support the close relationship between Maundia and this clade of
aquatic families (Maundia/Potamogeton clade). Maundia as well as most members
of the Potamogeton clade show apical placentation and one pendulous, orthot-
ropous ovule per carpel (e.g. Buchenau 1903; Aston 1977; Dahlgren et al. 1985;
Kubitzki 1998; Table 4). These characters and the aquatic habitat are listed by
Stevens (2001 onwards) as potential synapomorphies of the Potamogeton clade.
In contrast to this, all other Juncaginaceae have one basal anatropous ovule per
carpel (e.g., Buchenau 1903; Tomlinson 1982). The flower structure of Maundia is
peculiar and has led to different interpretations. Flowers of Maundia have either
been interpreted to have two (to four) perianth segments (Mueller 1858; Bentham
1878; Buchenau 1903; Nakai 1943) or these organs have been regarded as two bracts
(Jacobs 2009; H. I. Aston, pers. comm.). When interpreted as bracts, the then peri-
anthless flowers would constitute another similarity to several members of the
Potamogeton clade. The stamens of Maundia have been interpreted as either (four
to) six sessile, bilocular (tetrasporangiate) anthers (Bentham 1878; Buchenau 1903;
H. L. Aston, pers. comm.) or as (eight to) 12 unilocular (bisporangiate) anthers
(Mueller 1858). Thecae are almost separate (probably the reason for Mueller’s in-
terpretation as unilocular anthers), but adnate in pairs to a common connective
(Bentham 1878; H. I. Aston, pers. comm.). This character is also found in mem-
bers of the Potamogeton clade (e.g., Posidoniaceae and Zosteraceae; Tomlinson
1982; Dahlgren et al. 1985; Stevens 2001 onwards). We favour the interpretation
of Maundia flowers as lacking a perianth and possessing six bilocular anthers,
but developmental studies are needed to fully clarify the floral structure. Unlike
most other Juncaginaceae (except Tetroncium, see below) which possess carpels
that are free or fused but separate at maturity, the carpels of Maundia are fused
(almost to the apex) and remain united at maturity.

The combined molecular and morphological evidence thus indicates that
Maundia cannot be regarded as closely related to the remaining genera of Juncag-
inaceae. Consequently, this genus should be excluded from the family. Several
potential synapomorphies uniting Maundia with the families of the Potamogeton
clade can be identified (apical placentation, one orthotropous, pendulous ovule,
and perianthless flowers). However, the exact relationships of the genus in the
Potamogeton clade cannot be determined with our data. Taxon sampling in the
Maundia/Potamogeton clade is low in our combined analyses. In the three-gene
data set only one member of the different families of this clade is included (Pota-
mogeton). Therefore, better sampling within this clade is necessary to resolve the
relationships of Maundia. The lack of more detailed information about Maundia
(e.g., karyological, palynological, and embryological data) and the uncertainty
regarding the interpretation of the flower structure does not allow a more
specific placement in the Potamogeton clade either. No clear affinities to one of
the other families were found and Maundia might also form a separate lineage
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within this order which includes several monotypic or monogeneric lineages
(e.g., Scheuchzeriaceae, Butomaceae, and Aponogetonaceae). This would sup-
port a treatment of Maundia as the only genus of Maundiaceae as proposed by
Nakai (1943) and accepted by Takhtajan (1997). Based on the currently available
knowledge, this classification is adopted here.

