
Part No.: 802-3641-10
Revision A November, 1995

SPARCompiler Ada
Programmer’s Guide

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Please
Recycle

 1995 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Solaris, are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed
through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are
trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of the X Consortium.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Ada Formatter . 1-1

1.1 Invocation . 1-2

1.2 Default Format Specifications . 1-2

1.3 Fixed Format Specifications . 1-3

1.4 Error and Warning Messages . 1-3

1.5 Configuration File. 1-3

1.6 Command-line Options . 1-4

1.7 Output . 1-4

1.7.1 Comments . 1-4

1.7.2 Pagination. 1-5

1.7.3 Splitting Lines . 1-5

1.7.4 Line Length Specification . 1-6

1.7.5 Tabs . 1-7

1.8 Examples . 1-7

1.8.1 Unformatted Source File. 1-8

iv SPARCompiler Ada Programmer’s Guide

1.8.2 The .prrc File . 1-9

1.8.3 Output. 1-10

1.8.4 Command-line Options . 1-11

2. Ada Preprocessor. 2-1

2.1 Invocation . 2-2

2.2 Chapter Conventions . 2-3

2.2.1 Lexical Elements . 2-3

2.2.2 Program Structure . 2-6

2.2.3 Declarations . 2-8

2.2.4 Types . 2-12

2.2.5 Names . 2-15

2.2.6 Expressions. 2-19

2.2.7 Assignment . 2-24

2.2.8 Conditional Processing . 2-24

2.2.9 Declare Statement . 2-29

2.2.10 Visibility Rules . 2-29

2.2.11 Pragmas . 2-32

2.2.12 Macro Substitution . 2-34

2.3 Example . 2-36

3. Statistical Profiler. 3-1

3.1 Linking and Running Profiled Programs 3-6

3.2 Profiling, How to do it . 3-7

3.3 profile_conf Directory . 3-8

3.4 Profiling After Reconfiguration 3-8

v

4. Machine Code Insertions. 4-1

4.1 Machine Code Procedures. 4-2

4.2 Code-statements . 4-3

4.2.1 Opcodes . 4-3

4.2.2 Operands . 4-3

4.2.3 Ada Entities as Operands . 4-6

4.3 Program Control . 4-9

4.4 Subprogram Call. 4-11

4.5 Parameter Passing in Machine Code Subprograms . . . 4-12

4.6 Local Data . 4-13

4.6.1 Jump Table via Absolute Addresses 4-14

4.7 Pragmas . 4-15

4.7.1 pragma INLINE. 4-15

4.7.2 pragma SUPPRESS . 4-15

4.7.3 pragma IMPLICIT_CODE 4-16

4.7.4 pragma OPTIMIZE_CODE. 4-16

4.8 Debugging Machine Code. 4-16

4.9 Pseudo Instructions . 4-17

4.10 package MACHINE_CODE . 4-19

5. Interface Programming . 5-1

5.1 Ada Interface to curses . 5-2

5.1.1 Create Parallel Data Types 5-2

5.1.2 Declare External Subprograms 5-9

5.1.3 Access Global Variables . 5-13

vi SPARCompiler Ada Programmer’s Guide

5.1.4 Map To Parallel Data Structures 5-15

5.1.5 Reduce the Overhead . 5-20

5.2 Program Conversion . 5-20

5.3 Calling Ada From Other Languages 5-24

5.3.1 pragma EXTERNAL and pragma EXTERNAL_NAME
5-24

5.3.2 Finding the Right Object. 5-25

5.3.3 Avoiding Elaboration . 5-26

5.3.4 Linking a Non-Ada Main Program 5-26

5.3.5 Runtime Considerations . 5-27

5.3.6 Additional Considerations 5-27

A. User Library Configuration . A-1

A.1 Steps to Configure the User Library. A-2

A.1.1 Build the User Library . A-2

A.1.2 Create an Ada Library . A-3

A.1.3 Copy the Configuration Files A-4

A.1.4 Edit the User Configuration Package A-5

A.1.5 Compile all Ada Files . A-5

A.1.6 Change the ada.libADA.LIB File A-6

A.1.7 Build a Test Library . A-6

A.1.8 Edit, Compile, and Link Your Test Program A-7

A.1.9 Run Your Test Program. A-7

A.2 User Library Configuration Files A-8

A.3 V_USR_CONF Configuration Components A-9

vii

A.3.1 #c1: FAT_MALLOC’s SMALL_BLOCK_SIZES_TABLE
structure . A-10

A.3.2 #c2: MEM_ALLOC_CONF_TABLE Structure. . . A-11

A.3.3 #c3: TASKDEB CONFIGURATION structure . . . A-13

A.3.4 #c3a: INITIALIZATION PROCEDURE ADDRESS A-14

A.3.5 #3b: SIGNAL NUMBER CONFIGURATION. . . . A-14

A.3.6 #c3c: TRAP INSTRUCTION CONFIGURATION A-14

A.3.7 #c3d: DEBUG and CALL TASK CONFIGURATION A-15

A.3.8 #c4: ADAPATH Reference A-16

A.3.9 #c5: CONFIGURATION_TABLE structure. A-16

A.3.10 #c5a: Stack Configuration Parameters A-20

A.3.11 #c5b: FLOATING_POINT Configuration Parameters
A-22

A.3.12 #c5c:Heap Memory Callout Configuration Parameters
A-23

A.3.13 #c5d: Memory Allocation Configuration Table . . A-23

A.3.14 #c5e: TASKDEB CONFIGURATION Structure . . A-24

A.3.15 #c5f: Host OS Signal Configuration Parameters . A-24

A.3.16 #c5g: Time Slice Configuration Parameters - VADS
Threaded Ada . A-25

A.3.17 #c5h: Attributes Configuration Parameters A-26

A.3.18 #c5i: Miscellaneous Configuration Parameters . . A-30

A.3.19 #c6: V_GET_HEAP_MEMORY routine. A-32

A.3.20 #c7: V_PASSIVE_ISR Routine A-33

A.3.21 #c8: V_SIGNAL_ISR Routine A-34

A.3.22 #c9: V_CIFO_ISR Routine. A-35

viii SPARCompiler Ada Programmer’s Guide

A.3.23 #c10: V_PENDING_OVERFLOW_CALLOUT Routine
A-36

A.3.24 #c11: V_KRN_ALLOC_CALLOUT Routine A-37

A.3.25 #c12: V_START_PROGRAM
and V_START_PROGRAM_CONTINUE Routines A-38

B. Posix Conformance Document . B-1

B.1 Release Structure . B-2

B.2 Terminology and General Requirements. B-3

B.3 Process Primitives. B-12

B.4 Process Environment . B-17

B.5 Files and Directories. B-21

B.6 Input and Output Primitives. B-23

B.7 Device- and Class-Specific Functions. B-25

B.8 Language Specific Services for Ada B-27

C. Xview Interface and
Runtime System . C-1

C.1 Product Description . C-2

C.2 How To Use SC Ada With XView. C-2

C.2.1 The XView Library . C-2

C.2.2 XView Examples . C-3

C.2.3 Compiling and Linking Programs. C-3

C.2.4 Interface Limitations . C-4

C.2.5 Notifier Limitations. C-5

C.3 The SC Ada XView Interface . C-7

C.3.1 Interface Package Structure C-7

ix

C.3.2 Data Type Naming Conventions C-8

C.3.3 Differences In This Implementation C-9

C.4 The SC Ada Kernel . C-18

C.4.1 Integrating the XView Notifier With Ada Tasking C-18

C.4.2 Serializing Access to The Notifier C-19

C.4.3 package XVI_NOTIFY. C-20
 C-22This Boosts Appendix F to "F C-22 D. Implementation-Dependent Characteristics F-1

F.1 Pragmas and Their Effects. F-2

F.2 Predefined Packages And Generics F-20

F.2.1 Specification of package SYSTEM F-21

F.2.2 package CALENDAR . F-23

F.2.3 package MACHINE_CODE F-23

F.2.4 package SEQUENTIAL_IO F-26

F.2.5 package UNSIGNED_TYPES F-26

F.2.6 Specification of package UNSIGNED_TYPES . . . F-27

F.3 Slices. F-29

F.4 Implementation-defined Attributes F-30

F.5 Restrictions On ‘Main’ Programs F-34

F.6 Generic Declarations . F-34

F.7 Shared Object-code For Generic Subprograms F-34

F.8 Representation Clauses . F-36

F.9 Dope Vectors . F-43

F.9.1 Allocation of Dope Vectors. F-44

F.10 Parameter Passing . F-47

x SPARCompiler Ada Programmer’s Guide

F.11 Conversion And Deallocation. F-49

F.12 Process Stack Size . F-49

F.13 Types, Ranges and Attributes . F-49

F.14 Input/Output . F-51

Index . Index-1

1-1

Ada Formatter 1

SC Ada includes the Ada source code formatter utility a.pr (“pretty printer”),
which writes to the standard output and is easily redirected to a file.

A range of options are available that make a.pr easy to tailor for individual
Ada coding standards.

Two tools, a.error and a.list provide program listings without formatting.
a.error lists programs containing errors and intersperses the error messages
produced by the compiler among the source lines. a.list produces a
program listing with or without line numbers — but with no other additional
formatting — for programs containing no errors.

References
 a.error , SPARCompiler Ada Reference Guide

 a.list , SPARCompiler Ada Reference Guide

“An annotator has his scruples too.”

Wallace Stevens

1-2 SPARCompiler Ada Programmer’s Guide

1

1.1 Invocation
The source code formatter is invoked with the command syntax:

a.pr [options] [ada_source_file]

a.pr reads as input the specified Ada source file or standard input. Options
are specified on the command line or in the runtime configuration file .prrc ,
located in the user’s current or home directory. An option specified on the
command line takes precedence over options specified in the .prrc file.

Options for both the command line and configuration file are listed later in this
chapter.

1.2 Default Format Specifications
If no options are given, a.pr prints the source file as follows:

• Reserved words are in lower case.
• Identifiers are in upper case.
• Comments remain as given.
• The outermost level begins in the first column.
• Each subsequent level is indented eight columns.
• Indentation is performed with tabs rather than spaces.
• A formatted line of source, including comment and indentation, does not

extend past the 132nd column without being continued on the next line.
• A maximum of 55 lines is allowed on a page; a new page is started if a

program unit (package, subprogram, task, etc.) does not fit on the current
page and it is split among the necessary number of pages.

• Pagination is performed with form feeds rather than blank lines.
• Record type declarations and type representations have the word record

on the same line as the word type or the word for .
• When comments are aligned to the right of the Ada source code, comments

are aligned 4 spaces to the right of the longest source line containing a
comment.

Ada Formatter 1-3

1

1.3 Fixed Format Specifications
In addition to the format specifications listed above, which are changed by
command line or .prrc commands, an Ada source file is formatted in the
following manner.

• Each Ada statement is printed on its own line.
• Any blank lines in the input file produce blank lines in the output except

those falling at the beginning of a page other than the first.
• A subprogram or task body, package specification or body or accept

statement is ended with its identifier name.
• pragma PAGE is recognized and the code following started on a new page.

1.4 Error and Warning Messages
If errors are encountered in the .prrc file, an error message is printed and
a.pr quits, leaving the source file unformatted.

All error and warning messages are printed to standard error . To prevent
warnings from appearing in the formatted source, use the -nw command line
option or the set no_warning command in the .prrc file.

To place the warning/error messages in a file separate from the formatted
source, use the following from csh(1) .

a.pr [options] ada_source.a > output_file >& error_file

or the following from sh(1) .

a.pr [options] ada_source.a 1> output_file 2> error_file

1.5 Configuration File
The .prrc file contains a list of options that determine the format of a source
file when it is printed. The configuration file must be located in either the
user’s current working directory or the home directory. The file consists of a
single set command, followed by a series of options.

The set command has the syntax:

set option [argument]

1-4 SPARCompiler Ada Programmer’s Guide

1

Each option specification must be on its own line, with any number of blanks
between the different parts and any number of blank lines between
specifications.

References
 a.pr, SPARCompiler Ada Reference Guide

1.6 Command-line Options
An option specified on the command line takes precedence over options
specified in the .prrc file.

1.7 Output
Options for major formatting issues are discussed in the following sections.

1.7.1 Comments

Only comments within a single program unit (package, subprogram or task)
are aligned with each other. If, for example, a package body contains a
subprogram and a task, the comments in the subprogram are aligned, the
comments in the task are aligned and the comments outside of these two are
aligned.

Comments are printed either to the right or to the left, as described in the
following paragraph. set align_cmts (or -ac and -al) is used to specify
whether a comment, when aligned at the right, is printed to the right of the
longest line containing a comment or to the right of the longest line, regardless
of whether or not it contains a comment. If printed at the right, comments are
aligned four spaces to the right of either the longest line or the longest line
containing a comment, depending on the option specified.

To be printed at the left, comments must either be preceded by a blank line or
be no farther than one level of indentation to the right of the immediately
previous statement. If the line immediately previous to this comment is also a
comment on its own line, this comment is aligned with the previous one.

Ada Formatter 1-5

1

1.7.2 Pagination

Pagination is accomplished in a variety of ways. pragma PAGE is recognized,
which starts the code following the pragma on a new page. This cannot be
turned off. If no paging options are specified on the command line or in the
.prrc file, pagination is performed using form feeds rather than blank lines.

If the -p number option or the .prrc command set page number is
given, pagination is performed with blank lines. The number specified in the
option gives the desired length of a page. For example, if

set page 65

is specified and a block of code ends on the 54th line, 11 blank lines are printed
by default. Of course, the page size specified must be greater than or equal to
the maximum number of lines desired on a page (set by
-l number /LINES_PER_PAGE=number or set lines number).

If the command-line option -pl or the .prrc command set page_lu is
used, each library unit (indicated by a with clause) begins on a new page.

If a block of code does not fit on the current page, a new one is started. If the
block of code does not fit on a single page, the block is split between the
necessary number of pages.

If the -np option or the .prrc option set no_page is used, pagination only
occurs when a pragma PAGE is encountered.

1.7.3 Splitting Lines

A line is split after one of the following keywords or operators:

abs +
and -
and then &
is /=
mod =
not <
or <=
or else >
renames >=
rem :
xor :=

1-6 SPARCompiler Ada Programmer’s Guide

1

No attempt is made to force a line to conform to the maximum desired length
if it contains none of the above. If, after splitting a line as much as possible, its
length is greater than desired, a warning message is issued.

When a line is split, the portion to be printed on the next line is indented one-
half level from the original portion to show that it is a split line. For example,
if each level is indented 4 spaces and the original line is 2 levels deep (indented
8 spaces), the split portion is indented 10 (8+2) spaces. If each level is indented
a single space, split portions are aligned with the original portion.

Subprograms, accept and entry headers, or parameter lists are special cases.
Parameters lists are split in so far as possible by aligning parameter
declarations.

If warning messages are printed, the offending line’s input line number is part
of the message. This number is not always the line’s true line number. For
example, if the input file contains the following,

procedure TEST(ARGUMENT1 : integer;
 ARGUMENT2 : boolean;
 ARGUMENT3 : integer);

all three lines are concatenated and then processed. If the combined line length
is greater than desired, the line is split, looking the same as above. If the
length of the split lines is still greater than desired, a warning is printed but the
line number given for ARGUMENT2... and ARGUMENT3... is the input line
number of procedure TEST .

1.7.4 Line Length Specification

The maximum line length includes the comment if there is one. If the
comments are aligned to the right of the longest line (regardless of whether or
not it contains a comment), a line of code can be the specified length minus 14.
For example, if the specified line length is 80, the maximum length a line of
code can be is 66 (80 minus 4 spaces for indentation of comment and 10 spaces
for the comment itself regardless of how long the comment really is).

** |
* ,
/

Ada Formatter 1-7

1

The same situation occurs if comments are specified to be aligned to the right
of the longest line containing comments and the line in question has a
comment. If a line does not contain a comment, its maximum line length is
that specified by the user.

1.7.5 Tabs

If the -t number option or the .prrc command set tabs number is used,
tabs are printed whenever the indentation needed for a given line is greater
than or equal to the specified number. For example, if set tabs 4 and set
indent 4 are both specified, each new level is indented with an additional
tab. If set indent 5 is given, each new level is indented with a tab and a
blank.

By default, a tab is printed for every 8 characters needed in indentation (as if
set tabs 8 were specified). The -t 0 option or the .prrc command set
tabs 0 must be specified to indent with spaces rather than tabs.

1.8 Examples
The following examples show typical use of a.pr with options supplied in a
.prrc file and from the command line.

1-8 SPARCompiler Ada Programmer’s Guide

1

1.8.1 Unformatted Source File

The following unformatted file is used for illustration.

Figure 1-1 Unformatted Source File

--file: show_pr.a
Procedure show_pr Is
Type rec
 Is Record
i : integer; -- ”char” decl is the longest line
char : character:=’x’; end Record;

 r : rec := (0, ’z’); -- Longest line with comment
 int:integer:=5;-- Declarations and comments
 -- should each be aligned
Begin
 -- Because these comments are indented no more than one
 -- level of indentation from the previous statement, they
 -- should be aligned at the left.

r.int :=
i;
 end;

Ada Formatter 1-9

1

1.8.2 The .prrc File

A .prrc file is created with options for indentation, margins, the placement of
record block indicators and other formatting choices.

Figure 1-2 .prcc File

set indent 4
set margin 4
set tabs 0
set record next
set reserved upper
set ident lower
set align_cmts line

1-10 SPARCompiler Ada Programmer’s Guide

1

1.8.3 Output

Executing the command

a.pr show_pr.a

reformats the file according to the specifications of the .prrc file and places
the output on standard output.

Figure 1-3 Formatted File

--file: show_pr.a
PROCEDURE show_pr IS
 TYPE rec IS
 RECORD
 i : integer; -- ”char” decl is the longest line
 char : character := ’x’;
 END RECORD;

 r : rec := (0, ’z’); -- Longest line with comment
 int : integer := 5; -- Declarations and comments
 -- should each be aligned
BEGIN
-- Because these comments are indented no more than one
-- level of indentation from the previous statement, they
-- should be aligned at the left.

 r.int := i;
END show_pr;

Ada Formatter 1-11

1

1.8.4 Command-line Options

Command line options override those given the .prrc file (if present). The
command

a.pr -i 4 -m 0 -RS -rl -il -ac show_pr.a

in conjunction with the .prrc file above produces the following reformatted
listing:

Figure 1-4 Reformatted Listing

--file: show_pr.a
procedure show_pr is
 type rec is record
 i : integer; -- ”char” decl is the longest line
 char : character := ’x’;
 end record;

 r : rec := (0, ’z’); -- Longest line with comment
 int : integer := 5; -- Declarations and comments
 -- should each be aligned
begin
-- Because these comments are indented no more than one
-- level of indentation from the previous statement, they
-- should be aligned at the left.

 r.int := i;
end show_pr;

1-12 SPARCompiler Ada Programmer’s Guide

1

2-1

Ada Preprocessor 2

a.app is an Ada preprocessor capable of macro substitution, conditional
compilation and inclusion of named files. Input is Ada source intermixed with
preprocessor control lines and macro substitutions. Output is Ada source; all
control lines are converted to comments, all source files are included and all
macro substitutions are replaced.

Preprocessor control lines begin with a sharp character (#) and are recognized
only by a.app . Syntax of the Ada preprocessor is Ada-like and can span
across multiple control lines. a.app achieves conditional compilation by
evaluating expressions. The primary components are identifiers defined either
in an Ada library or locally in the source. a.app supports a simple form of
macro substitution; the value of a defined identifier is replaced wherever that
identifier, prefixed by a dollar sign ($), occurs in the Ada source.

The SC Ada Ada Preprocessor is particularly useful for developing code for
multiple platforms in which there may be slight differences required between
the versions. The facilities provided by the preprocessor enable maintenance of
a single file which can be compiled with options that determine which variant
is desired.

“I made him a visit, hoping to find
That he took better care for improving his mind”

Isaac Watts

2-2 SPARCompiler Ada Programmer’s Guide

2

2.1 Invocation
The syntax for invoking a.app directly is:

a.app [options] [in_file [out_file]]

When you specify the -P option on the ada command line, the compiler
invokes a.app .

You can also include the following INFO directive in the ada.lib file, which
causes the compiler to invoke a.app :

APP:INFO: boolean_value :

If boolean_value is set to TRUE, the compiler automatically invokes a.app
before compiling the source; any other value for boolean_value has no
effect. Default value of the APP INFO directive is FALSE. The -P option to the
ada command takes precedence over the APP INFO directive.

When a.app is invoked by the compiler, a temporary output file is created and
is discarded at the end of the compile. All diagnostics are in reference to the
original input file.

If an error is encountered, then out_file is not created.

If no files are specified on the command line, standard input and standard
output are used.

a.app supports these command line options:

Except for the -s (strip) option, which is available only when invoking a.app
directly, these options are also recognized by ada .

-w (warnings) Suppress warning diagnostics.

-s (strip) Control and inactive lines are stripped
from the output source.

-D identifier type value (define) Define identifier of a specified type and
value.

-L library_name (Library) Operate in SC Ada library
library_name . [Default: current working
directory]

Ada Preprocessor 2-3

2

2.2 Chapter Conventions
This section describes the syntax and semantics of the Ada PreProcessor (APP)
language. The APP language is based on a subset of the Ada language.

Each section introduces its subject, gives any necessary syntax rules and
describes the semantics of the corresponding language constructs. Examples,
Notes, Differences and References can appear at the end of a section.

Examples illustrate the possible forms of the constructs described. Notes
emphasize consequences of the rules described in the section or elsewhere.
Differences highlight differences between the preprocessor language and the
Ada language. References attract the attention of readers to a term or phrase
having a technical meaning defined in another section, in the Ada Reference
Manual (Ada LRM) or in the SPARCompiler Ada User’s Guide (User).

The context-free syntax of the APP language is described using a simple
variant of Backus-Naur-Form, as described in Ada LRM 1.5. The sharp
character, denoting a control line, does not appear in any of the syntax rules; it
is implicit that all constructs must appear on one or more control lines. Rules
dealing with how Ada text is intermingled with the constructs and the effects
on them are explained in the appropriate sections.

2.2.1 Lexical Elements

APP uses the ISO graphic character set (see Ada LRM 2.1).

The basic lexical elements of the preprocessor consist of delimiters, identifiers,
numeric literals, string literals and comments. Rules of composition are those
defined by Ada (see Ada LRM 2).

These lexical elements are recognized on lines that begin with the sharp
character (control lines); the sharp has no other effect. A control line contains
a sequence of lexical elements (possibly none).

Text on non-control lines consists of a sequence of separate Ada lexical items.
An exception to this is a macro substitution, which is composed of the dollar
character followed immediately by an identifier.

Intermingling control and non-control lines has no effect on the syntax of
either language.

2-4 SPARCompiler Ada Programmer’s Guide

2

When the possibility exists of interpreting adjacent lexical characters as a single
lexical element, you must separate the adjacent lexical elements with an explicit
separator. An explicit separator is any space character (except within a
comment or string literal), format effector or end of line character. Format
effectors other than horizontal tabulation are always separators. Horizontal
tabulation is a separator except within a comment.

You can use one or more separators between any two adjacent lexical elements.
You must use at least one separator between an identifier or a numeric literal
and an adjacent identifier or numeric literal.

A delimiter is any of the following special characters

& ’ () * + , - / : ; < = > |

or one of the following compound delimiters each composed of two adjacent
special characters

=> .. ** := /= >= <=

The following reserved words have significance in the preprocessor language:

The remaining Ada reserved words are also reserved but without any
significance (see Ada LRM 2.9).

The replacement of the vertical bar, sharp and quotes are supported, as
specified in Ada LRM 2.10.

abs else is pragma

and elsif mod rem

case end not then

constant if or when

declare in others xor

Ada Preprocessor 2-5

2

Examples of identifiers:

Examples of numeric literals:

Examples of string literals:

Examples of comments:

Note – The following syntactic categories defined in the Ada LRM, are used
throughout this chapter in APP syntactic rules.

COUNT X get_symbol Ethelyn Marion
SNOBOL_4 X1 PageCount STORE_NEXT_ITEM

12 0 1E6 123_456 - - integer literals
12.0 0.0 0.456 3.14159_26 - - real literals
1.34E-12 1.0E+6 - - real literals with exponent
2#1111_1111# 16#FF# 016#0FF# - - integer literals of value 255
16#E#E1 8#340# - - integer literals of value 224
16#F.FF#E+2 2#1.1111_1111_111#E11 - - real literals of value 4095.0

“Message of the day:”
”” - - an empty string literal
” ” ”A” ”””” - - three string literals
of length 1
”Characters such as $, % and } are allowed in string literals”

end if; - - processing of LINE is complete
- - a long comment may be split onto
- - two or more control lines
----------------- the first two hyphens start the comment

2-6 SPARCompiler Ada Programmer’s Guide

2

The following Ada delimiters are not used in APP.

. << >> <>

The set of APP reserved words is a proper subset of the reserved words
defined in Ada.

Differences
A character literal is not currently supported.

The sharp and dollar character, which by themselves are illegal lexical items in
Ada, have significance only in APP.

References
 character literal, Ada LRM 2.5

 comment, Ada LRM 2.7

 delimiter, Ada LRM 2.2

 format effector, Ada LRM 2.1

 graphic character, Ada LRM 2.1

 identifier, Ada LRM 2.3

 macro substitution, “Macro Substitution” on page 2-34

numeric literal, Ada LRM 2.4

 separator, Ada LRM 2.2

string literal, Ada LRM 2.6

2.2.2 Program Structure

The text of a conditional-compilation program consists of Ada text,
interspersed with optional preprocessor control lines. Ada text has no effect on
the preprocessing, except for macro substitutions. The legality of the Ada text
is checked only to verify that each lexical item is correctly formed.

Ada Preprocessor 2-7

2

A conditional-compilation consists of a sequence of preprocessor statements.
Each preprocessor statement must be specified on one or more control-lines.

conditional_compilation ::= statement_sequence
statement_sequence ::= {statement}

A statement defines the action taken by the preprocessor. The basic statements
are

statement ::=
object_declaration
| assignment_statement
| if_statement
| case_statement
| declare_statement
| pragma

Each control-line, when preprocessed, is converted to a comment, i.e., the
sharp character is preceded by the comment character sequence --. If the
strip option is in effect then the line (including the end of line character) is
discarded.

Note – The strip option should only be used to generate a new file
independent of the original file, because the line numbering no longer
corresponds to the original.

References
Section 2.2.7, “Assignment,” on page 2-24

Section 2.2.8.2, “Case Statement,” on page 2-27

Section 2.2.1, “Lexical Elements,” on page 2-3

Section 2.2.9, “Declare Statement,” on page 2-29

Section 2.2.8.1, “If Statement,” on page 2-25

Section 2.2.12, “Macro Substitution,” on page 2-34

Section 2.2.3.3, “Local Declaration,” on page 2-11

Section 2.2.11, “Pragmas,” on page 2-32

2-8 SPARCompiler Ada Programmer’s Guide

2

2.2.3 Declarations

The preprocessor language defines only one kind of declared entity, an object.
An object is an entity that contains a value of a given type. An object is
declared in several ways:

• Ada Library Directive
• Command Line
• Local Declaration

Each form of declaration introduces an identifier as the declared entity. After
the declaration the identifier is said to be defined.

For each form of declaration the language rules define a certain region of text
called the scope of the declaration. Within its scope and only there, are places
where it is possible to use the identifier to refer to the associated declared
entity. At such places the identifier is said to be a name of the entity (its simple
name); the name is said to denote the associated entity.

Note – The attribute P’DEFINED is used to query whether the identifier is
defined.

References
Section , “P’DEFINED,” on page 2-16

Section 2.2.10.2, “Scope of Declarations,” on page 2-30

2.2.3.1 Ada Library Directive

An object is defined in an Ada library via a DEFINE directive. The form is:

identifier:DEFINE:type:value:

A type is defined as:

type ::= BOOLEAN | INTEGER | REAL | STRING | TEXT

Ada Preprocessor 2-9

2

A value is one of the following:

A numeric value is prefixed with an optional sign. A rational value is a pair of
numeric values, separated by the divide character. Each must be a real literal.

A string literal is as defined in Ada LRM 2.6.

A text literal is a sequence of graphic characters (possibly none).

An INFO directive is recognized and treated as if it were declared as a DEFINE
directive of the type TEXT .

An INFO or DEFINE directive definition is equivalent to a constant object
declaration.

The SC Ada tool a.info provides operations for adding, modifying and
deleting directives.

Figure 2-1 Ada Library Directives

value ::=boolean_value
| numeric_value
| rational_value
| string_literal
| text_literal

boolean_value ::= FALSE | TRUE
numeric_value ::= [+|-]numeric_literal
rational_value ::= numeric_value/numeric_value
text_literal ::= {graphic_character}

DEBUG:DEFINE:BOOLEAN:TRUE:
LEVEL:DEFINE:INTEGER:13:
HERTZ:DEFINE:REAL:100.0:
MESSAGE:DEFINE:STRING:“Hello World!”:
COMPILER:DEFINE:TEXT:VADS|
VERSION:INFO:3.0:
NEW_THREADED_RTS:DEFINE:BOOLEAN:TRUE:

2-10 SPARCompiler Ada Programmer’s Guide

2

Note – An INFO directive is reserved for use by SC Ada components and are
predefined. An INFO directive is similar in definition to the following DEFINE
directive:

identifier:DEFINE:TEXT:value:

A DEFINE directive cannot be substituted for an INFO directive.

A text literal can only be used in a directive; a string literal must be used in the
source.

Differences
The definition of a text literal and rational value have no counterparts in Ada.

References
Section 2.2.3.3, “Local Declaration,” on page 2-11

 a.info ,APP INFO directive, SPARCompiler Ada Reference Guide

graphic character Ada LRM 2.1

numeric literal Ada LRM 2.4

real literal Ada LRM 2.4

string literal Ada LRM 2.6

2.2.3.2 Command Line

An object can be defined on the command line with the -D option. The form
is:

-D identifier type value

Ada Preprocessor 2-11

2

A command line definition is equivalent to a constant object declaration.

Figure 2-2 Command Line

Note – Specifying a string value on the command line requires that the string
be enclosed by apostrophes. The shell restricts embedded apostrophes.

2.2.3.3 Local Declaration

An object can be defined locally and has the following syntax:

object_declaration ::=
identifier : [constant] type [:= expression];

An object declaration declares an object whose type is specified by the
identifier type. If the object declaration includes the assignment compound
delimiter, :=, followed by an expression, the expression specifies an initial
value for the declared object; the type of the expression must be that of the
object.

The declared object is a constant if the reserved word constant appears in the
object declaration; the declaration must then include an explicit initialization.
The value of a constant cannot be modified after initialization.

-D DEBUG BOOLEAN TRUE
-D LEVEL INTEGER 13
-D HERTZ REAL 100.0
-D MESSAGE STRING ’“Hello World!”’
-D COMPILER TEXT VADS

2-12 SPARCompiler Ada Programmer’s Guide

2

An object that is not a constant is called a variable. The only way to change the
value of a variable is by an assignment.

Figure 2-3 Local Declarations

Note – A local declaration is the only means to define a variable, since
definitions introduced by a directive or command line are constants.

Differences
An identifier list is not supported.

No constraints are checked during assignment.

2.2.4 Types

A type is characterized by a set of values and operations. All types are
predefined and are not extensible.

Supported types are boolean, numeric and string.

All types share the following basic operations which consist of: assignment,
relational operators and explicit type conversions.

Note – A character type is not yet supported.

Examples of variable declarations:
#COUNT : INTEGER;
#SORTED : BOOLEAN := FALSE;
#MESSAGE: STRING := “Hello World!”;

Examples of constant declarations:
#LIMIT : constant INTEGER := 10;

#VERSION: REAL := 6.21 ;

Ada Preprocessor 2-13

2

2.2.4.1 BOOLEAN

The type BOOLEAN contains the two values FALSE and TRUE ordered with
the relation FALSE < TRUE.

Additional operations consist of: logical operators, short-circuit control forms,
logical negation and image attribute.

2.2.4.2 INTEGER

The type INTEGER is an integer type whose set of values range from some
lower bound to some upper bound; where the lower bound is some value < 0
and the upper bound is some value > 0. Integer literals are of the type
INTEGER.

Additional operations consist of: membership tests, binary adding operators,
unary adding operators, multiplying operators, absolute value, exponentiation
and image attribute.

Note – The type INTEGER corresponds to the Ada predefined type
UNIVERSAL_INTEGER.

The lower and upper bounds of the type INTEGER depends on the amount of
available memory required for the internal representation.

References
UNIVERSAL_INTEGER, Ada LRM 3.5.4

2.2.4.3 REAL

The type REAL is a real type comprised of rational values. Real literals are of
the type REAL .

Additional operations consist of: binary adding operators, unary adding
operators, multiplying operators, absolute value, exponentiation and image
attribute.

2-14 SPARCompiler Ada Programmer’s Guide

2

Note – The type REAL corresponds to the Ada predefined type
UNIVERSAL_REAL.

With rational values one can assume that (1.0/X)*X = 1.0.

References
UNIVERSAL_REAL, Ada LRM 3.5.6

2.2.4.4 STRING

The type STRING is a variable length array of a character component in the
range 1 .. N, where N is some non-negative integer value.

String literals are basic operations applicable to the type STRING and TEXT.

Additional operations consist of: concatenation, slice operation, length
attribute and value attribute.

Note – A character type is not yet supported.

When N is zero, this denotes the null string “”.

A single character component is accessible by a slice operation.

Differences
A STRING object, in Ada, must always be constrained in an object declaration.

2.2.4.5 TEXT

The type TEXT is a derived type of STRING. The main difference is that the
external value is a sequence of graphic characters.

Note – An external TEXT value is specified in an INFO or DEFINE directive or
is used in a macro substitution.

Ada Preprocessor 2-15

2

2.2.5 Names

Names can denote objects, slices of objects or attributes of objects.

name ::=
simple_name

| slice
| attribute

simple_name ::= identifier

A simple name for an entity is the identifier associated with the entity by its
declaration. The evaluation of a simple name consists of evaluating its
definition. The simple name must be defined and have a value.

Note – The use of an undefined identifier is legal in certain contexts which
would prevent the evaluation. These include the if statement, short-circuit
forms and any context which is inactive.

Differences
In Ada, the use of an undefined identifier is an error.

An object must contain a value, whereas in Ada, the evaluation yields an
erroneous program.

References
Section 2.2.8.1, “If Statement,” on page 2-25

Section 2.2.8, “Conditional Processing,” on page 2-24

 short-circuit Note on page 2-20

2.2.5.1 Slice

A slice denotes a sequence of consecutive characters of a STRING or TEXT
object.

slice ::= simple_name(range)

range ::= simple_expression .. simple_expression

2-16 SPARCompiler Ada Programmer’s Guide

2

A range specifies a subset of values of the type INTEGER . The range L .. R
specifies the values from L to R inclusive if the relation L <= R is true. A
value V belongs to the range if the relations L <= V and V <= R are both
TRUE. A null range is range for which the relation R < L is TRUE.

Except for a null range, the bounds of the range must belong to the range of
the sliced object.

An implicit conversion adjusts the bounds from L .. R to 1 .. R-L+1 .

Figure 2-4 Slices

Note – The implicit conversion occurs during assignment and when part of
any expression.

The syntax does not allow slicing of a slice, as for example
FOO(1..10)(3..6) .

2.2.5.2 Attributes

An attribute denotes a basic operation of an entity given by a prefix.

attribute ::= prefix’attribute_designator
prefix ::= identifier | simple_name
attribute_designator ::= simple_name [(expression)]

The applicable attribute designators depend on the prefix.

The following attributes are defined:

P’DEFINED
For a prefix P that is an identifier:

Yields the value TRUE if the identifier P is defined; yields the value FALSE
otherwise. The value of this attribute is of the type BOOLEAN .

#MESSAGE(6..10)-- a slice of 5 characters
#MESSAGE(1..0)-- a null slice

Ada Preprocessor 2-17

2

P’LENGTH
For a prefix P that denotes a STRING or TEXT object:

Yields the number of character components in the object P. The value of this
attribute is of the type INTEGER.

P’IMAGE
For a prefix P that is the type INTEGER , REAL or BOOLEAN:

This attribute is an operation with a single argument. The actual argument X
must be a value of the type P. The result type is the type STRING or TEXT.
The result is the image of the value in display form.

The image of an integer value is the corresponding decimal literal; without
underlines, leading zeros, exponent or trailing spaces; but with a one character
prefix that is either a minus sign or a space.

For a real value, the image is the corresponding real decimal literal if the
fractional part of the value is zero. Otherwise, the image is a pair of real
decimal literals separated by the divide character, with no underlines, leading
zeros, exponents or trailing spaces but with a single-character prefix (either a
minus sign or a space).

The image of a boolean value is the corresponding identifier in upper case.

P’VALUE
For a prefix P that is the type INTEGER, REAL or BOOLEAN:

This attribute is an operation with a single argument. The actual argument X
must be a value of the type STRING or TEXT. The result type is the type P.
Any leading and any trailing spaces that corresponds to X are ignored.

For the type INTEGER , if the sequence of characters has the syntax of a
numeric value, the result is this value.

For the type REAL , if the sequence of characters has the syntax of a rational
value, the result is this value.

For the type BOOLEAN , if the sequence of characters correspond to the
identifiers TRUE or FALSE, the result is this value.

2-18 SPARCompiler Ada Programmer’s Guide

2

For any other case, it is an error.

Figure 2-5 Attributes

Differences
The attribute P’DEFINED has no counterpart in Ada.

The attributes P’IMAGE and P’VALUE, where P is REAL, have no counterparts
in Ada.

The attributes P’FIRST , P’LAST and P’RANGE are not supported for the
string types.

References
“Declarations” on page 2-8

#COUNT’DEFINED -- TRUE if COUNT is defined
#MESSAGE’LENGTH-- yields the value 12
#REAL’IMAGE(VERSION)-- yields the value “ 6.21”
#BOOLEAN’VALUE(MESSAGE) -- erroneous

Ada Preprocessor 2-19

2

2.2.6 Expressions

An expression is a formula that defines the computation of a value.

