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Abstract. A fairly general sufficient condition for compatibility of the left Cauchy-Green deforma-
tion field in three dimensions has been derived. A related necessary condition is also indicated. The
kinematical problem is phrased as a suitable problem in Riemannian geometry, whence the method of
solution emerges naturally. The main result of the paper is general in scope and provides conditions
for the existence of solutions to certain types of overdetermined systems of first-order, quasilinear
partial differential equations with algebraic constraints.
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1. Introduction

The aim of this paper is to discuss the issue of necessary and sufficient conditions
for the existence of a local deformation of a simply-connected reference configura-
tion whose left Cauchy—Green deformation field matches a prescribed symmetric,
positive-definite tensor field on the same reference. In this paper, the term deforma-
tion refers to a map f with an invertible deformation gradient (detF # 0; F = Df),
and the left Cauchy—Green deformation tensor is generically represented by the
symbol B = FFT. To the best of the author’s knowledge, this problem remains open
in three dimensions, having been solved for the plane case by Blume [1]. Related
results, for the plane case, are also presented in Duda and Martins [2]. A fairly
general sufficient condition for compatibility in three dimensions is provided in
this paper.

The problem dealt with in this paper is a fundamental issue in continuum kine-
matics, apart from being of mathematical interest. As pointed out by Blume [1],
the problem of deriving sufficient conditions for the existence of a deformation
compatible with a given left Cauchy—Green field is fairly difficult, especially when
compared with the same question for the right Cauchy—Green field (C = F'F)
or the even simpler question of ‘deformation-gradient’ compatibility. While in the
Jatter cases the compatibility conditions come out neatly as the vanishing of the



96 A. ACHARYA

Riemann—Christoffel curvature tensor and the ‘curl’, respectively, of the prescribed
fields, the conditions in the present case are not as explicit.

As in the case of the proof of compatibility for the right Cauchy—Green de-
formation field, we phrase the compatibility question for the left Cauchy-Green
deformation field as a problem in Riemannian geometry. The problem is posed
as a special case of the determination of conditions for which two pre-assigned
positive-definite, symmetric matrix fields may be considered as components of a
Riemannian metric on a manifold. The speciality of the problem lies in the fact
that the metric is known to be Euclidean (its components in a given parametrization
are, uniformly, the identity matrix) — the question is to construct another coordinate
system (parametrization) on which the other pre-assigned matrix field (rectangular
Cartesian components of the B tensor field in question) can be considered as con-
travariant components of the same metric. It should be carefully noted that such a
question is quite different in its details than the one asked in the case of the proof
of right Cauchy-Green compatibility — a symmetric positive-definite matrix field
on a given parametrization is available (interpreted as the covariant components of
a metric tensor), and another coordinate system has to be determined such that on
that system the covariant metric components are, uniformly, the components of the
identity matrix.

The answer to the geometric version of the B-compatibility problem rests on
being able to determine necessary and sufficient conditions for the existence of a
solution to an overdetermined system of algebraic and partial differential equations
which, typically, is not completely integrable. Such systems have been consid-
ered in the differential geometry literature in connection with the determination
of various kinds of invariants of metric and affinely connected manifolds (Veblen
and Thomas [9]; Thomas and Michal [8]; Schouten [5]) and, apparently, were
first considered by Christoffel (Eisenhart [3, footnotes p. 17 and p. 77]) whose
concern seems 10 be very closely related to the geometric version of the issue of
B-compatibility, as phrased in this paper.

In Section 1, we examine the issue of B-compatibility and phrase the question in
terms of suitably defined coordinates and components. The coordinate-components
form of the problem motivates the geometric formulation, which we discuss in
Section 2. This approach differs significantly from the one in Blume [1], which is
based on the left polar decomposition of the deformation gradient. In Section 3 a
solution to the problem posed in Section 2 is provided with a sketch of the proof of
the main result.

