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Abstract. By applying analytic geometry within a special Cartesian reference,
based on the Kiepert hyperbola, we prove a great number of relations (collinear-
ities, similarities, inversions etc.) regarding central points, central lines and cen-
tral conics of a triangle. Most - not all - of these statements are well-known, but
somehow dispersed throughout the literature. Some relations turn out to be easy
consequences of the action of a conjugation - an involutory Möbius transforma-
tion - whose fixed points are the foci of the Steiner inellipse.

1. Introduction

With the aim of making proofs simpler and more uniform, we applied analytic
geometry to revisit a number of theorems regarding the triangle centers. The choice
of an intrinsic Cartesian frame, which we call the Kiepert reference, turned out to
be very effective in dealing with a good part of the standard results on central
points and related conics: along with several well-known statements, a number of
simple relations which seem to be new have emerged. Here is, perhaps, the most
surprising example:

Theorem 1. Let G, F+, F− denote, respectively, the centroid, the first and second
Fermat points of a triangle. The major axis of its Steiner inellipse is the inner
bisector of the angle ∠F+GF−. The lengths of the axes are |GF−| ± |GF+|, the
sum and difference of the distances of the Fermat points from the centroid.

As a consequence, if 2c denotes the focal distance, c is the geometric mean
between |GF−| and |GF+|. This means that F+ and F− are interchanged under
the action of an involutory Möbius transformation μ, the product of the reflection in
the major axis by the inversion in the circle whose diameter is defined by the foci.
This conjugation plays an interesting role in the geometry of the triangle. In fact,
one easily discovers the existence of many other μ-coupled objects: the isodynamic
points; the circumcenter and the focus of the Kiepert parabola; the orthocenter and
the center of the Jerabek hyperbola; the Lemoine point and the Parry point; the
circumcircle and the Brocard circle; the Brocard axis and the Parry circle, etc. By
applying standard properties of homographies, one can then recognize various sets
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of concyclic central points, parallel central lines, orthogonal central circles, similar
central triangles etc.

Notation and terminology. If A, B are points, AB will indicate both the segment
and the line through A, B, |AB| is the length of the segment AB, AB is a vector;
sometimes we also write AB = B−A. The angle between BA and BC is ∠ABC.
AB · CD is the scalar product. AB = C means that a half-turn about B maps A
onto C; equivalently, we write B = A+C

2 .
For the Cartesian coordinates of a point A we write A = [xA, yA]; for a vector,

AB=[xB − xA, yB − yA].
In order to identify central points of a triangle T = A1A2A3 we shall use both

capital letters and numbers, as listed by Clark Kimberling in [3, 2]; for example,
G = X2 , O = X3 , H = X4, etc.

2. The Kiepert reference

The Kiepert hyperbola K of a (non equilateral) triangle T = A1A2A3 is the
(unique) rectangular hyperbola which is circumscribed to T and passes through
its centroid G. We shall adopt an orthogonal Cartesian reference such that the
equation for K is xy = 1. This is always possible unless K reduces to a pair of
perpendicular lines; and this only happens if T is isosceles, an easy case that we
shall treat separately in §14. How to choose between x and y, as well as orienta-
tions, will be soon treated. Within this Kiepert reference, for the vertices of T we
write A1 = [x1,

1
x1

], A2 = [x2,
1
x2

], A3 = [x3,
1
x3

].
Since central points are symmetric functions of A1, A2, A3, for their coordi-

nates we expect to find symmetric functions of x1, x2, x3 and hopefully algebraic
functions of the elementary symmetric polynomials

s1 := x1 + x2 + x3, s2 := x1x2 + x2x3 + x3x1, s3 := x1x2x3.

This is true for many, but not all of the classical central points. For example, for
the centroid G we obviously have

G =
[
1
3
(x1 + x2 + x3),

1
3

(
1
x1

+
1
x2

+
1
x3

)]
=

[
s1

3
,

s2

3s3

]
.

However, for points like the incenter or the Feuerbach point we cannot avoid en-

countering functions like
√

1 + x2
i x

2
j which cannot be expressed explicitly in terms

of s1, s2, s3. Therefore this paper will only deal with a part of the standard geom-
etry of central points, which nevertheless is of importance. Going back to the cen-

troid, since G, by definition, lies on K , we must have
s2

3s3
=

3
s1

, so that s2 =
9s3

s1
can be eliminated and we are only left with functions of s1, s3. (Note that, under
our assumptions, we always have s1 and s3 nonzero).

From now on, it will be understood that this reduction has been made, and we
shall write, for short,

s1 = x1 + x2 + x3 = s and s3 = x1x2x3 = p.
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The location of G =
[

s
3 , 3

s

]
will determine what was still ambiguous about

the reference: without loss of generality, we shall assume that its coordinates are
positive: s > 0. We claim that this implies p < 0. In fact the square of the
Vandermonde product V := (x1 − x2)(x2 − x3)(x3 − x1) is symmetric:

V 2 =
−4p(s3 − 27p)2

s3
.