Each primary has a value and a type.

expression ::=
relation {and relation}

| relation {or relation}
| relation {xor relation}
| relation {and then relation}
| relation {or else relation}

relation ::=
simple_expression[relational_operator simple_expression]

| simple_expression [not] in range
simple_expression ::=

[unary_adding_operator] term {binary_adding_operator term}
term ::=

factor {multiplying_operator factor}
factor ::=

primary [** primary]
| abs primary
| not primary

primary ::=
numeric_literal

| string_literal
| name
| type_conversion
| (expression)

Examples of primaries:
100 -- integer literal
4.0 -- real literal
“Hello World!” -- string literal
LIMIT -- constant
COUNT -- variable
MESSAGE’LENGTH -- attribute
MESSAGE(1..5) -- slice
REAL(1) -- conversion
(LIMIT + 1) -- parenthesized expression

Examples of expressions:
VERSION -- primary
not SORTED -- factor

2-20 SPARCompiler Ada Programmer’s Guide

2

Figure 2-6 Expressions

Note – The short-circuit forms prevent the evaluation of the right-hand
expression. This is useful when referencing an undefined object. For example:

#DEBUGGING: BOOLEAN := DEBUG’DEFINED and then DEBUG;

Differences
In APP, erroneous expressions are detected immediately, whereas in Ada an
exception is raised, e.g., divide by zero.

2.2.6.1 Operators and Expression Evaluation

The preprocessor language defines the following classes of predefined
operators. The basic properties of these operators are identical to their
counterparts in the Ada language (see Ada LRM 4.5). The evaluation of an
expression delivers a value or causes an error to be detected.

2*COUNT -- term
-4.0 -- simple expression
-4.0 + VERSION -- simple expression
B**2 - 4.0*A*C -- simple expression
PASSWORD(1..3) = “BWV” -- relation
LIMIT in 1..10 -- relation
LIMIT not in 1..10 -- relation
COUNT = 0 or ITEM_HIT -- expression
(COLD and SUNNY) or WARM -- expression (parentheses

-- are required)
A**(B**C) -- expression (parentheses

-- are required)

logical_operator ::= and | or | xor
relational_operator ::= = | /= | < | <= | > | >=
binary_adding_operator ::= + | - | &
unary_adding_operator ::= + | -
multiplying_operator ::= * | / | mod | rem
highest_precedence_operator ::= ** | abs | not

(Continued)

Ada Preprocessor 2-21

2

The operations on numeric types either yield the mathematically correct result
or an erroneous result.

Operator Operation Left operand Right operand Result

type type type

and conjunction BOOLEAN BOOLEAN BOOLEAN

or inclusive BOOLEAN BOOLEAN BOOLEAN

disjunction

xor exclusive BOOLEAN BOOLEAN BOOLEAN

disjunction

= equality any type same type BOOLEAN

/= inequality any type same type BOOLEAN

< <= > >= test for any type same type BOOLEAN

ordering

+ identity INTEGER INTEGER

REAL REAL

- negation INTEGER INTEGER

REAL REAL

+ addition INTEGER INTEGER INTEGER

REAL REAL REAL

- subtraction INTEGER INTEGER INTEGER

REAL REAL REAL

& catenation STRING STRING STRING

TEXT TEXT TEXT

* multiplication INTEGER INTEGER INTEGER

REAL REAL REAL

REAL INTEGER REAL

INTEGER REAL REAL

/ division INTEGER INTEGER INTEGER

REAL REAL REAL

REAL INTEGER REAL

mod modulus INTEGER INTEGER INTEGER

rem remainder INTEGER INTEGER INTEGER

2-22 SPARCompiler Ada Programmer’s Guide

2

Figure 2-7 Operators and Expression Evaluation

The catenation of two string objects X and Y yields a new string expression
with bounds 1.. X’LENGTH + Y’LENGTH.

For integer division, rem and mod, the right operand must be non-zero.

Exponentiation of an integer requires that the exponent be non-negative.

2.2.6.2 Type Conversions

The evaluation of a type conversion evaluates the expression given as the
operand and converts the resulting value to a specified target type.

type_conversion ::= type(expression)

A conversion of an operand of a given type to the type itself is allowed. No
special restrictions limit the form of the expression.

The allowed type conversions correspond to the following cases:

• Numeric types

The operand can be either of an INTEGER or REAL type; the value of the
operand is converted to the target type which is either of the type
INTEGER or REAL. The conversion of a real value to an integer value
rounds to the nearest integer; if the operand is halfway between two
integers, the rounding mode is round-to-nearest-even.

abs absolute value INTEGER INTEGER INTEGER

REAL REAL REAL

not logical BOOLEAN BOOLEAN

negation

** exponentiation INTEGER INTEGER INTEGER

REAL INTEGER REAL

(Continued)

Ada Preprocessor 2-23

2

• String types

The operand can be either of a STRING or TEXT type; the value of the
operand is converted to the target type which is either of the type STRING
or TEXT. There is no change in representation.

Figure 2-8 Type Conversions

Differences
A string literal is allowed as an operand.

In Ada, the rounding mode for the conversion of a real to an integer is
implementation-dependent.

Examples of numeric type conversions:

REAL(1) -- value is 1.0

INTEGER(1.6) -- value is 2

INTEGER(1.5) -- value is 2

-- (round-to-nearest-even)

INTEGER(2.5) -- value is 2

-- (round-to-nearest-even)

INTEGER(-1.5) -- value is -2

-- (round-to-nearest-even)

INTEGER(-2.5) -- value is -2

-- (round-to-nearest-even)

Examples of conversions between string types:

STRING(COMPILER) -- bounds are those of
COMPILER

TEXT(MESSAGE(6..10)) -- bounds are 1 and 5

TEXT(“”) -- bounds are 1 and 0

2-24 SPARCompiler Ada Programmer’s Guide

2

2.2.7 Assignment

An assignment statement replaces the current value of a variable with a new
value specified by an expression. The named variable and the right-hand
expression must be of the same type.

assignment_statement ::=
variable _simple_name := expression;

Figure 2-9 Assignment Statements

2.2.8 Conditional Processing

Conditional processing is the process of activating or inactivating a section of
source text. The source text is a sequence of Ada and preprocessing source
lines. Each line is either active or inactive. An active line is preprocessed and
any constituents are evaluated; an inactive line is not evaluated. An inactive
Ada source line is converted to a comment; the line is preceded by the
character sequence --*.

Note – For an inactive section of text, the APP syntax is still checked.

#SORTED:= TRUE;
#CONTROL_LINE := “# ” & SOURCE_LINE;
#CELSIUS := (FAHRENHEIT-32.0) * (5.0/9.0);

Ada Preprocessor 2-25

2

2.2.8.1 If Statement

An if statement selects conditionally the enclosed statement sequence,
depending on the (truth) value of one or more corresponding conditions.

An expression specifying a condition must be of type BOOLEAN.

For the evaluation of an if statement, the condition specified after if and any
conditions specified after elsif , are evaluated in succession (treating a final
else as elsif TRUE then), until one evaluates to TRUE or all conditions are
evaluated and yield FALSE. If one condition evaluates to TRUE, then the
corresponding statement sequence and all Ada source between then-elsif ,
then-else or else-end , is active; otherwise the remaining statement
sequences and Ada text are inactive

if_statement ::=
if condition then

statement_sequence
{ elsif condition then

statement_sequence}
[else

statement_sequence]
end if;

condition ::= boolean _expression

2-26 SPARCompiler Ada Programmer’s Guide

2

.

Figure 2-10 Conditional Processing - IF Statement

Note – An if statement achieves conditional evaluation. Evaluation of an
object checks that the object is defined and has a value. In the above example,
if COND1 is true then COND2 is not evaluated; if COND2 is undefined, an
evaluation error is prevented.

Differences
In APP, an undefined identifier can be used in expression, as long as it is not
evaluated.

if DEBUG’DEFINED and then DEBUG then
TEXT_IO.PUT(“Debugging”);

end if ;
X :=

if BIAS >= 0 then
X+1

else
X-1

end if ;
;

if COND1 then
-- cond1 part

elsif COND2 then
-- cond2 part

else
-- else part

end if;

Ada Preprocessor 2-27

2

2.2.8.2 Case Statement

A case statement selects conditionally one of a number of alternative
statement sequences; the chosen alternative is defined by the value of an
expression.

The expression can be any one of the available types. Each choice in a case
statement alternative must be of the same type as the expression; the list of
choices specifies for which values of the expression the alternative is chosen
(possibly none).

A value of the type of the expression must be represented once and only once
in the set of choices. A choice defined by a range stands for all values in the
corresponding range (none if a null range). The choice others is only allowed
for the last alternative and as its only choice; it stands for all values (possibly
none) not given in the choices of previous alternatives.

The preprocessing of a case statement consists of the evaluation of the
expression followed by the evaluation of each choice and the preprocessing of
the chosen (possibly none) statement sequence.

case_statement ::=
case expression is

case_statement_alternative
{ case_statement_alternative}
end case ;

case_statement_alternative ::=
when choice {| choice} =>

statement_sequence
choice ::=

simple_expression
| range
| others

2-28 SPARCompiler Ada Programmer’s Guide

2

For a chosen alternative, the corresponding statement sequence and all Ada
source between the arrow and to the next alternative or end, is active;
otherwise the remaining alternatives and Ada text are inactive.

Figure 2-11 Conditional Processing - CASE statement

Note – An others choice is not required and it is possible that no alternative is
chosen.

Differences
In Ada the type expression must be a discrete type and all choices specified
must represent all possible values of the expression.

case DEBUGGING is
when TRUE =>

TEXT_IO.PUT(”Debugging ...”);
end case;
case TARGET is
when “rt” =>

rt_specific;
when “sparc” =>

sparc_specific;
when “mc68020” =>

mc68020_specific;
when others =>
pragma ERROR(“unknown TARGET: ” & TARGET);
end case;

Ada Preprocessor 2-29

2

2.2.9 Declare Statement

A declare statement encloses a statement sequence, which in effect is a
declarative region.

declare_statement ::=
declare

statement_sequence
end declare;

Figure 2-12 DECLARE Statement

References
Section 2.2.10.1, “Declarative Region,” on page 2-29

2.2.10 Visibility Rules

The rules defining the scope of declarations and the rules defining which
identifiers are visible at various points in the preprocessor text are described.

2.2.10.1 Declarative Region

A declarative region is a portion of the program text that also encompasses
external declarations defined outside of the program text. A single declarative
region is formed by the text of each of the following:

• A statement sequence of a conditional compilation program.
• A statement sequence of a declare statement.

The following two regions are implicitly part of the program text and extend to
the end of the program and are said to enclose a region:

• An Ada library.
• A command line.

declare
KIND: constant STRING := STRING(COMPILER);

TEXT_IO.PUT(“Compiler: ” & $KIND);
end declare ;

2-30 SPARCompiler Ada Programmer’s Guide

2

The Ada libraries visible to the program are those that are defined on the Ada
path in the local Ada library; excluding any closure. An Ada library encloses
the predecessor Ada library on the Ada path. The local Ada library encloses
the command line, which encloses the program text.

References
 Ada path, SPARCompiler Ada Reference Guide

2.2.10.2 Scope of Declarations

The scope of a declaration that occurs immediately within a declarative region
extends from the beginning of the declaration to the end of the declarative
region. This implies that a library directive or command line declaration
extends from its declaration to the end of the program text.

2.2.10.3 Visibility

The meaning of the occurrence of an identifier at a given place in the text, Ada
library or command line, is defined by the visibility rules.

A declaration is visible only within a certain part of its scope; this part starts at
the end of its declaration and extends to the end of the immediate scope of the
declaration but excludes places where the declaration is hidden.

A declaration is said to be hidden within an inner declarative region if the
inner region contains a homograph of this declaration; the outer declaration is
then hidden within the immediate scope of the inner homograph. Each of the
two declarations is said to be a homograph of the other if both declarations
have the same identifier.

Two declarations that occur immediately within the same declarative region
must not be homographs; unless the declarative region is an Ada library or
command line, in which case the second declaration is ignored.

Ada Preprocessor 2-31

2

No homograph is allowed for any of the predefined types and boolean values.

Figure 2-13 Visibility

Differences
In Ada predefined identifiers can be redefined.

Examples of Ada library directives:

MESSAGE:DEFINE:STRING:“Hello World!”:

MESSAGE:DEFINE:TEXT:Hello World!:-- ignored; redeclaration

Examples of command line:

-D DEBUG BOOLEAN TRUE

-D DEBUG BOOLEAN FALSE-- ignored; redeclaration

Examples of local declarations:

if not NAME’DEFINED t hen

NAME: constant TEXT := “undefined”;

end if;

LEVEL: INTEGER := 1;

if TRUE then

LEVEL: INTEGER := 2; -- illegal; redeclaration

end if ;

declare

LEVEL: INTEGER := 3; -- inner homograph of LEVEL

end declare;

I: INTEGER := I + 1; -- illegal; the declaration

-- of I hides the use of I in

-- the expression

FOO: BOOLEAN := FOO’DEFINED;-- illegal; the

-- declaration of FOO

-- is not yet complete

BOOLEAN: INTEGER := 1; -- illegal; a predefined

-- type cannot be redefined

2-32 SPARCompiler Ada Programmer’s Guide

2

2.2.11 Pragmas

A pragma is used to convey information to the preprocessor. The syntax is

pragma ::= pragma identifier [(expression)];

The identifier must be recognized by the preprocessor.

Differences
An unrecognized or illegal pragma is considered an error and not ignored as is
the case in Ada.

2.2.11.1 Pragma INCLUDE

pragma INCLUDE is used to include files in a compilation. The form of this
pragma is

pragma INCLUDE (string_expression);

This causes the entire contents of the named file to be included at the point of
the pragma and be preprocessed. The filename expression must be of the type
STRING or TEXT and must be a well-formed filename specification.

The named file is first searched for in the local Ada library and then in the
sequence of Ada libraries contained on the Ada path. An include file obtained
from a non-local Ada library uses the Ada path of the non-local Ada library to
search for an include file.

Figure 2-14 pragma INCLUDE

HOME: constant string := “/usr/home/”;“\usr\home\”;
pragma INCLUDE (“file.a”);-- will be searched
-- for in the Ada
-- libraries
pragma INCLUDE (HOME & “file.a”); -- will be searched
-- for in the
-- directory HOME

Ada Preprocessor 2-33

2

Note – The text of an include file is processed as if it were part of the original
source, except that diagnostics refer back to the include file. It can contain
preprocessor control lines; possibly even additional INCLUDE pragmas.

It is possible for an include file to be obtained from an Ada library not
directly visible from the current Ada library.

Restriction
pragma INCLUDE is now allowed during an Ada compile, except that the
include file must consist solely of control lines. A successful compile causes
dependency information to be entered into the Ada library to detect out-of-
date include files so that a.make can determine the recompilation of the file.

References
 Ada path, SPARCompiler Ada Reference Guide

2.2.11.2 Pragma WARNING

pragma WARNING is used to issue a warning. The form of this pragma is

pragma WARNING [(string_expression)];

The pragma takes an optional STRING or TEXT argument, which, if provided,
is used as the warning message.

Figure 2-15 pragma WARNING

Note – If the -w option is specified on the command line, pragma WARNING
has no effect.

#pragma WARNING;
#pragma WARNING(“this text is the warning message”);

2-34 SPARCompiler Ada Programmer’s Guide

2

2.2.11.3 Pragma ERROR

pragma ERROR is used to issue an error. The form of this pragma is

pragma ERROR [(string _expression)];

The pragma takes an optional STRING or TEXT argument, which, if provided,
is used as the error message.

The effect of this pragma is to cause the preprocessing to fail.

Figure 2-16 pragma ERROR

2.2.12 Macro Substitution

A macro substitution is identified by the following lexical item in the Ada text.

$identifier

The identifier must be defined and have a value.

The output format is specified for each of the types in the table below.

Figure 2-17 Macro Substitution

#pragma ERROR;
#pragma ERROR(“this text is the error message”);

Type Syntax

BOOLEAN boolean_value

INTEGER numeric_value

REAL rational_value

STRING string_literal

TEXT text_literal

Ada Preprocessor 2-35

2

Decimal notation is used for integer and real literals.

Figure 2-18 Macro Substitutions

Note – Macro substitution only occurs in the Ada text, not in APP control lines.
The macro substitution cannot exceed the current line length limit. It is not
possible for a macro substitution to extend to the next line. A macro
substitution cannot be embedded in a comment or string literal, since these are
lexical items. A numeric macro substitution must be parenthesized if part of a
larger expression.

Input Output

DEBUG: BOOLEAN := TRUE; --# DEBUG: BOOLEAN := TRUE;

if $DEBUG then if TRUE then

BIAS: INTEGER := -16#ff#; --# BIAS: INTEGER := -16#ff#;

ADJUST := ADJUST + ($BIAS); ADJUST := ADJUST + (-255);

PI: CONSTANT REAL := 3.14; --# PI: CONSTANT REAL := 3.14;

RADIANS := 180.0/($PI); RADIANS:= 180.0/(157.0/50.0);

S: STRING := “abc”“def”; --# S: STRING := “abc”“def”;

if PATTERN = $s then if PATTERN = “abc”“def” then

NOP: TEXT := --# NOP: TEXT :=

“code_0’(op => nop)”; --# “code_0’(op => nop)”;

$NOP; code_0’(op => nop);

2-36 SPARCompiler Ada Programmer’s Guide

2

2.3 Example
The following contrived example illustrates some of the possible declarations
and the visibility rules involved.

For the following example, the two ada.lib files are defined as follows:

file: /usr2/ada/self/standard/ada.lib
1) !ada library

ADAPATH=
TARGET:INFO:SELF_TARGET:
VERSION:I
NFO:3.0:
VADS:INFO:/usr2/3.0:
HOST:INFO: some_host :
file: /usr2/test/ada.lib

2) !ada library
ADAPATH= /usr2/ada/self/standard

3) HOST:DEFINE:STRING:“ some_host ”:
DEBUG:DEFINE:BOOLEAN:FALSE:

4) DEBUG:DEFINE:BOOLEAN:TRUE:

Ada Preprocessor 2-37

2

With the following invocation in directory: /usr2/test

1. At this point the only objects defined are the predefined types and boolean
values.

2. After processing the outer most Ada library, the objects TARGET, VERSION,
VADS and HOST are defined.

3. The declaration of HOST hides the definition in
/usr2/ada/self/standard/ada.lib .

4. The redeclaration of DEBUG is ignored and a warning is issued.

5. The command line declaration of DEBUG hides the definition in
/usr2/ada/self/test/ada.lib/test/ada.lib .

5) a.app -D DEBUG BOOLEAN TRUE example_in.a example_out.a
file: /usr2/ada/self/test/example_in.a

6) #
7) # if not DEBUG’DEFINED then

DEBUG: constant BOOLEAN := FALSE;
end if;
#

8) # HOST: constant STRING := ” some_other_host ”;
#
if DEBUG then
with TEXT_IO;
with DEBUG;
end if;
procedure EXAMPLE is
begin
if DEBUG then
declare

9) # HOST: constant STRING := ” yet_another_host ”;
TEXT_IO.PUT(”Debugging host: ” & $HOST);
DEBUG;

end declare;
else

null;
end if;
end EXAMPLE;

2-38 SPARCompiler Ada Programmer’s Guide

2

6. At this point the user-defined non-local identifiers that are visible are:

7. Checks whether DEBUG is defined, if not a local declaration is defined with a
default value; this avoids any potential evaluation error in the following
code. An alternative is to use the expression (DEBUG’DEFINED and then
DEBUG) instead of (DEBUG).

8. Introduces the local constant HOST which hides the outer definition defined
at 3). Its definition extends to the end of the source.

9. Introduces an inner definition of HOST which hides the outer definition
defined at 8). Its definition extends to the end of the end declare ;.

The resulting file is:

TARGET: CONSTANT TEXT := ”SELF_TARGET”;
VERSION: CONSTANT TEXT := ”3.0”;
VADS: CONSTANT TEXT := ”/usr2/3.0”;
HOST: CONSTANT STRING := ” some_host ”:
DEBUG: CONSTANT BOOLEAN := TRUE;

file: /usr2/ada/self/test/example_out.a

--#

--# if not DEBUG’DEFINED then

--# DEBUG: constant BOOLEAN := FALSE;

--# end if;

--#

--# HOST: constant STRING := ” some_other_host ”;

--#

--# if DEBUG then

with TEXT_IO;

with DEBUG;

--# end if;

procedure EXAMPLE is

begin

--# if DEBUG then

--# declare

Ada Preprocessor 2-39

2

If the strip option is used instead, as in the following invocation:

a.app -s -D DEBUG BOOLEAN TRUE example_in.a example_out.a

The generated file is:

--# HOST: constant STRING := ” yet_another_host ”;

TEXT_IO.PUT(”Debugging host: ” & ” yet_another_host ”);

DEBUG;

--# end declare;

--# else

--* null;

--# end if;

end EXAMPLE;

file: /usr2/ada/self/test/example_out.a
with TEXT_IO;
with DEBUG;
procedure EXAMPLE is
begin

TEXT_IO.PUT(”Debugging host: ” & ” yet_another_host ”);
DEBUG;

end EXAMPLE;

(Continued)

2-40 SPARCompiler Ada Programmer’s Guide

2

3-1

Statistical Profiler 3

The SC Ada Statistical Profiler provides an accurate description of the CPU
usage by all parts of a program, including time spent in the SC Ada Runtime
System. The profiler examines the program counter at regular intervals and
keeps track of where the program is executing. Kernel support with the host
OS profil subroutine makes profiling effective and non-intrusive. See
Operating System Documentation, profil(2) .

Display profiling data using the host OS prof tool or SC Ada a.prof
included with the profiler. a.prof is tuned to SC Ada subprogram naming
conventions and does a better job of formatting the subprogram names.

Example Prog - 1 is an example of profiling output from a.prof .

Example Prog - 2 is an example of source line profiling from a.list . The -P
option to a.list is used to read the mon.list file (generated by a.prof -
d) and insert source line execution percentages in the source listings.

Example Prog - 3 is an example of source line profiling from a.das . The -P
option to a.das is used to read the mon.list file (generated by a.prof -d)
and insert source line execution percentages in the assembly listings.

“Figures won’t lie, but liars will figure.”

Charles Grosvenor

3-2 SPARCompiler Ada Programmer’s Guide

3

Note that for all these examples, the exact output will vary depending on the
target system.

Figure 3-1 Profiling Output

References
a.das, SPARCompiler Ada Reference Guide

a.list, SPARCompiler Ada Reference Guide

a.prof, SPARCompiler Ada Reference Guide

%time cumsecs name
71.6 0.27 test_prof.tp1
21.1 0.34 test_prof
7.4 0.37 test_prof.tp2

Statistical Profiler 3-3

3

Figure 3-2 Source Line Profiling from a.list

% a.prof -d test_prof.a
% a.list -P test_prof
******************** test_prof.a ********************

1: function test_prof return integer is
2:
3: tp_cnt: integer;
4:
5:2.11 function tp2(i: integer) return integer is
6: begin
7:1.05 return i + 1;
8:4.21 end tp2;
9:
10:5.26 function tp1 return integer is
11: tp1_cnt: integer;
12: begin
13: for i in 1..10 loop
14:6.32 tp1_cnt := i + 1;
15:58.95 end loop;
16: return tp1_cnt;
17:1.05 end tp1;
18:
19: begin
20: for i in 1..100000 loop
21:5.26 tp_cnt := tp1;
22:8.42 tp_cnt := tp2(tp_cnt);
23:6.32 end loop;
24: return tp_cnt;
25: end test_prof;

3-4 SPARCompiler Ada Programmer’s Guide

3

% a.prof -d test_prof.a
% a.das -P test_prof
Unit: test_prof
Library: .
Object file: /vc/brp/.objects/test_prof01
Source_file: /vc/brp/test_prof.a
Text Section:

 5 2.11 function tp2(i: integer) return integer is
 00000: addiu t0,sp,0fff0 t0 <- sp - 16
 00004: sltu t1,t0,s7 t1 <- t0 < s7
 00008: beq t1,$0,8 -> 014
 0000c: #nop
 00010: break 02400
 00014: addu sp,t0,$0 sp <- t0
 7 1.05 return i + 1;
 00018: addi v0,a0,01 v0 <- a0 + 1
8 4.21 end tp2;
 0001c: addiu t0,sp,010 t0 <- sp + 16
 00020: nop
 00024: addu sp,t0,$0 sp <- t0
 00028: jr ra
 0002c: #nop
 10 5.26 function tp1 return integer is
 00030: addiu t0,sp,0fff0 t0 <- sp - 16
 00034: sltu t1,t0,s7 t1 <- t0 < s7
 00038: beq t1,$0,8 -> 044
 0003c: #nop
 00040: break 02400
 00044: addu sp,t0,$0 sp <- t0
 13 for i in 1..10 loop
 00048: addi t0,$0,01 t0 <- 1
 14 6.32 tp1_cnt := i + 1;
 0004c: addi v0,t0,01 v0 <- t0 + 1
 15 58.95 end loop;
 00050: addu t0,v0,$0 t0 <- v0
 00054: addi t2,$0,0a t2 <- 10
 00058: slt t1,t2,v0 t1 <- t2 < v0
 0005c: beq t1,$0,-20 -> 04c
 00060: #nop
 17 1.05 end tp1;
 00064: addiu t0,sp,010 t0 <- sp + 16

Statistical Profiler 3-5

3

 00068: nop
 0006c: addu sp,t0,$0 sp <- t0
 00070: jr ra
 00074: #nop

 1 function test_prof return integer is
 00078: addiu t0,sp,0ffe8 t0 <- sp - 24
 0007c: sltu t1,t0,s7 t1 <- t0 < s7
 00080: beq t1,$0,8 -> 08c
 00084: #nop
 00088: break 02400
 0008c: addu sp,t0,$0 sp <- t0
 00090: sw s0,00(sp) 0(sp) <- s0
 00094: sw fp,04(sp) 4(sp) <- fp
 00098: sw ra,08(sp) 8(sp) <- ra
 0009c: addiu fp,sp,018 fp <- sp + 24
 000a0: sw fp,010(sp) 16(sp) <- fp
 20 for i in 1..100000 loop
 000a4: addi s0,$0,01 s0 <- 1
 21 5.26 tp_cnt := tp1;
 000a8: jal 030
 000ac: #nop
 22 8.42 tp_cnt := tp2(tp_cnt);
 000b0: addu a0,v0,$0 a0 <- v0
 000b4: jal 00
 000b8: #nop
 23 6.32 end loop;
 000bc: addiu s0,s0,01 s0 <- s0 + 1
 000c0: lui t0,02 t0 <- 020000
 000c4: addiu t0,t0,086a0 t0 <- t0 - 31072
 000c8: slt t1,t0,s0 t1 <- t0 < s0
 000cc: beq t1,$0,-40 -> 0a8
 000d0: #nop
 25 end test_prof;
 000d4: addu t0,fp,$0 t0 <- fp
 000d8: lw s0,-018(t0) s0 <- -24(t0)
 000dc: lw fp,-014(t0) fp <- -20(t0)
 000e0: lw ra,-010(t0) ra <- -16(t0)
 000e4: nop
 000e8: addu sp,t0,$0 sp <- t0
 000ec: jr ra
 000f0: #nop
 000f4: nop

(Continued)

3-6 SPARCompiler Ada Programmer’s Guide

3

Figure 3-3 Source Line Profiling from a.das

3.1 Linking and Running Profiled Programs
Before you can profile your program execution, the profile_conf Ada
library must be inserted at the beginning of your ADAPATH. Use the a.path
tool in your application directory as follows:

% a.path -i SCAda_location /self/profile_conf

Now link using a.ld and execute your program. At the conclusion of
program execution, the file, mon.out , is created or overwritten in your current
directory. Execute a.prof to display the profile performance measurements.

For example:

% a.ld test_prof
% a.out
% a.prof

Caution – Note that if you reconfigure your system by changing any of the
default values in the file v_usr_conf_b.a held in either the profile_conf or
v_usr_conf directories, additional steps must be taken to successfully run the
profiler.

 000F14: nop
 000fc: nop

(Continued)

!

Statistical Profiler 3-7

3

3.2 Profiling, How to do it
Because profiling is statistical in nature, you do not have to recompile your
program in order to get profiling results. Note that if you have reconfigured
your system (i.e., changed the v_usr_conf_b.a file), there are some
additional steps you must take before running your program.

1. Run your program. When your program finishes executing it creates a file
called mon.out .

% test_prof

2. Use a.prof to perform the analysis of the profiling information. (A sample
analysis is provided in Example Prog - 1.)

% a.prof test_prof mon.out

You can obtain profiling data on a source line basis. The -d (disassembly)
option to a.prof generates source line profiling information and leaves it
in an ASCII file called mon.list . The mon.list file is interpreted by
a.das and a.list .

To see profiling information listed alongside source file listings, use:

% a.list -p mon.list

To see profiling information listed alongside source and disassembly for an
ada unit, use:

% a.das -p test_prof

An example of this listing is in Example Prog - 3.

Note that source line profiling values given for inlined subprograms are the
total for all usage of that inlined subprogram, so the percentages may add
up to more than 100%.

3-8 SPARCompiler Ada Programmer’s Guide

3

3.3 profile_conf Directory
The default user library configuration in the self host SC Ada product,
usr_conf , has been enhanced to capture and write profiling data. This
enhanced directory is profile_conf .

The v_usr_conf_b.a file in profile_conf contains calls to the
subprograms in the profile package for starting, stopping, and writing
profiling information. Refer to the Programmer’s Guide, Appendix A User Library
Configuration, for information on changing the configuration parameters.

profile.a and profile_b.a contain the subprograms for creating the
mon.out file. These subprograms call the host OS profile routine for starting
and stopping profiling. Refer to the Operating System documentation,
profil(2) .

References
changing the configuration parameters, SPARCompiler Ada User’s Guide

3.4 Profiling After Reconfiguration
It is sometimes necessary or desirable to make changes in the default
configuration. If you make changes to v_usr_conf_b.a , you must create a
new object file for v_usr_conf_b.a in a separate location in order to
successfully use the profiler:

1. Create a new configuration library in a separate location, USER_location.
This directory will ultimately contain all of the files required to run the
Statistical Profiler. cd to this directory and invoke a.mklib -i to make
it an Ada library.

% mkdir USER_location/ myprof.lib
% cd USER_location/ myprof.lib
% a.mklib -i
 2 versions of SC Ada are available on this machine:
 Target Name Version SC Ada Location
 1 SELF_TARGET 6.2 /usr/vads/self
 2 SELF_TARGET 6.2 /rc/vads6.20/vads

 Selection (q to quit): 1

Statistical Profiler 3-9

3

2. Copy the required files from the profile_conf directory. This directory
has a version of v_usr_conf_b.a configured for profiling.

If you made changes to the version v_usr_conf_b.a from the usr_conf
directory when configuring your compiler, you must make similar changes
to v_usr_conf_b.a from the profile_conf directory.

% cp SCAda_location /profile_conf/profile.a .
% cp SCAda_location /profile_conf/profile_b.a .
% cp SCAda_location /profile_conf/v_usr_conf.a .
% cp SCAda_location /profile_conf/v_usr_conf_b.a .
% cp SCAda_location /profile_conf/v_usr_data.a .
% cp SCAda_location /profile_conf/v_usr_local.a .

3. Edit (if necessary) v_usr_conf_b.a and compile the configuration files.
Only v_usr_conf_b.a should be edited. Compile the configuration files
to generate a new object code file (v_usr_conf_b01) for the body of
v_usr_conf .

% vi v_usr_conf_b.a (if necessary)
% a.make -f *.a

4. Go to or create an Ada library to contain the application to be profiled. In
the following example, a new library is created:

> cd ..
> mkdir myappl.lib
> cd myappl.lib
> a.mklib -i
 2 versions of SC Ada are available on this machine:
 Target Name Version SC Ada Location
 1 SELF_TARGET 6.2 /usr/vads/self
 2 SELF_TARGET 6.2 /rc/vads6.20/vads

 Selection (q to quit): 1

3-10 SPARCompiler Ada Programmer’s Guide

3

5. Replace the original profile_conf directory in your ADAPATH with the
new one using a.path .

> a.path -I

 1. List local library search list ?(ADAPATH)
 2. Append entire library search list to ADAPATH ?
 3. Append to library search list ?
 4. Insert into library search list ?
 5. Remove from library search list ?
 6. Remove all EXCEPT from library search list ?
 7. Cleanup the library search list ?
 8. Exit?

Which option? (1-8) -> 4
The current SC Ada library search list path:
 1. SCAda_location /verdixlib
 2. SCAda_location /standard

Please enter the desired SC Ada library: User_location /myprof.lib
Please enter the position number of where to insert the new
library :
(enter 0 to insert at the start of path)
0
library search list:

SCAda_location /profile_conf
SCAda_location /verdixlib
SCAda_location /standard

 1. List local library search list ?(ADAPATH)
 2. Append entire library search list to ADAPATH ?
 3. Append to library search list ?
 4. Insert into library search list ?
 5. Remove from library search list ?
 6. Remove all EXCEPT from library search list ?
 7. Cleanup the library search list ?
 8. Exit?

Which option? (1-8) -> 8

Statistical Profiler 3-11

3

6. Copy/Compile/Link the application files. For this example, we are using
the hanoi.a program found in the examples directory.

> cp SCAda_location /examples/hanoi.a .
> cp SCAda_location /examples/term* .
> a.make -f *.a
> a.ld hanoi

7. Run the application

> a.out

Note the addition of the mon.out file in your directory

> ls
GVAS_table a.out ada.lib gnrx.lib mon.out
hanoi.a
termbody.a termspec.a

8. Run the Profiler.

> a.prof a.out
%time cumsecs name
32.7 1.05 integer_io$422.put
15.0 1.53 file_support.putchar
12.2 1.92 integer_io$422.put
 9.3 2.22 os_files.write
 8.7 2.50 file_support.write_buffer
 5.6 2.68 file_support.flush
 4.1 2.81 _write
 4.1 2.94 os_files.ok_to_write
 2.5 3.02 text_io.put_string
 1.9 3.08 text_io.check_current_output_open
 0.9 3.11 text_io.put
 0.9 3.14 text_io.current_output
 0.6 3.16 integer_io$422.put
 0.6 3.18 terminal..NLPB..LITERAL
 0.6 3.20 terminal.fix_cursor
 0.3 3.21 write

3-12 SPARCompiler Ada Programmer’s Guide

3

4-1

Machine Code Insertions 4

We provide package MACHINE_CODE described in Section 13.8 of the Ada
Language Reference Manual. The RM specifies the format of a machine code
insertion procedure but leaves the actual implementation to the compiler
vendor. package MACHINE_CODE introduces minimal memory overhead.
package MACHINE_CODE optimizes offsets but does not allow the user to
select the form. Rather, the compiler chooses the optimal form.

Machine code insertions provide low-level access to the processor from within
Ada, which is normally available only from assembly language.

Using machine code insertions is necessary in programs that must reference
hardware directly. Machine code insertions are also useful for optimizing
time-critical sections beyond the capabilities of the compiler.

SC Ada machine code insertions provide features such as the X’REF attribute, a
full range of addressing modes and parameters that enable the programmer to
integrate the machine code into surrounding code with minimal effort.

Machine code insertions are, however, a non-portable, processor-dependent
feature of the language. The compiler cannot perform certain types of error
checks that are performed for normal procedures (such as the enforcement of
strong-typing). Machine code insertions must be used with discretion and
only where absolutely necessary.

“But I was thinking of a way To multiply by ten,
And always, in the answer, get The question back again”

Anonymous

4-2 SPARCompiler Ada Programmer’s Guide

4

4.1 Machine Code Procedures
A machine code procedure is restricted to the following (as imposed by the
Ada RM):

• Machine code insertions are allowed only within a procedure body.

• The only declarations that can occur in the declarative section of a machine
code procedure are use clauses.

• The only statements that can occur in the body of a machine code procedure
are code-statements (labeled or not).

• A machine code procedure cannot have an exception handler.

The syntactic form is:

procedure identifier [formal_part] is
{use_clause}

begin
{label} code_statement {{label} code_statement}

end [identifier];

The body of a machine code procedure must be within the context of a with of
package MACHINE_CODE (provided in the standard library).

Even though this is only a limited form of a subprogram body, it can still be
used wherever a subprogram body is allowed, even as a generic or as a
separate body. There are no restrictions on the parameter profile. As with
other subprograms, pragma INLINE can also be applied.

Machine Code Insertions 4-3

4

4.2 Code-statements
A code-statement is used to specify the machine instruction and any operands
needed by the instruction. The form of this construct is:

type_mark’record_aggregate;

The TYPE_MARK must be a record type defined in the predefined
package MACHINE_CODE. All the usual rules apply in forming an aggregate
and all type checking is enforced. For single components, the aggregate must
use named notation.

package MACHINE_CODE provides the variant record types CODE_0, CODE_1,
CODE_2, CODE_3, CODE_4, DATA_1 and DATA_N. The CODE_xtypes have a
variant of type OPCODE and x components of type OPERAND . The DATA_x
types have a variant of type SIZE . DATA_1 has one OPERAND component,
while DATA_N has a component that is a variable number of OPERANDs. The
types OPCODE, OPERAND and SIZE are also declared in
package MACHINE_CODE.

References
 aggregates, Ada RM 4.3(4)

4.2.1 Opcodes

type OPCODE is an enumeration type declared in package MACHINE_CODE.
This type provides all of the instructions for the SPARC, including the
additional pseudo instructions described later. Instructions are named by their
standard mnemonics, except for the instructions and , or , not and xor , which
are appended by _op , since each root is identical to an Ada reserved word.

4.2.2 Operands

type OPERAND is a private type declared in the package MACHINE_CODE.
This package also provides constants of type OPERAND and functions that
return values of type OPERAND . The SC Ada-defined attribute X’REF can be
applied to most Ada objects and denotes a value of type OPERAND .

All SPARC registers are provided as OPERAND constants.

4-4 SPARCompiler Ada Programmer’s Guide

4

All SPARC addressing modes are made available by functions that denote
values of type OPERAND . The following table summarizes the available
addressing modes and the functions used to support them.