With respect to notation used in the paper, we use standard notational conven-
tions of the tensor calculus when dealing with coordinates and components. The
symbol D represents a derivative operator, and the same symbol with a subscript
will represent a partial derivative on a suitably defined product space. The symbol
V will represent the gradient of a scalar field. All tensorial quantities from the
first order onwards will be represented in boldface and scalar quantities will be
represented in Jower case italics. In representing a list as function arguments, we
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shall often use just the kernel letter to represent the entire list, e.g., x to represent
the n-tuple (x',x?,..., x"). Also, associated tensors will be freely used in the
following.

2. The problem of B-Compatibility

The compatibility problem for the Left Cauchy—-Green deformation field may be
stated as follows:

Given a pre-assigned positive-definite symmetric second order tensor field B
on a reference configuration R, find necessary and sufficient conditions for the
existence of a regular deformation y of the reference such that

Dyx)(Dy(x))" =B(x) forallx € R. &)

Consider a rectangular Cartesian parametrization of Es, the ambient three di-
mensional Euclidean point space. Let the reference configuration R be represented
by coordinates {x®} in this coordinate system. It is now easy to see that the afore-
mentioned B-compatibility question is equivalent to the following problem:

Given the rectangular Cartesian components of the tensor B (B*™) as functions
of {x*}, find necessary and sufficient conditions on the field (B*™) for the existence
of functions y' of {x} satisfying

ay' oy’

axP dxr B*. , )
The equivalence of the two questions follows from the equivalence of the exis-
tence assertions defined by Equations (1) and (2). In fact, if functions y' exist
such that (2) holds, then, choosing the region of Ej, say C, that corresponds to
{y' (x)} for all {x*} corresponding to R (where the {y'} are coordinates in the same
rectangular Cartesian parametrization of [E3 chosen 1o define {x*}), as a deformed
image of R, we see that we have defined a regular deformation y: R — C through
the association, represented symbolically as

x(x) = y(y(x)) forallx € R

with
d - Dy(x)e, = 8y’
yxje, = axe’
where
d = Vy(y): e, = D,x(x) [1].
Since we are working with a rectangular Cartesian parametrization, d' = d; =
e; = €' and, hence,
.. ayi 8)77 . T T
U= 22 7 el J N =
= =e [Dy(Dy)"|¢/ = Dy(Dy)" =B.

The converse assertion, of course, is even simpler.
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3. Geometric Formulation

The issue of existence posed in (2) suggests the following question in Riemannian
geometry:

Given a real, positive-definite symmetric matrix field B on a coordinate patch
{x*} of some manifold, what are the necessary and sufficient conditions for the
existence of another coordinate patch {y'} such that, if BY are viewed as the com-
ponents of a metric tensor on {y'}, then the corresponding components on the {x%}
system are, uniformly, the components of the identity matrix. That is, we seek to
find conditions for the existence of the coordinate patch {y'} such that §*# and B"
may be viewed as the contravariant components of a metric tensor on the coordinate
patches {x*} and {y'}, respectively. The corresponding covariant components are
represented by the symbols é,4 and B;;.

We also note that the aforementioned geometric problem is equivalent to a local
version of the compatibility problem for the left Cauchy—Green deformation field
as represented by the existence problem (1).

In order to solve the geometric problem, we first consider necessity. Suppose
there exists {y'} such that (2) holds. This implies that the mapping {x*} — {y'} is
locally invertible which further implies that 8 B,,/dy" is well defined and given by

3B,, 9B, ox"

. 3
ay’ ax« ays &

Now, if {z'} is some coordinate patch, then the Christoffel symbols of the second
kind with respect to {z'} and their transformation rules are given by

. BT3B B 0B
=2 rp sp rs 4
@7 rs 2 [azs az" azP )
and
ay' B)J i ayr ays
: ’ )

axagxP W ebgae T Wi axe 9xh’

respectively (Sokolnikoff [6]). Since the metric components are constant on {x'},
T ag = 0, and hence, (3)~(5) imply