Since we want to deal with proper triangles only, we assume s3 − 27p �= 0 and
therefore p < 0, as we wanted. These inequalities will be essential when dealing

with square roots as
√−sp,

√
−s
p etc., that we want to be (positive) real numbers.

In fact, our calculations will take place within the field F = Q(s, p) and its real

quadratic extension F (u), where u =
√−sp

3
.

As we shall see, the advantage of operating within the Kiepert reference can be
summarized as follows: once coordinates and equations have been derived, which
may require a moderate amount of accurate geometric and algebraic work, many
statements will look evident at a glance, without any computing effort.

3. Central points

The center of the Kiepert hyperbola K is the origin of our reference: the Kiepert
center

K = X115 = [0, 0],
By reflecting the centroid

G = X2 =
[
s

3
,

3
s

]
=

1
3s

[s2, 9]

upon K, we obviously find another point of K:

GK = X671 =
[−s

3
,
−3
s

]
.

As the hyperbola is rectangular, we also find on K the orthocenter

H = X4 =
[−1

p
, −p

]
=

−1
p

[1, p2]

and the Tarry point:

T = HK = X98 =
[
1
p
, p

]
.

For the circumcenter we calculate

O = X3 =
[
1 + sp

2p
,

9 + sp

2s

]
=

1
2sp

[s(sp + 1), p(sp + 9)],

and check the collinearity of O, G, H and Euler’s equation: GH = 2OG. By
comparing coordinates, we notice that sp = −3 would imply G = H = O. Since
this only holds for equilateral triangles (a case we have excluded), we may assume
t = sp + 3 �= 0. We shall soon find an important interpretation for the sign of t.
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Figure 1.

We also want to calculate the nine-point center N and the center M of the or-
thocentroidal circle (see Figure 1):

N =
O + H

2
= X5 =

[
sp − 1

4p
,

9 − sp

4s

]
=

1
−4sp

[s(1 − sp),−p(9 − sp)],

M =
G + H

2
= OG = X381 =

3 − sp

−6sp
[s,−3p].

We now want the symmedian or Lemoine point L, the isogonal conjugate of G.
To find its coordinates, we can use a definition of isogonal conjugation which is
based on reflections: if we reflect G in the three sides of T and take the circum-
center of the resulting triangle, we find

L = X6 =
2

3 − sp
[s, −3p].

It appears, at a glance, that K, M , L are collinear. Another central point we want
is the Brocard point

B =
O + L

2
= X182 =

1
−4sp(3 − sp)

[s(s2p2 − 6sp− 3), p(s2p2 + 18sp− 27)].

Notice that G, N , M , H , L (unlike O) always have positive coordinates, and this
gives interesting information about their location.
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4. Central lines

The central points O, G, N, M, H are collinear on the

Euler line: −3px + sy + sp − 3 = 0.

The line through M , L, K is known as the

Fermat axis: 3px + sy = 0.

We shall often apply reflections in the xy-axes or parallel lines and map a vector
[X, Y ] onto [X,−Y ] or [−X, Y ]. For example, looking at coefficients in the equa-
tions above, we notice that such a reflection maps [3p, −s] onto ±[3p, s]. This
proves that the asymptotic directions of K bisect the angles between the Euler line
and the Fermat axis.

Fermat axis

line KN

Fermat bisector

A1

A2

A3

K

G

H

B

O

N
M

L

GK

T = HK

Brocard axis

Euler line

Figure 2.

The line through K, perpendicular to the Fermat axis, will be called the

Fermat bisector: sx − 3py = 0.

These names clearly anticipate the location of the Fermat points. The line through
O, B, L is known as the

Brocard axis: −p(9 − sp)x + s(1 − sp)y + 8sp = 0.

A comparison with the line

KN : p(9 − sp)x + s(1 − sp)y = 0
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shows that, by the same argument, the asymptotic directions of K bisect also the
angles formed by the Brocard axis and the line KN .

5. Central circles

The circumcircle has equation

O : x2 + y2 − sp + 1
p

x − sp + 9
s

y +
s2 + 9p2

sp
= 0

and for the circumradius rO we find

r2
O =

s2 − 2s3p + 81p2 + s4p2 − 18sp3 + s2p4

4s2p2
.

By direct substitution, it is easy to check that the Tarry point T lies on O. Indeed,
T is the fourth intersection (after the three vertices) of K and O. The antipode of
T on O is the

Steiner point: S = TO = X99 =
[
s,

9
s

]
=

1
s
[s2, 9].

S is the Kiepert center of the complementary triangle of T, and therefore can be
equivalently defined by the relation GS = 2KG.

The second intersection (after S) of O with the line GK is the

Parry point: P = X111 =
s2 + 9p2

p(s4 + 81)
[s2, 9].

The nine-point circle, with center in N and radius rN = rO
2 , has equation

N : x2 + y2 +
1 − sp

2p
x − 9 − sp

2s
y = 0,

This shows that K lies on N , as expected for the center of a circumscribed
rectangular hyperbola. This is also equivalent to stating that S lies on O. Since
KN and SO are parallel, the last remark of §4 reads: the angle ∠SOL is bisected
by the asymptotic directions of K.