Figure 4-1 Machine Code Operands

A REGADDR and ADDRESS are formed as follows:

regaddr : reg
| reg + reg

address : regaddr
| reg + const13
| reg - const13
| const13

Mode Notation Function

Register %reg N/A

Memory Address [address] ADDR(address)

Memory Address ASI [regaddr] asi ADDR(regaddr, asi)

Register Displacement %reg + %reg ”+”(reg, reg)

%reg + const13 ”+”(reg, const13)

%reg - const13 ”-”(reg, const13)

Immediate value IMMED(value)

”+”(value)

”-”(value)

Extract High 22 Bits %hi(value) HI(value)

%hi(value + disp) HI(name, disp)

Extract Low 10 Bits %lo(value) LO(value)

%lo(value + disp) LO(name, disp)

External Symbol name EXT(name)

name + disp EXT(name, disp)

Machine Code Insertions 4-5

4

A CONST13 is a signed constant which fits in 13 bits:

const13 : IMMED(value)
| +value
| -value
| LO(value [, disp])

The unary operators HI and LO accept the following kinds of arguments:

• string (denoting an external name)

• X’REF

• integer expression

The unary operators HI , LO and EXT, allow an additional displacement to be
added to an external symbol.

The unary operator HI is only allowed in a sethi instruction. The unary
operator EXT is only allowed in a call and set instruction.

Figure 4-2 Unary Operators

CODE_2’(LD, ADDR(16#FFF#), G2);

CODE_2’(LD, ADDR(G3), G4);

CODE_2’(LDA, ADDR(G3, 3), G4);

CODE_2’(LD, ADDR(G1+G3), G2);

CODE_2’(LD, ADDR(G1+16#FFF#), G2);

CODE_2’(LD, ADDR(G1+LO(”_main”)), G2);

CODE_2’(LD, ADDR(G1+LO(LABEL’REF)), G2);

CODE_2’(SETHI, +16#3FFFFF#, G1);

CODE_2’(SETHI, HI(16#FFFFFC01#), G1);

CODE_3’(OR_OP, G1, LO(16#FFFFFC01#), G2);

CODE_1’(CALL, EXT(”_main”));

CODE_2’(SET, EXT(”_main”), R1);

CODE_1’(RETT, G1+G2);

4-6 SPARCompiler Ada Programmer’s Guide

4

All arguments to machine code functions must be one of the following:

• static expression

• type conversion (the expression operand must be a static expression)

• string literal

• representation attribute

• X’REF attribute

• entity defined in the package MACHINE_CODE

References
 representation attribute, RM 13.7.2

static expression, RM 4.9

4.2.3 Ada Entities as Operands

It is sometimes necessary to reference Ada constants and variables from within
a machine code insertion procedure. It is very tedious and error-prone for a
programmer to attempt to calculate these references by hand. SC Ada provides
the X’REF attribute, which generates a reference to the entity X. The
definition is similar to the attribute X’ADDRESS.

For a prefix X that denotes an object, a program unit, a label or an enumeration
literal, X’REF, yields the reference of the first of the storage units allocated to
X. For a constant object with a static expression, the value refers to the static
expression. For a subprogram or label, the value refers to the machine code
associated with the corresponding body or statement. For an enumeration
literal, the value refers to the position number. The value of this attribute is of
type OPERAND defined in package MACHINE_CODE. It is allowed only
within the context of a machine code procedure.

In some cases, using X’REF causes more than a single instruction to be
generated.

Machine Code Insertions 4-7

4

Note – if pragma EXTERNAL_NAME is applied to X, a reference to X is used
instead.

Given: type STRING_POINTER is access STRING(1 .. 3);

X: STRING_POINTER := new STRING’(”ABC”);

Then: CODE_2’(LDSB, X.all(2)’REF, G1);

Generates: ld [%fp-04], %g1

ld [%g1-08], %g1

subcc %g1, %g0, %g0

bne .L

#nop

call RAISE_CONSTRAINT_ERROR

#nop

 L:

ldsb [%g1+01], %g1

When X is constant static, the value used is an immediate
literal.

Given: X : constant integer := 5;

Then: CODE_2’(SET, X’REF, G1);

Generates: or %g0, +05, %g1

4-8 SPARCompiler Ada Programmer’s Guide

4

The X’REF attribute is also used to generate references to the procedure’s
parameters.

When the X’REF attribute is applied to labels, the addressing mode generated
is absolute or a branch displacement, depending on the instruction. For
example, the following instructions generate an absolute addressing mode for
LABEL’REF.

Given: procedure SHIFT_RIGHT(

ELEMENT: in INTEGER;

COUNT : in INTEGER;

RESULT : out INTEGER) is

begin

CODE_2’(SRL, COUNT’REF, ELEMENT’REF,
RESULT’REF);

end SHIFT_RIGHT;

Generates: (preamble and postamble code generation
omitted):srl %g2, %g3, %g1

CODE_2’ (SET,
LABEL’REF, R1);
-- address of LABEL

The following instruction uses a branch
displacement.

CODE_1’ (BE,
LABEL’REF);
-- branch to LABEL

When the X’REF attribute is applied to subprograms, the
addressing mode generated is absolute.

CODE_1’ (CALL, SUBP’REF);

Machine Code Insertions 4-9

4

4.3 Program Control
OPERANDs are used to control the flow of execution with instructions such as
Bicc and call . Labels and subroutine names are used in conjunction with
the X’REF attribute to form destinations for these instructions.

The following example illustrates a typical startup routine for an Ada program.
Its function is to call an initialization routine, elaborate the library units, call
the main program and call an exit routine.

with MACHINE_CODE;

procedure START is

use MACHINE_CODE;

pragma implicit_code(OFF);

begin

-- Set stack limit in %G4

CODE_2’(SETHI, HI(”USER_STACK_SIZE”), G1);

CODE_2’(LD, ADDR(G1+LO(”USER_STACK_SIZE”)), G4);

CODE_3’(SUB, SP, G4, G4);

-- Save a pointer to the args and environment, which starts

-- at %sp+64

CODE_3’(ADD, SP, +64, G3);

CODE_2’(SETHI, HI(”__u_mainp”), G1);

CODE_2’(ST, G3, ADDR(G1+LO(”__u_mainp”)));

CODE_2’(LD, ADDR(G3), G1); -- argc

CODE_3’(SLL, G1, +2, G1);

CODE_2’(INC, +8, G1);

CODE_3’(ADD, G1, G3, G1);

CODE_2’(SETHI, HI(”_environ”), G2);

CODE_2’(ST, G1, ADDR(G2+LO(”_environ”)));

4-10 SPARCompiler Ada Programmer’s Guide

4

Figure 4-3 Typical Startup Routine

-- Call the package elaboration routines in ELABORATION_TABLE

-- The address of __stop is the end of the call stack.

CODE_2’(SET, STOP_LAB’REF, G1);

CODE_2’(SETHI, HI(”__stop”), G2);

CODE_2’(ST, G1, ADDR(G2+LO(”__stop”)));

CODE_2’(SET, EXT(”ELABORATION_TABLE”), L0);

<<ELAB>>

CODE_2’(LD, ADDR(L0), L1);

CODE_2’(CMP, L1, +0);

CODE_1’(BE, DONE’REF);

CODE_0’(OP => NOP);

CODE_1’(CALL, L1);

CODE_0’(OP => NOP);

<<STOP_LAB>>

CODE_2’(INC, +4, L0);

CODE_1’(BA, ELAB’REF);

<<DONE>>

CODE_1’(CLR, O0);

CODE_1’(CALL, EXT(”__exit”));

end START;

(Continued)

Machine Code Insertions 4-11

4

4.4 Subprogram Call
A general form of a subroutine call can be made from within a machine code
procedure by using a CALL statement. Three formats are provided, CALL_0,
CALL_1 and CALL_N to handle the various argument lists needed by a
subroutine. The first argument to the call statement is the name of the
subroutine suffixed by ’REF to yield a value of type OPERAND . All
subsequent arguments, if any, must also be of type OPERAND . Number of
arguments and their type compatibility are checked. The three forms are:

If FOO is a procedure, the following Ada procedure calls are equivalent to the
statements shown above.

If FOO is a function, the forms are similar but the result is not assigned.

If FOO is overloaded, an error is generated when using ’REF . The subroutine
must be renamed to provide a distinct name.

The current limitation on the arguments is that they must be of the form
NAME’REF. No expression is supported, although the expression can be
assigned to the name before the call.

The effect is to push the arguments onto the stack (if any), make the call, copy
the out parameters (if any) and adjust the sp (if necessary). The return value
of a function is not copied.

If pragma INLINE is indicated for FOO, FOOis expanded inline.

CALL_0’(SUBP => FOO’REF);
CALL_1’(FOO’REF, ARG’REF);
CALL_N’(FOO’REF, (ARG1’REF, ..., ARGn’REF));

FOO;
FOO(ARG);
FOO(ARG1, ..., ARGn);

4-12 SPARCompiler Ada Programmer’s Guide

4

4.5 Parameter Passing in Machine Code Subprograms
On RISC machines, SC Ada passes one or more parameters in registers. It is
important to understand exactly how registers are used in parameter passing,
especially if you are implementing machine_code subprograms using the ’REF
attribute on parameters. Attempting to use the ’REF attribute on a parameter
held in a register in an instruction where a memory reference is required
results in the compiler flagging an error. Likewise, using the ’REF attribute on
a parameter held in a memory location in an instruction requiring a register
results in an error.

package MACHINE_CODE expects references to parameters via the ’REF
attribute to be consistent with the register usage rules outlined in Appendix F
of the Programmer’s Manual. For example, on SPARC-based systems, the
compiler passes the first 6 scalar parameters in registers o0-o5 . The ld
instruction is used to move a value from a memory location into a register
while the SC Ada mov: mnemonic is the equivalent of moving a value from one
register to another. Given the following example:

Figure 4-4 Parameter Passing in Machine Code Insertions

Since the first 6 scalar parameters are passed in registers, p1 is in a register,
while p7 is on the stack. Therefore, (B) and (C) are legal, while (A) and (D)
flag p1/p7 as being illegal operands.

Caution – If you inline a machine code procedure, the parameters must be referenced
using the ’REF attribute.

procedure test_machine_code (p1, p2, p3, p4, p5, p6, p7 : integer)
is
begin

code_2’(ld, p1’ref, g4); -- (A) put p1 into register g1
code_2’(mov, p1’ref, g4); -- (B) put p1 into register g1
code_2’(ld, p7’ref, g2); -- (C) put p7 into register g2
code_2’(mov, p7’ref, g2); -- (D) put p7 into register g2
...

!

Machine Code Insertions 4-13

4

4.6 Local Data
Variables visible to a machine code procedure (either in packages or enclosing
subprograms) can be referenced using the X’REF attribute. In some cases,
however, it may be necessary to intermix data and generated code. The
DATA_1 code-statement is used to place a single data item in the code, while
the DATA_N code-statement is used for multiple data items.

An operand is restricted to the following:

• immediate
• absolute
• external symbol
• label reference
• subprogram reference

Figure 4-5 Local Data

DATA_1’(WORD, IMMED(ASCII.LF));
DATA_1’(WORD, ABSOL(16#EFFFF0#));
DATA_N’(WORD, (LABEL1’REF, LABEL2’REF, LABEL3’REF));

4-14 SPARCompiler Ada Programmer’s Guide

4

4.6.1 Jump Table via Absolute Addresses

A jump table is constructed by building a table of absolute addresses. The
table is built by using the data statement, where the operands consist of label
references to the selected entry points. An absolute address mode specifying
the physical address can also be used. The following program fragment
illustrates the technique.

procedure EXAMPLE (INDEX: INTEGER) is

begin

-- Assume INDEX has the values 0, 4, ..., n*4

CODE_2’(LD,INDEX’REF, O0);

CODE_2’(SET,TABLE’REF, O1);

CODE_2’(LD,ADDR(O0+O1), O0);

CODE_1’(JMP,O0);

CODE_0’(OP => NOP);

<<TABLE>>

DATA_1’(WORD,L0’REF);

DATA_1’(WORD,L1’REF);

...

DATA_1’(WORD,Ln’REF);

<<L0>>

...

CODE_1’(BA,DONE’REF);

<<L1>>

...

CODE_1’(BA,DONE’REF);

<<Ln>>

...

CODE_1’(BA,DONE’REF);

Machine Code Insertions 4-15

4

Figure 4-6 Jump Table via Absolute Addresses

Note how the last statement of each entry code segment is a branch to “DONE”.
Replacing the branch with a return instruction is not correct, since the epilogue
code is not executed.

4.7 Pragmas
Four pragmas directly affecting the generation of code for machine code
procedures are: INLINE , SUPPRESS, IMPLICIT_CODE and OPTIMIZE_CODE.

4.7.1 pragma INLINE

pragma INLINE has its normal effect of causing the routine to be expanded
inline where called, rather than generating call/return instructions to a single
body of code.

4.7.2 pragma SUPPRESS

pragma SUPPRESS has its normal effect of suppressing the generation of run
time checks. Run time checks can be generated to perform an elaboration
check at the start of the procedure and to perform constraint checks on objects
accessed using X’REF. These checks only ensure that the reference is valid;
they do not check whether the value assigned is valid. For example, the code-
statement

 CODE_2’(STB, G1, X.all’REF);

performs an access check to ensure that X is not null but does not check to
ensure that the value moved to the referenced location is in the range of the
type of X.ALL .

<<DONE>>

CODE_0’(OP => NOP);

end EXAMPLE;

(Continued)

4-16 SPARCompiler Ada Programmer’s Guide

4

4.7.3 pragma IMPLICIT_CODE

pragma IMPLICIT_CODE controls the generation of implicit code. Implicit
code is code generated for procedure entry and exit to support the calling
conventions used by the compiler. (This does not include the return
instruction, which is always generated unless pragma INLINE is used.)
Implicit code also includes any additional code generated due to the use of the
X’REF attribute (such as code to load a base register).

When pragma IMPLICIT_CODE(OFF) is specified, any stack allocation and
the STORAGE_CHECK normally generated for the stack allocation are not
generated.

Implicit code is always generated for a X’REF attribute which requires it. A
warning message is generated when IMPLICIT_CODE(OFF) is specified in
such a case.

4.7.4 pragma OPTIMIZE_CODE

pragma OPTIMIZE_CODE enables the programmer to specify whether the
compiler should attempt to optimize through the machine code insertions.
When pragma OPTIMIZE_CODE(OFF) is specified, the compiler generates
the code as specified.

The pragma must be placed in the declarative section of the machine code
procedure.

4.8 Debugging Machine Code
The SC Ada debugger supports source-level debugging of machine code
insertions. Breakpoints can be set at code-statements just like any other
statements.

Register values are determined using the reg command or by preceding the
register name with a dollar sign and using either the p command or a word
dump raw memory command. For example, the register r1 can be examined
as a word decimal value using the line-mode command shown below.

$r1:Ld

The li and wi instructions are used to disassemble the generated code. In
addition, the debugger attempts to disassemble DATA_x statements as SPARC
instructions, producing meaningless results.

Machine Code Insertions 4-17

4

4.9 Pseudo Instructions
A set of pseudo instructions are supported which are mapped to hardware
instructions, as the following table describes.

Pseudo Instruction Hardware Equivalent(s)
nop sethi 0, %g0

cmp reg, reg_or_imm subcc reg, reg_or_imm, %g0

jmp address jmpl address, %g0

call reg_or_imm jmpl reg_or_imm, %o7

jmpl label, %o7 call label

tst reg orcc reg, %g0, %g0

ret jmpl %i7+8, %g0

retl jmpl %o7+8, %g0

restore restore %g0, %g0, %g0

save save %g0, %g0, %g0

not reg1, reg2 xnor reg1, %g0 , reg2

not reg xnor reg, %g0 , reg

neg reg1, reg2 sub %g0 , reg1, reg2

neg reg sub %g0, reg, reg

inc reg add reg, 1, reg

inc const13, reg add reg, const13, reg

inccc reg addcc reg, 1, reg

dec reg sub reg, 1, reg

dec const13, reg sub reg, const13, reg

deccc reg subcc reg, 1, reg

btst reg_or_imm, reg andcc reg, reg_or_imm, %g0

bset reg_or_imm, reg or reg, reg_or_imm, reg

bclr reg_or_imm, reg andn reg, reg_or_imm, reg

btog reg_or_imm, reg xor reg, reg_or_imm, reg

4-18 SPARCompiler Ada Programmer’s Guide

4

Figure 4-7 Pseudo Instruction Mapping

clr reg or %g0, reg_or_imm, reg

clrb [address] stb %g0, [address]

clrh [address] sth %g0, [address]

clr [address] st %g0, [address]

mov reg_or_imm, reg or %g0, reg_or_imm, reg

mov %y, reg rd %y, reg

mov %psr, reg rd %psr, reg

mov %wim, reg rd %wim, reg

mov %tbr, reg rd %tbr, reg

mov reg_or_imm, %y wr %g0, reg_or_imm, %y

mov reg_or_imm, %psr wr %g0, reg_or_imm, %psr

mov reg_or_imm, %wim wr %g0, reg_or_imm, %wim

mov reg_or_imm, %tbr wr %g0, reg_or_imm, %tbr

set value, reg or %g0, value, reg

(if -4096 <= value <= 4095)

set value, reg sethi %hi(value), reg

(if ((value&0x1ff) == 0))

set value, reg sethi %hi(value), reg;

or reg, %lo(value), reg

(otherwise)

Pseudo Instruction Hardware Equivalent(s)

Machine Code Insertions 4-19

4

4.10 package MACHINE_CODE

package MACHINE_CODE is

 -- Description for the SPARC.

type opcode is (

bn, fbn, cbn, be, fbne, cb123, ble, fblg,cb12, bl, fbul, cb13, bleu, fbl, cb1, bcs,
fbug, cb23, bneg, fbg, cb2, bvs, fbu, cb3, ba, fba, cba, bne, fbe, cb0, bg, fbue,
cb03, bge, fbge, cb02, bgu, fbuge, cb023, bcc, fble, cb01, bpos, fbule, cb013, bvc,
fbo, cb012, bn_a, fbn_a, cbn_a, be_a, fbne_a, cb123_a, ble_a, fblg_a, cb12_a, bl_a,
fbul_a, cb13_a, bleu_a, fbl_a, cb1_a, bcs_a, fbug_a, cb23_a, bneg_a, fbg_a, cb2_a,
bvs_a, fbu_a, cb3_a, ba_a, fba_a, cba_a, bne_a, fbe_a, cb0_a, bg_a, fbue_a, cb03_a,
bge_a, fbge_a, cb02_a, bgu_a, fbuge_a, cb023_a, bcc_a, fble_a, cb01_a, bpos_a,
fbule_a, cb013_a, bvc_a, fbo_a, cb012_a, call, cpop1, cpop2, nop, ret, retl, clrb,
clrh, jmp, clr, dec, set, inc, deccc, inccc, tst, neg, not_op, rd, cmp, wr, bclr,
bset, btog, btst, mov, fmovs, fnegs, fabss, fints, fintd, fintx, fintrzs, fintrzd,
fintrzx, fsqrts, fsqrtd, fsqrtx, fadds, faddd, faddx, fsubs, fsubd, fsubx, fmuls,
fmuld, fmulx, fdivs, fdivd, fdivx, frems, fremd, fremx, fquots, fquotd, fquotx,
fscales, fscaled, fscalex, fstoir, fdtoir, fxtoir, fitos, fdtos, fxtos, fitod, fstod,
fxtod, fitox, fstox, fdtox, fstoi, fdtoi, fxtoi, fclasss, fclassd, fclassx, fexpos,
fexpod, fexpox, fcmps, fcmpd, fcmpx, fcmpes, fcmped, fcmpex, add, and_op, or_op,
xor_op, sub, andn, orn, xnor, addx, subx, addcc, andcc, orcc, xorcc, subcc, andncc,
orncc, xnorcc, addxcc, subxcc, tadd, tsub, taddcctv, tsubcctv, mulscc, sll, srl, sra,
rdy, rdpsr, rdwim, rdtbr, wry, wrpsr, wrwim, wrtbr, jmpl, rett, iflush, save,
restore, ld, ldub, lduh, ldd, st, stb, sth, std, ldsb, ldsh, ldstub, swap, lda,
lduba, lduha, ldda, sta, stba, stha, stda, ldsba, ldsha, ldstuba, swapa, ldf, ldfsr,
lddf, stf, stfsr, stdfq, stdf, ldc, ldcsr, lddc, stc, stcsr, stdcq, stdc, unimpl,
sethi, tn, te, tle, tl, tleu, tcs, tneg, tvs, ta, tne, tg, tge, tgu, tcc, tpos, tvc);

 type size is (word);

 type operand is private;

 type operand_seq is array (positive range <>) of operand;

 n: positive;

 --

 -- Instruction formats.

 --

 type code_0 (op: opcode) is

 record

4-20 SPARCompiler Ada Programmer’s Guide

4

 null;

 end record;

 type code_1 (op: opcode) is

 record

 oprnd_1: operand;

 end record;

 type code_2 (op: opcode) is

 record

 oprnd_1: operand;

 oprnd_2: operand;

 end record;

 type code_3 (op: opcode) is

 record

 oprnd_1: operand;

 oprnd_2: operand;

 oprnd_3: operand;

 end record;

 type code_4 (op: opcode) is

 record

 oprnd_1: operand;

 oprnd_2: operand;

 oprnd_3: operand;

 oprnd_4: operand;

 end record;

 --

 -- Data formats.

 --

 type data_1 (sz: size) is

 record

 oprnd_1: operand;

 end record;

 type data_n (sz: size) is

 record

 oprnd_n: operand_seq (1..n);

(Continued)

Machine Code Insertions 4-21

4

 end record;

 --

 -- Call formats.

 --

 type call_0 is

 record

 subp: operand;

 end record;

 type call_1 is

 record

 subp: operand;

 oprnd_1: operand;

 end record;

 type call_n is

 record

 subp: operand;

 oprnd_n: operand_seq (1..n);

 end record;

 --

 -- Registers.

 --

 -- Integer registers.

 r0: constant operand;

 r1: constant operand;

 r2: constant operand;

 r3: constant operand;

 r4: constant operand;

 r5: constant operand;

 r6: constant operand;

 r7: constant operand;

 r8: constant operand;

 r9: constant operand;

 r10: constant operand;

 r11: constant operand;

(Continued)

4-22 SPARCompiler Ada Programmer’s Guide

4

 r12: constant operand;

 r13: constant operand;

 r14: constant operand;

 r15: constant operand;

 r16: constant operand;

 r17: constant operand;

 r18: constant operand;

 r19: constant operand;

 r20: constant operand;

 r21: constant operand;

 r22: constant operand;

 r23: constant operand;

 r24: constant operand;

 r25: constant operand;

 r26: constant operand;

 r27: constant operand;

 r28: constant operand;

 r29: constant operand;

 r30: constant operand;

 r31: constant operand;

 -- Global registers.

 g0: constant operand;

 g1: constant operand;

 g2: constant operand;

 g3: constant operand;

 g4: constant operand;

 g5: constant operand;

 g6: constant operand;

 g7: constant operand;

 -- In registers.

 i0: constant operand;

 i1: constant operand;

 i2: constant operand;

 i3: constant operand;

(Continued)

Machine Code Insertions 4-23

4

 i4: constant operand;

 i5: constant operand;

 i6: constant operand;

 i7: constant operand;

 -- Local registers.

 l0: constant operand;

 l1: constant operand;

 l2: constant operand;

 l3: constant operand;

 l4: constant operand;

 l5: constant operand;

 l6: constant operand;

 l7: constant operand;

 -- Out registers.

 o0: constant operand;

 o1: constant operand;

 o2: constant operand;

 o3: constant operand;

 o4: constant operand;

 o5: constant operand;

 o6: constant operand;

 o7: constant operand;

 fp: constant operand; -- i6

 sp: constant operand; -- o6

 -- Floating point registers.

 f0: constant operand;

 f1: constant operand;

 f2: constant operand;

 f3: constant operand;

 f4: constant operand;

 f5: constant operand;

 f6: constant operand;

 f7: constant operand;

 f8: constant operand;

(Continued)

4-24 SPARCompiler Ada Programmer’s Guide

4

 f9: constant operand;

 f10: constant operand;

 f11: constant operand;

 f12: constant operand;

 f13: constant operand;

 f14: constant operand;

 f15: constant operand;

 f16: constant operand;

 f17: constant operand;

 f18: constant operand;

 f19: constant operand;

 f20: constant operand;

 f21: constant operand;

 f22: constant operand;

 f23: constant operand;

 f24: constant operand;

 f25: constant operand;

 f26: constant operand;

 f27: constant operand;

 f28: constant operand;

 f29: constant operand;

 f30: constant operand;

 f31: constant operand;

 -- Coprocessor registers.

 c0: constant operand;

 c1: constant operand;

 c2: constant operand;

 c3: constant operand;

 c4: constant operand;

 c5: constant operand;

 c6: constant operand;

 c7: constant operand;

 c8: constant operand;

 c9: constant operand;

(Continued)

Machine Code Insertions 4-25

4

 c10: constant operand;

 c11: constant operand;

 c12: constant operand;

 c13: constant operand;

 c14: constant operand;

 c15: constant operand;

 c16: constant operand;

 c17: constant operand;

 c18: constant operand;

 c19: constant operand;

 c20: constant operand;

 c21: constant operand;

 c22: constant operand;

 c23: constant operand;

 c24: constant operand;

 c25: constant operand;

 c26: constant operand;

 c27: constant operand;

 c28: constant operand;

 c29: constant operand;

 c30: constant operand;

 c31: constant operand;

 -- Special registers.

 fsr: constant operand;

 fq : constant operand;

 csr: constant operand;

 cq : constant operand;

 psr: constant operand;

 tbr: constant operand;

 wim: constant operand;

 y : constant operand;

 --

 -- Addressing modes.

 --

(Continued)

4-26 SPARCompiler Ada Programmer’s Guide

4

 function addr (

 expr: operand)

 return operand;

 function addr (

 expr: integer)

 return operand;

 -- Assembler Notation:

 -- [expr]

 --

 -- Description:

 -- The expr denotes the effective address.

 function addr (

 expr: operand;

 asi : integer)

 return operand;

 -- Assembler Notation:

 -- [expr]asi

 --

 -- Description:

 -- The expr denotes the effective address. The asi specifies the

 -- alternate address space identifier.

 function ”+” (

 base: operand;

 disp: operand)

 return operand;

 function ”+” (

 base: operand;

 disp: integer)

 return operand;

 function ”-” (

 base: operand;

 disp: integer)

 return operand;

 -- Assembler Notation:

(Continued)

Machine Code Insertions 4-27

4

 -- reg + reg

 -- reg + const

 -- reg - const

 --

 -- Description:

 -- Displacement is added to the register to form the address.

 -- The base operand must be a general register. The disp operand

 -- can be a register, a signed immediate constant (13 bits), or

 -- the lo operator.

 function immed (

 val: integer)

 return operand;

 function immed (

 val: character)

 return operand;

 function ”+” (

 val: integer)

 return operand;

 function ”-” (

 val: integer)

 return operand;

 -- Description:

 -- Immediate literal.

 function hi (

 name: string;

 disp: integer := 0)

 return operand;

 function hi (

 name: operand;

 disp: integer := 0)

 return operand;

 function hi (

 addr: integer)

 return operand;

(Continued)

4-28 SPARCompiler Ada Programmer’s Guide

4

 -- Assembler Notation:

 -- %hi(name)

 -- %hi(addr)

 --

 -- Description:

 -- Unary operator that extracts high 22 bits of its operand.

 -- The name must either be a string denoting the external name,

 -- an Ada entity which is relocatable, or an integer value.

 -- A displacement is only allowed for a relocatable entity.

 -- This function is only allowed in the sethi instruction.

 function lo (

 name: string;

 disp: integer := 0)

 return operand;

 function lo (

 name: operand;

 disp: integer := 0)

 return operand;

 function lo (

 addr: integer)

 return operand;

 -- Assembler Notation:

 -- %lo(name)

 -- %lo(addr)

 --

 -- Description:

 -- Unary operator that extracts low 10 bits of its operand.

 -- The name must either be a string denoting the external name,

 -- an Ada entity which is relocatable, or an integer value.

 -- A displacement is only allowed for a relocatable entity.

 function ext (

 name: operand;

 disp: integer := 0)

 return operand;

(Continued)

Machine Code Insertions 4-29

4

 function ext (

 name: string;

 disp: integer := 0)

 return operand;

 -- Description:

 -- The name denotes an external symbol. The displacement is added

 -- to the value of name.

private

 --

 -- Implementation specific.

 --

end MACHINE_CODE;

(Continued)

4-30 SPARCompiler Ada Programmer’s Guide

4

5-1

Interface Programming 5

Translating programs from other languages into Ada is usually straightforward
if the source language is one of the block-structured languages such as Pascal
or C. Clearly structured programs in other languages are not difficult to
translate but may require more work due to differences between the source
and target languages. However, it is often desirable to make use of
subprograms or libraries developed in some other language from inside Ada
programs without having to translate everything into Ada.

This chapter presents (1) an approach to making existing libraries and
programs written in C useful from Ada and (2) a discussion of a modular
approach to program conversion into Ada. The types of declarations used in
the examples in this chapter are similar to those used to solve interface
problems on many operating systems.

Note – This chapter discusses a number of Ada restrictions. Unless otherwise
noted, these restrictions apply to SC Ada and not necessarily to standard Ada.

“He that is but able to express no sense at all in several languages will pass
for learneder than he that’s known to speak the strongest reason in his own”

Samuel Butler

5-2 SPARCompiler Ada Programmer’s Guide

5

5.1 Ada Interface to curses
This section presents an Ada interface to the OS-derived curses library of
compiled C functions for screen formatting. The Ada package for calling the
library functions gives the programmer the same functional entities and objects
as the original.

It is assumed that the reader has some familiarity with the curses library of
cursor motion optimization routines for video terminals. This libraryprovides
text input, text output, functions for creating windows and functions for
altering terminal characteristics. It is helpful to have a copy of the operating
system manual section on the curses library available for reference. The
complete source code for the curses interface package described in this
example is in the publiclib library supplied with SC Ada.

The goal in this example is to provide a complete Ada interface to curses
using the same subprogram and variable names provided in the original C
version. Further, a programmer can use the standard documentation for
curses so that no additional effort is needed in order to make use of the
library from Ada.

The following five steps are necessary to accomplish this goal:

1. Create parallel data types.

2. Declare external subprograms.

3. Access global variables.

4. Map to parallel data structures.

5. Reduce the overhead.

5.1.1 Create Parallel Data Types

Whenever access to a subprogram or variable declared in an alternate language
is required, it is the programmer’s responsibility to ensure that any Ada
variables used in conjunction with the subroutine or variable are of a
compatible data representation in both languages. The programmer cannot,
for example, assume that a data structure declared in Ada is identical to a data
structure declared in C. Although the type names may be identical, the

Interface Programming 5-3

5

composition, length or alignment of the object or component may not be. Type
definitions in different languages can, if taken at face value, cause erroneous
results.

Two basic approaches are available for creating parallel data types: using a
priori knowledge and using Ada representation specifications. The programmer
knows that some types are parallel between two language implementations
from reading the vendor’s documentation. Remember, however, that neither
Ada nor C compilers are required to use a particular size to represent any
particular type and an implementation is free to choose a representation based
on hardware considerations.

Ada representation clauses, on the other hand, allow the Ada programmer to
define an exact duplicate of the physical layout of any data type in another
language once it is known. Ada allows type specifications that are largely
independent of the implementation. Type, storage, record layout and
alignment can all be controlled.

When the underlying representation of a type has no analogue in one language
(or for which the usage in one language is significantly different from Ada), the
data type can be defined by the programmer using Ada representation
specifications and UNCHECKED_CONVERSIONs.

Simple Types — Some samples of the more common C simple types and their
corresponding Ada predefined types are given in the following list. For
example, the type SHORT_INTEGER is equivalent to the pcc -derived C
compiler’s type SHORT , both representing a 16-bit integer.

Figure 5-1 Simple Types

C FORTRAN Ada

int INTEGER*4 INTEGER

long INTEGER*4 INTEGER

short INTEGER*2 SHORT_INTEGER

char CHARACTER CHARACTER

TINY_INTEGER

float REAL FLOAT

double DOUBLE PRECISION LONG_FLOAT

5-4 SPARCompiler Ada Programmer’s Guide

5

For the declaration of a C unsigned integer

unsigned short u_var;

there is no predefined Ada equivalent and the type must be created using
representation clauses.

The first statement creates a type whose range includes all the values the C
type encompasses. The second assures that at most 16 bits of storage are
allocated to every object of this type.

The C type CHAR is used both to represent a character (usually by its ASCII
value) or a byte integer value. Further, some C implementations treat CHARas
unsigned and some as signed quantities. There is no exact Ada analogue to
this type: use SC Ada’s TINY_INTEGER for numeric representations and
type CHARACTER to represent a character value as illustrated in the following
example. When C programs contain ambiguous assignments or uses of such
types or of integer/address conversions, the generic function
UNCHECKED_CONVERSION offers a method for controlled easing of type
conversions.

-- an Ada version of the C type: unsigned short
type C_UNSIGNED_SHORT is range 0 .. (2 ** 16) - 1;
for C_UNSIGNED_SHORT’LENGTH use 16;

u_var : C_UNSIGNED_SHORT;

Interface Programming 5-5

5

Figure 5-2 Type Conversions

Record Types — The same two basic approaches can be taken to the
representation of record types as with simple types. Again, a priori knowledge
can be used. Both C and SC Ada associate the record label with a base address
from which offsets to access individual components of the record are
calculated. For the Ada programmer, as long as the record is composed of
equivalent simple data types, the offsets are calculated similarly and the record
structures are identical.

However, occasions arise where storage conventions are not so conveniently
arranged. In such cases, Ada representation specifications can be given for
constructing records. For example, curses uses the following C structure.

C Source Ada Source

char number = 20; with UNCHECKED_CONVERSION;
function CONVERT_NO_TO_CHAR is new
 UNCHECKED_CONVERSION(TINY_INTEGER,
 CHARACTER);
function CONVERT_CHAR_TO_NO is new
 UNCHECKED_CONVERSION(CHARACTER,
 TINY_INTEGER);

char ch; NUMBER: TINY_INTEGER := 20;
CH : CHARACTER;

ch = number;
ch += 2;

CH := CONVERT_NO_TO_CHAR(NUMBER);
CH := CONVERT_NO_TO_CHAR(CONVERT_CHAR_TO_NO(CH) +2);

struct sgttyb{
 char sg_ispeed;
 char sg_ospeed;
 char sg_erase;
 char sg_kill;
 short sg_flags;
};

5-6 SPARCompiler Ada Programmer’s Guide

5

A parallel structure can be assured using the following statements in
conjunction with the type definitions for SHORTand CHARof the type
mentioned above:

In this example, the record is first defined in terms of its simple type
components and then in terms of storage allocation characteristics. The value
that appears directly after the at indicates the number of STORAGE_UNITS (in
this case bytes) from the base address that the element should be placed. The
range specifies the bits the type should occupy.

type C_SHORT is range -(2 ** 15) .. (2 ** 15) - 1;
type C_TINY is range -(2 ** 7) .. (2 ** 7) - 1;
type SGTTYB is
record
 SG_ISPEED : C_TINY;
 SG_OSPEED : C_TINY;
 SG_ERASE : C_TINY;
 SG_KILL : C_TINY;
 SG_FLAGS : C_SHORT;
end record;

for SGTTYB use
record
 SG_ISPEED at 0 range 0..7;
 SG_OSPEED at 1 range 0..7;
 SG_ERASE at 2 range 0..7;
 SG_KILL at 3 range 0..7;
 SG_FLAGS at 4 range 0..15;
end record;

Interface Programming 5-7

5

Ada supports an optional clause to specify object alignment. For instance, if it
became necessary to have objects aligned on two byte boundaries, the
statement at mod 2 can be used as shown here:

Array Types — When defining Ada array types that are parallel to C array
types, remember that the standard representation of an array in both languages
is to associate the array label with the first component and use this location to
calculate an offset. Once again this means that as long as the programmer
assures that the individual components are compatible structures the basic
array structure type should be the same. When in doubt, representation
specifications can be used to assure that individual component representations
are identical.

Dynamic Array Types — Several languages, including Ada and C, define
dynamically-sized arrays. In C, the size of a dynamic array is calculated by the
user based on data known only to the user. (An exception is the C string type.)
In Ada, SC Ada implements dynamic arrays by keeping ‘dope vectors‘ created
with each dynamic subtype. The dope vector is placed in memory
immediately preceding the array value, so that an access to a dynamic array
can be used. The dope vector for a single dimensioned array contains:

for SGTTYB use
record at mod 2;
 SG_ISPEED at 0 range 0..7;
 SG_OSPEED at 0 range 8..15;
 SG_ERASE at 2 range 0..7;
 SG_KILL at 2 range 8..15;
 SG_FLAGS at 4 range 0..15;
end record;

type dope vector is record
element_size: implementation-defined;
low_bound: implementation-defined;
high_bound: implementation-defined;
array_size: implementation-defined;

end record;

5-8 SPARCompiler Ada Programmer’s Guide

5

We recommend that the SYSTEM.ADDRESS of the first element of an Ada array
be used to pass the array to C. C arrays always start at index 0 while Ada
arrays start with any index. element(1) may name entirely different true
elements.

FORTRAN multidimensional arrays are stored in column-major storage
format. C and Ada arrays are stored in row-major format. Multidimensional
indices must be reversed between Ada and FORTRAN.

Passing arrays from C to Ada is possible by creating an appropriate subtype
for the value. If the array is referenced only within a closed scope in Ada, the
for... use at... ; representation control is convenient.

If a C array is passed and must be preserved over an open scope (e.g., library),
use a fixed-length array in the Ada program, making the Ada array at least as
large as any possible C parameter. Suppress index checks since they are
redundant. While it is sometimes desirable to create a dynamically-typed
reference to the C array, it is impossible without copying the array unless an
appropriate dope vector is build by the user.