TETRONCIUM—The monotypic Tetroncium is weakly supported as sister to
Triglochin s.1. in the rbcL and the three-gene data set. However, this sister group
relationship is not recovered in all analyses. Although Tetroncium and Triglochin
s.I. have several characters in common (Table 4), none of these can be interpreted
as synapomorphic. The two genera are clearly different in flower morphology
and other characters. Thus, in contrast to Triglochin with bisexual, trimerous
flowers, Tetroncium is dioecious and has dimerous flowers. Carpels of Tetroncium
are fused (basally to lower half) and do not separate at maturity, whereas carpels
of Triglochin s.l. are either fused (Triglochin s.s.) or free (T. procera complex) and
mostly separate at maturity. Fruits of Tetroncium are reflexed (similar to Carex
pulicaris L.), a character not known from Triglochin s.l. The two genera also dif-
fer in their seeds. While in Triglochin the endosperm is lacking (used up) in the
mature seeds (as in most core Alismatales, e.g., Dahlgren et al. 1985), seeds of
Tetroncium are endospermic (Hooker 1844; Buchenau 1903). Pollen data do not
contradict a close relationship between Tetroncium and Triglochin s.l. (Grayum
1992). However, the “genera [Lilaea, Tetroncium, Triglochin] are quite uniform
palynologically, and hardly to be distinguished on this basis from Potamoge-
ton” (Grayum 1992). The stiff sword-shaped leaves of Tetroncium lack a ligule
(Buchenau 1903; own obs.), while leaves of Triglochin s.s. (incl. Lilaea) are ligulate
or auriculate, but eligulate in the T. procera complex. This latter character thus
does not contradict the placement of Tetroncium as sister to Triglochin s.1. Pro-
vided such relationship would be correct, it would imply that ligulate leaves
originated within Triglochin s.1.

Tomlinson (1982) correctly states that little is known about Tetroncium. Al-
though the currently available data provide no unambiguous support for the
relationships of Tetroncium and several characters seem autapomorphic, we
retain it as a member of Juncaginaceae. The finding of nuclear endosperm for-
mation would provide good support for the continued inclusion of Tetroncium
in Juncaginaceae.

TRIGLOCHIN S.L.—All data sets revealed a highly supported Triglochin s.l. com-
prising Triglochin s.s. with Lilaea nested inside and T. rheophila of the T. procera
complex (BS 100%, Fig. 2). This clade (Triglochin s.l.) was even recovered with
moderate support (MP BS 83%) in a phylogeny obtained from the conserved
5.8S rRNA gene of the ITS region (only 163 bp; S. von Mering and J. W. Kadereit,
unpubl. data).

The species of the T. procera complex are morphologically (Aston 1993, 1995)
and molecularly (this study; S. von Mering and J.W. Kadereit, unpubl. data)
clearly differentiated from the remaining Triglochin species (Table 5). Potential
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synapomorphies of this monophyletic group include the presence of root-tubers,
the lack of a ligule (unless the ligule originated within Triglochin s.1. as discussed
above), the absence of a carpophor (carpels are free), and a chromosome base
number of x = 8 (Robb and Ladiges 1981). Also, in contrast to several species of
Triglochin s.s. and Lilaea, T. procera is not cyanogenic (Gibbs 1974).

The T. procera complex at times has been treated at generic rank as Cycnoge-
ton, which was first described in 1838 as a monotypic genus, comprising only C.
buegelii. Later, two Triglochin species (T. linearis and T. procera) were included in
Cycnogeton (Sonder 1856; Buchenau 1867). However, Cycnogeton later was treated
as section or subgenus Cycnogeton of Triglochin (Micheli 1881; Buchenau and
Hieronymus 1889; Buchenau 1903, Table 1). In her revision of the T. procera
complex Aston (1995, p. 332) wrote that the “tuberous-rooted species form a
natural grouping based on their thickened, woody, fibre-covered rhizomes and
their conspicuous storage tubers terminal on the roots. These subterranean
features are quite unlike those of other species currently placed in Triglochin
and could possibly be used as a distinguishing character applicable at generic
rank. If further studies within the family supported such a generic distinction
then the name Cycnogeton Endl. should be reinstated.”.

Our molecular data in combination with the morphological distinctness
of the group (Table 5) in our opinion warrant the segregation of the T. procera
complex (water-ribbons) as Cycnogeton as proposed by Aston (1995).