The orthocentroidal circle, centered in M , is defined by its diameter GH and
has equation:

M : x2 + y2 +
3 − sp

3p
x − 3 − sp

s
y − s2 + 9p2

3sp
= 0.

We now introduce a central circle D whose role in the geometry of the triangle
has been perhaps underestimated (although it is mentioned in [2, p.230]). First
define a central point D as the intersection of the Fermat bisector with the line
through G, normal to the Euler line:

D :=
s3 + 27p

18s2p
[3p, s].

Then consider the circle centered in D , passing through G:

D : x2 + y2 − s3 + 27p

3s2
x − s3 + 27p

9sp
y +

s2 + 9p2

3sp
= 0.
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We shall call D the Euler G-tangent circle because, by construction, it is tangent
to the Euler line in G. This circle will turn out to contain several interesting central
points besides G. For example: the Parry point P is the second intersection (after
G) of D with the line GK; the antipode of G on D is

GD =
[
9p

s2
,

s2

9p

]
which is clearly a point of K . Another point on D that we shall meet later is the
reflection of P in the Fermat bisector:

Kμ =
1

p(s4 + 81)
[−s(s3 − 54p − 9sp2), 3(3s2 + 2s3p − 27p2)].

This point (the symbol Kμ will be clear later) is collinear with G and L. In fact
Kμ is the second intersection (after G) of the circles M and D, whose radical axis
is therefore the line GL.

Most importantly, the Fermat points will also be shown to lie on D.
Lastly, let us consider the Brocard circle B, centered at B and defined by

its diameter OL; rather than writing down its equation, we shall just calculate its
radius rB . The resulting formula looks rather complicated:

r2
B =

1
4
OL · OL =

(sp + 3)2(s2 − 2s3p + 81p2 + s4p2 − 18sp3 + s2p4)
16(3 − sp)2s2p2

.
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But we notice the appearance of the same polynomial which we have found for the
circumradius. In fact, we have a very simple ratio of the radii of the Brocard and
the nine-point circles:

rB

rN
=

∣∣∣∣3 + sp

3 − sp

∣∣∣∣ .

We shall find a surprisingly simple geometrical meaning of this ratio in the next
section.

6. The Steiner inellipse

The Steiner inellipse S of a triangle T is the unique conic section which is
centered at G and tangent to the sides of T. From this definition one calculates the
equation:

S : 3x2 − spy2 − 2sx + 6py = 0.

Since the term in xy is missing, the axes of S (the Steiner axes) are parallel to
the asymptotes of the Kiepert hyperbola K. Just looking at the equation, we also
notice that K lies on S and the line tangent to S at K is parallel to the Fermat
bisector (see Figure 4).

By introducing the traditional parameters a, b for the lengths of the semi-axes,
the equation for S can be rewritten as

(x − s
3)2

a2
+

(y − 3
s )2

b2
= 1,

where a2 = s3−27p
9s and b2 = s3−27p

−3s2p
.

We cannot distinguish between the major and the minor axis unless we take into

account the sign of a2 − b2 = (s3−27p)(sp+3)
9s2p

. This gives a meaning to the sign of
t = sp + 3 , with respect to our reference. In fact we must distinguish two cases:
Case 1: t < 0, a > b: the major Steiner axis is parallel to the x-axis.
Case 2: t > 0, a < b: the major Steiner axis is parallel to the y-axis.

Notice that the possibility that S is a circle (t = 0, a = b) has been excluded, as
the triangle T would be equilateral.

This reduction to cases will appear frequently. For example, we can use a single
formula 2c = 2

√|a2 − b2| for the focal distance, but for the foci U+, U− we must
write, respectively,

U± =

{
1

3sp [s2p ± √
p(3 + sp)(s3 − 27p), 9p], if sp + 3 < 0,

1
3sp [s2p, 9p ± √−p(3 + sp)(s3 − 27p)], if sp + 3 > 0.

The number u =
√−sp

3
=

a

b
is the tangent of an angle α

2 which measures the

eccentricity e of S. Notice, however, that either e2 = 1 − u−2 or e2 = 1 − u2

according as sp + 3 < 0 or > 0. What we do not expect is for the number

| cos α| =
|1 − u2|
1 + u2

=
|a2 − b2|
a2 + b2

=
∣∣∣∣3 + sp

3 − sp

∣∣∣∣
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to be precisely the ratio of the radii that we have found at the end of §5. Taking
into account the meaning of t = sp + 3 we conclude that, in any case,

Theorem 2. The ratio between the radii of the Brocard circle and the nine-point
circle equals the cosine of the angle under which the minor axis of the Steiner
ellipse is viewed from an extreme of the major axis: rB

rN
= | cos α|.

By applying a homothety of coefficient 2 and fixed point G, the Steiner inellipse
S is transformed into the Steiner circumellipse. This conic is in fact circumscribed
to T and passes through the Steiner point S, which is therefore the fourth intersec-
tion (after the triangle vertices) of the Steiner circumellipse with the circumcircle
O. The fourth intersection with K is SG = GK = X671.