Pointers and Address Types — Although pointer and address types are
implementation-specific, the Ada tactic of using host conventions usually
allows the use of Ada pointer and address types parallel to their C
counterparts. If for some reason host conventions are not followed or if the
Ada compiler supports several host implementations of a particular type and
must choose a particular representation, then representation specifications can
be used to custom tailor the size and range of the data type.

String Types — String types in C present a special case of the C array. A
character string in C is represented by a pointer to the first character in an
array of bytes. By convention, strings in C are terminated by a null character
(16#00#) and store no explicit length. In Ada however, a string is represented
by a packed array of type CHARACTER with the maximum number of
components specified as part of the type.

procedure deal_with(C_array: system.address; length:integer)is
the_array: array(0..length-1) of integer;

for the_array use at C_array;
-- the_array(0) names C_array[0] of the C caller

Interface Programming 5-9

5

A parallel type using the declaration in Ada is shown here:

type C_STRING is access STRING (1..INTEGER’LAST);

Although this type declaration allows access to C strings, caution must be
exercised when transferring strings between C and Ada variables. For
example, a C string is an array of characters but an Ada string (or any
aggregate) has additional array information represented in a dope vector.

References
example using strings, Section 5.1.4, “Map To Parallel Data Structures,” on
page 5-15

5.1.2 Declare External Subprograms

Once parallel types are established, the next step is to gain access to
subprograms and macros provided in the interface target package. This is
accomplished first by using functions or macros and then by using the
predefined pragma INTERFACE_NAME to establish a link from the Ada
procedure or function name to the corresponding C function or macro.

pragma INTERFACE allows Ada programs to call subroutines defined in other
languages: C, ADA, PASCAL, FORTRAN and UNCHECKED. The definition
of pragma INTERFACE does not allow access to subprograms whose names
are Ada reserved words or cannot be expressed as an Ada identifier.

We have added pragma INTERFACE_NAME which gives the exact name of the
external subprogram and uses this format:

pragma INTERFACE_NAME (Ada_name, link_name);

The first parameter is the name of the Ada subprogram, the second is the name
of the target subprogram as known to the linker. In addition, the link_name
argument can be formed from a string literal, a constant string object or a
catenation of these operands. This allows a system independent interface to
common routines for different versions of an operating system. For example,
we supply:

pragma INTERFACE_NAME (c_exit, C_SUBP_PREFIX & ”exit”)

5-10 SPARCompiler Ada Programmer’s Guide

5

where

allows inter-language communication ability with a minimum of effort.

If Ada_name denotes a subprogram, a pragma INTERFACE must have already
been specified for the subprogram.

The Ada compiler handles parameter pushing and target language compiler
naming conventions and checks to make sure the parameters are allowed in
the target language. For example, Ada fixed point types do not have a C
equivalent. C compilers generally push parameters from right-to-left and
generate assembly instructions in which C subprogram names are usually
preceded with an underscore.

Use SC Ada’s pragma INTERFACE_NAME to enable Ada procedures to
directly access variables defined in other language modules. For example:

pragma INTERFACE_NAME (Ada_variable , link_name);

Access to external variables can be provided by extending the external library
with procedural access to these variables but this pragma allows faster-
executing code and does not require additional code in the language of the
external library.

Finally, because the interface between an Ada routine and an external routine
may involve an intermediate Ada function call, pragma INLINE can be used
to eliminate the overhead of the extra call.

Because Ada does not support macros and preprocessing, the C macros must
be defined as Ada procedures. However, pragma INLINE treats procedures
as if they were indeed macros with the added benefit of semantic checking.

package LANGUAGE is
C_PREFIX: constant string := ”_”;
C_SUBP_PREFIX: constant string := ”_”;
FORTRAN_PREFIX: constant string := ”_”;
FORTRAN_SUFFIX: constant string := ”_”;
OBJECT_EXTENSION: constant string := ”.o”;
LIBRARY_EXTENSION: constant string := ”.a”;
EXECUTABLE_EXTENSION: constant string := ””;

end LANGUAGE;

Interface Programming 5-11

5

Default parameters are available in Ada also so that instances of C functions
that use macros solely for the purpose of providing for default parameters can
be even more easily written in Ada.

With curses , most cursor movement is done using window-specific functions.
These window-specific routines are then used to define a set of macros that act
on the default window stdscr and these routine macros are in turn used to
define more macros. For example, the procedure to add a character to a
window, waddch() , is shown in the following code:

There are still some problems in using pragma INTERFACE for subprograms
of this type that may not be immediately apparent. First, all parameters must
be of mode in or ‘call by value’ and functions can only return results that are
scalar, access or SYSTEM.ADDRESS types. Second, this naming convention
allows the Ada programmer the ability to use only the C label for an interface
routine. This can become awkward when the language interfaced to supports
different naming conventions than those allowed in Ada or when the creation
of an intermediate routine is required to overcome the first restriction while
preserving the original calling and naming conventions.

The most effective way to circumvent the first restriction is to pass other types
of parameters than those listed by reference, using the predefined address
attribute (Ada LRM 13.7.2). The second restriction can be overcome using
pragma INTERFACE_NAME to map between the Ada and C subprogram
names.

The use of this pragma and the address attribute are both useful for waddstr
(window add string). This subprogram involves conflicting data structures
and parameter passing techniques. The Ada string is passed as two units, the
array itself and the length or dope vector. In contrast, its C counterpart is
passed by transferring a pointer to the first character of the string.

waddch(win,ch)
WINDOW win;
char ch;

#define addch(ch) VOID(waddch(stdscr,ch))
#define mvwaddstr(win,y,x,str)
VOID (wmove (win,y,x) == ERR ? ERR : waddstr(win, str))
#define mvaddstr (y, x, str) mvwaddstr (stdscr, y, x, str)

5-12 SPARCompiler Ada Programmer’s Guide

5

5.1.2.1 Using Intermediate Routines

The most obvious solution is to create an intermediate routine that converts an
Ada string input into a C-string format before before calling the C routine.
pragma INTERFACE_NAME facilitates this operation while allowing the
procedure to remain unchanged from the user’s standpoint.

An example using waddstr is shown:

Figure 5-3 Using Intermediate Routines

From the compiler’s standpoint, the effect of pragma INTERFACE_NAME is to
substitute the link_name given when generating the reference instead of the
Ada label.

Once the interface correspondence between the C functions is established, the
programmer can begin defining macros in terms of these functions. In our
example using the file curses.h as a template in conjunction with the
interface declarations for WADDSTR declared in the last section, we can create
the default window counterpart, the Ada version of the macro ADDSTR.

A C macro takes the form of a #define followed by the macro specifics. In
this case addstr is defined as the following.

#define addstr(str) VOID(waddstr(stdscr, str))

-- package spec
procedure WADDSTR(WIN: WINDOW; S: STRING);
procedure C_WADDSTR(WIN: WINDOW; STR: ADDRESS);

pragma INTERFACE(C, C_waddstr);
pragma INTERFACE_NAME(C_waddstr, C_SUBP_PREFIX & ”waddstr”);

-- package body
procedure WADDSTR(WIN: WINDOW; S: STRING) is
 T: STRING(1..(S’LAST + 1));
begin
 T(1..S’LAST) := Q;
 T(S’LAST + 1) := ASCII.NUL;
 C_WADDSTR(win, T’ADDRESS);
end WADDSTR;

Interface Programming 5-13

5

The variable str is already defined as a C string (*char) type and stdscr is
the default window used by curses . Using this definition, our Ada procedure
counterpart becomes the following:

Notice that the type declaration of S is parallel to the Ada procedure WADDSTR
type declaration defined earlier and not the C interface type declaration for
str from C_waddstr .

The majority of the curses screen routines can be created in this manner
using intermediate routines and passing addresses or simulating macros when
appropriate. There is a disadvantage to intermediate routines in the form of
additional overhead generated from the call intensive execution of these
simulated macros.

References
Section 5.1.5, “Reduce the Overhead,” on page 5-20

5.1.3 Access Global Variables

The third step when building a complete package from a C library is to gain
access to global variables declared in C from Ada. Although not supported in
the standard language definition, access to these items is essential in a package
like curses where a number of global variables are provided for programmer
use or use by internal routines. This connection is established by the SC Ada
compiler with pragma INTERFACE_NAME.

-- package spec
procedure ADDSTR(S: STRING);

-- package body
procedure ADDSTR(S: STRING) is
begin
 WADDSTR(STDSCR, S);
end ADDSTR;

5-14 SPARCompiler Ada Programmer’s Guide

5

An example of this pragma used to access the curses global variables LINES
and COLS is shown here:

pragma INTERFACE_NAME can be used to make structures, that would
normally be inaccessible, available to the user. For example, the two variables
curscr and stdscr are pointers to curses window structures and are the
key to implementing changes on a screen in most of the curses routines.
Using this pragma we can declare the following:

The first two statements declare the variables curscr and stdscr as
predefined Ada variables; the latter two associate the same memory locations
for the Ada variables as those occupied by the C variables. As noted earlier,
the C record access method allows the programmer access to these structures
by base address as long as access to internal structure values is not necessary.
Any subsequent reference to these labels from Ada refer to the identical data
structure currently being utilized by the C subprograms. As far as the
compiler is concerned, both forms of this statement are equivalent to
generating a reference in the object module for a variable with the linker name
_stdscr or _curscr .

LINES, COLS : INTEGER;
pragma INTERFACE_NAME(LINES, C_prefix & ”LINES”);
pragma INTERFACE_NAME(COLS , C_prefix & ”COLS”);

Stdscr : SYSTEM.ADDRESS;
Curscr : SYSTEM.ADDRESS;

Pragma INTERFACE_NAME(STDSCR, C_prefix & ”stdscr”);
Pragma INTERFACE_NAME(CURSCR, C_prefix & ”curscr”);

Interface Programming 5-15

5

5.1.4 Map To Parallel Data Structures

The fourth step in the Ada interface process is the ability to map parallel data
structures.

This is accomplished using the INTERFACE and INTERFACE_NAME pragmas.
The ability to map parallel data structures is illustrated using the curses
library package. In this package, the window structure is declared in C as a
record containing such information as the current cursor position, certain
terminal attributes and pointers to the actual screen structure.

Figure 5-4 Window Structure in C

struct _win_st{
 short _cury, _curx;
 short _maxy, _maxx;
 short _begy, _begx;
 short _flags;
 bool _clear;
 bool _leave;
 bool _scroll;
 char **_y;
 short *_firstch;
 short *_lastch;
};

5-16 SPARCompiler Ada Programmer’s Guide

5

To implement the macros flushok (win, bf) , getyx (win, y, x),
and winch (win) correctly, it is necessary to gain access to fields that reside
within the window structure. The first step is to create a parallel Ada record
that can be used as a template to place over the C structure.

Figure 5-5 Parallel Ada Record to C Window Structure

This declaration is then followed by object and INTERFACE_NAME declarations
that essentially create labels for all values stored within the C structure, as
illustrated in the following examples:

Type WIN_STRUCTURE;
Type WIN_POINTER is access WIN_STRUCTURE;
Type WIN_STRUCTURE is
record
 CURY, CURX : SHORT;
 MAXY, MAXX : SHORT;
 BEGY, BEGX : SHORT;
 FLAGS : SHORT;
 CLEAR : BOOL;
 LEAVE : BOOL;
 SCROLL : BOOL;
 YBAR : STRING_POINTER;
 FIRST_CH : SHORT_POINTER;
 LAST_CH : SHORT_POINTER;
end record;

CURSCR : WINDOW;
Pragma INTERFACE_NAME(CURSCR, LANGUAGE.C_prefix & ”curscr”);

STDSCR : WINDOW;
Pragma INTERFACE_NAME(STDSCR, LANGUAGE.C_prefix & ”stdscr”);

Interface Programming 5-17

5

This allows the programmer to declare any subsequent windows that are
required as type WINDOW and gain similar structure access. Procedures like
GETYXcan now be written as the following:

A procedure like scrollok simply becomes the following.

However, this process does get more complex when implementation of a C
macro like winch is required. This routine requires extracting a character from
the screen at the current cursor location, making access to the screen character
storage structure necessary. Using the C WINDOW structure for reference, it
becomes clear that the screen is represented by a two-dimensional C array of
characters. In Ada this translates into a pointer to an array of C_Strings, which
of course are represented by pointers to arrays of characters terminated by
nulls. Although hard to visualize, this structure can be created using the
following declaration.

The final type declaration shown above (STRING_POINTER) is then used as
the type declaration for the YBAR field in the Ada WINDOW structure. When the
Ada structure is then overlaid on the C window structure, it creates a parallel
character storage structure by capturing the pointer stored in the C variable _y
in the Ada YBAR field. A diagram of this structure is shown in Figure Prog - 1.

Procedure GETYX(WIN:WINDOW; Y, X: out INTEGER) is
begin
 Y:=INTEGER(WIN.CURY);
 X:=INTEGER(WIN.CURX);
end GETYX;

procedure SCROLLOK(WIN:WINDOW; BF : BOOLEAN) is
begin
 WIN.SCROLL:=BF;
end SCROLLOK;

type CHAR_STRING is array(0..149) of TINY_INTEGER;
type STRING_ACCESS is access CHAR_STRING;
type SCREEN_ARRAY is array(0..149) of STRING_ACCESS;
type STRING_POINTER is access SCREEN_ARRAY;

5-18 SPARCompiler Ada Programmer’s Guide

5

Figure 5-6 Parallel Character Storage Structure

Ada requires limits on arrays at compilation time, hence the 150 component
restriction on the arrays declared. However, this does not affect the usefulness
of our mapping as long as SCREEN_ARRAY(0..ROWS-1) and
CHAR_STRING(0..COLS-1) are overlaid correctly on the corresponding C
structures in memory. The call to WINCH now becomes the following.

function WINCH(WIN: WINDOW) return CHARACTER is
 T: TINY_INTEGER;
begin
 T := WIN.YBAR.ALL(INTEGER(WIN.CURY)).ALL(INTEGER(WIN.CURX
));
 T := ABS(T);
 return CHARACTER’VAL(T);
end WINCH;

pointer packed array of chararray of pointers

STRING_POINTER SCREEN_ARRAY(0) CHAR_STRING(0..149)

SCREEN_ARRAY(1) CHAR_STRING(0..149)

SCREEN_ARRAY(2) CHAR_STRING(0..149)

SCREEN_ARRAY(149) CHAR_STRING(0..149)

Interface Programming 5-19

5

Another interesting problem arises when implementing terminal characteristic
macros. These operations are performed by masking bits contained in the
short integer sg_flags of the C structure sgttyb given in the following code
segment. This field is then used as a packed array of boolean bit flags
indicating the status of different terminal characteristics.

The operations on the sg_flags field are accomplished by means of bitwise
ANDs and ORs setting or clearing flags as needed. The Ada language, in
contrast, provides no provision for bitwise ANDs and ORs on integers. It does,
however, provide for such operations on arrays of booleans. The key to
resolution of this problem is to define an array of booleans mapped onto the
integer storage defined by the C program. Once a connection is established
using pragma INTERFACE_NAME, unchecked conversion can be used to
convert the SHORT_INTEGER field to a packed array of boolean. In this form
the fields can be altered by using the predefined Ada and and or operations in
conjunction with the appropriate mask values. After flags are altered the
process of conversion can be reversed. Using this technique, a procedure like
echo becomes the following:

struct sgttyb {
 char sg_ispeed; /* input speed */
 char sg_ospeed; /* output speed */
 char sg_erase; /* erase character */
 char sg_kill; /* kill character */
 short sg_flags; /* mode flags */
};

procedure ECHO is
begin
 TTY.SG_FLAGS := PACK(UNPACK(TTY.SG_FLAGS) OR
 UNPACK(M_ECHO));
 ECHOIT := TRUE;
 TTY_POINTER := TTY’ADDRESS;
 STTY(TTY_CH, TTY_POINTER);
end ECHO;

5-20 SPARCompiler Ada Programmer’s Guide

5

The functions PACK and UNPACK are actually renamed instantiations of the
generic function UNCHECKED_CONVERSION . For portability’s sake, the
functions PACK and UNPACK can be simulated by division on compiler
systems not supporting bit level packing.

5.1.5 Reduce the Overhead

The final step in the interface process is to reduce the overhead resulting from
frequent subprogram calls to intermediate routines written in Ada. In the C
code, this is done with macros masquerading as functions and the effect is to
place the code inline. The Ada solution is provided by use of the predefined
pragma INLINE (Ada LRM 6.3.2). When used with intermediate routines or
routines that call others, this pragma causes the Ada compiler to treat the
called Ada routine like a C macro, resulting in reduced stack manipulation and
fewer subprogram calls during execution.

This pragma is best applied to Ada programs only after testing and debugging
is done because narrowing down errors during debugging is more difficult
with inline code. (The pragmas can be placed appropriately in the code when
constructing it and temporarily commented out until the debugging phase is
complete.) Depending upon the length of the files being inlined, this pragma
has the potential to greatly expand object file size. Exercise caution when disk
space is at a premium.

5.2 Program Conversion
Moving projects into Ada can be a lengthy process since the code being
replaced may have been developed over many years. One modular approach
is to write an Ada “wrapper” program that surrounds the subprograms in
other languages and gradually replaces them. pragma INTERFACE and
pragma INTERFACE_NAME are useful for this gradual replacement but
because of the interrelation of subprograms that call many other subprograms,
it is not normally possible to replace the upper level subprogram without
rewriting all its dependents in Ada as well.

SC Ada provides other pragmas, EXTERNAL and EXTERNAL_NAME, that make
this replacement simpler. pragma EXTERNAL and pragma EXTERNAL_NAME
allow subprograms in other languages to call Ada subprograms: exactly the
reverse of the INTERFACE and INTERFACE_NAME pragmas.

To illustrate, imagine that the following program was originally written in C:

Interface Programming 5-21

5

Figure 5-7 Program Conversion

/* C program example that calls an Ada subprogram with a
** parameter declared in C */
#include <stdio.h>
char *gets ();
int atoi ();
int service_number;
extern void ada_put (); /*Ada: TEXT_IO.INTEGER_IO.PUT of an
INTEGER*/
test ()
{
 char buf[80];
printf (”Enter an integer here: ”);
 gets (buf);
 service_number = atoi (buf);
 ada_put (service_number); /* originally used printf */
 putchar (’\n’);
}

5-22 SPARCompiler Ada Programmer’s Guide

5

The printf call is replaced with ADA_PUTand an Ada package containing
procedure ADA_PUT and interface declarations for the C entities is written.

Now a simple Ada ‘wrapper’ to call the original C function main is written so
that the linker a.ld can resolve all the references in the modules and perform
its usual elaboration order checks.

with LANGUAGE; use LANGUAGE;
with TEXT_IO; use TEXT_IO;
package C_INTERFACE is
 SERVICE_NUMBER : INTEGER;
 pragma INTERFACE_NAME (SERVICE_NUMBER, C_PREFIX &
”service_number”);

 procedure ADA_PUT (I : INTEGER);
 pragma EXTERNAL_NAME (ADA_PUT, C_SUBP_PREFIX & ”ada_put”);

 procedure MAIN;
 pragma INTERFACE (C, MAIN);
 pragma INTERFACE_NAME (MAIN, C_SUBP_PREFIX & ”test”);
end C_INTERFACE;

package body C_INTERFACE is
 procedure ADA_PUT (I : INTEGER) is
 package I_IO is new INTEGER_IO (INTEGER);
 use I_IO;
 begin
 PUT (I);
 end ADA_PUT;
end C_INTERFACE;

with C_INTERFACE; use C_INTERFACE;
procedure MN is
begin
 MAIN;
end;

Interface Programming 5-23

5

Compiling both the C and Ada portions can be done by

• compiling the C portion
• using the SC Ada linker to construct the ‘main’ program MN and including

the C object in the link

The program now runs correctly. Its Ada calling sequence is graphically
shown in Figure 5-9.

Figure 5-8 Ada Calling Sequence

The real benefit for the user is that new portions of large programs can be
developed in Ada but existing, tested, working code need not be replaced
wholesale: individual modules or groups of modules can be replaced by newly
developed Ada code without undue restrictions on the language of calling or
called subprograms. An additional benefit is that once subprogram parameters
are defined in Ada, the compiler performs its usual type checking across
subprograms.

MN

MAIN

GETS

ADA_PUT

PUT

PUT_CHAR

--Ada

--C

--C

--Ada

--Ada

--C

5-24 SPARCompiler Ada Programmer’s Guide

5

5.3 Calling Ada From Other Languages
Ada compilations generate objects. These can be linked with objects generated
by other compilers and can therefore be called from programs written in other
languages. However, a number of complexities arise. This section discusses
them but we nonetheless recommend that main programs be Ada.

The safest approach to avoiding problems when calling Ada routines from
other languages is to ensure that all Ada routines called are only in library
level packages or be library level subprograms. This guarantees that all
references (including those in the called routines) are necessarily correct by
Ada visibility rules. Using locally defined subprograms is possible, but is
strongly discouraged. The called routine does not have the addressing
framework set up that it requires for up-level addressing. Only local and
global variables in library level packages can be correctly used in a
subprogram that is called from outside Ada and in any routine that is called by
that routine.

5.3.1 pragma EXTERNAL and pragma EXTERNAL_NAME

SC Ada provides two pragmas that enable you to write Ada subprograms that
are callable from other languages. These are pragma EXTERNAL and pragma
EXTERNAL_NAME.

pragma EXTERNAL enables Ada programs to generate subprograms callable
by other languages.

pragma EXTERNAL (language, Ada_proc)

The context, allowed languages and types of subprograms for this pragma, are
all the same as pragma INTERFACE except that a body must be supplied for
the subprogram. This pragma means the subprogram must be callable from
the given language, that is, the calling conventions of the language are used
and the stack limit register (if any) is restored from memory. If no pragma
EXTERNAL_NAME is applied to the subprogram, a default external name is
defined, using the same rules as for defining the default interface name for
pragma INTERFACE subprograms. This pragma has an effect only when the
calling conventions of the foreign language differ from those of Ada.

Interface Programming 5-25

5

pragma EXTERNAL_NAME allows a specific link name to be given to an Ada
subprogram so that it may, for example, be called from another language.

pragma EXTERNAL_NAME (Ada_proc, ”ada_proc”)

In this example, the external link name is the string ’ada_proc ’. The link
name is formed using the same rules as for pragma INTERFACE_NAME.

5.3.2 Finding the Right Object

Ada hides the objects in the .objects directory. Several objects are often
generated during the compilation of a single source file. Each object for a file
is generated with the filename used as a prefix and two characters at the end,
starting with 01 , 02 , etc. For this reason, we recommend compiling each unit
in a separate source file.

Ada also generates unusual compound names for entities such as
subprograms. These names are used to disambiguate overloading and assist in
debugging. The names usually have the form:

_A_subnamellXcc. parent

subname is the name of the sub-entity. ll is the line number of its definition. X
is S if defined in the spec and B if defined in the body. cc is the character
number of its definition and parent is the name of the parent unit, less its
prefix of _A_.

Generated names contain line or character numbers and change if the source
that contains them changes. Therefore we recommend that you give explicit
names to any entities that you reference from other languages.

References
"pragma EXTERNAL_NAME(subprogram, link_name) " on page FF-5

5-26 SPARCompiler Ada Programmer’s Guide

5

5.3.3 Avoiding Elaboration

This section applies to archives of Ada object files.

Ada semantics dictate that units not be used before they are elaborated. SC
Ada generates dynamic elaboration checks for many subprograms, to verify
this property. If a user just links in and calls an Ada package, the
PROGRAM_ERROR exception will almost certainly be raised. Two approaches
can prevent this.

One possibility is to do the elaboration. The simplest technique is to artificially
create a main program that calls (directly or indirectly) all the entry points
needed from the other language and link it with the verbose option, saving the
output in a file. An object having the filename with an .o appended is created,
holding an ELABORATION_TABLE, among other things. To elaborate all units,
the start up procedure simply calls each address in that table, in the given
order - the table is an array of elaboration subprogram addresses.

Another possibility is to avoid elaboration. To do so, use pragma SUPPRESS
(ELABORATION_CHECK) in every unit linked. Avoid “complex” initialization
in units to be linked: complex initialization is any statically allocated object
with an initial value that is not either an Ada static value, a value of system
address, a record without a representation clause of these items or an array of
these items.

Any complex initialization generates code into an elaboration procedure. If
you expect not to do elaboration, these complex initializations would not get
done. The disassembler can help detect and avoid complex initializations.
Also, linking only library subprograms assures that no elaboration is needed.
SC Ada supports pragma NOT_ELABORATED to assist in creating units that
do no elaboration.

REFERENCES
elaboration of Library Units Ada LRM 10.5, static expressions Ada LRM 4.9

5.3.4 Linking a Non-Ada Main Program

To link, simply add the names of all appropriate SC Ada object files to the list
of files given to the linker. If elaboration is intended, link the file described
above under Avoiding Elaboration, using an artificial main program. Create a
library or archive of these Ada objects for easier use.

Interface Programming 5-27

5

5.3.5 Runtime Considerations

Each programming language has its own runtime system. Normally, only one
of these runtime systems can be used in a given execution. That would be the
runtime initialized by the program startup entry point (__start for Ada).
The SC Ada linker creates Ada programs that call the SC Ada __start entry
point, initializing the SC Ada Runtime System. That runtime captures the
machine and, among other things, sets up signal (interrupt) handlers for all
Ada-important signals. If the Ada runtime is not in control of the process, do
not use tasking, exceptions, exception handling or Ada I/O. Ada I/O requires
elaboration.

5.3.6 Additional Considerations

5.3.6.1 Input/Output

Care must be taken when mixing Ada I/O with I/O from another language.
For example, if both Ada and the foreign language (C for example) write to
standard output, the output may not appear in the order expected (or some
output may be lost entirely) due to output buffering.

One solution is to perform output to standard out only from Ada, or only from
C. Another is to force standard output to be flushed after each write.

Similiar problems exist if standard input is read from both Ada and C because
of input buffering.

References
"Input/Output" on page FF-51

5.3.6.2 Non-Reentrant Code

If you are interfacing from Ada to non-reentrant module from another
language, you must ensure that only one Ada task is executing in the non-
reentrant foreign module at any time. This can be done using semaphores, or
guard tasks to serialize calls to the non-reentrant module.

5-28 SPARCompiler Ada Programmer’s Guide

5

One example of where this can be a problem is the C memory allocation
routines (malloc , etc). Because this is a common problem, Sun Microsystems
supplies a package in the alloc_conf library called
MULTITASK_SAFE_MALLOC (malloc.a) which can be used to replace the
normal C allocation routines with mutex-protected versions of these routines.

References
 Protected Malloc, SPARCompiler Ada Runtime System Guide

A-1

User Library Configuration A

Configuring the user library is optional. Under most circumstances, SC Ada
functions properly with no changes to the default configuration. However, if
you find it necessary or desirable to reconfigure the library, the information
contained in this appendix enables you to do so.

The first part of this appendix is a set of steps for modifying the configurable
components of the user library. That is followed by a discussion of the
configurable components.

Caution – Any packages or subprograms written to support configuring SC
Ada should be contained within the body of the V_USR_CONF package. The
name of the configuration package must remain as V_USR_CONF. Units must
not be added to the context clause of this package unless the unit’s object file is
explicitly included into all the links via a LINK directive or the unit is included
in the context clause of a unit which is always referenced by the main
programs using this configuration.

!

“You play with my world Like it’s your little toy.”

Bob Dylan

A-2 SPARCompiler Ada Programmer’s Guide

A

A.1 Steps to Configure the User Library
This section provides instructions for configuring the user library on a self-host
SC Ada development system. For the purposes of this example, we assume
that SC Ada has been installed in a directory called /usr2/sc_ada .

A.1.1 Build the User Library

The first step is to create an Ada library directory for configuring the user
library.

Figure 5-9 Directory Structure for Configuring SC Ada

user library

/usr2

config

user_conf

User Library Configuration A-3

A

A.1.2 Create an Ada Library

Create the directory config under the existing /usr2 directory. Enter

% mkdir /usr2/config

Move to the library that you just created, by entering

% cd /usr2/config

Use a.mklib to create a local directory called user_conf and make that
directory into an Ada library. We recommend using the -i (interactive) option:

Note – a.mklib displays all versions of SC Ada on the host and prompts for
the version of SC Ada to which this Ada library should be linked. All the SC
Ada tools check the Ada library structure so that if there are multiple versions
of SC Ada on the same host, the desired compiler is used. For the VADS
Threaded Runtime, select 1, for Solaris MT Runtime, select 2.

a.mklib creates the specified directory, makes it into a SC Ada library, and
adds the SC Ada libraries verdixlib and standard to the new library’s
search list.

% a.mklib -i user_config
 2 versions of standard are available on this machine:

Target NameVersionAda Location
1SELF_TARGET6.2.3/usr2/sc_ada/self

host and os name, SPARCompiler Ada version
2SELF_TARGET6.2.3/usr2/sc_ada/self_thr

host and os name, SPARCompiler Ada version
Selection (q to quit):

A-4 SPARCompiler Ada Programmer’s Guide

A

A.1.3 Copy the Configuration Files

Move to the /usr2/config/user_config library you just created by
entering:

% cd user_config

Copy the source files in /usr2/sc_ada/self/usr_conf (or
/usr2/sc_ada/self_thr/usr_conf if you are using Solaris MT Ada) to
the new library directory.

For VADS Threaded ada:

% cp /usr2/sc_ada/self/usr_conf/v_usr_conf*.a .

For Solaris MT Ada:

% cp /usr/sc_ada/self_thr/usr_conf/v_usr_conf*.a .)

This copies these files:

v_usr_conf.a
v_usr_conf_b.a
v_usr_data.a
v_usr_local.a

The only file that may require changes is v_usr_conf_b.a .

There are two additional files which must be copied, v_usr_local.a and
v_usr_data.a . These files are required to recompile v_usr_conf*.a .

% cp /usr2/sc_ada/self/usr_conf/v_usr_local.a .
% cp /usr2/sc_ada/self/usr_conf/v_usr_data.a .

User Library Configuration A-5

A

A.1.4 Edit the User Configuration Package

Most applications require no modifications to the configuration package; the
default parameters supplied by Rational Software Corporation are sufficient in
most instances. If you must modify the configuration package, change the
body of the user library’s configuration package in the file v_usr_conf_b.a .

A.1.5 Compile all Ada Files

The following a.make command compiles all Ada files from the user
configuration directory in the correct order. Below the command the expected
output is shown.

% a.make -v -f *.a

finding dependents of: v_usr_conf.a
finding dependents of: v_usr_conf_b.a
finding dependents of: v_usr_data.a
finding dependents of: v_usr_local.a
compiling v_usr_local.a

spec of v_usr_local
body of v_usr_local

compiling v_usr_data.a
spec of v_usr_data

/usr2/config/user_config/v_usr_data.a, line 19, char 2:warning:
Appendix F: Elaboration code is generated for this construct

body of v_usr_data
compiling v_usr_conf.a

spec of v_usr_conf
compiling v_usr_conf_b.a

body of v_usr_conf

A-6 SPARCompiler Ada Programmer’s Guide

A

A.1.6 Change the ada.libADA.LIB File

The a.info command is used to modify the ada.lib file. We recommend
you use a.info in interactive mode (i.e., invoked with a.info -i), but in
our examples we show it being used in command mode. Your local user
configuration overrides the default configuration at link time.

The following a.info command line adds the body of the user configuration
file to the ada.lib file:

% a.info -a WITH1
 /usr2/config/user_conf/.objects/v_usr_conf_b01

Caution – Use a.info to check for existing WITHs on your ADAPATH. The
number of the WITHn used in the a.info command above must be one
greater than the highest numbered WITHn on your path.

A.1.7 Build a Test Library

We are finally at the point where it is time to write an Ada program to test the
configuration. For this example, we assume you create a test directory in
/usr2/config . Enter these commands:

% cd /usr2/config
% a.mklib test user_config
% cd test

a.mklib automatically creates the directory named test , under the directory
/usr2/config , converts test to an Ada library and places
/usr2/config/user_config , /usr2/sc_ada/self/standard and
/usr2/sc_ada/self/verdixlib on the library search list for test .

!

User Library Configuration A-7

A

A.1.8 Edit, Compile, and Link Your Test Program

We use a simple program that prints “Hello, world!” to the terminal as our test
program. Here is the source code that must be edited into a source file:

We assume you put this source code into the file test/hello.a . By naming
the main procedure the same as the file that contains it, we can compile and
link in one step by using the -M option:

% ada -v -M hello.a -o hello.out

Alternatively, you can compile and link in two steps:

% ada -v hello.a
% a.ld hello -v -o hello.out

Use the -v option to verify the new v_usr_conf_b01 is being used.

A.1.9 Run Your Test Program

With the program successfully compiled and linked, now run the resultant
executable file. Enter

% hello.out

% a.run hello.out

The executable file displays the output

with text_io;
procedure hello is
begin

text_io.put_line(”Hello, world!”);
end;

Hello, world!

A-8 SPARCompiler Ada Programmer’s Guide

A

A.2 User Library Configuration Files
The following files are found in the directory usr_confboard_conf . These
are the files that must be copied into your own local directory if you want to
override the default configuration. You do not need to modify all of the files
you are copying. The configuration package specification is intended to be
read-only. It is present here so you can refer to it conveniently. The interface
package specification v_usr_conf_i.a is now located in the standard
library.

v_usr_conf.a This package specification defines and describes the
components which the user must provide to configure
the SC Ada self-host runtime environment for a user
application program. This file should not be changed.

v_usr_conf_b.a This is the configuration package for the user library.
Changing the body of this package configures the user
library for your host.

v_usr_data.a This package contains the user program specific data
such as main procedure pragma values.

v_usr_local.aV_USR_LOCAL.A This package contains the user program data local to
each processor in a multiple CPU environment. (Note:
multiple CPUS are not currently supported.)

User Library Configuration A-9

A

A.3 V_USR_CONF Configuration Components
The configurable components of the user library configuration package are:

#c1:FAT_MALLOC’s SMALL_BLOCK_SIZES_TABLE structure

#c2:MEM_ALLOC_CONF_TABLE structure

#c3:TASKDEB CONFIGURATION structure

#c4:ADAPATH Reference

#c5:CONFIGURATION_TABLE structure

#c6:V_GET_HEAP_MEMORY routine

#c7:V_PASSIVE_ISR routine

#c8:V_SIGNAL_ISR routine

#c9:V_CIFO_ISR routine

#c10:V_PENDING_OVERFLOW_CALLOUT routine

#c11:V_KRN_ALLOC_CALLOUT routine

#c12:V_START_PROGRAM and V_START_PROGRAM_CONTINUE
 routines

Each of these components is discussed in detail below. To find any one of
these components in the source files, v_usr_conf.a and v_usr_conf_b.a ,
search for the string, #cN where N is the number of the desired component. In
the source file, the code for each component begins with a line similar to the
following:

---------- #c3: CONFIGURATION_TABLE structure ----------

A-10 SPARCompiler Ada Programmer’s Guide

A

A.3.1 #c1: FAT_MALLOC’s SMALL_BLOCK_SIZES_TABLE structure

The constant, SMALL_BLOCK_SIZES_TABLE is declared in the body of this
package. This information is used only if the FAT_MALLOC or DBG_MALLOC
memory allocation archive is selected. This aggregate lists the small block
sizes. If SMALL_BLOCK_SIZES_TABLE is initialized to (8, 16, 128), three small
block lists are created that hold objects of 8 bytes, 16 bytes and 128 bytes
respectively. Allocation sizes between these values yield an object of the larger
small block size. For example, user objects of size 20 are allocated as 128 byte
small blocks.

The block sizes must be declared in ascending order and each block size must
be a multiple of 8.

The address of SMALL_BLOCK_SIZES_TABLE must be assigned to the
parameter SMALL_BLOCK_SIZES_ADDRESS in the configuration table.

References
DBG_MALLOC , FAT_MALLOC, SPARCompiler Ada Runtime System Guide

------------ from: v_usr_conf_i.a

subtype alloc_t is v_i_types.alloc_t;

type small_block_sizes_t is array(positive range <>) of alloc_t;

------------ from: v_usr_conf_b.a

small_block_sizes_table :
 constant v_usr_conf_i.small_block_sizes_t := (8, 16, 24, 32);

User Library Configuration A-11

A

A.3.2 #c2: MEM_ALLOC_CONF_TABLE Structure

The memory allocation configuration table contains the memory allocation
parameters specific to SLIM_MALLOC, FAT_MALLOC and DBG_MALLOC

MIN_SIZE
MIN_SIZE defines the minimum size object to be allocated. It determines the
size at which an over-large space is broken into a perfect fit and a new free
storage block. For example, a user asks for 1000 bytes and the next free slot
has 1500 bytes. If MIN_SIZE < 500 , the user gets exactly 1000 bytes of the
free space and the remainder (500 bytes less header overhead) is put back on
the free list. If MIN_SIZE > 500 , the user gets 1500 bytes. This value should
never be larger than the smallest small block. This controls fragment size.

------------ from: v_usr_conf_i.a
 type allocation_strategy_t is (FIRST_FIT, BEST_FIT);

 type mem_alloc_conf_table_t is record
min_size : alloc_t;
num_small_block_sizes : integer;
small_block_sizes_address : address;
min_list_length : integer;
intr_obj_size : alloc_t;
initial_intr_heap : integer;
allocation_strategy : allocation_strategy_t;

 end record;
------------ from: v_usr_conf_b.a
mem_alloc_conf_table: constant
v_usr_conf_i.mem_alloc_conf_table_t

:= (
MIN_SIZE => 8,
NUM_SMALL_BLOCK_SIZES => small_block_sizes_table’length,
SMALL_BLOCK_SIZES_ADDRESS => small_block_sizes_table’address,
MIN_LIST_LENGTH => 5,
INTR_OBJ_SIZE => 128,
INITIAL_INTR_HEAP => 100,
ALLOCATION_STRATEGY => FIRST_FIT

);

A-12 SPARCompiler Ada Programmer’s Guide

A

NUM_SMALL_BLOCK_SIZES
NUM_SMALL_BLOCK_SIZES gives the number of small object sizes to be
handled by the allocator. This is the number of elements in the
SMALL_BLOCK_SIZES_TABLE of section #c1.

SMALL_BLOCK_SIZES_ADDRESS
SMALL_BLOCK_SIZES_ADDRESS indicates the starting address of the small
block sizes table defined in the previous section (#c1).