LILAEA—Surprisingly, Lilaea scilloides is nested within Triglochin s.s. This posi-
tion is highly supported in all data sets, with high support for a sister group
relationship between Lilaea and the Triglochin bulbosa complex (highly supported
in all analyses except the atpA data set). Thus, Triglochin s.s. would be paraphyletic
if Lilaea were not included.

Lilaea has often been placed in its own family Lilaeaceae (e.g., Schumann
1894; Taylor 1909) based on its divergent floral morphology. This enigmatic
species has unisexual and bisexual flowers of five different types (see Posluszny
et al. 1986 for details). All flowers are monomerous, i.e., have only one carpel in
female flowers, one stamen and one perianth segment in male flowers, and a
combination of both in bisexual flowers. In contrast to this, flowers of Triglochin
s.s. are always bisexual and trimerous. In spite of these striking differences in
floral morphology, the two taxa share a number of characters. For example,
the vegetative habit of Triglochin s.s. and Lilaea is similar and both taxa have
semi-terete leaves with sheath and ligule. Furthermore, nuclear endosperm
formation was described for both taxa (Agrawal 1952), and both have the same
chromosome base number of x = 6 (Larsen 1966). Table 5 summarizes characters
found in Lilaea and Triglochin s.s.

Although several studies had recognized the close relationship between Lilaea
and Juncaginaceae (e.g., Markgraf 1936; Larsen 1966; Tomlinson 1982), the rec-
ognition of the position of Lilaea within Triglochin s.s. probably was hampered
by the autapomorphic divergence of Lilaea.
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The morphological characters discussed above and compiled in Tables 4 and
5 largely support the clades recovered in our molecular phylogenetic analyses.
Even though large morphological data sets are available for the monocotyle-
dons (e.g., Chase et al. 1995; Stevenson and Loconte 1995) knowledge of some
taxa of Juncaginaceae is incomplete. Especially embryological, karyological, and
palynological data are lacking, and more work is needed to allow a combined
analysis of morphological and molecular data.

With the removal of Maundia from Juncaginaceae, a recircumscription of the
family is necessary. In its new circumscription Juncaginaceae are characterised by
having flowers in spike-like inflorescences, nuclear endosperm formation (un-
known for Tetroncium and Cycnogeton), basal placentation, and one anatropous
ovule per carpel. None of these characters can be regarded as synapomorphic.
Our results necessitate several new combinations relating to the inclusion of
Lilaea in Triglochin s.s. and the reinstatement of Cycnogeton.

Taxonomic Treatment

Proposed New Classification for Juncaginaceae
Juncaginaceae Rich., Démonstr. Bot. 9. Mai 1808 [as “Juncagines”], nom. cons.

Annual or perennial herbs with rhizomes or bulbs, sometimes with tuber-
ous roots (Cycnogeton), mostly + scapose. Leaves + terete or flattened, sheathing,
ligulate or eligulate. Inflorescence spike-like. Flowers inconspicuous, trimerous,
dimerous or monomerous (Triglochin scilloides), bisexual or unisexual, then plants
monoecious or dioecious (Tetroncium), or with bisexual and some unisexual
flowers (Triglochin scilloides). Fruits or partial fruits indehiscent.

Three genera with + 30 species, subcosmopolitan, mostly temperate. Centre
of specific diversity in Australia.

Key to the genera of Juncaginaceae

1. Plants monoecious or with bisexual flowers, leaves semi-terete or + flattened,
ligulate or eligulate, flowers usually 3-merous (rarely 1-merous), of almost
cosmopolitan distribution 2

1. Plants dioecious, leaves stiff, sword-shaped, eligulate, flowers 2-merous,
from Sphagnum bogs in southern South America (Patagonia and Tierra del
Fuego) and on some subantarctic islands (Falkland Islands, Gough Island)

1. Tetroncium

2. Plants with rhizomes and tuberous roots, leaves + flattened, eligulate,
fruits without carpophore, freshwater aquatics from Australasia
2. Cycnogeton
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2 Plants with bulbs or rhizomes, leaves semi-terete, ligulate or auriculate,
fruits mostly with carpophore, plants from most temperate regions of
the world 3. Triglochin

1. TETRONCIUM Willd., Mag. Neuesten Entdeck. Gesammrten Naturk. Ges.
Naturf. Freunde Berlin 2: 17. 1808.

TETRONCIUM MAGELLANICUM Willd., Mag. Neuesten Entdeck. Gesammten
Naturk. Ges. Naturf. Freunde Berlin 2: 17. 1808.