7. The Kiepert parabola and its focus

The Kiepert parabola of a triangle T is the (unique) parabola P which is tangent
to the sides of the triangle, and has the Euler line as directrix. By applying this
definition one finds for P a rather complicated equation:

P : s2

(
s
(
x +

s

3

)
+ 3p

(
y +

3
s

))2

+
8
9
((s3 −27p)2 −3s(s4x+81p2y)) = 0

or

s4x2+9s2p2y2+6s3pxy−2s2x(s3−9p)+2spy((s3−81p)+s6−42s3p+729p3 = 0.
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From this formula one can check that the tangency points Ei (on the sides AjAh

of T) and the vertices Ai are perspective; the center of perspective (sometimes
called the Brianchon point) is the Steiner point S = X99. Less well-known, but
not difficult to prove, is the fact that the orthocenter of the Steiner triangle E1E2E3

is O, the circumcenter of T.
Direct calculations show that the focus of P is

E = X110 =
1

s(s2 + 9p2)
[s(s3 − 18p + 3sp2),3s2 − 2s3p + 81p2].

Steiner triangle

Euler G-tangent circle

Kiepert parabola

A1

A2

A3

K

G

H

T

O

E

P

S

Q1

Q2

D

DG

EG

E2
E3

Figure 5.

One can verify that E is a point of the circumcircle O; this also follows from
the well-known fact that, when reflecting the Euler line in the sides of the triangle,
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these three lines intersect at E. Thus E is the isogonal conjugate of the point
at infinity, normal to the Euler line. Further calculations show that G, E, T are
collinear on the line

GE : 3px + sy − 3sp − 3 = 0

which is clearly parallel to the Fermat axis. Another well-known collinearity re-
gards the points E, L, and P . The proof requires less easy calculations and the
equation for this line will not be reported. On the other hand, the line

ES : sx − 3py − s3 − 27p

s
= 0

is parallel to the Fermat bisector. This line meets P at the points

Q1 =
[
s3 − 18p

s2
,
3
s

]
and Q2 =

[
s

3
,
81p − 2s3

9sp

]
,

each of which lies on a Steiner axis. When substituting the values y = 3
s or x = s

3
in the equation of P one discovers a property that we have not found in literature:

Theorem 3. The axes of the Steiner ellipse of a triangle are tangent to its Kiepert
parabola. The tangency points are collinear with the focus and the Steiner point
(see Figure 5).

As a consequence, the images of E under reflections in the Steiner axes both lie
on the Euler line. The relatively poor list of central points which are known to lie
on P may be enriched, besides by Q1 and Q2, by the addition of

DG =
1

−18s2p
[−9p(s3 − 9p), s(s3 − 81p)].

The tangent to P at DG is the perpendicular bisector of GE. We recall that
D was defined in §5 as the center of the G-tangent circle D. The close relation
between P and D is confirmed by the fact that, somehow symmetrically, the point

EG =
1

3s(s2 + 9p2)
[−s(s3 − 54p − 9sp2), 3(3s2 + 2s3p − 27p2)]

lies on D.

8. Reflections and angle bisectors

In what follows we shall make frequent use of reflections of vectors in lines
parallel to the xy-axes and write the new coordinates by just changing signs, as
explained in §4. Consider, for example,

MG = G − M = [
s

3
,
3
s
] − [

sp − 3
6p

,−sp − 3
2s

] =
sp + 3
6sp

[s, 3p]

and its reflection in the x-axis: sp+3
6sp [s,−3p]. By comparing coordinates, we see

that the latter is parallel to the vector

ML = L−M = [
2s

3 − sp
,− 6p

3 − sp
]−[

sp − 3
6p

,−sp − 3
2s

] =
(3 + sp)2

6sp(3 − sp)
[s,−3p].
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Note that orientations depend on the sign of the factor t = 3 + sp. But we are
aware of the meaning of this sign (compare §6) and therefore we know that, in any
case, a reflection in the minor Steiner axis maps MG into a vector which is parallel
and has the same orientation as ML.

A1

A2

A3

K

G

H

B

O

N M

L

GK

T

E

S

P

Figure 6.

If we apply the same argument to other pairs of vectors, as

GE =
2(s3 − 27p)
3s(s2 + 9p2)

[s, −3p],

GO =
3 + sp

6sp
[−s, −3p],

OL =
3 + sp

−2sp(3 − sp)
[s(1 − sp), p(9 − sp)],

OS =
1

−2sp
[s(1 − sp), −p(9 − sp)],

we can conclude similarly:

Theorem 4. The inner bisectors of the angles ∠GML and ∠SOL are parallel to
the minor Steiner axis. The inner bisector of ∠EGO is the major Steiner axis (see
Figure 6).
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These are refinements of well-known statements. Similar results regarding other
angles will appear later.