3y’ _ B"[3B,, 3y' 0B, 0y° B, dx” 8y 8y’
dx®dxf 2 | 8xFf dxo  9xv 9xP  9xP 3ym ax* axF |’
Hence, our hypothesis implies that there exists a solution to the system of equations
uul = BY, (6)
ayi .
= u', 7
dx« He ™

dul Bim[aB,m , 3B, . 0B,

o
ax? Mo dxe "

S rpo ro.s
P > f;(u>uauﬂ], ®

axP
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where ff represents the matrix inverse function. Conversely, suppose the fields
B/ are such that there exists a solution to (6)—(8). Then, it is clear from (6) and (7)
that there exist functions {y'}, defined on the coordinate patch {x“}, that satisfy (2).
Hence, our problem reduces to finding necessary and sufficient conditions for the
existence of solutions to the system (6)—(8).

We also note here that if an invertible matrix-valued solution to (8) exists, then a
solution to (7) necessarily exists because of the symmetry, in o and B, of the right-
hand side of (8) (Thomas {7]), and the solution is locally invertible as a function
of {x“}.

In the next section we provide a sketch of the proof of the result that provides
a sufficient condition for the existence of solutions to (6) and (8) and, conse-
quently, (7).

4. Algebraic Conditions for the Existence of Solutions

Consider the system of differential equations

g;”a(x) =y (wx).x), i=12,... Rie=12..n 9)
in which the w' are functions of independent variables {x®} and ¥ are differ-
entiable as many times as required. The domain of 1//;, also referred to as (z, x)
space in the following, is assumed to be an open, connected set of MR x R". For
application to the main problem of the paper, we identify w' with the functions ufl,
k,pu=1,2,3,sothat R = 9 and n = 3. Also, we identify (9) with system (8). We
seek solutions

w' (x) (10)

of (9) which satisfy a system of equations
F(O)(w(x),x) =0, (11)

where the domain of F® is the (z, x) space. For the compatibility problem at hand,
we identify FO(z,x) = 0 as the nine equations appearing in (6), i.e., ufyu({( —
B (x) = 0, of which only six are independent.

Define FV(z, x) = 0 to be the set of equations consisting of the equations of
integrability of (9), i.e., the equations obtained by formally differentiating (9) with
respect to x* (assuming w' to be functions of {x}) and then eliminating the second
derivative of w' using the relations

dw'’ _ aw'
ax¥dxf ~ dxPoxe
and eliminating the first derivative of w' using (9).

In searching for solutions to (9), the equations in the set FV(z,x) = 0 are
either identically satisfied, or not. We first consider the former case.
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If the equations in the set F!) = 0 are identically satisfied in the (z, X) space,
then it is well known that there exists a unique solution to (9) (Thomas [7]) with
aribitrarily assignable initial data at {x,}. Let the initial data for w’(xg) be chosen
such that the conditions !, (xo)u/ (x0) = B (x;) are satisfied. We now show that
such a local solution of (9), which corresponds to a solution {u' } to (8), is sufficient
for the existence of a solution to (6), (7).

First we note that since the solution to (8) is an invertible matrix at {x0}, it is
invertible in a neighborhood around {x,} due to the continuity of the solution. Also,
as pointed out in the previous section, a solution to (7) necessarily exists, and the
solution is locally invertible as a function of {x%}.

We now assume that such a local solution to (7) has been constructed. With the
solutions of (8) and (7) in hand, we shall be able to prove that {1’} that satisfy (8)
also satisfy (6) by using a general property of the Riemannian geometry — that of
preservation of angles between vector fields under parallel transport.