2. CYCNOGETON Endl,, Stirp. Herb. Hiigel.: 22. 1838 (Ann. Wien. Mus. 2: 210. 1838).

CYCNOGETON HUEGELII Endl,, Stirp. Herb. Hiigel.: 23. 1838 (Ann. Wien. Mus. 2:
211. 1838). Triglochin huegelii (Endl.) Aston, Muelleria 8: 3: 346.

CYCNOGETON LINEARE (Endl.) Sond., Linnaea 28: 225. 1851. Triglochin linearis Endl.,
Pl Preiss. 2: 54. 1848.

CYCNOGETON PROCERUM (R.Br.) Buchenau, Abh. Naturwiss. Vereine Bremen T:
224. 1867. Triglochin procera R.Br., Prodr. F1. Nov. Holland.: 343. 1810.

Cycnogeton alcockiae (Aston) Mering & Kadereit, comb. nov. Triglochin alcockiae
Aston, Muelleria 8: 85. 1993.

Cycnogeton dubium (R.Br.) Mering & Kadereit, comb. nov. Triglochin dubia
R.Br., Prodr. Fl. Nov. Holland.: 343. 1810.

Cycnogeton microtuberosum (Aston) Mering & Kadereit, comb. nov. Triglochin
microtuberosa Aston, Muelleria 8: 88. 1993 [as T. microtuberosuml].

Cycnogeton multifructum (Aston) Mering & Kadereit, comb. nov. Triglochin
multifructa Aston, Muelleria 8: 90. 1993 [as T. multifructum].

Cycnogeton rheophilum (Aston) Mering & Kadereit, comb. nov. Triglochin
rheophila Aston, Muelleria 8: 94. 1993 [as T. rheophilum).

3. TRIGLOCHIN L., Sp. PL.: 338 (1753).
Triglochin scilloides (Poir.) Mering & Kadereit, comb. nov. Phalangium scilloides

Poir., Encycl. (Lamarck) 5: 251. 1804. Lilaea scilloides (Poir.) Hauman, Publ. Inst.
Invest. Geogr. Fac. Filos. Letras Univ. Buenos Aires, A 10: 26. 1925.

Phylogeny of Juncaginaceae 73



Excluded taxa
MAUNDIA F.Muell., Fragm. 1: 22. 1858.

M. TRIGLOCHINOIDES F.Muell., Fragm. T: 23. 1858. Triglochin triglochinoides (F.Muell.)
Druce, Bot. Soc. Exch. Club Brit. Isles 4: 651. 1916 (publ. 1917).
Triglochin maundii F.Muell., Fragm. 6: 83. 1867, nom. inval., nom. prov.
Maundiaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Gen.
Sect. ... nov. ed.]: 213. 1943.
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Appendix 1

List of Juncaginaceae and other Alismatales species used in this study (families
given in bold). Accession information is listed as follows: species name; voucher
specimen; and GenBank accession numbers (rbcL, matK, and atpA) [with place-
holder taxa in parenthesis]. Voucher specimen information is given only for
newly obtained sequences, indicated by bold accession numbers. Herbarium
abbreviations are from Holmgren and Holmgren (1998). — indicates missing
sequence data.