9. The Fermat points

We now turn our attention to the Fermat points. For their coordinates we cannot
expect to find symmetric polynomials in x1, x2, x3, as these points are interchanged
by an odd permutation of the triangle vertices. In fact, by applying the traditional
constructions (through equilateral triangles constructed on the sides of T) one ends
up with the twin points

s · V
2
√

3p(s3 − 27p)

[
s

3
,
−1
p

]
and

s · V
2
√

3p(s3 − 27p)

[
−s

3
,
1
p

]
,

where V is the Vandermonde determinant (see §2). We cannot yet tell which is
which, but we already see that they both lie on the Fermat axis and their midpoint
is the Kiepert center K. Less obvious, but easy to check analytically, is the fact
that both the Fermat points lie on the G-tangent circle D. (Incidentally, this permits
a non traditional construction of the Fermat points from the central points G, O,
K via M ). By squaring and substituting for V 2, the expressions above can be
rewritten as

F+ =

[√−s

3p
,

√
−3p

s

]
, F− =

[
−

√−s

3p
, −

√
−3p

s

]
.

This shows that F+ and F− belong to the Kiepert hyperbola K (see Figure 7).
In the next formulas we want to avoid the symbol √ and use instead the (pos-

itive) parameter u =
√

−sp
3 = a

b , which was introduced in connection with the
Steiner inellipse in §6. We know that u �= 1. Moreover, u > 1 or < 1 according
as sp + 3 < 0 or > 0. We now want to distinguish between the two Fermat points
and claim that

F+ = − u

sp
[s, −3p], and F− = − u

sp
[−s, 3p].

Note that F+ and F− are always in the first and third quadrants respectively. This
follows by applying the distance inequality |GX13| < |GX14|, a consequence of
their traditional definitions, and only checking the inequality:

|GF−|2 − |GF+|2 =
4u(s3 − 27p)

3s2p2
> 0.

Let us now apply the reflection argument, as described in section 8, to the vec-
tors GF+ and GF−. We claim that the major Steiner axis is the inner bisector
of ∠F+GF−. We shall show, equivalently, that the reflection τ in the major axis
maps GF+ onto a vector GF τ

+ that has the same direction and orientation as GF−.
Again, we must treat two cases separately.
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Case 1: a < b. In this case u < 1. The major Steiner axis is parallel to the y-axis.

GF+ = F+ − G =
[−u

p
− s

3
,

3u

s
− 3

s

]
,

GF τ
+ =

[
u

p
+

s

3
,

3u

s
− 3

s

]
;

GF− =
[
u

p
− s

3
,
−3u

s
− 3

s

]
.

We now calculate both the vector and the scalar products of the last two vectors:

− (
u

p
+

s

3
)(
−3u

s
− 3

s
) + (

3u

s
− 3

s
)(

u

p
− s

3
) =

3u2

sp
+

3u

sp
+ u + 1 +

3u2

sp
− u − 3u

sp
+ 1 = 0,

(
u

p
+

s

3
)(

u

p
− s

3
) + (

3u

s
− 3

s
)(
−3u

s
− 3

s
) =

u2

p2
− s2

9
+

9
s2

− 9u2

s2
=

(s3 − 27p)(sp + 3)
9s2p

> 0.

Since the last fraction equals b2−a2 > 0, this is what we wanted. Moreover, since
the vectors GF+

τ
and GF− share both directions and orientations, we can easily

calculate absolute values as follows
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A1

A2

A3

K

G

H

O

L

F+
F τ

+

F−

Figure 8.

|GF+| + |GF−| = |GF τ
+| + |GF−| = |GF τ

+ + GF−|

=
∣∣∣∣
[
u

p
+

s

3
,

3u

s
− 3

s

]
+

[
u

p
− s

3
,
−3u

s
− 3

s

]∣∣∣∣ =
∣∣∣∣
[
2u

p
,
−6
s

]∣∣∣∣
=

√
4u2

p2
+

36
s2

= 2

√
−s3 − 27p

3s2p
= 2b;

|GF+| − |GF−| = |GF τ
+| − |GF−| = |GF τ

+ − GF−|

=
∣∣∣∣
[
u

p
+

s

3
,

3u

s
− 3

s

]
−

[
u

p
− s

3
,
−3u

s
− 3

s

]∣∣∣∣ =
∣∣∣∣
[
2s

3
,

6u

s

]∣∣∣∣
=

√
4s2

9
+

36u2

s2
= 2

√
s3 − 27p

9s
= 2a.

The last computation could be spared by deriving the difference from the sum
and the product

|GF+||GF−| = GF τ
+ · GF− =

(s3 − 27p)(3 + sp)
−9s2p

= b2 − a2.
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Case 2: a > b. In this case u > 1. The major Steiner axis is parallel to the x-
axis and GF τ

+ = [−u
p − s

3 , −3u
s + 3

s ]. Taking products of GF τ
+ and GF− leads to

similar expressions: the vector product vanishes, while the scalar product equals
a2 − b2 > 0. As for absolute values, the results are |GF+| + |GF−| = 2a and
|GF−| − |GF+| = 2b, and |GF+||GF−| = a2 − b2.

All these results together prove Theorem 1.

10. Relations regarding areas

There are some well-known relations regarding areas, which could somehow
anticipate the close relation between the Steiner ellipse and the Fermat point, as
described in Theorem 1.