We denote the solution of (7) based on the solution {u’.} of (8) as {y'}. Define

. _ BT[9B, 0B, 0B,
ay’ ay’ oyr )

(,\')rrs = 7
Clearly, the following relations hold

ou'

2 = T,

We now consider the expression

0 ij,a B
aym (BYufuy),
where u? represent the components of the inverse of ul . If it can be shown that'the
above expression is identically zero in a local neighborhood of {v(xy)}, then the
chain rule and the choice of the initial data'imply that (6) is indeed satisfied locally
around {xg}. Now,

k
oué 17 | . .
B —L,f = ~BYud Lyt yuf = BY T utu?
aym J oxe L) E J

where u;’u% = 8z and the fact that u/, satisfy (8) have been used. Consequently,

d ij, o B dBY j i ik ] o B |
5)7,;(3]“,- uj) = [aym + BY I, +B ()’)rkj'mjlui u; =0,
which follows from Ricci’s theorem (Sokolnikoff {6, p- 77 and p. 86]) — the term
in the square parenthesis vanishes (merely by the smoothness and definition of the
(I field) since it is the covariant derivative of the contravariant metric tensor and
the fundamental tensors are “covariantly constant”.
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Next we consider the case where the equations of the set F(z, x) = 0 are
not identically satisfied in the (z, x) space. In such a case, we define the equa-
tions 7(1)(z, x) = 0 as a system of equations consisting of F"'(z,x) = 0 and
FO(z, x) = 0. We also define f(ﬁl)(z, x) = 0(j =2 1) to be the set of equa-
tions obtained by formally differentiating f(”(z, x) = ( with respect to x* and
eliminating the derivative of z' by means of (9).

We now consider two integers N and M, with N > 1land 1 < M < R. We
assume that

(1) there exist M equations in the sets FV=o0 through FY =0 denoted by
Gy, = 0, A = 110 M, and M of the variables 7' (from the list 7, i =
1,2,...,R)denoted by 7', i = 1,2, ..., M which satisfy

3G,

detl: o5 (z,x)];céO, i,A=1...,M, 12)
Zl

in the (z, x) space.

Let the remaining R — M =: P variables z', obtained by ignoring 7', i =

1,2,..., M, from the list 7', i = 1,2,..., R, be denoted by 3/, j = 1,2,

..., P. We also assume that, given a point (26, el 25, xé, co X

(2) the unique local solution 7' = ¢'(z', ..., 20 x), i =1,..., M, ofé-A = (Q,
A= 1,..., M, (which exists because of (12)) satisfies all the equations of
the sets F' = 0 through F¥Y 2o identically in a local neighborhood of
G 28 X, XD,

Under these assumptions, we show that there exists a local solution to (9) and
(11) of the form (10) that is determined by P constants.

We denote the functions /., i=1..,Mby ¥ . Similarly, we denote the
functions ¥/, j = 1..... P, by ¥/. For each of the functions G, ¥, and ¥ of
(z, x) we define the corresponding functions of (Z, Z, x) by the rules given below.
Let I1 be a function that delivers the list (z, x) corresponding to the list (Z, z, x).
We now define

Gi(z.2,x) = Gi(NE.£x), A=1,....M,
VoG 3,x) = ¥L(ME LX), i=1.... Ma=1..n,
Vi@ 5,x) = yi(NE %), j=1....,P.a=1_...n.

—(N-+1)

Since the equations of the set F =0 are satisfied, the relations

G,
az!
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are satisfied in the variables (z', ..., z”, x). Choose an arbitrary point x§ and %,
J=1,..., P.Let f%(1) be a path in the {x} space with f*(0) = x5 . Along this
path we seek the solution of the system

f(l

Vi(e(g®), F)), g0, f0)=3-®, j=1...P,

dg’

— (1)

dr

. . (14)
g’ 0) = z3.

From the existence theorem of ordinary differential equations, a local solution to

such a system exists. With such a solution in hand, we note that

Gile(e®), f(), ), f(1)) =0 (15)

is identically satisfied in 7, and differentiating the above expression yields

96,
a(

a i
(), f(1)). g(1). f(t)){ :

9G; dg’

He(e®. f0).20). f1) 2= )
aG dfe
+ = 2 (p(g(0). £(1)), (r),f(t)) P
Combining (13) and (16) yields

3G,
-5 (ele

(g( ), f)) 477 (z)}

(16)

f()(

g, f(1), g(), f(t)){vf (0, f(1)), g(0). f(r)) (1)

L. 10) %0 - 2 (e 10) Lo

-+

BGA
Pry (¢ (g(). f(r)), g(0), f(t))