MIN_LIST_LENGTH
MIN_LIST_LENGTH specifies the minimum list length of a small blocks list.
This keeps the allocator from coalescing blocks off of a list. In addition, when
deallocating a block, the allocator decides whether it should go back on the
small blocks lists or be coalesced with its neighbors and put on the regular free
list. Note that the actual length is often shorter when little or no deallocation
is being done.

INTR_OBJ_SIZE
INTR_OBJ_SIZE specifies the fixed size of blocks to be allocated when a new
is performed from an interrupt handler. This value is not adjustable at
runtime.

INITIAL_INTR_HEAP
INITIAL_INTR_HEAP specifies the number of blocks to be pre-allocated for
allocation from an interrupt handler. The blocks are pre-allocated when
AA_INIT is called. More blocks can be allocated by making a call to
V_I_ALLOC.EXTEND_INTR_HEAP, so this number can be set to 0 if desired.

ALLOCATION_STRATEGY
ALLOCATION_STRATEGY specifies the strategy used by AA_GLOBAL_NEW (and
AA_ALIGNED_NEW) to choose a block from the free list. Generally, setting it to
FIRST_FIT optimizes for speed while setting it to BEST_FIT optimizes for
low fragmentation.

User Library Configuration A-13

A

A.3.3 #c3: TASKDEB CONFIGURATION structure

The TASKDEB CONFIGURATION structure provides the ability to configure
task level debugging.

The TASKDEB configuration record in the body of this package is intialized and
it’s address is stored in the CONFIGURATION_TABLE described on page
page A-16. It is possible to store NO_ADDR and provide a ”null”
__TASKDEB_INITIALIZE routine for tasking programs with small memory
configurations. Configuring TASKDEB has no hidden memory requirements
for non-tasking programs.

To eliminate task level debugging from the configuration, remove the
definition of the task_config_rec record from package V_USR_CONF and
specify NO_ADDR as the address of the taskdeb configuration structure in the
CONFIGURATION_TABLE structure .

____________ from: v_usr_conf_b.a
-- no_taskdeb: To remove task level debugging from the configuration
-- remove this section and specify NO_ADDR as the address of a
-- taskdeb configuration struction in the configuration table below.
taskdeb_config_rec: taskdeb_i.taskdeb_config_rec_t
 := (
 -- #c3a: INITIALIZATION PROCEDURE ADDRESS:
initialize_proc_addr => taskdeb_i.taskdeb_initialize’address,
 -- #c3b: SIGNAL NUMBER CONFIGURATION:
self_signal => 0, -- not needed for cross
 -- #c3c: TRAP INSTRUCTION CONFIGURATION:
trap_instruction_use => TRUE,
trap_instruction => 16#4e4e_0000#, -- trap 14
trap_instruction_length => 2,
trap_intr_vector_id => 46,
 -- #c3d: DEBUG and CALL TASK CONFIGURATION:
debug_task_stack_size => 8_000,
debug_task_attr => NO_ADDR, -- default task attributes
debug_task_prio => priority’last, -- highest priority
call_task_stack_size => 8_000,
call_task_attr => NO_ADDR, -- default task attributes
call_task_prio => (priority’last - 1)
);

A-14 SPARCompiler Ada Programmer’s Guide

A

The parameters are grouped into the following catagories:

1. INITIALIZATION PROCEDURE ADDRESS

2. SIGNAL NUMBER CONFIGURATION

3. TRAP INSTRUCTION CONFIGURATION

4. DEBUG and CALL TASK CONFIGURATION

A.3.4 #c3a: INITIALIZATION PROCEDURE ADDRESS

INITIALIZE_PROC_ADDR
Address of a procedure that is called to initialize the task level debugging
support in the runtime system. Normally the address of the procedure
__TASKDEB_INITIALIZE is configured. This address is found in the tasking
archives.

A.3.5 #3b: SIGNAL NUMBER CONFIGURATION

SELF_SIGNAL
The debugger starts the program with this signal pending when the program is
set in motion after entering a task debugging command. The signal handler
then starts the DEBUG_TASK moving.

If the underlying micro kernel is VADS MICRO, not threads, then SIGALRM
can normally be used.

If the underlying micro kernel is not VADS MICRO, but threads, VAD MICRO
is layered on top of a UNIX threads kernel that uses SIGALRM and a different
signal must normally be chosen.

A.3.6 #c3c: TRAP INSTRUCTION CONFIGURATION

UNIX based self debuggers can start the target program in motion with the
signal defined above. The following parameters describe the trap instruction:

User Library Configuration A-15

A

TRAP_INSTRUCTION_USE
Set this boolean to TRUE if trap instructions are required. This is normally set
to TRUE for cross targets.

TRAP_INSTRUCTION
The actual trap instruction.

TRAP_INSTRUCTION_LENGTH
The number of bytes in the trap instruction.

TRAP_INTR_VECTOR_ID
The vector associated with trap_instruction above. This vector id will be
passed to ADA_KRN_I.ISR_ATTACH.

A.3.7 #c3d: DEBUG and CALL TASK CONFIGURATION

DEBUG_TASK_STACK_SIZE
Stack size of the debug task.works

DEBUG_TASK_ATTR
Address of a task attribute for the debug task. NO_ADDR will use the default
task attribute.

DEBUG_TASK_PRIO
Task priority of the debug task.

CALL_TASK_STACK_SIZE
Stack size of the call task.

CALL_TASK_ATTR
Address of a task attribute for the call task. NO_ADDR will use the default task
attribute.

CALL_TASK_PRIO
Task priority of the call task.

A-16 SPARCompiler Ada Programmer’s Guide

A

A.3.8 #c4: ADAPATH Reference

Referencing the external symbol __ADAPATH_ causes symbolic information
identifying the location of the Ada libraries that comprise the runtime system
to be added to the Ada executable generated by the linker. This information
can be useful for debugging.

Removing the ADAPATH references from the user configuration will save
about 16 address-sized units (typically about 64 bytes) from the executable.

A.3.9 #c5: CONFIGURATION_TABLE structure

The configuration table is the mechanism for communicating data parameters
from the configuration file to the user library routines using these parameters.
This constant, CONFIGURATION_TABLE, must be modified to describe the user
program environment to SC Ada. This record is passed to TS_INITIALIZE
during user program startup to control its initialization. The declaration of this
record’s type is found in package V_USR_CONF_I .

User Library Configuration A-17

A

 ------------ from: v_usr_conf_i.a
 subtype floating_point_control_t is v_i_types.floating_point_control_t;

 type configuration_table_t is record
main_task_stack_size: natural;
default_task_stack_size: natural;
exception_stack_size: natural;
idle_stack_size: natural;
signal_task_stack_size: natural;
fast_rendezvous_enabled: boolean;
wait_stack_size: natural;
zero_stacks_enabled: boolean;
floating_point_support: integer;
floating_point_control: floating_point_control_t;
heap_max : alloc_t;
heap_extend : alloc_t;
get_heap_memory_callout: address;
mem_alloc_conf_table_address: address;
taskdeb_config_address: address;
disable_signals_mask: integer;
disable_signals_33_64_mask: integer;
numeric_signal_enabled: boolean;
storage_signal_enabled: boolean;
time_slicing_enabled: boolean;

-- VADS Threaded Ada only
time_slice_interval: duration;

-- VADS Threaded Ada only
time_slice_priority: priority;

-- VADS Threaded Ada only
concurrency_level: natural;

-- Solaris MT Ada only
enable_signals_mask: integer;

-- Solaris MT Ada only
enable_signals_33_64_mask: integer;

-- Solaris MT Ada only
exit_signals_mask: integer;

-- Solaris MT Ada only
exit_signals_33_64_mask: integer;

-- Solaris MT Ada only
intr_task_prio : priority;

-- Solaris MT Ada only
intr_task_stack_size: natural;

A-18 SPARCompiler Ada Programmer’s Guide

A

-- Solaris MT Ada only
default_task_attributes: ada_krn_defs.task_attr_t;
main_task_attr_address: address;
signal_task_attr_address: address;
intr_task_attr_address: address;

-- Solaris MT Ada only
masters_mutex_attr_address: address;
mem_alloc_mutex_attr_address: address;
ada_io_mutex_attr_address: address;
old_style_max_intr_entry: address;
task_storage_size : integer;

-- VADS Threaded Ada only
pending_count : integer;

-- VADS Threaded Ada only
timer_min_delay: duration;
timer_adjustment: duration;
traceback_regs : boolean;

 end record;

 ------------ from: v_usr_conf_b.a
 -- If you don’t want to use the default mutex or condition variable
 -- attributes, change the V_INIT_ATTR routine to initialize
 -- these two attribute records and change the mutex_attr_address
 -- or cond_attr_address parameter values in the configuration_table
 -- from NO_ADDR to mutex_attr’address or cond_attr’address.
 --
 mutex_attr : ada_krn_defs.mutex_attr_t;
 cond_attr : ada_krn_defs.cond_attr_t;
 configuration_table : constant v_usr_conf_i.configuration_table_t := (
 -- Parameter Value
 ------------ ---------
 -- #c5a: STACK CONFIGURATION PARAMETERS:
 MAIN_TASK_STACK_SIZE => 16#20_0000#,
 DEFAULT_TASK_STACK_SIZE => 10_240,
 EXCEPTION_STACK_SIZE => 5000,
 IDLE_STACK_SIZE => 10_240,
 SIGNAL_TASK_STACK_SIZE => 10_240,
 FAST_RENDEZVOUS_ENABLED => TRUE,
 WAIT_STACK_SIZE => 4000,
 ZERO_STACKS_ENABLED => FALSE,
 -- #c5b: FLOATING-POINT COPROCESSOR CONFIGURATION PARAMETERS:
 FLOATING_POINT_SUPPORT => v_ada_info.FP_NATIVE,
 FLOATING_POINT_CONTROL => (

(Continued)

User Library Configuration A-19

A

 rd => v_i_types.to_nearest,
 rp => v_i_types.extended,
 tem => (invalid | overflow | zero_div => true, others => false),
 au => false,
 ftt => v_i_types.none,
 qne => false,
 fcc => v_i_types.equal,
 aexc => (others => false),
 cexc => (others => false)
),
 -- #c5c: HEAP MEMORY CALLOUT CONFIGURATION PARAMETERS:
 HEAP_MAX => 32*1024*1024,
 HEAP_EXTEND => 128*1024,
 GET_HEAP_MEMORY_CALLOUT => v_get_heap_memory’address,
 -- #c5d: MEMORY ALLOCATION CONFIGURATION TABLE:
 MEM_ALLOC_CONF_TABLE_ADDRESS
 => mem_alloc_conf_table’address,
 -- #c5e: TASKDEB CONFIGURATION Structure:
 TASKDEB_CONFIG_ADDRESS
 => taskdeb_config_rec’address,
 -- #c5f: UNIX SIGNAL CONFIGURATION PARAMETERS:
 DISABLE_SIGNALS_MASK => ada_krn_defs.DISABLE_MASK,
 DISABLE_SIGNALS_33_64_MASK
 => ada_krn_defs.DISABLE_33_64_MASK,
 NUMERIC_SIGNAL_ENABLED => TRUE,
 STORAGE_SIGNAL_ENABLED => TRUE,
 -- #c5g: TIME SLICE CONFIGURATION PARAMETERS: --Solaris Threaded Ada only
 TIME_SLICING_ENABLED=> FALSE,
 TIME_SLICE_INTERVAL=> 1.00,
 TIME_SLICE_PRIORITY=> priority’last,
 -- #c5h: ATTRIBUTES CONFIGURATION PARAMETERS:
 DEFAULT_TASK_ATTRIBUTES=> (

prio => priority’first,

flags => 0,-- Solaris MT Ada only

sporadic_attr_address => NO_ADDR,-- not a sporadic task
mutex_attr_address => NO_ADDR,-- use default mutex attr

--mutex_attr_address => mutex_attr’address,
cond_attr_address => NO_ADDR),-- use default cond attr

 --cond_attr_address => cond_attr’address),
 MAIN_TASK_ATTR_ADDRESS => NO_ADDR,-- use DEFAULT_TASK_ATTRIBUTES
 SIGNAL_TASK_ATTR_ADDRESS => NO_ADDR,-- use DEFAULT_TASK_ATTRIBUTES
 INTR_TASK_ATTR_ADDRESS => NO_ADDR,-- use DEFAULT_TASK_ATTRIBUTES

(Continued)

A-20 SPARCompiler Ada Programmer’s Guide

A

A.3.10 #c5a: Stack Configuration Parameters

The following parameters are used to specify different user configurable stack
sizes.

MAIN_TASK_STACK_SIZE
MAIN_TASK_STACK_SIZE is the size of the user program stack. The stack size
excludes room at the bottom for exception handling.

If the current stack limit for the process is less than the
MAIN_TASK_STACK_SIZE + EXCEPTION_STACK_SIZE, setrlimit() is
called to extend it.

DEFAULT_TASK_STACK_SIZE
DEFAULT_TASK_STACK_SIZE is the size of each task’s stack area. This value
can be overridden with a T’STORAGE_SIZE length clause.

EXCEPTION_STACK_SIZE
EXCEPTION_STACK_SIZE is the space set aside below the bottom of the task
stack for exception unwinding.

-- Solaris MT Ada only
MASTERS_MUTEX_ATTR_ADDRESS => NO_ADDR,-- use default mutex attr
 -- => mutex_attr’address,
MEM_ALLOC_MUTEX_ATTR_ADDRESS => NO_ADDR,-- use default mutex attr
 -- => mutex_attr’address,
ADA_IO_MUTEX_ATTR_ADDRESS => NO_ADDR,-- use default mutex attr
 -- => mutex_attr’address,

 -- #c5i: MISC CONFIGURATION PARAMETERS:
 OLD_STYLE_MAX_INTR_ENTRY => memory_address(16#1FF#), -- 512 - 1
 TASK_STORAGE_SIZE => 32, -- VADS Threaded Ada only
 PENDING_COUNT => 20, -- VADS Threaded Ada only
 TIMER_MIN_DELAY => 0.0100,
 TIMER_ADJUSTMENT => 0.0200,
 TRACEBACK_REGS => FALSE
);

(Continued)

User Library Configuration A-21

A

IDLE_STACK_SIZE
IDLE_STACK_SIZE is the size of the stack for the idle task.

SIGNAL_TASK_STACK_SIZE
SIGNAL_TASK_STACK_SIZE is the size of the stack for tasks created for doing
rendezvous with interrupt entries.

FAST_RENDEZVOUS_ENABLED
When FAST_RENDEZVOUS_ENABLED is set to TRUE, if the acceptor task is
already waiting, the rendezvous is executed in the context of the caller task.
This value can be overridden on a per task basis via the VADS EXEC service
V_XTASKING.SET_FAST_RENDEZVOUS_ENABLED.

Normally, the accept body of an Ada rendezvous is only executed in the
context of the acceptor task. Setting this parameter to TRUE, allows the accept
body to be executed in the context of the caller task, if the acceptor task is
already waiting. By doing this optimization, we are able to eliminate task
context switches and dramatically improve rendezvous performance by
roughly 20%+.

This parameter would only need to be set to FALSE, for multiprocessor Ada,
where the accept body must execute in the acceptor task bound to a processor.

Caution is recommended when this option is enabled in multithreaded (LWPs)
environments. Acceptor tasks can run on LWPs or processors which require
special system resources. In this case, rendezvous code cannot be executed by
a task running on a different LWP or processor.

References
Fast Rendezvous Optimization, SET_FAST_RENDEZVOUS_ENABLED,
SPARCompiler Ada Runtime System Guide

WAIT_STACK_SIZE
For a fast rendezvous, the acceptor task saves its register context, switches to a
wait stack and waits. Eventually the caller task restores and uses the
acceptor’s saved register context. WAIT_STACK_SIZE specifies how big a
stack is needed for when the acceptor switches from its normal task stack to a
special stack it can use to call a kernel service to block itself. Note that if

A-22 SPARCompiler Ada Programmer’s Guide

A

FAST_RENDEZVOUS_ENABLED is set to FALSE, WAIT_STACK_SIZE is not
used. Setting WAIT_STACK_SIZE to zero also disables the fast rendezvous
optimization.

ZERO_STACKS_ENABLED
At startup all the memory to be used for task stacks is zeroed. However, if
tasks are dynamically terminated and recreated, the stack area for
subsequently created tasks is no longer zeroed. This can lead to erroneous
stack usage information displayed by the debugger’s lt use command.

ZERO_STACKS_ENABLED is set to TRUE to guarantee that at task create its
stack area is zeroed. Since it takes extra time to zero the stack area,
ZERO_STACKS_ENABLED is normally only set to TRUE when used in
conjunction with lt use for dynamically created tasks.

A.3.11 #c5b: FLOATING_POINT Configuration Parameters

FLOATING_POINT_SUPPORT
If any task executes a floating point instruction, FLOATING_POINT_SUPPORT
should be set to V_ADA_INFO.FP_NATIVE. Otherwise, to reduce task context
switch times, it can be set to V_ADA_INFO.FP_SOFTWARE.

FLOATING_POINT_CONTROL
FLOATING_POINT_CONTROLspecifies the initial value for the FSR register of
the FPU. This structure and its subcomponents are declared in
package V_I_TYPES found in the standard directory of the release.

The field of the components and their initial values are specified in
package V_USR_CONF found in the usr_conf directory of the release.

The default value for this structure is as follows: zero-divide and overflow
exceptions are unmasked, the rounding precision is “to nearest” and the
rounding mode is “extended.”

User Library Configuration A-23

A

A.3.12 #c5c:Heap Memory Callout Configuration Parameters

These parameters are used by the default memory allocation strategy. When
the user program executes an allocator, the allocated object uses up memory
from the heap.

HEAP_MAX
HEAP_MAX sets the maximum size of the heap. This value is used to limit the
program’s heap area by calling the host OS services getrlimit/setrlimit .
Currently, it can be increased to 512 MB.

HEAP_MAX => 32 * 1024 * 1024,

HEAP_EXTEND
HEAP_EXTEND defines the minimum number of storage units requested from
GET_HEAP_MEMORY_CALLOUT if the allocator’s memory is exhausted.

References
“#c6: V_GET_HEAP_MEMORY routine” on page A-32

GET_HEAP_MEMORY_CALLOUT
GET_HEAP_MEMORY_CALLOUT specifies the address of the routine to be called
when more memory is needed for new allocations.

The default value for GET_HEAP_MEMORY_CALLOUT is
V_GET_HEAP_MEMORY’address.

A.3.13 #c5d: Memory Allocation Configuration Table

MEM_ALLOC_CONF_TABLE_ADDRESS
MEM_ALLOC_CONF_TABLE_ADDRESS points to the memory allocation table
containing parameters specific to the particular allocation routines being used.
If you write your own allocation routines, you can point this address to your
own configuration table.

A-24 SPARCompiler Ada Programmer’s Guide

A

References
allocator, ADA LRM 4.8

 memory allocation configuration table, “#c2: MEM_ALLOC_CONF_TABLE
Structure” on page A-11

A.3.14 #c5e: TASKDEB CONFIGURATION Structure

TASKDEB_CONFIG_ADDRESS
TASKDEB_CONFIG_ADDRESS points to the task level debugging configuration
table. To remove task level debugging from the configuration, assign
TASKDEB_CONFIG_ADDRESS to NO_ADDR and compleelty remove the taskdeb
configuration record from this package.

References
“#c3: TASKDEB CONFIGURATION structure” on page A-13

A.3.15 #c5f: Host OS Signal Configuration Parameters

The parameters discussed in this section control signals from the operating
system.

DISABLE_SIGNALS_MASK
DISABLE_SIGNALS_MASK is the mask used in the kernel when signals 1..32
are disabled. The kernel does not support nested asynchronous signals. The
default value is ADA_KRN_DEFS.DISABLE_MASK. You are cautioned against
enabling additional signals.

DISABLE_SIGNALS_33_64_MASK
DISABLE_SIGNALS_33_64_MASK is the mask used in the kernel when signals
33..64 are disabled. The default value is
ADA_KRN_DEFS.DISABLE_33_64_MASK. You are cautioned against enabling
additional signals.

User Library Configuration A-25

A

NUMERIC_SIGNAL_ENABLED
If NUMERIC_SIGNAL_ENABLED is TRUE, the Ada program uses the host OS
SIGFPE signal to catch numeric errors. If FALSE, numeric errors are not
caught as per the Ada LRM and the Ada program does not affect SIGFPE.
This is useful when calling foreign packages that use or ignore SIGFPE.

References
numeric errors, ADA LRM 11.1

STORAGE_SIGNAL_ENABLED
If STORAGE_SIGNAL_ENABLED is TRUE, the Ada program uses the host OS
SIGSEGV signal to catch storage errors. If it is FALSE, storage errors are not
caught as per the Ada LRM and the Ada program does not affect SIGSEGV
This is useful when calling foreign packages that use or ignore SIGSEGV.

References
storage errors, ADA LRM 11.1

A.3.16 #c5g: Time Slice Configuration Parameters - VADS Threaded Ada

Time slice configuration parameters are used to turn time slicing on or off, to
set the time slice interval and to set the time slicing priority.

Caution – The time slice configuration parameters are only valid if using
VADS MICRO.

TIME_SLICING_ENABLED
TIME_SLICING_ENABLED is set to TRUE to enable time slicing and to FALSE
to prevent time slicing.

TIME_SLICE_INTERVAL
Each task in the system is started with a TIME_SLICE_INTERVAL time in its
time slice. This is the amount of time it runs before it is pre-empted to see if
there are any equal priority tasks also ready to run.

The default timeslice interval is 1.0 seconds.

!

A-26 SPARCompiler Ada Programmer’s Guide

A

TIME_SLICE_PRIORITY
TIME_SLICING_PRIORITY specifies the maximum task priority to which time
slicing applies. This way, normal tasks can be time sliced, but high priority
tasks execute until they give up the processor (or until an even higher priority
task becomes ready).

All tasks whose priority is less than or equal to TIME_SLICING_PRIORITY
are time sliced.

A.3.17 #c5h: Attributes Configuration Parameters

When an Ada task is created, attributes for initializing the task are passed to
the underlying microkernel. The attributes configuration parameters contain
the default task attributes and the attributes .for the main, signal and interrupt
tasks.

The Ada tasking, memory allocation and I/O routines use mutexes to protect
their data structures. When an Ada task needs to block it waits on a condition
variable. The attributes configuration parameters are used to initialize the
mutex and condition variable objects implicitly created by the Ada RTS
routines. Fin more details about a mutex or condition variable object in Ada
Kernel on page ..

In general you should be able to use the default mutex and condition variable
attributes. Here’s what you get if you stick with the default.

For single processor Ada: a mutex initialized using the default mutex
attributes, locks the mutex by executing a test-and-set instruction and does
FIFO waiting when the mutex is locked by another task. In the CIFO optional
product, the default changes to priority inheritance waiting when
pragma SET_PRIORITY_INHERITANCE_CRITERIA appears in the main
procedure.

For Solaris MT Ada: a mutex initialized using the default mutex attributes,
locks the mutex by executing a test-and-set instruction and does priority
waiting when the mutex is locked by another task.

For single processor Ada: a condition variable initialized using the default
condition variable attributes, does FIFO waiting. In the CIFO optional
product, the default changes to priority waiting when
pragma SET_PRIORITY_INHERITANCE_CRITERIA appears in the main
procedure.

User Library Configuration A-27

A

For Solaris MT Ada: a condition variable initialized using the default mutex
attributes does priority waiting.

Now, a few words about each of the attributes configuration parameters.

DEFAULT_TASK_ATTRIBUTES
DEFAULT_TASK_ATTRIBUTES specifies the default task attributes to be passed
to the underlying microkernel at the creation of an Ada task.

The microkernel dependent task attributes record, TASK_ATTR_T, is defined in
the package ada_krn_defs.a , located in the standard Ada library. Each
field in the TASK_ATTR_T record is introduced below:

The prio field in the default task attributes isn’t used. The default task
priority is 0. This can be overridden by using either pragma PRIORITY() or
pragma TASK_ATTRIBUTES() on a per task or task type basis.

For single processor Ada: in the CIFO optional product, the
sporadic_attr_address field can be updated with the address of an
ADA_KRN_DEFS.SPORADIC_ATTR_T record to default all Ada tasks to being
sporadic. However, the main task can’t be sporadic. Unless you are doing
something weird, this field should remain as NO_ADDR. Why would you want
to default all tasks to being sporadic?

For Solaris MT Ada: the flags field contains the value for the ”flags” argument
passed to the Solaris Threads THR_CREATE() service. Two flags attributes
might be set: OS_THREAD.THR_BOUND and/or OS_THREAD.THR_NEW_LWP. All
threads created for Ada tasks are started with THR_SUSPENDED and
THR_DETACHED set.

The mutex_attr_address field contains the address of the default mutex
attributes to be used to initialize the mutex object implicitly created for each
task. This mutex is used to protect the task’s data structure. For example, the
task’s mutex is locked when another task attempts to rendezvous with it.

mutex_attr_address should be set to NO_ADDR to use the default mutex
attributes. Otherwise, it should be set to the address of an
ADA_KRN_DEFS.MUTEX_ATTR_T record initialized in
V_USR_CONF.V_INIT_ATTR() .

If the mutex_attr_address field is set to NO_ADDR in the TASK_ATTR_T
record referenced in pragma TASK_ATTRIBUTES() , the
DEFAULT_TASK_ATTRIBUTE’s mutex_attr_address is used.

A-28 SPARCompiler Ada Programmer’s Guide

A

The cond_attr_address field contains the address of the default condition
variables attributes to be used to initialize the condition variable object
implicitly created for each task. When the task blocks, it waits on this condition
variable.

cond_attr_address should be set to NO_ADDR to use the default condition
variable attributes. Otherwise, it should be set to the address of an
ADA_KRN_DEFS.COND_ATTR_T record initialized in
V_USR_CONF.V_INIT_ATTR() .

If the cond_attr_address field is set to NO_ADDR in the TASK_ATTR_T
record referenced in pragma TASK_ATTRIBUTES() , the
DEFAULT_TASK_ATTRIBUTE’s cond_attr_address is used.

MAIN_TASK_ATTR_ADDRESS
MAIN_TASK_ATTR_ADDRESS points to the task attributes to be used for the
main task. Set MAIN_TASK_ATTR_ADDRESS to NO_ADDR to use the above
default task attributes. Otherwise, set it to the address of an
ADA_KRN_DEFS.TASK_ATTR_T record initialized in
V_USR_CONF.V_INIT_ATTR() .

The prio field in the main task attributes isn’t used. The default priority for
the main task is 0. This can be overridden by using pragma PRIORITY() in
the main procedure.

For single processor Ada: in the CIFO optional product, the
sporadic_attr_address field in the main task attributes isn’t used. The
main task can’t be sporadic.

SIGNAL_TASK_ATTR_ADDRESS
SIGNAL_TASK_ATTR_ADDRESS points to the task attributes to be used for the
tasks created to rendezvous with interrupt entries. Set
SIGNAL_TASK_ATTR_ADDRESS to NO_ADDR to use the above default task
attributes. Otherwise, set it to the address of an
ADA_KRN_DEFS.TASK_ATTR_T record initialized in
V_USR_CONF.V_INIT_ATTR() .

The prio field in the SIGNAL_TASK attributes is not used. The priority of a
SIGNAL TASK defaults to the priority of the attached task containing the
interrupt entry. This priority is overridden by using the new style of an

User Library Configuration A-29

A

interrupt entry which contains the address of an
ADA_KRN_DEFS.INTR_ENTRY_T record. The INTR_ENTRY_T record has the
prio field.

INTR_TASK_ATTR_ADDRESS
For Solaris MT Ada: INTR_TASK_ATTR_ADDRESS points to the task attributes
to be used for the interrupt tasks created to do an OS_SIGNAL sigwait for
attached signals. Set INTR_TASK_ATTR_ADDRESS to NO_ADDR to use the
above default task attributes. Otherwise, set it to the address of an
ADA_KRN_DEFS.TASK_ATTR_T record initialized in
V_USR_CONF.V_INIT_ATTR() .

The prio field in the signal task attributes is not used. Instead, the
configuration table’s INTR_TASK_PRIO is used.

MASTERS_MUTEX_ATTR_ADDRESS
MASTERS_MUTEX_ATTR_ADDRESS points to the mutex attributes to be used to
initialize the Ada kernel’s master mutex. Set
MASTERS_MUTEX_ATTR_ADDRESS to NO_ADDR to use the default mutex
attributes. Otherwise, set it to the address of an
ADA_KRN_DEFS.MUTEX_ATTR_T record initialized in
V_USR_CONF.V_INIT_ATTR() .

MEM_ALLOC_MUTEX_ATTR_ADDRESS
MEM_ALLOC_MUTEX_ATTR_ADDRESS points to the mutex attributes to be used
to initialize the mutexes used for mutual exclusion during memory allocation.
Set MEM_ALLOC_MUTEX_ATTR_ADDRESS to NO_ADDR to use the default mutex
attributes. Otherwise, set it to the address of an
ADA_KRN_DEFS.MUTEX_ATTR_T record initialized in
V_USR_CONF.V_INIT_ATTR() .

ADA_IO_MUTEX_ATTR_ADDRESS
ADA_IO_MUTEX_ATTR_ADDRESS points to the mutex attributes to be used to
initialize the mutexes used for mutual exclusion during Ada I/O operations.
Set ADA_IO_MUTEX_ATTR_ADDRESS to NO_ADDR to use the default mutex
attributes. Otherwise, set it to the address of an
ADA_KRN_DEFS.MUTEX_ATTR_T record initialized in
V_USR_CONF.V_INIT_ATTR() .

A-30 SPARCompiler Ada Programmer’s Guide

A

A.3.18 #c5i: Miscellaneous Configuration Parameters

OLD_STYLE_MAX_INTR_ENTRY
In the current Ada RTS, the interrupt entry address clause points to an
INTR_ENTRY_T record defined in ADA_KRN_DEFS. The INTR_ENTRY_T
record contains two fields: the interrupt vector and the task priority for
executing the interrupt entry’s accept body. In earlier SC Ada releases, the
address clause specified the interrupt vector.

OLD_STYLE_MAX_INTR_ENTRY is provided for backwards compatibility. If
the value in the address clause is <= OLD_STYLE_MAX_INTR_ENTRY it
contains the interrupt vector value and not a pointer to the
ADA_KRN_DEFS.INTR_ENTRY_Trecord. Setting
OLD_STYLE_MAX_INTR_ENTRY to 0 disables the old way of interpretation.

The default value is MEMORY_ADDRESS(511).

TASK_STORAGE_SIZE
TASK_STORAGE_SIZE specifies the size in bytes of the area set aside in the
task control block for user storage. The VADS EXEC services,
ALLOCATE_TASK_STORAGE, GET_TASK_STORAGE and
GET_TASK_STORAGE2 manage this area in the task control block.

Caution – TASK_STORAGE_SIZE is only valid if using VADS MICRO.

PENDING_COUNT
PENDING_COUNT specifies the maximum number of kernel service requests
from a signal handler (or nested signal handler) held pending until the
outermost signal handler completes. When the outermost signal handler
completes, the kernel processes the queue of pending requests.

Caution – PENDING_COUNT is only valid if using VADS MICRO.

!

!

User Library Configuration A-31

A

TIMER_MIN_DELAY
TIMER_MIN_DELAY specifies the minimum duration for an Ada delay.
Normally, TIMER_MIN_DELAY is set to the host’s time between ticks. If the
host kernel is configured to use a faster timer, TIMER_MIN_DELAY can be
decreased accordingly. Absolute minimum is 0.000100 (100 microseconds).
The default is 0.0100.

TIMER_ADJUSTMENT
TIMER_ADJUSTMENT has been added to all timer delay requests. On some
hosts, the SETITIMER service generates a SIGALRM before the time interval
has expired. This may happen when the host’s timer generates an interrupt for
each tick. If we receive a premature SIGALRM, the setitimer/SIGALRM
sequence is repeated.

If an adjustment is necessary, TIMER_ADJUSTMENT is normally set to the
host’s time between ticks. If you are willing to tolerate an occasional
premature SIGALRM, TIMER_ADJUSTMENT can be set to 0.0. The default is
0.0200.

In earlier SC Ada releases, the user wasn’t able to modify the above
parameters. TIMER_MIN_DELAY was set to 0.01 and TIMER_ADJUSTMENT was
set to 0.02. Therefore, the minimum delay was 0.03 and not 0.01. In addition,
the above change allows the user to configure the kernel to use its fast timer (if
available) and to have a smaller minimum Ada delay.

TRACEBACK_REGS
TRACEBACK_REGS causes the runtime system to save the traceback registers
every time an exception is raised. If the exception is unhandled, the runtime
prints the pc of the instruction raising the exception, in addition to printing the
name of the exception. The default is FALSE.

A-32 SPARCompiler Ada Programmer’s Guide

A

A.3.19 #c6: V_GET_HEAP_MEMORY routine
procedure V_GET_HEAP_MEMORY(alloc_size: in out alloc_t;
 alloc_address: out address);

V_GET_HEAP_MEMORY is the default routine called to get more memory for
new allocations by the allocator (SLIM_MALLOC, FAT_MALLOC or
DBG_MALLOC). ALLOC_SIZE indicates the minimum number of storage units
needed. It is updated with the actual number of storage units obtained.
ALLOC_ADDRESS is updated with the starting address of the heap memory
obtained.

This procedure calls the Ada Kernel service, ADA_KRN_I.ALLOC, to get more
memory .

The address of this routine should be assigned to the parameter
GET_HEAP_MEMORY_CALLOUT in the configuration table.

User Library Configuration A-33

A

A.3.20 #c7: V_PASSIVE_ISR Routine
procedure V_PASSIVE_ISR(i: v_i_pass.isr_header_ref);
 pragma external_name(V_PASSIVE_ISR, “PT_ISR”);

When an interrupt entry (Ada LRM, 13.5.1) is declared in a passive task, the
compiler generates an ISR that looks like this:

<<INTERRUPT_ENTRY_ISR>>
 PUSH pas_header’address
 CALL V_PASSIVE_ISR

During elaboration of the task specification, the starting address of this
generated ISR is passed to the kernel using the Ada Kernel’s ISR_ATTACH
service. When a signal occurs for this vector (specified by the address clause in
the interrupt entry), the operating system vectors to the generated signal
handler which calls V_PASSIVE_ISR .

The pas_header is a data structure built by the compiler. There is one pas_header
per passive interrupt entry. The type that describes this header data structure
is in the file SCAda_location /self/standard/v_i_pass.a . The name of
the type is V_I_PASS.ISR_HEADER.

V_PASSIVE_ISR is called for all passive task interrupt entries.
V_PASSIVE_ISR resides in the configuration part of the user library, making it
accessible if modification is required for application-specific processing prior to
calling the interrupt entry.

A-34 SPARCompiler Ada Programmer’s Guide

A

A.3.21 #c8: V_SIGNAL_ISR Routine
procedure V_SIGNAL_ISR(i: v_i_sig.isr_header_ref);
pragma external_name(V_SIGNAL_ISR, ”SIGNAL_ISR”);

When an interrupt entry (Ada LRM, 13.5.1) is declared in a non-passive task,
the compiler generates a signal handler that looks like this:

<<INTERRUPT_ENTRY_ISR>>
 PUSH sig_header’address
 CALL V_SIGNAL_ISR

During elaboration of the task specification, the starting address of this
compiler generated signal handler is attached to the corresponding host OS
signal using the Ada Kernel’s ISR_ATTACH service. When an operating
system signal occurs for this vector (specified by the address clause in the
interrupt entry), the host OS vectors to the generated ISR which calls
V_SIGNAL_ISR as shown.

The sig_header is a data structure built by the compiler. There is one
sig_header per non-passive interrupt entry. The type that describes this
header data structure is in the file
SCAda_location /self/standard/v_i_sig.a . The name of the type is
V_I_SIG.ISR_HEADER .

Also during elaboration, a call to the Ada tasking CREATE_SIGNALcreates an
additional runtime semaphore and task to associate with this interrupt entry.
V_SIGNAL_ISR signals this semaphore to invoke the task’s interrupt entry.

V_SIGNAL_ISR is called for all non-passive task interrupt entries.
V_SIGNAL_ISR resides in the configuration part of the user library, making it
accessible if modification is required for application-specific processing prior to
calling the interrupt entry.

User Library Configuration A-35

A

A.3.22 #c9: V_CIFO_ISR Routine
procedure V_CIFO_ISR(i: v_i_cifo.cifo_isr_header_ref);
pragma external_name(V_CIFO_ISR, ”V_CIFO_ISR”);

When an interrupt entry (Ada LRM, 13.5.1) is declared in a CIFO interrupt task
(a task whose specification contains pragma INTERRUPT_TASK(KIND =>
SIMPLE)), the compiler generates an ISR that looks like this:

<<INTERRUPT_ENTRY_ISR>>
PUSH cifo_header’address
CALL V_CIFO_ISR

During elaboration of the task specification, the starting address of this
generated ISR is passed to the kernel using the Ada Kernel’s ISR_ATTACH
service. When a signal occurs for this vector (specified by the address clause in
the interrupt entry), the operating system vectors to the generated signal
handler which calls V_CIFO_ISR .

The CIFO_HEADER is a data structure built by the compiler. There is one
CIFO_HEADER per CIFO interrupt entry. (A CIFO interrupt task is restricted to
having a single interrupt entry.) The type that describes this header data
structure is in the file SCAda_location /self/standard/v_i_cifo.a .
The name of the type is V_I_CIFO.CIFO_ISR_HEADER .

V_CIFO_ISR is called for all CIFO interrupt entries. V_CIFO_ISR resides in
the configuration part of the user library, making it accessible if modification is
required for application-specific processing before the interrupt entry’s accept
body is called as a normal Ada procedure.

 Check the CIFO documentation for the restrictions imposed on an interrupt
task.

A-36 SPARCompiler Ada Programmer’s Guide

A

A.3.23 #c10: V_PENDING_OVERFLOW_CALLOUT Routine
procedure V_PENDING_OVERFLOW_CALLOUT;
pragma external_name(V_PENDING_OVERFLOW_CALLOUT,
”V_PENDING_OVERFLOW_CALLOUT”);

V_PENDING_OVERFLOW_CALLOUT is the routine called when an ISR (signal
handler) calls a kernel service and the queue of pending requests is full.