The area Δ of the triangle T = A1A2A3 can be calculated from the coordinates

of the vertices Ai =
[
xi,

1
xi

]
as a determinant which reduces to Vandermonde (see

§2):

Δ =
∣∣∣∣ V

2p

∣∣∣∣ =
1
2

√
(s3 − 27p)2

−s3p
.

If we compare this area with that of the Steiner inellipse S, we find that the ratio is
invariant:

Δ(S) = πab = π

√
(s3 − 27p)

9s
·
√

(s3 − 27p)
−s2p

=
π

3
√

3

√
V 2

4p2
=

π

3
√

3
Δ.

There actually exists a more elegant argument to prove this result, based on
invariance under affine transformations.

Another famous area relation has to do with the Napoleon triangles Nap+ and
Nap−. It is well-known that these equilateral triangles are both centered in G and
their circumcircles pass through F− and F+ respectively. Their areas are easily
calculated in terms of their radius:

Δ(Nap+) =
3
√

3
4

|GF−|2, Δ(Nap−) =
3
√

3
4

|GF+|2.
The difference turns out to be precisely the area of T:

Δ(Nap+) − Δ(Nap−) =
3
√

3
4

(|GF−|2 − |GF+|2) = 3
√

3ab =

√
V 2

4p2
= Δ.

11. An involutory Möbius transformation

Let U+ and U− be the foci of the Steiner inellipse. The focal distance is

|U+U−| = 2c = 2
√
|a2 − b2| = 2

√
|GF+||GF−|.

If we introduce the circle U , centered at G, with U+U− as diameter, we know from
§9 that the reflection τ in the major axis maps GF+ onto GF τ

+, a vector which has
the same direction and orientation as GF−. Furthermore, we know from Theorem
1 that c is the geometric mean between |GF+| and |GF−|. This means that the
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inversion in the circle U maps τ(F+) onto F−. Thus F− is the inverse in U of F τ
+,

the reflection of F+ in the major axis. We shall denote by μ the composite of the
reflection τ in the major axis of S and the inversion in the circle U whose diameter
is given by the foci of S. Note that this composite is independent of the order of
the reflection and the inversion.

The mapping μ is clearly an involutory Möbius transformation. Its fixed points
are the foci, its fixed lines are the Steiner axes. The properties of the mapping μ
become evident after introducing in the plane a complex coordinate z such that the
foci are the points z = 1, z = −1. Then μ is the complex inversion: μ(z) = 1

z .
What we have proved so far is that μ interchanges the Fermat points. But μ acts
similarly on other pairs of central points. For example, if we go back to the end of
§8, we realize that we have partially proved that μ interchanges the circumcenter
O with the focus E of the Kiepert parabola; what we still miss is the equality
|GE||GO| = c2, which only requires a routine check. In order to describe more
examples, let us consider the isodynamic points I+ and I−, namely, the isogonal
conjugates of F+ and F− respectively. A straightforward calculation gives for
these points:

I+ =
1

sp(sp + 3)
[4s2p + 3us(1 − sp), 12sp2 + 3up(9 − sp)],

I− =
1

sp(sp + 3)
[4s2p − 3us(1 − sp), 12sp2 − 3up(9 − sp)].

We claim that μ interchanges I+ and I−. One can proceed as before: discuss
the cases u > 1 and u < 1 separately, reflect GI+ to get GIτ

+, then calculate
the vanishing of the vector product of GIτ

+ and GI−, and finally check that the
scalar product is |GI+||GI−| = c2. In the present case, however, one may use
an alternative argument. In fact, from the above formulas it is possible to derive
several well-known properties such as:
(i) I+ and I− both lie on the Brocard axis;
(ii) the lines F+I+ and F−I− are both parallel to the Euler line;
(iii) G, F+, I− are collinear;
(iv) G, F−, I+ are collinear.

These statements imply, in particular, that there is a homothety which has G as
a fixed point and maps F+ onto I−, F− onto I+ (see Figure 7). Combined with
what we know about the Fermat points, this proves that μ interchanges I+ and I−,
as we wanted.

The next theorem gives a list of μ-conjugated objects.

Theorem 5. The mapping μ interchanges the following pairs of central points

circumcenter O = X3 Focus of Kiepert parabola E = X110

orthocenter H = X4 Jerabek center J = X125

Lemoine point L = X6 Parry point P = X111

Fermat point F+ = X13 Fermat point— F− = X14

isodynamic point I+ = X15 isodynamic point I− = X16

center of Brocard circle X182 inverse of centroid in circumcircle U = X23
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and the following pairs of central lines and circles

Euler line: G, O, H, U, Tμ line: G, E, J, B, T
Fermat axis: M, L, K, F+, F− Euler G-tangent circle:

G, P, EG = GJ , Kμ, F−, F+

circumcircle: E, P, S, T Brocard circle: O, L, Sμ, Tμ

Fermat bisector: K, D, J orthocentroidal circle: G, Kμ, Dμ, H
Brocard axis: O, B, L, I+, I− Parry circle: G, E, U, P, I−, I+

line: Dμ, Kμ, Mμ = EG, K circle: G, D, K, M, Kμ

All the μ-coupling of points can be proved through the argument of §8. The
μ-coupling of lines and circles follows from properties of Möbius transformations.
Some central points mentioned in Theorem 5 are not listed in [3] but can be rather
naturally characterized:
(i) Kμ (whose coordinates have been calculated in §5) is the reflection of P in the
Fermat bisector and also the second intersection (after G) of M and D;
(ii) Tμ is the second intersection (after O) of the Euler line with the Brocard circle;
(iii) Sμ is the second intersection (after L) of the line GL with the Brocard circle;
(iv) Dμ is the reflection of G in the Fermat axis;
(v) Mμ =EG= GJ .