X {@{( (g(0), f(1)). g(0). f(t))_——(t)— ———(z)}

and, noting the definition of g’ and the fact that the matrix (3G, /87')(z, x) is
invertible at all (z, x), we find that

— 8
{\//a(w(g(()), f(0)). 2(0). f(0)) — (8(0) £(0))

awi fa
e (80, f(O))}

x @é(w(g(O),f(O)),g(O),f(O))~ ©) =0 (17)

holds. Since {23, xg } and the path were chosen arbitrarily, (17) implies that

. dp' .
x),2,x)— Py (t2.x)=0 (18)

?\1)

Tlolen). 20) = 22 (2 )Pl
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is satisfied identically in the variables (z', ..., z¥, x).

Now choose, arbitrarily, two distinct points xj and x“. Join these points by a
path f“, parametrized by the variable . Along any such path we seek the solu-
tion of system (14) of ordinary differential equations with arbitrarily chosen initial
conditions at x§, where the existence of a local solution is guaranteed.

According to the result of Thomas [7], g’ defined by (14) are path-independent
and satisfy

dg’ ~
2 = P (p(8(0). %) (). %) (20)

if the conditions

avk 0" .~ g,
W0l 20) (55 C Tl n).20) + 756
3yt

v N
dxP 2j (W(Z,X),z,x)zpﬁ((p(ax)’Z,x)
3@2 5 2 agai 2 ; - n a(pi .
= (ol x). 20 (S5 Tl n).2) + 5 ()
o} 3

ox¢

(6(e5).2.2) + 320l 0). £ DT o(e ). 2x). @)

equations of the set FV = 0 are identically satisfied, we find that

k = 1,..., P, are satisfied identically in the variables (3, ..., 2", x). Since the

o o
+ a‘fé( (2.x). 2. x) ¥} ((2. x). 2, )
= Ve £ TG 3)-£03) + (e 2).203)
+ ?;f]g (9(2. %), 2, 2) ¥ (¢ (2. x). 2. %), o

i=1,...,M;j,k=1,..., P, holds. Consequently, (18) and (22) together imply
that (21) holds.
We now consider the functions of {x} defined by

h(x)=¢'(gx).x), i=1,....M, (23)
and note that the relations

Gi(h(x).g(x),x) =0, r=1...M, (24)
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are satisfied for all {x}. Differentiating (24) with respect to x%, we obtain

G, dh 9G;, dg’
gz (10 8().x) 52 () + == (h(x), g (%), x) 2=

G,
+ P (h(x), g(x), x) = 0. (25)

Now, (13) yields

(x)

e |

G
P (h(x), g(x), x) ¥, (h(x), g(x), x)

0G; o~ aG;
+ 25 (1), (). x) ¥ (h(), g(x), x) + == (h(x), g(x), ) = 0. (26)

Subtracting (26) from (25), and noting (20) and the invertibility of

905 (hx), 2, %),

az'

we now find that the set of functions 4 and g defined by (23) and the solution of (20)
indeed satisfy (9). Noting the fact that (11) are some of the equations FV = 0, it
is clear that we have determined a solution to (9) and (11). The general solution
has P arbitrary constants that enter as initial conditions in defining the functions
gl,j=1,...,P.

The above proof is an expanded version of the proofs of sufficiency in Eisen-
hart [3] and Veblen and Thomas [9]. The sufficient condition above, in the main,
is claimed as necessary as well, in earlier works [3, 5, 8, 9]; their line of argument
could not be followed to produce a proof of necessity of the sufficient condition
above, for the existence of solutions. The main issue dealt with in this paper also
appears to be related to Cartan’s Method of Equivalence (Gardner [4]).

Finally, an immediate necessary condition for the existence of a solution to the
differential-algebraic system of Equations (9) and (11) is that there exist functions
of the form (10) which satisfy the purely algebraic system of equations

_F(])(w(x),x) =0, -F-(2)(w(x),x) =0,...

2

identically in the variables (x!, x2, ..., x").
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