The default action for a pending kernel service request queue overflow is to
print a diagnostic message and then exit.

Caution – V_PENDING_OVERFLOW_CALLOUT is valid only if using
VADS MICRO.!

User Library Configuration A-37

A

A.3.24 #c11: V_KRN_ALLOC_CALLOUT Routine
function V_KRN_ALLOC_CALLOUT(size: integer)
 return address;
pragma external_name(V_KRN_ALLOC_CALLOUT,
 ”V_KRN_ALLOC_CALLOUT”);

V_KRN_ALLOC_CALLOUT is the routine called when the microkernel needs
more memory from the OS.

The default action is to call OS_ALLOC.SBRK(SIZE) .

Caution – V_KRN_ALLOC_CALLOUT is valid only if using VADS MICRO.

!

A-38 SPARCompiler Ada Programmer’s Guide

A

A.3.25 #c12: V_START_PROGRAM
and V_START_PROGRAM_CONTINUE Routines

procedure V_START_PROGRAM;
pragma external_name(V_START_PROGRAM, ”__start”);

procedure v_START_PROGRAM_CONTINUE;
pragma external_name(V_START_PROGRAM_CONTINUE,
 ”__start_continue”);

V_START_PROGRAM is the default entry point into the the Ada program. The
EXTERNAL_NAME pragma associates this routine with the external symbol
__start , the default program entry point

For both single processor and multiprocessor Ada, V_START_PROGRAM calls
the initialization routines, V_USR_CONF.V_INIT_ATTR() and
V_USR_CONF.V_INIT_USR_DATA() . If you don’t use the default mutex or
condition variable attributes or the DEFAULT_TASK_ATTRIBUTES aren’t used
for the main or signal tasks, V_INIT_ATTR() needs to be changed to initialize
the MUTEX_ATTR, COND_ATTR or TASK_ATTR records referenced in the
configuration table. The easiest way to do this initialization is by calling one of
the ADA_KRN_DEFS attribute init routines. The default version of
V_INIT_ATTR has commented out examples showing how the attribute init
routines can be called.

V_INIT_USR_DATA() initializes the MAIN_PRAGMAS record passed to
TS_INITIALIZE . The default version of V_INIT_USR_DATA sets the fields in
the MAIN_PRAGMAS record with the values initialized by pragmas in the main
procedure. The main procedure can have the following pragmas:

pragma PRIORITY(prio: priority);
pragma SET_PRIORITY_INHERITANCE_CRITERIA;
pragma SET_GLOBAL_ENTRY_CRITERIA(to: queuing_discipline.discipline);
pragma SET_GLOBAL_SELECT_CRITERIA(to:
complex_discipline.select_criteria);

where, only pragma PRIORITY is valid when the CIFO optional product is
not used. If you want to override the pragmas, V_INIT_USR_DATA must be
changed.

If the VADS Threaded runtime is being used, the following actions are
completed.

User Library Configuration A-39

A

When V_START_PROGRAM completes its preliminary program initialization, it
calls TS_INITIALIZE . The address of V_START_PROGRAM_CONTINUE is
passed as a parameter to TS_INITIALIZE . When TS_INITIALIZE completes
its tasking initialization, it calls V_START_PROGRAM_CONTINUE.
V_START_PROGRAM_CONTINUE elaborates the user program’s packages and
executes the main program. TS_INITIALIZE returns back to
V_START_PROGRAM when the program is ready to exit.

If the Solaris MT runtime is being used, the following steps are taken by
V_START_PROGRAM and V_START_PROGRAM_CONTINUE.

Here are the steps of V_START_PROGRAM:

1. Gets arguments and UNIX environment, and saves them for later retrieval
by the user program.

2. Initializes Solaris Threads.

3. Initializes Solaris data and stack limits.

4. Initializes Ada specific tasking structures.

5. Jumps to V_START_PROGRAM_CONTINUE

Here are the steps of V_START_PROGRAM_CONTINUE:

1. Initializes memory allocator.

2. Initializes initial number of LWPs for multiprocessing.

3. Elaborates the user program’s packages and executes the main subprogram.

4. Calls the ADA_EXIT routine which does user program cleanup (such as
closing TEXT_IO files) and returns control to kernel.

Caution – Although this routine is included in the V_USR_CONF package, do
not modify it.!

A-40 SPARCompiler Ada Programmer’s Guide

A

B-1

Posix Conformance Document B

This POSIX.5-1990 Conformance Document describes those items specified in
the POSIX.5.1990 standard as implementation-defined that must be
documented in order for SC Ada to claim conformance to it.

This document applies to the IEEE Standard POSIX Ada Language Interfaces,
IEEE Standard 1003.5-1990, referred to herein as POSIX.5.

This conformance document has the same structure as the POSIX.5 Standard,
with information presented in the equivalently numbered sections, clauses and
subclauses. Only those sections, clauses or subclauses in POSIX.5 requiring
documentation for undefined or unspecified actions are included in this
conformance document.

The SC Ada implementation of POSIX.5.1990 relies on the existence of
POSIX.1.1990, or the IEEE Standard Portable Operating System Interface for
Computer Environments, on the system that POSIX.5 is to be installed on.
Therefore some of the values requiring documentation in POSIX.5 will be
determined by POSIX.1.

“Fast bind, fast find; A proverb never stale in thrifty
mind.”

William Shakespeare

B-2 SPARCompiler Ada Programmer’s Guide

B

B.1 Release Structure
The SC Ada implementation of POSIX.5 is located in the directory
SCAda_location /self/posix as shown in Figure 5-11.

Figure 5-10 Directory Structure

man

man3man1

self

usr_conf

vads_exec

xview

publiclib

profile_conf

standard

sup

help_filesdiag

SCAda_location

verdixlib

X11

examples

xview_examples

lib

man

man3

posixposix

bin

Posix Conformance Document B-3

B

Note – SCAda_location /self/posix must be on your ADAPATH to
compile and link with the POSIX library.

B.2 Terminology and General Requirements

2.2 Definitions

2.2.2 General Terms

2.2.2.5 Appropriate Privilege
A process with an effective user ID of zero (which is known as the super-
user’s user ID) has all appropriate privileges.

2.2.2.12 Character Special File
Please refer to the POSIX Conformance Document provided with POSIX.1.2.

2.2.2.28 File
See 5.2.1.1 for addition information about links.

2.2.2.31 File Group Class
No additional members of the file group class of a file are defined other than
those defined in POSIX.

2.2.2.57 Parent Process ID
After the lifetime of the creator has ended, the parent process ID is
POSIX_PROCESS_IDENTIFICATION.SYSTEM_PROCESS_ID. Refer to 4.1.

B-4 SPARCompiler Ada Programmer’s Guide

B

2.2.2.59 Pathname
Multiple consecutive slashes in a pathname are treated as equivalent to a single
slash. Multiple consecutive leading slashes in a pathname are treated in the
same manner as multiple slashes elsewhere in the pathname.

2.2.2.75 Read-Only File System
Files and directories on a read-only file system may only be read, not written to
or updated.

2.3 General Concepts

2.3.5 Extended Security Control

See Appropriate Privilege in 2.2.2.5 and File Access Permissions below.

2.3.6 File Access Permissions

No additional or alternate file access control mechanisms are provided.

2.3.9 File Times Update

No time-related fields are defined other than those defined in POSIX.5. Fields
“marked for update” are immediately updated.

Posix Conformance Document B-5

B

2.4 package POSIX

 package POSIX is
 -- Symbolic subtypes and constants
 -- Optional Facilities
 subtype Job_Control_Support is Boolean range
 FALSE .. TRUE;
 subtype Saved_IDs_Support is Boolean range
 FALSE .. TRUE;
 subtype Change_Owner_Restriction is Boolean range
 FALSE .. TRUE;
 subtype Filename_Truncation is Boolean range
 FALSE .. TRUE;
 System_POSIX_Version : constant := 1993_09;
 POSIX_Ada_Version : constant := 1992_06;
 -- I/O Count
 type IO_Count is new INTEGER
 range 0..INTEGER’last;
 subtype IO_Count_Maxima is IO_Count range 32767..IO_Count’Last;
 -- System Limits
 Portable_Groups_Maximum : constant Natural := 0;
 subtype Groups_Maxima is Natural
 range 0 .. Natural’Last;
 Portable_Argument_List_Maximum : constant Natural := 4096;
 subtype Argument_List_Maxima is Natural
 range 4_096 .. Natural’Last;
 Portable_Child_Processes_Maximum : constant Natural := 6;
 subtype Child_Processes_Maxima is Natural
 range 6 .. Natural’Last;
 Portable_Open_Files_Maximum : constant Natural := 16;
 subtype Open_Files_Maxima is Natural
 range 16 .. Natural’Last;
 Portable_Stream_Maximum : constant Natural := 8;
 subtype Stream_Maxima is Natural
 range 8 .. Natural’last;
 Portable_Time_Zone_String_Maximum : constant Natural := 3;
 subtype Time_Zone_String_Maxima is Natural
 range 3 .. Natural’last;
 -- Pathname Variable Values
 Portable_Link_Limit_Maximum : constant Natural := 8;
 subtype Link_Limit_Maxima is Natural
 range 8 .. Natural’Last;

B-6 SPARCompiler Ada Programmer’s Guide

B

 Portable_Input_Line_Limit_Maximum : constant IO_Count := 255;
 subtype Input_Line_Limit_Maxima is IO_Count
 range 255 .. IO_Count’Last;
 Portable_Input_Queue_Limit_Maximum : constant IO_Count := 255;
 subtype Input_Queue_Limit_Maxima is IO_Count
 range 255 .. IO_Count’Last;
 Portable_Filename_Limit_Maximum : constant Natural := 14;
 subtype Filename_Limit_Maxima is Natural
 range 14 .. Natural’Last;
 Portable_Pathname_Limit_Maximum : constant Natural := 255;
 subtype Pathname_Limit_Maxima is Natural
 range 255 .. Natural’Last;
 Portable_Pipe_Limit_Maximum : constant IO_Count := 512;
 subtype Pipe_Limit_Maxima is IO_Count
 range 512 .. IO_Count’Last;
 -- Blocking Behavior Values
 type Blocking_Behavior is (Tasks, Program);
 subtype Text_IO_Blocking_Behavior is Blocking_Behavior
 range Program .. Program;
 IO_Blocking_Behavior : constant Blocking_Behavior
 := Program;
 File_Lock_Blocking_Behavior : constant Blocking_Behavior
 := Program;
 Wait_For_Child_Blocking_Behavior : constant Blocking_Behavior
 := Program;
 -- Signal Masking
 type Signal_Masking is (No_Signals, RTS_Signals, All_Signals);
 -- Characters and Strings
 type POSIX_Character is
 new Standard.Character; -- really should include hi-bit chars!
 for POSIX_Character’size use 8;
 -- (
 -- -- ’ ’,’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,
 -- -- ’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’,’K’,’L’,’M’,
 -- -- ’N’,’O’,’P’,’Q’,’R’,’S’,’T’,’U’,’V’,’W’,’X’,’Y’,’Z’,
 -- -- ’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,
 -- -- ’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’,
 -- -- ’.’,’_’,’-’,’/’,’”’, ’#’, ’&’, ’’’, ’(’, ’)’,
 -- -- ’*’, ’+’, ’,’, ’:’, ’;’, ’<’, ’=’, ’>’, ’|’
 -- <other characters are implementation defined>);
 type POSIX_String is array (Positive range <>) of POSIX_Character;
 function To_POSIX_String (Str : string)
 return POSIX_String;
 function To_String (Str : POSIX_String)

(Continued)

Posix Conformance Document B-7

B

 return string;
 subtype Filename is POSIX_String;
 subtype Pathname is POSIX_String;

 function Is_Filename (Str : POSIX_String)
 return Boolean;
 function Is_Pathname (Str : POSIX_String)
 return Boolean;
 function Is_Portable_Filename (Str : POSIX_String)
 return Boolean;
 function Is_Portable_Pathname (Str : POSIX_String)
 return Boolean;
 -- String Lists
 type POSIX_String_List is limited private;
 Empty_String_List : constant POSIX_String_List;
 procedure Make_Empty (List : in out POSIX_String_List);
 procedure Append (List : in out POSIX_String_List;
 Str : in POSIX_String);
 generic
 with procedure Action
 (Item : in POSIX_String;
 Quit : in out Boolean);
 procedure For_Every_Item (List : in POSIX_String_List);
 function Length (List : POSIX_String_List)
 return Natural;
 function Value
 (List : POSIX_String_List;
 Index : Positive)
 return POSIX_String;
 -- option sets
 type Option_Set is private;
 function Empty_Set
 return Option_Set;
 function ”+” (L, R : Option_Set)
 return Option_Set;
 function ”-” (L, R : Option_Set)
 return Option_Set;
 -- Exceptions and error codes
 POSIX_Error: exception;
 type Error_Code is new Integer;
 function Get_Error_Code
 return Error_Code;
 procedure Set_Error_Code (Error: in Error_Code);

(Continued)

B-8 SPARCompiler Ada Programmer’s Guide

B

 function Is_POSIX_Error (Error: Error_Code)
 return Boolean;

 function Image (Error: Error_Code)
 return String;
 No_Error : constant Error_Code
 := 0; -- EOK
 Argument_List_Too_Long : constant Error_Code
 := 7; -- E2BIG
 Bad_File_Descriptor : constant Error_Code
 := 9; -- EBADF
 Broken_Pipe : constant Error_Code
 := 32; -- EPIPE
 Directory_Not_Empty : constant Error_Code
 := 93; -- ENOTEMPTY
 Exec_Format_Error : constant Error_Code
 := 8; -- ENOEXEC
 File_Exists : constant Error_Code
 := 17; -- EEXIST
 File_Too_Large : constant Error_Code
 := 27; -- EFBIG
 Filename_Too_Long : constant Error_Code
 := 78; -- ENAMETOOLONG
 Improper_Link : constant Error_Code
 := 18; -- EXDEV
 Inappropriate_IO_Control_Operation : constant Error_Code
 := 25; -- ENOTTY
 Input_Output_Error : constant Error_Code
 := 5; -- EIO
 Interrupted_Operation : constant Error_Code
 := 4; -- EINTR
 Invalid_Argument : constant Error_Code
 := 22; -- EINVAL
 Invalid_Seek : constant Error_Code
 := 29; -- ESPIPE
 Is_A_Directory : constant Error_Code
 := 21; -- EISDIR
 No_Child_Process : constant Error_Code
 := 10; -- ECHILD
 No_Locks_Available : constant Error_Code
 := 46; -- ENOLCK
 No_Space_Left_On_Device : constant Error_Code
 := 28; -- ENOSPC

(Continued)

Posix Conformance Document B-9

B

 No_Such_Operation_On_Device : constant Error_Code
 := 19; -- ENODEV
 No_Such_Device_Or_Address : constant Error_Code
 := 6; -- ENXIO
 No_Such_File_Or_Directory : constant Error_Code
 := 2; -- ENOENT
 No_Such_Process : constant Error_Code
 := 3; -- ESRCH
 Not_A_Directory : constant Error_Code
 := 20; -- ENOTDIR
 Not_Enough_Space : constant Error_Code
 := 12; -- ENOMEM
 Operation_Not_Implemented : constant Error_Code
 := 89; -- ENOSYS
 Operation_Not_Permitted : constant Error_Code
 := 1; -- EPERM
 Permission_Denied : constant Error_Code
 := 13; -- EACCES
 Read_Only_File_System : constant Error_Code
 := 30; -- EROFS
 Resource_Busy : constant Error_Code
 := 16; -- EBUSY
 Resource_Deadlock_Avoided : constant Error_Code
 := 45; -- EDEADLK
 Resource_Temporarily_Unavailable : constant Error_Code
 := 11; -- EAGAIN
 Too_Many_Links : constant Error_Code
 := 31; -- EMLINK
 Too_Many_Open_Files : constant Error_Code
 := 24; -- EMFILE
 Too_Many_Open_Files_In_System : constant Error_Code
 := 23; -- ENFILE
 -- System Identification
 function System_Name
 return POSIX_String;
 function Node_Name
 return POSIX_String;
 function Release
 return POSIX_String;
 function Version
 return POSIX_String;
 function Machine
 return POSIX_String;
 private

(Continued)

B-10 SPARCompiler Ada Programmer’s Guide

B

Figure 5-11 package POSIX

2.4.1.1 Optional Facilities
The user can call the function in POSIX_CONFIGURABLE_FILE_LIMITS or
POSIX_CONFIGURABLE_SYSTEM_LIMITS to determine if the option is
supported. (See 2.4 for subtype ranges.)

2.4.1.2 System Limits
The user can call the function in POSIX_CONFIGURABLE_FILE_LIMITS or
POSIX_CONFIGURABLE_SYSTEM_LIMITS to determine a limit or the
existence of a limit. (See 2.4 for ranges and constants.)

2.4.1.6 Implementation Requirements
This implementation allows programs with

• At least 0 (PORTABLE_GROUPS_MAXIMUM) simultaneous supplementary
group IDs.

• At least 4096 (PORTABLE_ARGUMENT_LIST_MAXIMUM)
POSIX_CHARACTERS as the length of the argument list, environment data
and their overhead.

 type string_ptr is access POSIX_String;
 type list_elem is
 record
 next : POSIX_String_List;
 current : string_ptr;
 end record;

 type POSIX_String_List is access list_elem;
 Empty_String_List : constant POSIX_String_List
 := null;

type opt_set_array is array(0..31) of boolean;
 for opt_set_array’size use integer’size;
 type Option_Set is

record
opt_set : opt_set_array := (others => false);
end record;

 end POSIX;

(Continued)

Posix Conformance Document B-11

B

• At least 6 (PORTABLE_CHILD_PROCESS_MAXIMUM) as the number of
simultaneous processes per real user ID.

• At least 16 (PORTABLE_OPEN_FILES_MAXIMUM) as the number of
simultaneously open files per process.

• At least 8 (PORTABLE_LINK_LIMIT_MAXIMUM) as the value of the link
count of a file.

• At least 255 (PORTABLE_INPUT_LINE_LIMIT_MAXIMUM)
POSIX_CHARACTERS as the length of an input line.

• At least 255 (PORTABLE_INPUT_QUEUE_LIMIT_MAXIMUM)
POSIX_CHARACTERS as the length of a terminal input queue.

• At least 14 (PORTABLE_FILENAME_LIMIT_MAXIMUM) POSIX_CHARACTERS
as the length of a filename.

• At least 255 (PORTABLE_PATHNAME_LIMIT_MAXIMUM)
POSIX_CHARACTERS as the length of a pathname.

• At least 512 (PORTABLE_PIPE_LIMIT_MAXIMUM) POSIX_CHARACTERS as
the size of an atomic write to a pipe.

• At least 3 (PORTABLE_TIME_ZONE_STRING_MAXIMUM)
POSIX_CHARACTERS as the size of the TZ environment variable.

• At least 8 (PORTABLE_STREAM_MAXIMUM) open C-language streams.

2.4.4 Error Codes and Exceptions

No additional error codes have been defined by this implementation. (See 2.4
for ERROR_CODE constants).

2.4.4.2 Description
If ERROR is the value of one of the error codes defined by POSIX, the value
returned by Image is the identifier of the corresponding constant, in uppercase.
Otherwise, ERROR_CODE’imageis returned.

B-12 SPARCompiler Ada Programmer’s Guide

B

B.3 Process Primitives

3.1 package POSIX_PROCESS_PRIMITIVES

3.1.2 Process Creation

If the environment variable PATH is not present when
START_PROCESS_SEARCH is called, the search is conducted as if the PATH
variable has the value of :.:/bin/:/usr/bin as the default.

If START_PROCESS or START_PROCESS_SEARCH fail, but were able to locate
the new process image file, refer to the POSIX Conformance Document for
POSIX 1003.1 for expected behavior.

3.2 package POSIX_UNSAFE_PROCESS_PRIMITIVES

3.2.2 File Execution

If the environment variable for pathname is not defined,
START_PROCESS_SEARCH uses the current working directory, /bin and
/usr/bin as the default.

Posix Conformance Document B-13

B

3.3 package POSIX_SIGNALS

with POSIX,
 POSIX_Process_Identification;
with System;
with os_decl;
package POSIX_Signals is

-- Signal Type
type Signal is new integer;
function Image(Sig: Signal)
return String;
function Value(Str: String)
return Signal;

 -- Standard Signals (required)
 Signal_Null, SIGNULL : constant Signal
 := 0;
 Signal_Abort, SIGABRT : constant Signal
 := 6;
 Signal_Alarm, SIGALRM : constant Signal
 := 14;
 Signal_Floating_Point_Error,
 SIGFPE : constant Signal
 := 8;
 Signal_Hangup, SIGHUP : constant Signal
 := 1;
 Signal_Illegal_Instruction,
 SIGILL : constant Signal
 := 4;
 Signal_Interrupt, SIGINT : constant Signal
 := 2;
 Signal_Kill, SIGKILL : constant Signal
 := 9;
 Signal_Pipe_Write, SIGPIPE : constant Signal
 := 13;
 Signal_Quit, SIGQUIT : constant Signal
 := 3;
 Signal_Segmentation_Violation,
 SIGSEGV : constant Signal
 := 11;
 Signal_Terminate, SIGTERM : constant Signal
 := 15;
 Signal_User_1, SIGUSR1 : constant Signal

B-14 SPARCompiler Ada Programmer’s Guide

B

 := 16;
 Signal_User_2, SIGUSR2 : constant Signal
 := 17;
 -- Standard Signals (job control)
 Signal_Child, SIGCHLD : constant Signal
 := 18;
 Signal_Continue, SIGCONT : constant Signal
 := 25;
 Signal_Stop, SIGSTOP : constant Signal
 := 23;
 Signal_Terminal_Stop, SIGTSTP : constant Signal
 := 24;
 Signal_Terminal_Input,
 SIGTTIN : constant Signal
 := 26;
 Signal_Terminal_Output,
 SIGTTOU : constant Signal
 := 27;
 -- Signal Handler References
 Signal_Abort_Ref : constant System.Address
 := System.address’ref(SIGABRT);
 -- Signal_Alarm intentionally omitted.
 -- Signal_Floating_Point_Error intentionally omitted.
 Signal_Hangup_Ref : constant System.Address
 := System.address’ref(SIGHUP);
 -- Signal_Illegal_Instruction intentionally omitted.
 Signal_Interrupt_Ref : constant System.Address
 := System.address’ref(SIGINT);
 -- Signal_Kill intentionally omitted.
 Signal_Pipe_Write_Ref : constant System.Address
 := System.address’ref(SIGPIPE);
 Signal_Quit_Ref : constant System.Address
 := System.address’ref(SIGQUIT);
 -- Signal_Segmentation_Violation intentionally omitted.
 Signal_Terminate_Ref : constant System.Address
 := System.address’ref(SIGTERM);
 Signal_User_1_Ref : constant System.Address
 := System.address’ref(SIGUSR1);
 Signal_User_2_Ref : constant System.Address
 := System.address’ref(SIGUSR2);
 Signal_Child_Ref : constant System.Address
 := System.address’ref(SIGCHLD);
 Signal_Continue_Ref : constant System.Address
 := System.address’ref(SIGCONT);

(Continued)

Posix Conformance Document B-15

B

 -- Signal_Stop intentionally omitted.
 Signal_Terminal_Stop_Ref : constant System.Address
 := System.address’ref(SIGTSTP);
 Signal_Terminal_Input_Ref : constant System.Address
 := System.address’ref(SIGTTIN);
 Signal_Terminal_Output_Ref : constant System.Address
 := System.address’ref(SIGTTOU);

-- Signal Sets
type Signal_Set is private;
procedure Add_Signal

(Set : in out Signal_Set;
 Sig : in Signal);

procedure Add_All_Signals (Set : in out Signal_Set);
procedure Delete_Signal

(Set : in out Signal_Set;
 Sig : in Signal);

procedure Delete_All_Signals (Set : in out Signal_Set);
function Is_Member

(Set : Signal_Set;
 Sig : Signal)

return Boolean;
-- Sending a Signal
procedure Send_Signal

(Process : in POSIX_Process_Identification.Process_ID;
 Sig : in Signal);

procedure Send_Signal
(Group : in POSIX_Process_Identification.Process_Group_ID;
 Sig : in Signal);

procedure Send_Signal (Sig : in Signal);
-- Blocking and Unblocking Signals
procedure Set_Blocked_Signals

(New_Mask : in Signal_Set;
 Old_Mask : out Signal_Set);

procedure Block_Signals
(Mask_to_Add : in Signal_Set;
 Old_Mask : out Signal_Set);

procedure Unblock_Signals
(Mask_to_Subtract : in Signal_Set;
 Old_Mask : out Signal_Set);

function Blocked_Signals
return Signal_Set;
-- Ignoring Signals
procedure Ignore_Signal (Sig : in Signal);
procedure Unignore_Signal (Sig : in Signal);

(Continued)

B-16 SPARCompiler Ada Programmer’s Guide

B

Figure 5-12 package POSIX_SIGNALS

3.3.1 Signal Type

3.3.1.1 Description
The mapping of signals to values of type SIGNAL is a 1-to-1 mapping of the
POSIX short signal name to the matching signal name in
/usr/include/sys/signal.h .

No other signals have been defined in this implementation.

If SIG is the value of one of the signals defined by POSIX.5, the value returned
by IMAGE is the identifier of the corresponding long-name constant, in
uppercase. Otherwise, the value returned is the INTEGER’image value of the
signal number.

3.3.3 Standard Signals

See 3.3 for signal values.

function Is_Ignored (Sig : Signal)
return Boolean;
-- Controlling Delivery of Signal_Child Signal
procedure Set_Stopped_Child_Signal

(Enable : in Boolean := True);
function Stopped_Child_Signal_Enabled
return Boolean;
-- Examining Pending Signals
function Pending_Signals
return Signal_Set;

private
type Signal_Set is new os_decl.sigset_rec;

end POSIX_Signals;

(Continued)

Posix Conformance Document B-17

B

B.4 Process Environment

4.1 package POSIX_PROCESS_IDENTIFICATION

4.1.1 Process Identification Operations

4.1.1.1 Description
type PROCESS_ID defines the values for process IDs. NULL_PROCESS_ID
never represents any process in the system. SYSTEM_PROCESS_ID is reserved
by the system for system processes.

Null_Process_ID : constant Process_ID := 0;
System_Process_ID : constant Process_ID := 1;

IMAGE returns PROCESS_ID’image .

VALUE translates any string into a PROCESS_ID as long as only the characters
0..9 of type STANDARD.CHARACTER are used. Otherwise a
CONSTRAINT_ERROR is raised.

4.1.1.2 Error Handling
No exceptions are raised for GET_PROCESS_ID and
GET_PARENT_PROCESS_ID.

4.1.2 Process Group Identification

4.1.2.1 Description
IMAGE returns PROCESS_GROUP_ID’image.

VALUE translates any string into a PROCESS_GROUP_ID as long as only the
characters 0..9 of type STANDARD.CHARACTER are used. Otherwise a
CONSTRAINT_ERROR is raised.

4.1.2.2 Error Handling
No exceptions are raised by GET_PROCESS_GROUP_ID.

B-18 SPARCompiler Ada Programmer’s Guide

B

4.1.3 User Identification

4.1.3.1 Description
IMAGE returns USER_ID’image .

VALUE translates any string into a USER_ID as long as only the characters 0..9
of type STANDARD.CHARACTER are used. Otherwise a CONSTRAINT_ERROR
is raised.

4.1.3.2 Error Handling
No exceptions are raised by GET_REAL_USER_ID,
GET_EFFECTIVE_USER_ID, or GET_LOGIN_NAME.

4.1.4 User and Group Identification

4.1.4.1 Description
The effective group ID of the calling process is included in the returned list of
supplementary group IDs from a call to GET_GROUPS.

IMAGE returns GROUP_ID’image .

VALUE translates any PROCESS_GROUP_ID that only uses the characters 0..9
of type STANDARD.CHARACTER. Any other string raises a
CONSTRAINT_ERROR.

4.1.4.2 Error Handling
No exceptions are raised by GET_REAL_GROUP_ID,
GET_EFFECTIVE_GROUP_ID, or GET_GROUPS.

Posix Conformance Document B-19

B

4.2 package POSIX_PROCESS_TIMES

4.2.1 Process Time Accounting
TICKS_PER_SECOND : Constant := 100;

4.2.1.2 Error Handling
No exceptions are raised for package POSIX_PROCESS_TIMES.

4.3 package POSIX_PROCESS_ENVIRONMENT

4.3.2 Environment Variables

4.3.2.1 Description
If POSIX_PROCESS_ENVIRONMENT is provided with an environment with
multiple definitions of the same variable, DELETE_ENVIRONMENT_VARIABLE
deletes all occurrences of the variable. SET_ENVIRONMENT_VARIABLE
removes the multiple occurrences before entering the new value.

In a multitasking program, the effect of one task (i.e. task A) calling an
operation that modifies an environment while another task (i.e. task B) is
performing an operation on the same environment is that task A may not
access the environment until task B is through modifying it.

4.3.2.2 Error Handling
No exceptions are raised for COPY_FROM_CURRENT_ENVIRONMENT,
COPY_TO_CURRENT_ENVIRONMENT, COPY_ENVIRONMENT,
CLEAN_ENVIRONMENT, LENGTH, FOR_EVERY_ENVIRONMENT_VARIABLE, or
FOR_EVERY_CURRENT_ENVIRONMENT_VARIABLE.

B-20 SPARCompiler Ada Programmer’s Guide

B

4.4 package POSIX_CALENDAR

4.4.1 Obtaining Time Information From the System

4.4.1.2 Error Handling
CONSTRAINT_ERROR will be raised by TO_TIME, or TO_POSIX_TIME for
values less than the UNIX Epoch (January 1, 1970).

4.5 package POSIX_CONFIGURABLE_SYSTEM_LIMITS

4.5.1 Configurable System Limits

If the functionality is not supported for the limit being queried, ’LAST of the
corresponding maxims in package POSIX will be returned.

Posix Conformance Document B-21

B

B.5 Files and Directories

5.1 package POSIX_PERMISSIONS

5.1.2 The Permission Set

5.1.2.1 Description
No other permissions other than those in ACCESS_PERMISSION_SET are
defined.

5.2 package POSIX_FILES

5.2.1 Creating and Removing files

5.2.1.1 Description
Soft links to files across file systems are supported but hard links are not. Soft
links to directories are supported. Hard links to directories can be created only
by processes with USER_ID of 0 .

CREATE_DIRECTORY and CREATE_FIFO ignore any permissions not in
ACCESS_PERMISSION_SET.

If the directory indicated in a call to REMOVE_DIRECTORY is the root directory
for the current process or for the system, REMOVE_DIRECTORY raises
POSIX_ERROR and sets the error code to IS_A_DIRECTORY.

5.2.1.2 Error Handling
If the directory named by the pathname is not empty when using
REMOVE_DIRECTORY, POSIX_ERROR is raised and the error code is set to
DIRECTORY_NOT_EMPTY.

B-22 SPARCompiler Ada Programmer’s Guide

B

5.2.4 Directory Iteration

FOR_EVERY_DIRECTORY_ENTRY accesses the entries in alphabetical order. If
an entry is added to the directory referenced by the pathname during
execution of the instance of FOR_EVERY_DIRECTORY_ENTRY, ACTION is not
called for that entry. If an entry is removed from the directory referenced by
the pathname, ACTION is still called with that entry.

5.2.5 Updating File Status Information

5.2.5.1 Description
On a call to CHANGE_OWNER_AND_GROUP, if the effective ID of the executing
process is not a member of the file’s group, SET_USER_ID and
SET_GROUP_ID of the file mode are cleared, unless the effective user ID of the
process is 0 (the super-user).

5.3 package POSIX_FILE_STATUS

5.3.2 Access Status Information

5.3.2.1 Description
For non-regular file types, SIZE_OF returns a size of 0.

5.4 package POSIX_CONFIGURABLE_FILE_LIMITS

5.4.1 File Limits

5.4.1.1 Description
If FILENAME_LIMIT , PATHNAME_LIMIT or PIPE_LENGTH_LIMIT is called
with a file or pathname that is not a directory, the value returned is as if the
procedure was called with the directory that file or pathname live in.
FILENAME_IS_LIMITED , PATHNAME_IS_LIMITED and
PIPE_LENGTH_IS_LIMITED act in the same manner.

Posix Conformance Document B-23

B

B.6 Input and Output Primitives

6.1 package POSIX_IO

6.1.1 OPEN, OPEN_OR_CREATE, IS_OPEN, CLOSE, DUPLICATE, CREATE_PIPE

6.1.1.1 Description
The option Exclusive specifies that OPEN_OR_CREATE fails if the file named
by the NAME parameter exists. This option has no effect on OPEN.

The option Truncate denotes whether the file is truncated when opened.
The effect of opening a file with Mode=>Read_Only and the Truncate option
set is that the file is truncated to length zero and the mode and owner remain
unchanged.

Caution – The access permissions for a created file shall be obtained from the
logical intersection of the value of the parameter Permissions and
POSIX_PERMISSIONS.ACCESS_PERMISSION_SET.

6.1.2 Read, Write

6.1.2.1 Description
The effect of instantiating GENERIC_READ or GENERIC_WRITE if the external
file is a pipe or FIFO and the size of the element is greater than
POSIX_CONFIGURABLE_FILE_LIMITS.PIPE_LENGTH is that ITEM’size
elements are read/written.

6.1.3 Seek

6.1.3.1 Description
SEEK, FILE_POSITION , and FILE_SIZE operations on devices that are
incapable of seeking have no effect.

!

B-24 SPARCompiler Ada Programmer’s Guide

B

6.1.5 File Control

6.1.5.1 Description
No values other than APPEND and NON-BLOCKING are returned in the
Options parameter of GET_FILE_CONTROL.

6.2 package POSIX_FILE_LOCKING

6.2.1 Locking Files

6.2.1.1 Description
If a process sets a lock on a region in a file, subsequent calls to GET_LOCK by
the same process on the same region of the file will return
POSIX_PROCESS_IDENTIFICATION.NULL_PROCESS_ID. A process cannot
have a conflict with itself when setting locks.

Posix Conformance Document B-25

B

B.7 Device- and Class-Specific Functions

7.1 General Terminal Interface

7.1.1.3 The Controlling Terminal
If a session leader has no controlling terminal and opens a terminal device file
that is not already associated with a session without using the
POSIX_IO .NOT_CONTROLLING_TERMINAL option, the teriminal becomes the
controlling terminal of the session and the controlling terminal’s foreground
process group is set to the process group of the session leader. This is the only
way to allocate a controlling terminal.

7.1.1.5 Input Processing and Reading Data
When the input limit
POSIX_CONFIGURABLE_FILE_LIMITS.INPUT_QUEUE_LIMIT reached in
the input queue, all saved characters are discarded without notice.

7.1.1.6 Canonical Mode Input Processing
For local terminals, when the
POSIX_CONFIGURABLE_FILE_LIMITS.INPUT_LINE_LIMIT is exceeded,
local terminals issue a BEL character and drop the extra characters.

7.1.1.7 Noncanonical Mode Input Processing
Minimum_Input_Count can never be greater than the value of
POSIX.INPUT_QUEUE_LIMIT_MAXIMA’LAST or the value returned by
POSIX_CONFIGURABLE_FILE_LIMITS.INPUT_QUEUE_LIMIT .

7.1.1.8 Writing Data and Output Processing
Data is buffered for output by the tty STREAMS module.

7.1.1.9 Special Characters
Under Solaris 1.0.1 PC, all terinal-control characters can be changed.

B-26 SPARCompiler Ada Programmer’s Guide

B

7.2 package POSIX_TERMINAL_FUNCTIONS

7.2.2 Input Modes

7.2.2.1 Description
The initial input control values after a call to POSIX_IO .Open are
INTERRUPT_ON_BREAK, MAP_CR_TO_LF, STRIP_CHARACTER and
ENABLE_START_STOP_OUTPUT enabled. All other values are disabled.

7.2.3 Output Modes

7.2.3.1 Description
The initial output control value after a call to POSIX_IO.OPEN is
PERFORM_OUTPUT_PROCESSING enabled.

7.2.4 Control Modes

7.2.4.1 Description
The initial hardware value after POSIX_IO .OPEN is ENABLE_RECEIVER and
PARITY_ENABLE enabled.

Posix Conformance Document B-27

B

B.8 Language Specific Services for Ada

8.1 Interoperable Ada I/O Services

Changes not implemented.

B-28 SPARCompiler Ada Programmer’s Guide

B

C-1

Xview Interface and
Runtime System C

XView (X Window-System-based Visual/Integrated Environment for
Workstations) is a SunPro toolkit providing a windowing interface through
which you support interactive, graphics-based applications.

Before using this software, you should be completely familiar with the XView
product and documentation. The Xview user-interface toolkit is described in
the following documents:

• Heller, Dan, XVIEW PROGRAMMING MANUAL, O’Reilly & Associates,
Inc., 1990.

• XVIEW Version 2 Reference Manual: Converting SunView Applications, Sun
Microsystems, Inc., 1990 (Part Number: 800-4836-10)

• Open Window Version 2 User’s Guide, Sun Microsystems, Inc., 1990 (Part
Number: 800-4930-10)

In this manual we provide discussions of how to integrate XView with SC Ada,
and descriptions of the Sun extensions to support XView.

The XView interface and runtime system product is installed with SC Ada.

“But, soft! what light through yonder window breaks?”

Shakespeare

C-2 SPARCompiler Ada Programmer’s Guide

C

C.1 Product Description
The XView software consists of two parts: a runtime system (called The
Notifier) to manage input, and building blocks to control output. The XView
runtime system controls all events, as well as communication within windows,
between windows, and between windows and the operating system.

SC Ada XView is a toolkit made up of tools, data structures and a custom
version of the SC Ada Runtime System, that enables you to build and use
graphics applications in a windowing environment and manipulate XView
objects. To support the use of SC Ada with XView, we provide an interface
allowing SC Ada and XView to communicate with each other.