Further well-known properties of homographies can be usefully applied, such as
the conservation of orthogonality between lines or circles and the reflection prin-
ciple: if a point P is reflected (inverted) onto Q in a line (circle) L, then Pμ is
reflected (inverted) onto Qμ by the line (circle) Lμ. A great number of statements
are therefore automatically proved. Here are some examples:
(i) inversion in the orthocentroidal circle interchanges the Fermat points; it also
interchanges L and K;
(ii) inversion in the Brocard circle interchanges the isodynamic points;
(iii) M and D are orthogonal;
(iv) the Parry circle is orthogonal to both the circumcircle and the Brocard circle,
etc.

These statements are surely present in literature but not so easily found.
Among relations which have probably passed unnoticed, we mention equali-

ties of angles, deriving from similarities which also follow from general proper-
ties of homographies. Consider any two pairs of μ-coupled points, say Z+↔Z−,
W+↔W−. Then there exists a direct similarity which fixes G and simultaneously
transforms Z+ onto W− and W+ onto Z−. As a consequence, we are able to rec-
ognize a great number of direct similarities (dilative rotations around G) between
triangles, such as the following pairs:

(GOF−, GF+E), (GEF−, GF+O), (GOI−, GI+E),
(GOI+, GI−E), (GEL, GPO).

A special case regards the Steiner foci, which are fixed under the action of μ.
In fact, any pair of μ-corresponding points, say Z+, Z−, belong to a circle pass-
ing through the foci U+, U−. This cyclic quadrangle U+Z+U−Z− is therefore
split into two pairs of directly similar triangles having G as a common vertex:
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GZ+U−↔ GU−Z+, GZ+U+ ↔ GU−Z−. All these similarities can be read in
terms of geometric means.

12. Construction of the Steiner foci and a proof of Marden’s theorem

Conversely, having at disposal the centroid G and any pair of μ-corresponding
points, say Z+, Z−, the Steiner foci U+, U− can be easily constructed (by ruler
and compass) through the following simple steps:
(1) Construct the major and minor Steiner axes, as inner and outer bisectors of
∠Z+GZ−.
(2) Construct the perpendicular bisector of Z+Z−.
(3) Find the intersection W of the line in (2) with the minor axis.
(4) Construct the circle centered in W , passing through Z+, Z−.

The foci U+ and U− are the intersections of the circle in (4) with the major axis
(see Figure 9).

Fermat bisector

A1

A2

A3

K

G

H

O

F+

F−

W

U+

U−

Figure 9.

Avoiding all sorts of calculations, a short synthetic proof of this construction
relies on considering the reflection of Z+ in the major axis and the power of G
with respect to the circle in (4). In particular, by choosing the Fermat points for
Z+ and Z−, then we obtain
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Theorem 6. The foci of the Steiner inellipse of a triangle are the intersections of
the major axis and the circle through the Fermat points and with center on the
minor axis.

A direct analytic proof of this statement is achieved by considering, as usual,
separate cases as shown below:

Case 1: a > b. W = [ s
3 , s2

9p ]. The circle in (4) has equation

x2 + y2 − x
2s

3
− y

2s2

9p
+

s2 + 9p2

3sp
= 0,

and intersects the line y = 3
s . As expected, we find the foci

U± =
[
s

3
± c,

3
s

]
,

where c =
√

a2 − b2.

Case 2: a < b. W = [9p
s2 , 3

p ]. The circle in (4) has equation

x2 + y2 − x
18p

s2
− y

6
s

+
s2 + 9p2

3sp
= 0

and intersects the line x = s
3 . The foci are the points

U± =
[
s

3
,

3
s
± c

]
,

where c =
√

b2 − a2.
Regarding the Steiner foci, we mention a beautiful result often referred to as

Marden’s Theorem. If one adopts complex coordinates z = x + iy, the following
curious property was proved by J. Sieberg in 1864 (for this reference and a different
proof, see [1]; also [4]). Assume the triangle vertices are z1 = x1 + iy1, z2 =
x2 + iy2, z3 = x3 + iy3, and let F (z) = (z − z1)(z − z2)(z − z3). Then the foci
of the Steiner inellipse are the zeros of the derivative F ′(z).