Acoraceae: Acorus calamus L., AJ879453, ABo40154, AF039256. Alismataceae: Al-
isma plantago-aquatica L., 108759, AF542573, —. Caldesia oligococca (F. Muell.) Bucha-
nan, AY277799, AY952427, AY277800. Hydrocleys nymphoides (Humb. & Bonpl.
ex Willd.) Buchenau, U80716, ABoo2580, —. Limnocharis flava (L.) Buchenau,
U8o717, AB088778, —. Sagittaria latifolia Willd. —, — AY299832. Aponogetonaceae:
Aponogeton fenestralis (Pers.) Hook.f., ABo88808, AB0o88779, —. Araceae: Arisaema
triphyllum (L.) Torr., AJoos5629, AF3877428 (A. tortuosum (Wall.) Schott), AY299717.
Gymnostachys anceps R.Br., ABo88806, ABo40177, AF039244. Orontium aquaticum
L., AJo05632, AF543744, AY299816. Butomaceae: Butomus umbellatus L., U80685,
AY870364, AY299733. Cymodoceaceae: Amphibolis antarctica (Labill.) Asch.,
U80686, —, —. Cymodocea serrulata (R.Br.) Asch. & Magnus, U80715, —, AY27780L
Halodule uninervis (Forssk.) Boiss., AY952436, AY952424, —. Hydrocharitaceae:
Hydrocharis dubia (Blume) Backer, ABo04892, AB002572, —. Limnobium laevigatum
(Humb. & Bonpl. ex Willd.) Heine, ABoo4894, AB002574, —. Najas marina L.,
U8o0705, —, —. Ottelia acuminata (Gagnep.) Dandy, AY952435, AY952432, AY277802.
Stratiotes aloides L., U80709, AB002576, —. Vallisneria americana Michx., U03726,
—, —. Juncaginaceae: Lilaea scilloides (Poir.) Hauman, USA, California, Moore
s.n. (MJG), UBo715, GQ452345, GQ452348. Maundia triglochinoides F.Muell.,
Australia, S. Jacobs 9453 (MJG, NSW), GQ452330, GQ452347, GQ452349. Tetro-
ncinm magellanicum Willd., Argentina, A. Vogel s.n. (MJG), GQ452337, GQ452346,
GQ452351. Triglochin barrelieri Loisel., Italy, C. Ubink s.n. (MJG), GQ452331,
GQ452342, GQ452352. Triglochin elongata Buchenau, South Africa, P. Vargas
537PVoo (MJG), GQ452332, GQ452343, GQ452353. Triglochin laxiflora Guss.,
Italy, S. von Mering s.n. MJG), —, —, GQ452354. Triglochin maritima L., Turkey,
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D. Albach & F. Ozgokce 912 (M]G), GQ452333, GQ452339, GQ452355. Triglochin
palustris L., Russia, P. Schonswetter & A. Tribsch T145 (WU), GQ452334, GQ452340,
—. Triglochin rbeophila Aston, Australia, S. Jacobs 9392 (MJG, NSW), GQ45233s,
GQ452344, GQ452356. Triglochin striata Ruiz & Pav., Australia, N. Schmalz s.n.
(MJG), GQ452336, GQ452341, GQ452357. Posidoniaceae: Posidonia oceanica
(L.) Delile, U8o719, —, —. Potamogetonaceae: Potamogeton distinctus A.Benn.,
AB088809, AB088780, AY299829 (P. natans L.). Ruppiaceae: Ruppia maritima L.,
Uo3729, —, —. Scheuchzeriaceae: Scheuchzeria palustris L., Germany, C. Ubink s.n.
(MJG), Uo3728, GQ452338, GQ452350. Tofieldiaceae: Pleea tenuifolia Michx.,
AJ131774, AF465301, AY299827. Tofieldia calyculata (L.) Wahlenb., AB183410,
AB183403, AY299851. Zosteraceae: Heterozostera tasmanica (M.Martens ex Asch.)
Hartog, U80730, AB096171, —. Phyllospadix torreyi S.Watson, U80731, ABo96172
(P. iwatensis Makino), —. Zostera marina L., U80734, —, —. Z. noltii Hornem.,
U80733, ABog6170, —.