C.2 How To Use SC Ada With XView
Directories supplied with this release of SC Ada XView reside in the directory
SCAda_location /self/xview and
SCAda_location /examples/xview_examples .

xview should be used if you are running under Sun Open Windows 3.0.

xview is an Ada library. When you write Ada programs that interface to
XView, use a.path to put it on the ADAPATH line of your ada.lib file. Use
the source code from the examples/xview_examples directory to build
sample Ada programs that interface to XView. Look at the corresponding
source code to see specific examples of how SC Ada interfaces to XView.

C.2.1 The XView Library

The XView library contains Ada package specifications and bodies that parallel
the similarly named C header files for XView in the include directories
/usr/openwin/include/xview and /usr/include . Follow the Sun
documentation for XView and substitute Ada package specifications for C
header files, except for some necessary changes discussed later in this manual.

Xview Interface and Runtime System C-3

C

C.2.2 XView Examples

The xview_examples directory contains several example programs in this
beta release. Other test programs will be included with the XView product
release.

Build these programs by following these steps (note that SCAda_location is
the directory where you have installed the SC Ada XView product and xview
is the Ada library you are using depending on which version of Sun Open
Windows you are running under):

% mkdir examples
% cd examples
...
% a.mklib . SCAda_location /self/xview

if you are unfamiliar with a.mklib , refer to the appropriate entry in the
SC Ada Reference Manual.

% cp SCAda_location /examples/xview_examples/* .

Refer to the SC Ada Reference Manual for more information about a.path .

% make

To run your example programs, first run xview and get into a shell or console
window.

C.2.3 Compiling and Linking Programs

The only requirement for compiling programs is that the Xview Ada library
supplied with the release must be the parent library, or must be referenced
along with the vads_exec library on the ADAPATH. Use a.path to
accomplish this.

In the list of files on the ADAPATH, xview must appear before standard
because it contains directives that override those in standard .

The xview Ada library is set up so you do not need any special commands
when linking. Therefore, if you have a simple Ada program that uses Xview,
compile and link it by using these commands:

% ada test_prog.a
% a.ld -o testprog testprog

C-4 SPARCompiler Ada Programmer’s Guide

C

The ada.lib file in SCAda_location /self/xview has the following
directives that play an important role in this release of the XView product (note
the use of SCAda_location /self to represent the directory where you
installed XView):

Figure 5-13 XView Directives in ada.lib File

Note – The example above references the libraries libxview.a , libolgx.a ,
and libX11.a in the directory /usr/openwin . If your libraries are in a
different location, change the directory path to point to your libraries.

C.2.4 Interface Limitations
• Sun currently guarantees no support for the macro

DEFINE_ICON_FROM_IMAGE in future releases of XView. Therefore, this
macro is not supported in the SC Ada XView bindings.

• These bindings represent a direct translation into Ada of the most critical C
include files for XView. Every effort has been made to provide a complete
translation. However, during the translation process, references to several
function calls and attributes were found in the include files for which there
was no documentation. In these cases, the interface is provided and the
most likely parameters are supported.

This is not really a limitation since these routines are not intended for
general use, and they do not appear frequently. In each case the function is
commented or marked with the pattern “--ND ”. If the parameters to these
undocumented routines are made public at a later date, they will be
updated in the XView bindings.

!ada library
ADAPATH=SCAda_location/ self/vads_exec SCAda_location /self/standard
LIBRARY:LINK: SCAda_location /self/xview/lib/library.a

SCAda_location /self/xview/lib/svi_struct.a /usr/openwin/lib/libxview.a
 /usr/openwin/lib/libolgx.a /usr/openwin/lib/libX11.a:
TASKING:LINK: SCAda_location /self/xview/lib/tasking.a

SCAda_location /self/xview/lib/svi_struct.a /usr/openwin/lib/libxview.a
 /usr/openwin/lib/libolgx.a /usr/openwin/lib/libX11.a:

Xview Interface and Runtime System C-5

C

• Some attribute types contain duplicate attribute/value pair possibilities.
For example, the attribute PANEL_VALUE can use many different value
types. Pass a value for this attribute with the function
XVI_AV_FUNCTIONS.CONVERT_VAL() that converts either strings or
integers to the appropriate type for PANEL_VALUE.

• Attributes requiring null terminated lists of SVI_STRING, SERVER_IMAGE,
EVENT or INTEGER values are not supported in this release.

• The following attributes are not supported at this time: ATTR_LIST,
CANVAS_PAINT, MENU_ITEM, OPENWIN_SPLIT, OPENWIN_VIEW_ATTRS.
Support for these attributes will be added in a future product release.

C.2.5 Notifier Limitations

Note – In the following discussion NOTIFY_TASK refers to the task containing
the call to V_NOTIFY_MAIN_LOOP(or V_XV_MAIN_LOOP). Also,
V_WINDOW_ENTER/V_WINDOW_LEAVE are interchangeable with
V_NOTIFY_ENTER/V_NOTIFY_LEAVE.

Using the XView Notifier in conjunction with Ada tasks has these restrictions:

• Notifier event handlers (excluding asynchronous signal event handlers)
interact with other Ada tasks via rendezvous, task resume, semaphores,
mailboxes or any other mechanism for task interaction. However, these
event handlers are executing in the context of the NOTIFY_TASK, wherein
the NOTIFY_TASK has already entered the IN_NOTIFY semaphore.
Therefore, if an event handler blocks, it also blocks all Notifier activity.

Note – Since enters/leaves of IN_NOTIFY semaphore can be nested from the
same task, Notifier event handlers can call
V_NOTIFY_ENTER/V_NOTIFY_LEAVE.

• An asynchronous signal event handler has the same restrictions for Ada task
interaction as an Interrupt Service Routine (ISR); they can’t call any kernel
service that blocks. We strongly recommend that signal events be registered
as synchronous.

C-6 SPARCompiler Ada Programmer’s Guide

C

• All calls to the notify (and window) services must be protected via
V_NOTIFY_ENTER/V_NOTIFY_LEAVE. However, V_NOTIFY_MAIN_LOOP
(or V_XV_MAIN_LOOP) does not need to be protected. It protects all of its
calls to notify services.

• The kernel calls notify timer routines for doing delays, servicing timeouts
and task time slicing. Actual handling of these requests is deferred until the
Notifier dispatcher is called from V_NOTIFY_MAIN_LOOP in the
NOTIFY_TASK. Therefore, if the NOTIFY_TASK is of lower or equal priority
to the current task, these timer requests are deferred until the current task
blocks. We strongly recommend that the NOTIFY_TASK executes at a
priority higher than any other task. Also, all V_NOTIFY_ENTER’s should
use the default highest priority value.

• Both the SC Ada kernel and XView make direct calls to the C malloc(3)
and free(3) memory routines. Re-entrant access to these C routines can
lead to unexpected results. Executing all XView services at the highest
priority (as is the default) inhibits their preemption and avoids a re-entrant
call to the malloc/free routine from the SC Ada kernel (i.e., the kernel
only makes such a call on behalf of some tasking request, for example,
create/abort another task.)

• An Ada program waiting for another event, such as a mouse click,
terminates unless there is a task ready to run or on the delay queue.
Therefore, for XView applications with Ada tasks, include a dummy task
containing: loop delay 86000.0; end loop ; to inhibit premature
program termination. Alternatively, you can call the VADS EXEC service,
V_XTASKING.SET_EXIT.DISABLED to inhibit the program form exiting.

Xview Interface and Runtime System C-7

C

C.3 The SC Ada XView Interface
This section of the manual provides information about the interface between
SC Ada and XView. Included here is a description of the SC Ada/XView
interface, details of how the interface functions, and interface programming
information.

This interface provides a mechanism for using Ada, in an XView environment,
to create applications. This mechanism is supplied with a combination of
structure mapping, data type translation, and tool interfaces. As much as
possible, we have kept the Ada programmer interface identical to the C-
language programmer interface. By keeping the interfaces for the two
languages similar, the programmer can use the XView documentation
provided by Sun with little or no additional instruction. Also, a similar
programmer interface simplifies the task of translating existing C-language
XView programs to Ada while maintaining their executable integrity.

C.3.1 Interface Package Structure

The XView Ada interface package is organized almost identically to the C
include files used by XView. Where feasible, the complete .h file has been
translated to an Ada package specification, making all functions, procedures,
macros, and structures available to the programmer. In most instances where
an include file requires additional include files, the additional include
files are also translated. This ensures a complete implementation and keeps
the interface structure compatible with the organization provided for the C
version of XView.

For example, the include file that contains most of the essential definitions for
panels, panel.h , was translated directly and is contained in the
package XVI_PANEL consisting of the files xvi_panel.a and
xvi_panel_b.a . In this package, function PANEL_TEXT_NOTIFY requires
a pointer to an object of type EVENT . Because the type declaration for an
object of type EVENT is in the C include file win_input.h this file has also
been translated. The translation is in package WIN_INPUT , which is in the
files xvi_win_input.a and xvi_win_input_b.a . package PANEL refers
back to the package WIN_INPUT , using an Ada with statement to access the
declaration.

C-8 SPARCompiler Ada Programmer’s Guide

C

Five exceptions apply to these conventions:

• The C include file xview.h includes other .h files, to provide all the
necessary definitions for a XView C program. In this implementation
xview.a contains necessary definitions that did not fit well anywhere else.
Unlike C, Ada programs must explicitly make all declarations visible using
with statements.

• The include file window.h has been split into two packages: WINDOW and
WIN_FUNC. package WINDOW is in the file xvi_window.a and
package WIN_FUNC is in the two files xvi_win_func.a and
xvi_win_func_b.a . This separation is necessary because window
functions rely on declarations found in other packages. Many of these
packages rely on declarations found in the window package. Therefore, the
translation of the file window.h is separated to avoid circular definitions.

• Many special type declarations, as well as functions and procedure
specifications are required to implement attribute/value (AV) lists. AV lists
and the Sun implementation are described in more detail later in this
document. AV list structure and data type declarations are contained in
package XVI_AV_LIST in the file xvi_av_list.a . All functions that
use AV lists, from all C include files translated, have been moved to
package XVI_AV_FUNCTIONS consisting of the files
xvi_av_functions.a and xvi_av_functions_b.a .

• Some special extensions to XView supporting Ada Tasking are added to
xvi_win_func.a .

• We supply package XVI_U_ENV to give Xview Ada Programs command
line capabilities similar to those available in C. For a simple example of the
usage of this package, refer to the demo program, hello.a , provided in the
examples directory of this release.

C.3.2 Data Type Naming Conventions

Every attempt has been made to give the same names to the Ada types,
functions, and procedures as the corresponding C types, functions, and
procedures. There are cases, however, where this is not possible because of the
case insensitivity of Ada. Most conflicts are resolved by extending the type
name rather than changing it. For example, given an enumerated type in C
declared as BAR, a record declared as BAR, and a function declared as BAR all in

Xview Interface and Runtime System C-9

C

the same include file, the declarations would be changed in the interface
package to an enumerated type named BAR_A, a record type named BAR_REC,
and a function called BAR.

In addition, many C declarations require pointers to structures. In these cases
an access type is provided with the suffix _PTR. This allows pointers to
structures to be used while preserving Ada type checking. To illustrate, given
a function that returns a pointer to a record of type FOO , the Ada interface
declares the same function returning a type FOO_PTR . In the interface
package a type FOO_PTR is declared as an access type to the record
type FOO .

C.3.3 Differences In This Implementation

Below is a summary of significant differences between the Rational Software
Corporation XView interface and the C interface.

C.3.3.1 Attribute/Value Lists and Functions

XView implements variable length attribute/value (AV) lists. The basic idea is
that a relatively small group of functions are provided to create or modify
XView objects. However, by using AV lists each function can perform a wide
variety of tasks or modify many object characteristics.

The SC Ada interface implements variable length attribute/value (AV) lists.
There are two ways in which this could have been implemented in Ada. First,
each function using AV lists could have been overloaded for each possible
combination of attributes, values, and parameters required. Second, each
function requiring AV lists could accept an unconstrained array of variant
records. Because of the large number of different AV list combinations
possible, the first method is inefficient and impractical. Consequently, the
second method was chosen.

In this implementation, each function requiring an AV list accepts an array of
variant records specific to the function and type of operation. The XView
function is called by pushing the AV list, along with any other required
parameters, on the stack and calling the C function using an Ada machine code
insertion. The variant record and array declarations specific to AV lists are in
the Ada package XVI_AV_LIST . The declaration of the functions requiring
AV lists, as well as the parameter-passing and function-calling routines, are in
the Ada package XVI_AV_FUNCTIONS .

C-10 SPARCompiler Ada Programmer’s Guide

C

Fortunately, most of these differences are invisible from the application level.
Because AV lists are implemented as arrays of variant records, the major
difference between the Ada and the C versions is the need for additional
parentheses and a different method of list termination in the Ada model. The
following two examples illustrate a call to the function XV_CREATE in C
and a call to the same function using the Ada interface package.

Figure 5-14 Attribute/Value Lists and Functions

In the example, the Ada program requires forming an array by using
parentheses to group attribute/value pairs and to delineate the beginning and
end of the array. The example also shows that termination of the AV list
requires a named declaration of the last variant record in the array. The special
attribute FRAME_NO_ATTR (this name changes between object types, but
always has the form FOO_NO_ATTR, where FOO is the LIST type) is provided
for each object type to terminate the AV lists. The example also illustrates the
use of SVI_STRINGS, which is discussed in a later section.

Most attributes require only a single value or no value, but in some cases a
single attribute requires a null terminated list of values. In these cases a family
of utility routines is available. These routines are named FOO_LIST where FOO
is one of STR, INT , SHORT, CADDR_T, PIXRECT, or PIXFONT depending on the
type of values contained in the list. This means that function INT_LIST is
used to pass a list of integer values, STR_LIST is used to pass a list of
SVI_STRING values, and so on.

/* C CODE EXAMPLE */
my_frame = xv_create(BASE_WINDOW, FRAME,
 XV_LABEL, ”Hello World”, 0);
-- Ada CODE EXAMPLE
my_frame := xv_create(xvi_window.BASE_WINDOW, xvi_xview.FRAME,
 ((XV_LABEL, SVI_STR(”Hello World”)),
 (attr => FRAME_NO_ATTR)
));

Xview Interface and Runtime System C-11

C

C.3.3.2 Pointers

As noted earlier, pointers in this interface are currently declared as access types
for the appropriate data type. Pointers are given the same name as the type
they point to, except the suffix _PTR is appended. There are cases where an
access type was either impractical or very difficult to use. In these cases,
pointers are declared as address types. Both work equally well — as long as
the right type of data structure is at the address used. However, using address
types directly eliminates many of the advantages of type checking provided by
Ada, and greatly increases the chances of an erroneous program error the
compiler cannot detect.

C.3.3.3 Strings

This version of XView includes a new design for handling strings. Strings in C
are represented by a pointer to a string of characters terminated by a null. We
provide package C_STRINGS to help users represent C strings in most Ada
application programs. In addition, we supply package A_STRINGS which
implements variable length Ada strings. When used together these packages
support most applications. However, the XView interface presents some very
special problems.

The biggest problem is that a single C string represented in the old way takes
up a great deal of space in memory. When building XView application
programs, many C_STRINGS must be allocated and passed to interface
routines. Many of these strings are not used again once passed to XView.
Further, using the old C_STRINGS package it is difficult to deallocate strings
when they are no longer needed.

To deal with these problems, we provide package SVI_STRINGS with the
XView bindings. This package provides routines to create, manipulate, and
deallocate fixed length SVI_STRINGS in Ada programs. A complete set of
routines providing for automatic deallocation of SVI_STRINGS is also
supplied. Details of this implementation are provided in the paragraphs that
follow.

C-12 SPARCompiler Ada Programmer’s Guide

C

String Definition
type svi_string is access string;

In package SVI_STRINGS , an SVI_STRING is declared as an access type to
a string. With this definition it is necessary to specify the length of the string
when space is allocated. To ease this process SVI_STRINGS provides string
creation routines.

String Creation
function to_svi(str: string) return svi_string;
function svi_str(str: string) return svi_string;

function TO_SVI and function SVI_STR return an SVI_STRING given a
valid Ada string or a quoted group of characters. The difference between these
routines is the way in which memory is deallocated. With
function TO_SVI , the programmer is responsible for explicitly deallocating
space when a string is no longer needed. Memory deallocation is
accomplished using the free routine described under the heading string
deallocation.

In contrast to function TO_SVI , function SVI_STR keeps track of all
strings it allocates. After each call to an interface routine using AV_LISTS , all
memory allocated by SVI_STR since the last call to a routine that requires
AV_LISTS is deallocated. This is most useful when strings are used in
AV_LISTS . However, this method can be used anywhere automatic
deallocation is required. Routines for explicitly deallocating space allocated by
SVI_STR are also provided and are described further under the heading string
deallocation.

String Manipulation
function svi_strlen(in_str: svi_string) return integer;
function svi_strlen(in_str: string) return integer;

function SVI_STRLEN accepts either a string, an SVI_STRING or a quoted
group of characters. The integer value returned indicates the number of
characters in the input up to the first null character. If a null character is not
found SVI_STRLEN returns the total number of elements in the string.

function svi_strcat(str1, str2: string) return svi_string;
function svi_strcat(char: character; str2: string) return svi_string;
function svi_strcat(str1: string; char: character) return svi_string;

Xview Interface and Runtime System C-13

C

function SVI_STRCAT accepts either two strings or one string and one
character. The result is a SVI_STRING which points to a concatenated string of
the input values. The SVI_STRING returned from SVI_STRCAT must be
explicitly deallocated using a call to free when it is no longer needed.

String Deallocation
procedure svi_str_free_all;
procedure free is new unchecked_deallocation(string,
svi_string);

procedure FREE and procedure SVI_STR_FREE_ALL are provided to
deallocate SVI_STRINGS created with TO_SVI and SVI_STR respectively.
procedure FREE requires a single parameter, the SVI_STRING the
programmer wishes to deallocate. procedure SVI_STR_FREE_ALL requires
no parameters. This procedure deallocates all SVI_STRINGS allocated by calls
to SVI_STR since the last call to a function that required av lists.
procedure SVI_STR_FREE_ALL is called automatically after every call to a
routine that uses AV lists.

String Lists
Some of the attributes used in XView require a pointer to a list of strings
terminated by a null string. In this interface package lists of strings are
represented by a list of nodes containing SVI_STRINGS. When AV list
parameters are pushed on the stack, this representation is converted to the
correct C style representation. Therefore attributes that require lists of strings
accept only a parameter of type STR_PTR_LIST . Parameters of this type
must be built using special string list creation and deallocation routines.

String List Definition
type str_list_type is array(natural range <>) of
svi_string;
type str_ptr_list is access str_list_node;

The definition of a string list as used in this interface is shown in the two lines
above. The declaration of STR_LIST_TYPE describes the input required by
string list creation routines. The declaration of STR_PTR_LIST describes the
value returned by string creation routines. String lists are deallocated
explicitly by the programmer or automatically using XView interface routines.

C-14 SPARCompiler Ada Programmer’s Guide

C

String List Creation
function svi_str_list(strings: str_list_type) return
str_ptr_list;
function str_list(strings: str_list_type) return
str_ptr_list;

function SVI_STR_LIST and function STR_LIST return pointers to lists
of nodes containing SVI_STRINGS. The difference between these routines is
the method of memory deallocation. function STR_LIST allocates the
space required and builds the list. However, memory deallocation becomes the
responsibility of the programmer. With function SVI_STR_LIST all string
lists are deallocated automatically after each call to a function that requires AV
lists.

String List Deallocation
procedure svi_str_list_free_all;
procedure free is new
unchecked_deallocation(str_list_node,str_ptr_list);

procedure SVI_STR_LIST_FREE_ALL deallocates all space allocated by
calls to SVI_STR_LIST since the last call to a function that requires AV lists.
This procedure is automatically called after each call to a routine that requires
AV lists. In most cases, SVI_STR_LIST_FREE_ALL is not called directly by
the programmer.

procedure FREE deallocates STR_LIST_NODE objects directly. When using
this procedure, the user must walk the list of nodes and explicitly deallocate
each. This is not the recommended method of deallocating string lists.

Pointer Lists
Certain attributes used in XView require lists of integers, short integers,
CADDR_T objects, pixrect pointers, or pixfont pointers. In the Sun XView
interface, these lists are supplied by the programmer as arrays of the
appropriate object. These arrays are then used by special creation routines to
return the pointer expected by the XView interface. Declaration of these
objects, as well as declarations and explanations of the allocation and
deallocation routines are provided in the following section.

Xview Interface and Runtime System C-15

C

Pointer List Definitions

The declaration of the arrays supplied to creation routines by the programmer
and the actual pointers required by the bindings are outlined above. Once an
array of objects or values is passed to XView using the pointer list creation
routines, lists are automatically deallocated. Procedures that explicitly
deallocate these lists are also provided in package XVI_POINTERS .

type int_list_type is array(natural range <>) of integer;
type int_value_list is access int_list_node;

type short_list_type is array(natural range <>) of short_integer;
type short_value_list is new int_value_list;

type caddr_t_list_type is array(positive range <>) of caddr_t;
type caddr_t_value_list is access caddr_t_list_node;

type pixrect_ptr_list_type is array(positive range <>) of pixrect_ptr;
type pixrect_ptr_list is access pixrect_ptr_list_node;

type pixfont_ptr_list_type is array(positive range <>) of pixfont_ptr;
type pixfont_ptr_list is access pixfont_ptr_list_node;

type server_image_list_type is array(positive range <>) of server_image;
type server_image_list is access server_image_list_node;

C-16 SPARCompiler Ada Programmer’s Guide

C

Pointer List Creation

Pointer lists are created by passing an array of the required element type to the
appropriate function. Functions are provided for creating lists of integers,
short integers, CADDR_T objects, pixrect pointers, and pixfont pointers. These
functions are named FOO_LIST where FOO is INT , SHORT, CADDR_T, PIXRECT,
or PIXFONTt , depending on the type of element the list contains. For
example, function INT_LIST is for creating lists of integers, function
PIXRECT_LIST is for creating lists of PIXRECT pointers, and so on.

Pointer List Deallocation

The four procedures for creating lists of pointers also provide for automatic
deallocation of memory allocated for list creation. Do this in the XView
bindings by calling one of the four deallocation procedures shown above after
each call to a routine that requires AV lists. Call the deallocation routines
directly at any time. In most cases, you never need to explicitly deallocate
pointer lists.

function int_list(ints: int_list_type) return int_value_list;
function short_list(shorts: short_list_type) return short_value_list;
function caddr_t_list(caddrs: caddr_t_list_type) return

caddr_t_value_list;
function pixrect_list(pixrect_ptrs: pixrect_ptr_list_type)

return pixrect_ptr_list;
function pixfont_list(pixfont_ptrs: pixfont_ptr_list_type)

return pixfont_ptr_list;
function image_list(images: server_image_list_type)

return server_image_list;

procedure xvi_int_list_free_all;
procedure xvi_ct_list_free_all;
procedure xvi_pr_list_free_all;
procedure xvi_pf_list_free_all;
prodedure xvi_si_list_free_all;

Xview Interface and Runtime System C-17

C

C.3.3.4 Return Values

Some functions return values of type XV_OPAQUE. The actual value returned
can be many things. The correct way to solve this problem is to overload these
functions for each potential correct return value. Presently only a
type XV_OPAQUE is returned, so use UNCHECKED_CONVERSION to get the
correct return value type.

C-18 SPARCompiler Ada Programmer’s Guide

C

C.4 The SC Ada Kernel
This section provides you with information about the Ada kernel provided for
this product. The section includes information about integrating the XView
Notifier with Ada tasking and descriptions of the packages and routines added
to the runtime system.

C.4.1 Integrating the XView Notifier With Ada Tasking

The XView Notifier assumes that any UNIX process interacting with XView has
only a single thread of execution. For almost all C programs on UNIX, this is a
valid assumption. However, for Ada processes having tasking, this
assumption does not apply.

An SC Ada process can contain multiple tasks. The VADS EXEC runtime
system executes entirely within a UNIX process and switches among the Ada
tasks according to the semantics of Ada. Time slicing is supported; if multiple
Ada tasks have the same highest priority, VADS EXEC uses a timer to switch
between them, in a round-robin fashion.

This means that one Ada task can be interacting with The Notifier when the
timer goes off and VADS EXEC switches to another task. If this task also tries
to interact with The Notifier, this can create problems. To avoid problems,
access to the notifier must be serialized.

The Notifier places restrictions on the UNIX services used by a UNIX process.
Some of these services (e.g., sigvec(2) , setitimer(3)) are normally used
by VADS EXEC, so it was necessary to build a new version of VADS EXEC that
uses the UNIX services as prescribed by The Notifier.

Therefore, in addition to explicit and implicit calls on The Notifier that may be
present in the Ada program, VADS EXEC also makes calls to The Notifier.

For more information about the XView Notifier, refer to the XView
documentation.

Xview Interface and Runtime System C-19

C

C.4.2 Serializing Access to The Notifier

VADS EXEC uses a semaphore called IN_NOTIFIER to ensure that one task at
a time is executing Notifier functions. Routines were added for entering and
leaving this IN_NOTIFIER semaphore (V_NOTIFY_ENTER and
V_NOTIFY_LEAVE).

The routine, V_NOTIFY_MAIN_LOOP loops and calls the XView Notifier
routine NOTIFY_DISPATCH. NOTIFY_DISPATCH dispatches events managed
by The Notifier. The call to NOTIFY_DISPATCH by V_NOTIFY_MAIN_LOOP is
bracketed by the above-mentioned V_NOTIFY_ENTER and V_NOTIFY_LEAVE
routines. At the conclusion of dispatching events via NOTIFY_DISPATCH,
V_NOTIFY_MAIN_LOOP’s task suspends on its DO_DISPATCH semaphore. The
task containing V_NOTIFY_MAIN_LOOP is resumed when any asynchronous
UNIX signal such as sigalrm or sigint signals its DO_DISPATCH
semaphore. Additionally, V_NOTIFY_MAIN_LOOP has a timeout parameter.
This places an upper limit on how long it suspends before recalling
NOTIFY_DISPATCH. If V_NOTIFY_MAIN_LOOP is called with IN_NOTIFIER
semaphore set by V_NOTIFY_ENTER, it calls V_NOTIFY_LEAVE before it loops.

The routine, V_NOTIFY_STOP_LOOP, is added to terminate
V_NOTIFY_MAIN_LOOP. This returns V_NOTIFY_MAIN_LOOP to its caller at
the conclusion of event dispatching. V_NOTIFY_MAIN_LOOP returns with the
IN_NOTIFY semaphore restored to its state upon entry.

The Notifier manages the interval timer and UNIX signals. The Ada DELAY,
DELAY_UNTIL, TIMED_CALL, and TIMED_SUSPEND services were changed to
use The Notifier routine, NOTIFY_SET_ITIMER_FUNC, instead of making a
direct call to the system routine, SET_ITIMER . (Note that the call to
NOTIFY_SET_ITIMER_FUNC doesn’t take effect until the next invocation of
NOTIFY_DISPATCH. Therefore, after calling NOTIFY_SET_ITIMER_FUNC, the
kernel signals the above DO_DISPATCH semaphore.) Furthermore, the SC Ada
UNIX signal handling was changed to call notify_set_signal_func()
instead of sigvec() .

C-20 SPARCompiler Ada Programmer’s Guide

C

In order to resume the dispatching of Notifier events, the DO_DISPATCH
semaphore must be signaled. This is achieved by installing a pre-handler for
each UNIX signal event. This pre-handler is automatically registered during
startup initialization for the following signals:

Events for the remaining UNIX signals must be registered via the following
added routine, V_NOTIFY_SET_SIGNAL_FUNC() (note that
NOTIFY_SET_SIGNAL_FUNC in the NOTIFY package specification
automatically maps to this routine). V_NOTIFY_SET_SIGNAL_FUNC() simply
registers the pre-handler before registering the user specific event handler.

The PRE_HANDLER signals the DO_DISPATCH semaphore, saves the current
sigcontext and updates the sigcontext to transfer control to
COMPLETE_PRE_HANDLER at the conclusion of UNIX signal processing. Upon
conclusion of signal handling, instead of transferring control back to the
interrupted program, control is transferred to COMPLETE_PRE_HANDLER.
COMPLETE_PRE_HANDLER enters the VADS EXEC kernel to allow preemption
of the current task and resumption of V_NOTIFY_MAIN_LOOP.

C.4.3 package XVI_NOTIFY

The following routines were added to allow the coexistence of the XView
Notifier with Ada tasking. The interface to these routines is included in
package XVI_NOTIFY .

procedure v_notify_enter(notify_priority: priority :=
priority’last);
procedure v_notify_leave;

These routines guarantee serialized access to The Notifier services by
entering/leaving the IN_NOTIFIER semaphore.

SIGALRM (14) SIGPROF (27) SIGUSR2 (31)
SIGCHLD (20) SIGTERM (15) SIGVTALRM (26)
SIGCONT (19) SIGTTIN (21) SIGWINCH (28)
SIGIO (23) SIGTTOU (22) SIGXCPU (24)
SIGLOST (29) SIGURG (16) SIGXFSZ (25)
SIGPIPE (13) SIGUSR1 (30)

Xview Interface and Runtime System C-21

C

Any call to a Notifier service (such as NOTIFY_POST_EVENT()) must be
protected by being preceded/followed by a call to
V_NOTIFY_ENTER/V_NOTIFY_LEAVE.

These routines allow nested Notifier enters/leaves from the same task. Also, if
the task is in rendezvous with a task in The Notifier, it is granted immediate
entry. (Note that all enters must be paired with an equal number of leaves.)

The V_NOTIFY_ENTER routine has one parameter, task priority while doing
notify functions. The default is highest priority. Since The Notifier dispatcher
needs to be called to do any timer reprogramming (including task time slicing),
we strongly recommend NOTIFY_PRIORITY remains at the default value. The
task priority is restored upon leaving the IN_NOTIFIER semaphore.

procedure v_notify_main_loop(notify_timeout: duration :=
0.200;
notify_priority: priority := priority’last);

This routine contains the loop for doing repetitive dispatching of Notifier
events. Only one invocation of this routine can be active at a time. The
TASKING_ERROR exception is raised for subsequent concurrent invocations.

The NOTIFY_TIMEOUT parameter, sets an upper limit on the time between the
dispatching of Notifier events. A zero or negative value implies no upper
limit.

The NOTIFY_PRIORITY parameter specifies the task priority while doing
Notifier dispatching. The default is highest priority. Since The Notifier
dispatcher needs to be called to do any timer reprogramming (including task
time slicing), we strongly recommend that the NOTIFY_PRIORITY remain at
the default value.

procedure v_notify_stop_loop;

This routine is called to stop the above V_NOTIFY_MAIN_LOOP.

function v_notify_set_signal_func(client: Notify_client_t;
signal_func: Notify_func;
signal: integer;
mode: Notify_signal_mode)

return Notify_func;

C-22 SPARCompiler Ada Programmer’s Guide

C

This routine is identical to the Xview NOTIFY_SET_SIGNAL_FUNC() except
that it first registers a PRE_HANDLER. This PRE_HANDLER preempts the
current Ada task and resumes execution of the V_NOTIFY_MAIN_LOOP.

Note – The NOTIFY_SET_SIGNAL_FUNC subprogram declaration included in
the XVI_NOTIFY package maps to V_NOTIFY_SET_SIGNAL_FUNC.

C.4.3.1 XVI_WIN_FUNC Package Extensions

The following routines were added to allow the coexistence of XView windows
with Ada tasking. The interface to these routines is included in the
specification of package XVI_WIN_FUNC .

procedure v_xv_main_loop(base_frame: xvi_frame.Frame;
notify_timeout: duration := 0.200;
notify_priority: priority := priority’last);

This subprogram makes the frame visible on the screen and calls
V_NOTIFY_MAIN_LOOP. Its input parameters are passed directly to
V_NOTIFY_MAIN_LOOP.

V_XV_MAIN_LOOP interposes in front of the frame’s destroy event handler,
whereby, it stops the V_NOTIFY_MAIN_LOOP upon receiving a destroy event.

This subprogram has the same restriction as V_NOTIFY_MAIN_LOOP, only one
invocation can be active at a time.

Note – The WINDOW_MAIN_LOOP subprogram declaration included in
package WIN_FUNCTIONS maps to V_XV_MAIN_LOOP.

 procedure v_window_enter(window_priority: priority :=
priority’last);
 procedure v_window_leave;

These subprograms provide alternate names to the
V_NOTIFY_ENTER/V_NOTIFY_LEAVE subprograms.

Note – Any call to a window service must be preceded/followed by a call to
V_WINDOW_ENTER/V_WINDOW_LEAVE (or alternatively
V_NOTIFY_ENTER/V_NOTIFY_LEAVE).

DEThis Boosts Appendix F to "F

F-1

Implementation-Dependent
Characteristics F

This document summarizes the features specific to this implementation of .
Information of a more general nature applying to all implementations is
presented first, followed by information specific to this implementation. The
material required by Appendix F of the Ada Language Reference Manual (Ada
LRM) is covered.

 Ada provides the full Ada language as specified in the Ada LRM. Within the
Ada LRM, a number of sections contain the annotation implementation
dependent, meaning that the interpretation is left to the compiler implementor.

The compiler provides these features:

• shared generic bodies
• all-Ada run time system
• representation clauses to the bit level and pragma PACK (Ada LRM 13.1)
• length clauses and unsigned types (8- and 16-bit) (Ada LRM 13.2)
• enumeration representation clauses (Ada LRM 13.3)
• record representation clauses (Ada LRM 13.4)
• interrupt entries (Ada LRM 13.5.1)
• representation attributes (Ada LRM 13.7.2)
• machine code insertions and pragma IMPLICIT_CODE (Ada LRM 13.8)
• interface programming features, including pragma INTERFACE , pragma

EXTERNAL_NAME, pragma EXTERNAL , pragma INTERFACE_NAME,
WITHn directives, a.info and external dependencies capabilities (Ada
LRM unchecked deallocations (Ada LRM 13.10.1)

• unchecked conversions (Ada LRM 13.10.2)
• pool-based memory allocation option

“It has long been an axiom of mine that the
little things are infinitely the most important.”

Conan Doyle

F-2 SPARCompiler Ada Programmer’s Guide

F

F.1 Pragmas and Their Effects
Each of this implementation’s pragmas is briefly described here; additional
information on some of them is found under discussions of particular language
constructs.

pragma BIT_PACK
indicates to the compiler that packing down to the bit level is desired.
Pragmas BIT_PACK, PACK and BYTE_PACK all take the same arguments
and may be used inthe same source contexts.

pragma BUILT_IN
is used in some parts of the code for TEXT_IO, MACHINE_CODE,
UNCHECKED_CONVERSION, UNCHECKED_DEALLOCATION and
lower level support packages in standard . It is reserved and cannot be
accessed directly.

pragma BYTE_PACK
indicates to the compiler that packing down to the byte level is desired.
Components at least as large as, or larger than, a byte, are packed at byte
boundaries. Pragmas BIT_PACK, PACK and BYTE_PACK all take the same
arguments and may be used inthe same source contexts.

pragma CONTROLLED
is recognized by the implementation but has no effect in the current release.

pragma ELABORATE
is implemented as described in Appendix B of the Ada LRM.

Implementation-Dependent Characteristics F-3

F

pragma EXPORT_FUNCTION
pragma EXPORT_OBJECT
pragma EXPORT_PROCEDURE

creates a global symbol for an Ada subprogram (function or procedure) or
object so that it can be called or referenced by non-Ada code. The syntax is:

Where

These export pragmas should be used to create global symbolic names for Ada
subprograms that will be called - or Ada objects that will be referenced - from
non-Ada code. The linker uses these symbols to resolve intermodule
references.

If the internal subprogram name is overloaded, you must supply enough
information for the compiler to determine unambiguously which subprogram
to export. Specify the PARAMETER_TYPES (and/or, for functions, the
RESULT_TYPE) so that the compiler can construct the parameter- and/or
result- type profile of the subprogram.

Caution – Exporting a subprogram does not export the mechanism used by the
compiler to perform elaboration checks. A call from another language to an
exported subprogram with an unelaborated body may produce unpredictable
results when the subprogram references an object that is itself unelaborated.

pragma EXPORT_FUNCTION
([INTERNAL =>] internal_name

[, [EXTERNAL =>] ”external_name”]
 [, [PARAMETER_TYPES =>] parameter_type_list]
 [, [RESULT_TYPE =>] type_mark]
 [, [LANGUAGE =>] language_name]);

pragma EXPORT_OBJECT
([INTERNAL =>] internal_name

[, [EXTERNAL =>] ”external_name”]);
pragma EXPORT_PROCEDURE

([INTERNAL =>] internal_name
[, [EXTERNAL =>] ”external_name”]

 [, [PARAMETER_TYPES =>] parameter_type_list]
 [, [LANGUAGE =>] language_name]);

!

F-4 SPARCompiler Ada Programmer’s Guide

F

Caution – Accesses to Ada objects by non-Ada code are inherently unsafe; the
compiler and runtime system cannot guarantee the integrity of such exported
objects. It is the developer’s responsibility to ensure that the code that accesses
an exported object properly interprets and maintains the underlying structure
of the object.

Note – An export pragma can appear only at the place of a declarative item in
a declarative part or package specification.; the subprogram or object to which
it applies must have been declared by an earlier declarative item of the same
declarative part or package specification.

An exported subprogram must:
-Not be a generic.
-Be declared in a static score. It must not be inside any subprogram,
 task, generic unit, or block statement.

An exported object must:
-Not be in a generic unit.
-Be a variable.
-Be declared in a static scope. It must not be inside any subprogram,
 task, generic unit, or block statement.
-Have a static size.

 Its subtype must be one of the following:
- A scalar type or subtype.
- An array subtype with static index constraints whose component
 size is static.
- An undiscriminated record type or subtype.

References
for Subprograms: elaboration of a library unit, Ada LRM 10.5

order of elaboration, Ada LRM 3.9

overloading, Ada LRM 8.3

parameter and result type profile, Ada LRM 6.6

 for Objects: limited private type, Ada LRM 7.4.4

private type, Ada LRM 7.4

!