We shall give a short proof of this statement by applying our Kiepert coordinates.
Write

F (z) = z3 − σ1z
2 + σ2z − σ3,

F ′(z) = 3z2 − 2σ1z + σ2,

where

σ1 = z1 + z2 + z3 = s1 + i
s2

s3
= s + i

9
s
,

σ2 = z1z2 + z2z3 + z3z1 = s2 − s1

s3
+ 6i =

9p2 − s2

sp
+ 6i.
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Again we have two cases. Assuming, for example, a > b, we have found for the
Steiner foci u± = ±c + s

3 + i · 3
s , where c =

√
a2 − b2. Therefore what we have

to check is just

u+ + u− = 2
s

3
+ i

6
s

=
2σ1

3
,

u+u− = (c +
s

3
)(−c +

s

3
) − 9

s2
+ i

3
s
· 2s

3

=
s2

9
+ 2i − 9

s2
− (s3 − 27p)(3 + sp)

9s2p
=

σ2

3
.

When a < b, the foci are u± = s
3 + i

(±c + 3
s

)
, where c =

√
b2 − a2 and the

values of u+ + u− and u+u− turn out again to be what we wanted.

13. Further developments and possible obstacles

There are many other central points, lines and conics that can be conveniently
treated analytically within the Kiepert reference, leading to coordinates and coeffi-
cients which still belong to the field F = Q(s, p) or its quadratic extensions. This
is the case, for example, for the Napoleon points X17 and X18 which are proved to
lie on K and be collinear with L. Incidentally, this line

p(27 + sp)x − s(1 + 3sp)y − 16sp = 0

turns out to be the radical axis of the orthocentroidal circle and the Lester cir-
cle. The Jarabek hyperbola, centered at J = X125, can also be treated within
the Kiepert reference. These points, lines and conics, however, produce relatively
complicated formulas. On the other hand, they do not seem to be strictly connected
with the involution μ, whose action is the main subject of the present paper.

As we said in the Introduction, the Kiepert reference may be inconvenient in
dealing with many other problems regarding central points: serious difficulties
arise if one tries to treat the incenter, the excenters, the Gergonne and Nagel points,
the Feuerbach points and, more generally, any central point whose definition im-
volves the angle bisectors. The main obstacle is the fact that the corresponding
coordinates are no longer elements of the fields Q(s, q) nor of a quadratic ex-
tension. Typically, for this family of points one encounters rational functions of√

1 + x2
1x

2
2,

√
1 + x2

2x
2
3,

√
1 + x2

3x
2
1, which can hardly be reduced to the basic

parameters s = s1, p = s3.

14. Isosceles triangles

In all of the foregoing sections we have left out the possibility that the triangle
T is isosceles, in which case the Kiepert hyperbola K degenerates into a pair of
orthogonal lines and cannot be represented by the equation xy = 1. However, un-
less the triangle is equilateral - an irrelevant case - all results remain true, although
most become trivial. To prove such results, instead of the Kiepert reference, one
makes use of a Cartesian reference in which the vertices have coordinates

A1 = [−1, 0], A2 = [1, 0], A3 = [0, h]
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and assume 0 < h �= √
3. Thanks to symmetry, all central points turn out to lie on

the y-axis. Here are some examples.

G = [0, h
3 ], O = [0, h2−1

2h ],
H = [0, 1

h ], M = [0, 3+h2

6h ],
N = [0, h2+1

4h ], L = [0, 2h
3+h2 ],

E = [0, h] = S, P = [0, −1
h ] = T,

F+ = [0,
√

3
3 ], F− = [0, −√

3
3 ],

I+ = [0,
√

3(h2+1)−4h
h2−3

], I− = [0, −√
3(h2+1)−4h

h2−3
].

Central lines are the reference axes: either x = 0 (Euler, Fermat, Brocard) or
y = 0 (Fermat bisector). Here are the familiar central conics:

circumcircle: x2 + y2 − y h2−1
h − 1 = 0

nine-point circle: x2 + y2 − y h2+1
2h = 0

Kiepert hyperbola: xy = 0
Kiepert parabola: y = h

Steiner inellipse: x2

a + (y−h
3
)2

b2
= 1, a =

√
3

3 , b = h
3

All the relations between the Fermat points and the ellipse S remain true, and
proofs still require us to consider separate cases :

Case 1: h <
√

3. a > b; c2 = h2−3
9 . The major axis is parallel to the x- axis.

|GF−| = a + b =
√

3 + h

3
, |GF+| = a − b =

√
3 − h

3
.

The foci are cut on the line y = h
3 by the circle x2 + y2 − 1

3 = 0:

U± =
1
3
[±

√
3 − h2, h].

The mapping μ is the product of the reflection in the y-axis by the inversion in the
circle

x2 + (y − h

3
)2 − 3 − h2

9
= 0.

Case 2: h >
√

3. a < b; c2 = 3−h2

9 . The major axis is parallel to the y- axis;

|GF−| = a + b =
√

3 + h

3
, |GF+| = b − a =

h −√
3

3
.

The foci are cut by the same circle on the line x = 0:

U± =
1
3
[0, h ±

√
h2 − 3].

The mapping μ is the product of the reflection in the line y = h
3 by the inversion in

the circle

x2 + (y − h

3
)2 − h2 − 3

9
= 0.
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