Implementation-Dependent Characteristics F-5

F

pragma EXTERNAL(language , subprogram)
supports calling Ada subprograms from foreign languages. The compiler
generates code for the subprogram that is compatible with the calling
conventions of the foreign language. The subprogram can also be called
from Ada normally. The supported languages and restrictions on parameter
and result types are the same as for pragma INTERFACE . This pragma has
an effect only when the calling conventions of the foreign language differ
from those of Ada.

References
 “Parameter Passing” on page FF-47

pragma EXTERNAL_NAME, “Pragmas and Their Effects” on page FF-2

pragma EXTERNAL_NAME(subprogram , link_name)
allows the user to specify a link for an Ada variable or subprogram so that
the object can be referenced from other languages. This pragma is allowed
at the place of a declarative item in a package specification and must apply
to an object declared earlier in the same package specification.

Objects must be variables or constants defined in a package specification;
subprograms can be either library level or within a package specification.

This pragma is allowed with INLINE subprograms but disallowed with
INLINE_ONLY subprograms. It also cannot be used on objects created by
renaming declarations.

References
pragma EXTERNAL_NAME, “Pragmas and Their Effects” on page FF-2

pragma GENERIC_POLICY (generic_unit , code)
tells the compiler how to generate code for a generic package or
subprogram and its instantiations. generic_unit is the simple name of
the generic package or subprogram to which the pragma applies. code
specifies whether all instantiations should share the code in one common
routine (shared) or whether each instantiation should be coded separately
(replicated)

Note that the compiler treats all generics as replicated unless otherwise
specified with pragma GENERIC_POLICY.

F-6 SPARCompiler Ada Programmer’s Guide

F

The pragma can appear only at the place of a delcarative item in a
declarative part or package specification. The generic to which it applies
must have been declared by an earlier declarative item of the same
declarative part or package specification.

pragma INSTANCE_POLICY
can be used to override the shared GENERIC_POLICY for one or more
instantiations of a generic package or subprogram.

References
generic instantiation, Ada LRM 12.3

generic package/subprogram, Ada LRM 12.1

pragma INSTANCE_POLICY , “Pragmas and Their Effects” on page FF-2

simple name, Ada LRM 4.1

pragma IMPLICIT_CODE (OFF|ON)
specifies that implicit code generated by the compiler is allowed (ON) or
disallowed (OFF). This pragma is used only within the declarative part of a
machine code procedure. Implicit code includes preamble and postamble
code (e.g., code used to move parameters from and to the stack). Use of
pragma IMPLICIT_CODE does not eliminate code generated for run time
checks, nor does it eliminate call/return instructions (these can be
eliminated by pragma SUPPRESS and pragma INLINE , respectively). A
warning is issued if OFF is used and any implicit code must be generated.
This pragma should be used with caution.

Implementation-Dependent Characteristics F-7

F

pragma IMPORT_FUNCTION
pragma IMPORT_OBJECT
pragma IMPORT_PROCEDURE

associates an Ada name with the global symbol for a non-Ada subprogram
(function or procedure) or object so that an Ada subprogram can call the
subprogram or reference the object. The syntax is:

where

Value
The corresponding parameter is passed by value. Note that when
interfacing with C or C++, only scalars can be passed by value.
MECHANISM must always be VALUE and the corresponding Ada
parameter must be an in parameter for scalars.

Reference
The corresponding parameter is passed by reference, that is, its address is
passed. This applies to records and arrays in C and C++ and to C++
constant reference parameters.

These import pragmas should be used to supply more information about a
non-Ada subprogram specified with pragma INTERFACE or a non-Ada
object to be referenced by Ada code.

pragma IMPORT_FUNCTION
([INTERNAL =>] internal_name

[, [EXTERNAL =>] ”external_name”]
 [, [PARAMETER_TYPES =>] parameter_type_list]
 [, [RESULT_TYPE =>] type_mark]
 [, [MECHANISM =>] mechanism_list]);

pragma IMPORT_OBJECT
([INTERNAL =>] internal_name

[, [EXTERNAL =>] ”external_name”]);
pragma IMPORT_PROCEDURE

([INTERNAL =>] internal_name
[, [EXTERNAL =>] ”external_name”]

 [, [PARAMETER_TYPES =>] parameter_type_list]
 [, [MECHANISM =>] mechanism_list]);

F-8 SPARCompiler Ada Programmer’s Guide

F

If the internal subprogram name is overloaded, you must supply enough
information for the compiler to determine unambiguously which
subprogram to export. Specify the PARAMETER_TYPES (and/or, for
functions, the RESULT_TYPE) so that the compiler can construct the
parameter- and/or result- type profile of the subprogram.

Caution – Accesses to non-Ada objects from Ada code are inherently unsafe;
the compiler and runtime system cannot guarantee the integrity of such
imported objects. It is the developer’s responsibility to ensure that the code
that accesses an imported object properly interprets and maintains the
underlying structure of the object.

Note – An import pragma can appear only at the place of a declarative item in
a declarative part or package specification. The subprogram or object to which
it applies must have been declared by an earlier declarative item of the same
declarative part or package specification.

An import pragma must not refer to a generic subprogram

An imported subprogram must:
-Not be in a generic.
-Be a variable declared at the outermost level of a library
 package specification or body.
-Have a static size. Its subtype must be one of the following:

References
for Subprograms: interface to other languages, Ada LRM 13.9

pragma INTERFACE, Ada LRM 13.9

scalar types, Ada LRM 3.3

References
for Objects: limited private type Ada LRM 7.4.4, private type Ada LRM 7.4

!

Implementation-Dependent Characteristics F-9

F

pragma INITIALIZE(STATIC|DYNAMIC)
when placed in a library-level package, spec or body; causes all objects in
the package to be initialized as indicated, statically or dynamically. Only
library-level objects are subject to static initialization. All objects within
procedures are, by definition, dynamic.

If pragma INITIALIZE(STATIC) is used and an object cannot be
initialized statically, code is generated to initialize the object and a warning
message is generated.

pragma INLINE
is implemented as described in Appendix B of the Ada LRM with the
addition that recursive calls can be expanded with the pragma up to the
maximum depth of 4. Warnings are produced for bodies that are not
available for inline expansion. pragma INLINE is ignored and a warning is
issued when it is applied to subprograms which declare tasks, packages,
exceptions, types or nested subprograms.

pragma INLINE_ONLY
when used in the same way as pragma INLINE , indicates to the compiler
that the subprogram must always be inlined (very important for some code
procedures.). This pragma also suppresses the generation of a callable
version of the routine which saves code space. If a user erroneously makes
an INLINE_ONLY subprogram recursive, a warning message is emitted and
a PROGRAM_ERROR is raised at run time.

pragma INSTANCE_POLICY (instantiation_name , code)
specifies whether replicated or shared code is to be generated for specific
instantiations of a generic. instantiation_name is the simple name of
the specific instantiation to which the pragma applies. code can have the
values REPLICATED or SHARED..

F-10 SPARCompiler Ada Programmer’s Guide

F

The following illustrates the use of this pragma:

The pragma and the named instantiation must occur within the same
declarative part or package specification.

The instantiation must occur before the pragma.

If the instantiation_name argument refers to several preceding
overloaded subprogram instantiations, the pragma applies to all of them.

Only one pragma INSTANCE_POLICY can be applied to each instantiation.

References
generic instantiation, Ada LRM 12.3

generic package/subprogram, Ada LRM 12.1

pragma GENERIC_POLICY, “Pragmas and Their Effects” on page FF-2

simple name, Ada LRM 4.1

pragma INTERFACE (language , subprogram)
supports calls to ADA, C, PASCAL, FORTRAN and UNCHECKED language
functions. The Ada specifications can be either functions or procedures.
pragma INTERFACE is also used to call code written in unspecified
languages using UNCHECKED for the language name.

-- EXCHANGE_I and EXCHANGE_R use the common shared
-- code. EXHANCE_S uses its own replicated code.
--
generic

type Sometype is private;
procedure Swap (X, Y: in out Sometype);
pragma GENERIC_POLICY(Swap, Shared);
--
procedure Exchange_R is new Swap(Sometype => Real);
procedure Exchange_I is new Swap(Sometype => Integer);
subtype S is String(1..100);
procedure Exchange_S is new Swap(Sometype => S);
pragma INSTANCE_POLICY(Exchange_s, Replicated);

Implementation-Dependent Characteristics F-11

F

For Ada, the compiler generates the call as if it were to an Ada procedure
but does not expect a matching procedure body.

For C, the types of parameters and the result type for functions must be
scalar, access or the predefined type ADDRESS in SYSTEM.ADDRESS.
Record and array objects can be passed by reference using the ’ADDRESS
attribute. All parameters must have mode IN.

For PASCAL, the types of parameters and the result type for functions must
be scalar, access or the predefined type ADDRESS in SYSTEM.ADDRESS.
Record and array objects are passed by reference using the ADDRESS
attribute.

For FORTRAN, all parameters are passed by reference; the parameter types
must have type SYSTEM.ADDRESS. The result type for a FORTRAN
function must be a scalar type.

UNCHECKED can be used to interface to an unspecified language, such as
Assembler. The compiler generates the call as if it were to an Ada
procedure but does not expect a matching Ada procedure body.

References
“Parameter Passing” on page F-47

pragma INTERFACE_NAME(Ada_name, link_name)
allows variables or subprograms defined in another language to be
referenced directly in Ada. It replaces all occurrences of Ada_name with an
external reference to link_name in the object file.

If Ada_name denotes an object, the pragma is allowed at the place of a
declarative item in a package specification and must apply to an object
declared earlier in the same package specification.

If Ada_name denotes a subprogram, a pragma INTERFACE must have
already been specified for the subprogram.

The link_name must be constructed as expected by the linker. For
example, some C compilers and linkers preface the C variable name with an
underscore. Such conventions are defined in package LANGUAGE. The
following example makes the C global variable errno available within an
Ada program:

F-12 SPARCompiler Ada Programmer’s Guide

F

pragma LINK_WITH (constant_string_expression)
is used to pass arguments to the target linker. It can appear in any
declarative part and accepts one argument, a constant string expression.
This argument is passed to the target linker whenever the unit containing
the pragma is included in a link. Note that the linker uses selective linking;
it will include only those objects required to complete the link.

For example the following package puts the -lm option on the command
line for the linker whenever MATH is included in the linked program:

Or the following package links with the named object file sin.o :

with LANGUAGE;
package PACKAGE_NAME is

...
ERRNO:INTEGER;
pragma INTERFACE_NAME (ERRNO,LANGUAGE.C_PREFIX & ”errno”);
...

end PACKAGE_NAME;

package MATH is
pragma LINK_WITH(“-lm”);

end;

package MATH is

-- SIN is a routine written in C or assembly: the object
-- for the routine is in the object file sin.o

function SIN (X:FLOAT) return FLOAT;
pragma interface (C, SIN);
pragma LINK_WITH(”sin.o”);

end MATH;

Implementation-Dependent Characteristics F-13

F

If the constant string expression begins with “-”, the string is left untouched.
However, if the string begins with neither “-” nor “/”, the string is prefixed
with “./”.

pragma LIST
is implemented as described in Appendix B of the Ada LRM.

pragma MEMORY_SIZE
is recognized by the implementation but has no effect in the current release.
This implementation does not allow package SYSTEM to be modified by
means of pragmas; it must be recompiled.

pragma NO_IMAGE
suppresses the generation of the image array used for the IMAGE attribute
of enumeration types. This eliminates the overhead required to store the
array in the executable image. An attempt to use the IMAGE attribute on a
type whose image array has been suppressed results in a compilation
warning and PROGRAM_ERROR is raised at run time.

pragma NON_REENTRANT(subprogram)
takes one argument which is the name of a library subprogram or a
subprogram declared immediately within a library package specification or
body. This pragma indicates to the compiler that the subprogram is not
called recursively allowing the compiler to perform specific optimizations.
The pragma can be applied to a subprogram or a set of overloaded
subprograms within a package specification or package body.

pragma NOT_ELABORATED
suppresses the generation of elaboration code and issues warnings if
elaboration code is required. It indicates the package is not elaborated
because it is either part of the RTS, a configuration package or an Ada
package referenced from a language other than Ada. It can appear only in a
library package specification.

pragma OPTIMIZE
is recognized by the implementation but has no effect in the current release.

F-14 SPARCompiler Ada Programmer’s Guide

F

pragma OPTIMIZE_CODE(OFF|ON)
specifies whether the code should be optimized (ON) by the compiler or not
(OFF). It can be used in any subprogram. When OFF is specified, the
compiler generates unoptimized code. The default is ON. If ON, the actual
level of optimization is controlled by the -Ox option to the ada or a.make
commands.

Optimization is selectively suppressed using this pragma at the subprogram
level. Inline subprograms are optimized even if they have
pragma OPTIMIZE_CODE(OFF) unless the caller also has pragma
OPTIMIZE_CODE(OFF).

References
code optimization levels (ada -O), SPARCompiler Ada Reference Guide

pragma PACK
causes the compiler to minimize gaps between components in the
representation of composite types. Objects larger than a single
STORAGE_UNIT are packed to the nearest STORAGE_UNIT. Pragmas
BIT_PACK, PACK and BYTE_PACK all take the same arguments and may be
used in the same source contexts.

pragma PAGE
is implemented as described in Appendix B of the Ada LRM. It is also
recognized by the source code formatting tool a.pr .

pragma PASSIVE has five forms:

pragma PASSIVE;
pragma PASSIVE(ABORT_UNSAFE);
pragma PASSIVE(ABORT_SAFE);
pragma PASSIVE(ABORT_UNSAFE, mutex_attr’address);
pragma PASSIVE(ABORT_SAFE, mutex_attr’address);

This pragma can be applied to a task or task type declared immediately
within a library package specification or body. It directs the compiler to
optimize certain tasking operations. It is possible that the statements in the
task body will prevent the intended optimization, in these cases a warning
is generated at compile time and TASKING_ERROR is raised at run time.

References
Passive Tasks, SPARCompiler Ada Runtime System Guide

Implementation-Dependent Characteristics F-15

F

pragma PRIORITY
is implemented as described in Appendix B of the Ada LRM. The allowable
range for pragma PRIORITY is 0 .. 99 .

pragma RTS_INTERFACE(RTS_routine , user_routine)
allows for the replacement of the default calls made implicitly at run-time to
the underlying RTS routines. You can cause the compiler to generate calls to
any routine of your choosing as long as its parameters and RETURN value
match the original. Use this pragma with caution.

pragma SHARE_CODE(generic unit / instantiation,boolean)
provides for the sharing of object code between multiple instantiations of
the same generic subprogram or package body. A ‘parent’ instantiation is
created and subsequent instantiations of the same types share the parent’s
object code, reducing program size and compilation times. In the runtime,
pragma SHARE_CODE is used for the generic packages INTEGER_IO,
FLOAT_IO, and ENUMERATION_IO.

pragma SHARE_CODE takes the name of a generic instantiation or a generic
unit as the first argument and either one of the identifiers TRUE or FALSE as
a second argument. When the first argument is a generic unit, the pragma
applies to all instantiations of that generic. When the first argument is the
name of a generic instantiation, the pragma applies only to the specified
instantiation or overloaded instantiations.

If the second argument is TRUE, the compiler tries to share code generated
for a generic instantiation with code generated for other instantiations of the
same generic. When the second argument is FALSE each instantiation gets a
unique copy of the generated code.

The extent to which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared for the generic
unit. It is allowed only immediately at the place of a declarative item in a
declarative part or package specification or after a library unit in a
compilation but before any subsequent compilation unit.

The name pragma SHARE_BODY can be used instead of SHARE_CODE with
the same effect.

This pragma(s) overrides any other means of specifying code sharing. For
those generic instances without a SHARE_CODE (or SHARE_BODY) pragma,
the SHARE_BODY INFO directive specifies whether code is shared. The
default value for this INFO directive is FALSE.

F-16 SPARCompiler Ada Programmer’s Guide

F

Code sharing is the classic time/space trade-off. Code sharing slightly
reduces the amount of code in an application and the application’s
compilation time but slightly increases execution time. Each user must
evaluate its use against their own execution time requirements. It is not
recommended that code sharing be used in a time-critical application
function.

References
SHARE_BODY INFO directive, SPARCompiler Ada Reference Guide

pragma SHARED (simple_variable_name)
identifies a scalar or access variable as a variable that might be read/written
by different tasks. The Ada optimizer will not attempt to optimize away or
move any reads or writes to this variable.

References
 shared variables, Ada LRM (9.11)

pragma STORAGE_UNIT
is recognized by the implementation but has no effect in the current release.
The implementation does not allow SYSTEM to be modified by means of
pragmas. However, the same effect can be achieved by recompiling
package SYSTEM with altered values.

pragma SUPPRESS
is implemented as described in Appendix B of the Ada LRM except that
DIVISION_CHECK and in some cases OVERFLOW_CHECK, cannot be
suppressed.

The use of pragma SUPPRESS(ALL_CHECKS) is equivalent to writing at
the same point in the program a SUPPRESS pragma for each of the checks
listed in LRM 11.7.

pragma SUPPRESS(EXCEPTION_TABLES)
informs the code generator that the tables normally generated to identify
exception regions are not to be generated for the enclosing compilation unit.
This reduces the size of the static data required for a unit but also disables
exception handling within that unit.

Implementation-Dependent Characteristics F-17

F

pragma SUPPRESS_ALL
supresses all permitted runtime checks. It has no arguments.
pragma SUPPRESS_ALL has no effect in a package specification.

This pragma must appear immediately within a declarative part.

References
suppressing checks, Ada LRM 11.7

pragma SUPPRESS_ELABORATION_CHECKS
suppresses all elaboration checks in a given compilation unit. It has no
arguments. This pragma should be used after the end of the unit body of
any compilation unit to suppress elaboration checks for all subprograms in
that unit.

References
suppressing checks, Ada LRM 11.7

pragma SYSTEM_NAME
is recognized by the implementation but has no effect in the current release.
The implementation does not allow SYSTEM to be modified by means of
pragmas. However, the file system.a from the standard library can be
copied to a local library and recompiled there with new values.

pragma TASK_ATTRIBUTES has two forms:

pragma TASK_ATTRIBUTES(task_attr’address);
pragma TASK_ATTRIBUTES(task_object , task_attr’address);

The first form is only allowed within the specification of a task unit. It
specifies the task attributes of the task or tasks of the task type. The second
form is applicable to any task object. It takes precedence over the task
attributes specified for the task’s type.

The address of an ADA_KRN_DEFS.TASK_ATTR_T record is the first or
second argument of the pragma and is passed to the underlying microkernel
at task creation.

F-18 SPARCompiler Ada Programmer’s Guide

F

The task attributes are microkernel dependent. See ada_krn_defs.a in
standard for the type definition of TASK_ATTR_T and the different
options supported. When there isn’t a TASK_ATTRIBUTES pragma for a
task, the DEFAULT_TASK_ATTRIBUTES found in v_usr_conf_b.a ’s
configuration table are used.

All variations of the TASK_ATTR_T record contain at least the prio ,
mutex_attr_address and cond_attr_address fields. prio specifies
the priority of the task. If the task also has a pragma PRIORITY(PRIO) ,
the prio specified in the TASK_ATTR_T record takes precedence.

The mutex_attr_address field contains the address of the attributes to be
used to initialize the mutex object implicitly created for the task. This mutex
is used to protect the task’s data structure. For example, the task’s mutex is
locked when another task attempts to rendezvous with it.

If mutex_attr_address is set to NO_ADDR, the mutex_attr_address
value specified by the V_USR_CONF.CONFIGURATION_TABLE parameter,
DEFAULT_TASK_ATTRIBUTES, is used. Otherwise, mutex_attr_address
must be set to the address of an ADA_KRN_DEFS.MUTEX_ATTR_T record.
The MUTEX_ATTR_T record should be initialized using one of the
ADA_KRN_DEFS mutex attribute init subprograms.

References
Mutex Support Subprograms, SPARCompiler Ada Runtime System Guide

The cond_attr_address field contains the address of the attributes to be
used to initialize the condition variable object implicitly created for the task.
When the task blocks, it waits on this condition variable. If
cond_attr_address is set to NO_ADDR, then, the cond_attr_address
value specified by the V_USR_CONF.CONFIGURATION_TABLE parameter,
DEFAULT_TASK_ATTRIBUTES is used. Otherwise, cond_attr_address
must be set to the address of a ADA_KRN_DEFS.COND_ATTR_T record. The
COND_ATTR_T record should be initialized using one of the ADA_KRN_DEFS
condition variable attribute init routines.

References
Condition Variable Support Subprograms, SPARCompiler Ada Runtime System
Guide

Implementation-Dependent Characteristics F-19

F

ada_krn_defs.a has overloaded versions of the following subprogram for
initializing the task attributes:

The first argument in the second form is the name of a task object. This
allows task objects of the same task type to have different task attributes
(including different task priorities).

References
Ada Kernel. SPARCompiler Ada Runtime System Guide

pragma VOLATILE(object)
guarantees that loads and stores to the named object are performed as
expected after optimization.

The object declaration and the pragma must both occur (in this order)
immediately within the same declarative part or package specification.

pragma WARNINGS (ON | OFF)
selectively suppresses warnings on a single statement or a group of
statements.

pragma warnings (off);
statement(s) that generate warnings;
pragma warnings (on);

function task_attr_init(
prio : priority;
.
. OS dependent fields
.
mutex_attr: a_mutex_attr_t := null;
cond_attr: a_cond_attr_t := null

) return address;

F-20 SPARCompiler Ada Programmer’s Guide

F

F.2 Predefined Packages And Generics
The following predefined Ada packages given by Ada LRM Appendix C(22)
are provided in the standard library .

• generic function UNCHECKED_CONVERSION
• generic package DIRECT_IO
• generic package SEQUENTIAL_IO
• generic procedure UNCHECKED_DEALLOCATION
• package CALENDAR
• package IO_EXCEPTIONS
• package LOW_LEVEL_IO
• package MACHINE_CODE
• package STANDARD
• package SYSTEM
• package TEXT_IO

Implementation-Dependent Characteristics F-21

F

F.2.1 Specification of package SYSTEM

with UNSIGNED_TYPES;
package SYSTEM is

pragma LINK_WITH(”-Bstatic”);
pragma SUPPRESS(ALL_CHECKS);
pragma SUPPRESS(EXCEPTION_TABLES);
pragma NOT_ELABORATED;
type NAME is (sun4_unix);
SYSTEM_NAME : constant NAME := sun4_unix;
STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 16_777_216;
-- System-Dependent Named Numbers
MIN_INT : constant := -2_147_483_648;
MAX_INT : constant := 2_147_483_647;
MAX_DIGITS : constant := 15;
MAX_MANTISSA : constant := 31;
FINE_DELTA : constant := 2.0**(-31);
TICK : constant := 0.01;
-- Other System-dependent Declarations
subtype PRIORITY is INTEGER range 0 .. 99;
MAX_REC_SIZE : integer := 64*1024;
type ADDRESS is private;
function ”>” (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ”<” (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ”>=”(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ”<=”(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ”-” (A: ADDRESS; B: ADDRESS) return INTEGER;
function ”+” (A: ADDRESS; I: INTEGER) return ADDRESS;
function ”-” (A: ADDRESS; I: INTEGER) return ADDRESS;
function ”+” (I: INTEGER; A: ADDRESS) return ADDRESS;
function ”+” (I: UNSIGNED_TYPES.UNSIGNED_INTEGER) return

ADDRESS;
function MEMORY_ADDRESS
 (I: UNSIGNED_TYPES.UNSIGNED_INTEGER) return ADDRESS renames

”+”;
NO_ADDR : constant ADDRESS;
ADDRESS_ZERO : constant ADDRESS;
NULL_ADDRESS : constant ADDRESS;
ASSERTION_ERROR : exception;
type TASK_ID is private;
NO_TASK_ID : constant TASK_ID;
type PASSIVE_TASK_ID is private;
NO_PASSIVE_TASK_ID : constant PASSIVE_TASK_ID;

F-22 SPARCompiler Ada Programmer’s Guide

F

subtype SIG_STATUS_T is INTEGER;
SIG_STATUS_SIZE: constant := 4;
type PROGRAM_ID is private;
NO_PROGRAM_ID : constant PROGRAM_ID;
type BYTE_ORDER_T is (

LITTLE_ENDIAN,
BIG_ENDIAN
);

BYTE_ORDER : constant BYTE_ORDER_T := LITTLE_ENDIAN;
type LONG_ADDRESS is private;
NO_LONG_ADDR : constant LONG_ADDRESS;
function ”+” (A: LONG_ADDRESS; I: INTEGER) return LONG_ADDRESS;
function ”-” (A: LONG_ADDRESS; I: INTEGER) return LONG_ADDRESS;
function MAKE_LONG_ADDRESS (A: ADDRESS) return LONG_ADDRESS;
function LOCALIZE

(A: LONG_ADDRESS ; BYTE_SIZE : INTEGER) return ADDRESS;
function STATION_OF(A: LONG_ADDRESS) return INTEGER;
-- Internal RTS representation for day. If calendar package is
-- used, then, this is the julian day.

 subtype DAY_T is INTEGER;
-- Constants describing the configuration of the CIFO

additional
-- product. Only valid for single processor Ada.
SUPPORTS_INVOCATION_BY_ADDRESS : constant BOOLEAN := TRUE;
SUPPORTS_PREELABORATION : constant BOOLEAN := TRUE;
MAKE_ACCESS_SUPPORTED : constant BOOLEAN := TRUE;
-- Arguments to the CIFO pragma INTERRUPT_TASK.
type INTERRUPT_TASK_KIND is (SIMPLE, SIGNALLING);
function RETURN_ADDRESS return ADDRESS;

private
type ADDRESS is new UNSIGNED_TYPES.UNSIGNED_INTEGER;
NO_ADDR : constant ADDRESS := 0;
ADDRESS_ZERO : constant ADDRESS := 0;
NULL_ADDRESS : constant ADDRESS := 0;
pragma BUILT_IN(”>”);
pragma BUILT_IN(”<”);
pragma BUILT_IN(”>=”);
pragma BUILT_IN(”<=”);
pragma BUILT_IN(”-”);
pragma BUILT_IN(”+”);
type TASK_ID is new UNSIGNED_TYPES.UNSIGNED_INTEGER;
NO_TASK_ID : constant TASK_ID := 0;
type PASSIVE_TASK_ID is new UNSIGNED_TYPES.UNSIGNED_INTEGER;

(Continued)

Implementation-Dependent Characteristics F-23

F

Figure F-1 Specification of package SYSTEM

F.2.2 package CALENDAR

CALENDAR’s clock function (in package CALENDAR.LOCAL_TIME located
in the file calendar_s.a) uses the OS service routines GETTIMEOFDAY and
LOCALTIME for getting the current time.

F.2.3 package MACHINE_CODE

package MACHINE_CODE provides an assembly language interface for the
target machine including the necessary record types needed in the code
statement, an enumeration type containing all the opcode mnemonics, a set of
register definitions and a set of addressing mode functions. Also supplied (for
use only in units that with MACHINE_CODE) are pragma IMPLICIT_CODE
and the attribute ’REF .

Machine code statements take operands of type OPERAND , a private type that
forms the basis of all machine code address formats for the target.

The general syntax of a machine code statement is

CODE_n’(opcode , operand [, operand]);

where n indicates the number of operands in the aggregate.

NO_PASSIVE_TASK_ID : constant PASSIVE_TASK_ID := 0;
type PROGRAM_ID is new UNSIGNED_TYPES.UNSIGNED_INTEGER;
NO_PROGRAM_ID : constant PROGRAM_ID := 0;
type LONG_ADDRESS is

RECORD
station: UNSIGNED_TYPES.UNSIGNED_INTEGER;
addr: ADDRESS;

END RECORD;
NO_LONG_ADDR : constant LONG_ADDRESS := (0,0);
pragma BUILT_IN(MAKE_LONG_ADDRESS);
pragma BUILT_IN(LOCALIZE);
pragma BUILT_IN(STATION_OF);
pragma BUILT_IN(RETURN_ADDRESS);
pragma BUILT_IN(TO_INTEGER);
pragma BUILT_IN(TO_ADDRESS);

end SYSTEM;

(Continued)

F-24 SPARCompiler Ada Programmer’s Guide

F

When there is a variable number of operands, they are listed within a
subaggregate using this syntax:

CODE_n’(opcode , (operand [, operand]));

In the following example, code_2 is a record ‘format’ whose first argument is
an enumeration value of type OPCODE followed by two operands of
type OPERAND:

CODE_2’(add, a’ref, b’ref);

For those opcodes requiring no operands, named notation must be used

CODE_0’(op => opcode);

The opcode must be an enumeration literal (i.e., it cannot be an object,
attribute or a rename). An operand can only be an entity defined in
MACHINE_CODE or the ’REF attribute.

The ’REF attribute denotes the effective address of the first of the storage units
allocated to the object. ’REF is not supported for a package, task unit or entry.

Arguments to any of the functions defined in MACHINE_CODE must be static
expressions, string literals or the functions defined in MACHINE_CODE.

Implementation-Dependent Characteristics F-25

F

As an example of machine code insertions, the procedure WRITE_Y_REGISTER
is defined in the following code segment. It writes its argument into the %y
register of the SPARC processor.

Figure F-2 Machine Code Insertions

Note that the machine code procedure is inline. The following excerpted
a.das output shows a procedure that calls WRITE_Y_REGISTER and the code
generated for the call;

Figure F-3 Machine Code Insertions - Disassembled Output

References
opcode named notation. Ada LRM 4.3(4)

’REF , “Implementation-defined Attributes” on page FF-30

procedure write_y_register(x: integer) is
begin

code_3’(wr, g0, x’ref, y);
end write_y_register;
pragma inline(write_y_register);
procedure example is

before_call, after_call: integer;
value: integer := 2;

begin
before_call := 1; -- instruction before call
write_y_register(value);
after_call := 1; -- instruction after call

end example;

11 before_call := 1; -- instruction before call;
0010: or %g0, +01, %g2

7 code_3’(wr, g0, x’ref, y);
0014: wry %g0, %g1, %y

13 after_call := 1; -- instruction after call
0018: or %g0, +01, %g3

F-26 SPARCompiler Ada Programmer’s Guide

F

F.2.4 package SEQUENTIAL_IO

Sequential I/O is currently implemented for variant records with the
restriction that the maximum size possible for the record is always written.
This is also true of direct I/O. For unconstrained records and arrays, the
constant, SYSTEM.MAX_REC_SIZE, can be set prior to the elaboration of the
generic instantiation of SEQUENTIAL_IO or DIRECT_IO. For example, if
unconstrained strings are written, SYSTEM.MAX_REC_SIZE effectively restricts
the maximum size of strings that can be written. If the user knows the
maximum size of such strings, the SYSTEM.MAX_REC_SIZE can be set prior to
instantiating SEQUENTIAL_IO for the string type. This variable can be reset
after the instantiation with no effect.

F.2.5 package UNSIGNED_TYPES

package UNSIGNED_TYPES is supplied to illustrate the definition of and
services for the unsigned types supplied in this version of . We do not give
any warranty, expressed or implied, for the effectiveness or legality of this
package. It is used at your own risk.

The package is supplied in comment form because the actual package cannot
be expressed in normal Ada - the types are not symmetric about 0 as required
by the Ada LRM. This package is supplied and is accessible through the Ada
WITH statement as though it were present in source form.

Example:

with unsigned_types;
procedure foo(xxx: unsigned_types.unsigned_integer) is
...

Caution – Use package UNSIGNED_TYPES at your own risk.

!

Implementation-Dependent Characteristics F-27

F

F.2.6 Specification of package UNSIGNED_TYPES

-- package unsigned_types is

--

-- type unsigned_integer is range 0 .. (2**32 - 1); -- 0..4294967295

-- function ”=” (a, b: unsigned_integer) return boolean;

-- function ”/=”(a, b: unsigned_integer) return boolean;

-- function ”<” (a, b: unsigned_integer) return boolean;

-- function ”<=”(a, b: unsigned_integer) return boolean;

-- function ”>” (a, b: unsigned_integer) return boolean;

-- function ”>=”(a, b: unsigned_integer) return boolean;

-- function ”+” (a, b: unsigned_integer) return unsigned_integer;

-- function ”-” (a, b: unsigned_integer) return unsigned_integer;

-- function ”+” (a : unsigned_integer) return unsigned_integer;

-- function ”-” (a : unsigned_integer) return unsigned_integer;

-- function ”*” (a, b: unsigned_integer) return unsigned_integer;

-- function ”/” (a, b: unsigned_integer) return unsigned_integer;

-- function ”mod”(a, b: unsigned_integer) return unsigned_integer;

-- function ”rem”(a, b: unsigned_integer) return unsigned_integer;

-- function ”**” (a, b: unsigned_integer) return unsigned_integer;

-- function ”abs”(a, b: unsigned_integer) return unsigned_integer;

--

-- type unsigned_short_integer is range 0 .. (2**16 - 1); -- 0..65535

-- function ”=” (a, b: unsigned_short_integer) return boolean;

-- function ”/=”(a, b: unsigned_short_integer) return boolean;

-- function ”<” (a, b: unsigned_short_integer) return boolean;

-- function ”<=”(a, b: unsigned_short_integer) return boolean;

-- function ”>” (a, b: unsigned_short_integer) return boolean;

-- function ”>=”(a, b: unsigned_short_integer) return boolean;

-- function ”+” (a, b: unsigned_short_integer)

-- return unsigned_short_integer;

-- function ”-” (a, b: unsigned_short_integer)

-- return unsigned_short_integer;

-- function ”+” (a : unsigned_short_integer)

-- return unsigned_short_integer;

F-28 SPARCompiler Ada Programmer’s Guide

F

-- function ”-” (a : unsigned_short_integer)

-- return unsigned_short_integer;

-- function ”*” (a, b: unsigned_short_integer)

-- return unsigned_short_integer;

-- function ”/” (a, b: unsigned_short_integer)

-- return unsigned_short_integer;

-- function ”mod”(a, b: unsigned_short_integer)

-- return unsigned_short_integer;

-- function ”rem”(a, b: unsigned_short_integer)

-- return unsigned_short_integer;

-- function ”**” (a, b: unsigned_short_integer)

-- return unsigned_short_integer;

-- function ”abs”(a, b: unsigned_short_integer)

-- return unsigned_short_integer;

--

-- type unsigned_tiny_integer is range 0 .. (2**8 - 1); -- 0..255

-- function ”=” (a, b: unsigned_tiny_integer) return boolean;

-- function ”/=”(a, b: unsigned_tiny_integer) return boolean;

-- function ”<” (a, b: unsigned_tiny_integer) return boolean;

-- function ”<=”(a, b: unsigned_tiny_integer) return boolean;

-- function ”>” (a, b: unsigned_tiny_integer) return boolean;

-- function ”>=”(a, b: unsigned_tiny_integer) return boolean;

-- function ”+” (a, b: unsigned_tiny_integer)

-- return unsigned_tiny_integer;

-- function ”-” (a, b: unsigned_tiny_integer)

-- return unsigned_tiny_integer;

-- function ”+” (a : unsigned_tiny_integer)

-- return unsigned_tiny_integer;

-- function ”-” (a : unsigned_tiny_integer)

-- return unsigned_tiny_integer;

-- function ”*” (a, b: unsigned_tiny_integer)

-- return unsigned_tiny_integer;

-- function ”/” (a, b: unsigned_tiny_integer)

-- return unsigned_tiny_integer;

-- function ”mod”(a, b: unsigned_tiny_integer)

(Continued)

Implementation-Dependent Characteristics F-29

F

Figure F-4 Specification of package UNSIGNED_TYPES

F.3 Slices
A slice denotes a one-dimensional array formed by a sequence of consecutive
components of a one-dimensional array. A slice of a variable is a variable; a
slice of a constant is a constant; a slice of a value is a value. The syntax is:

prefix(discrete_range)

The prefix of a slice must be appropriate for a one-dimensional array type. The
type of the slice is the base type of this array type. The bounds of the discrete
range define those of the slice and must be of the type of the index. The slice
is a null slice denoting a null array if the discrete range is a null range.

For the evaluation of a name that is a slice, the prefix and the discrete range are
evaluated in some order not defined by the language. The exception
CONSTRAINT_ERROR is raised by the evaluation of a slice, other than a null
slice, if any of the bounds of the discrete range do not belong to the index
range of the prefixing array. (The bounds of a null slice need not belong to the
subtype of the index.)

References
slices, Ada LRM 4.1.2

-- return unsigned_tiny_integer;

-- function ”rem”(a, b: unsigned_tiny_integer)

-- return unsigned_tiny_integer;

-- function ”**” (a, b: unsigned_tiny_integer)

-- return unsigned_tiny_integer;

-- function ”abs”(a, b: unsigned_tiny_integer)

-- return unsigned_tiny_integer;

-- end unsigned_types;

(Continued)

F-30 SPARCompiler Ada Programmer’s Guide

F

F.4 Implementation-defined Attributes

 F.4.0.1 ’REF

The ’REF attribute denotes the effective address of the first of the storage
units allocated to the object. ’REF is not supported for a package, task unit or
entry. There are two forms of use for this attribute, X’REF and
SYSTEM.ADDRESS’REF(N). X’REF is used only in machine code procedures
while SYSTEM.ADDRESS’REF(N) can be used anywhere to convert an integer
expression to an address.

 F.4.0.2 X’REF

The attribute generates a reference to the entity to which it is applied.

In X’REF, X must be either a constant, variable, procedure, function or label.
The attribute returns a value of the type MACHINE_CODE.OPERAND and can
only be used to designate an operand within a code-statement.

The instruction generated by the code-statement in which the attribute occurs
can be preceded by additional instructions needed to facilitate the reference
(i.e., loading a base register). If the declarative section of the procedure
contains pragma IMPLICIT_CODE (OFF) , a warning is generated if
additional code is required.

References
Chapter 4, “Machine Code Insertions

 F.4.0.3 SYSTEM.ADDRESS’REF(N)

The effect of this attribute is similar to the effect of an unchecked conversion
from integer to address. However, SYSTEM.ADDRESS’REF(N) must be used
instead in the following listed circumstances and in these circumstances, N
must be static.

In SYSTEM.ADDRESS’REF(N), SYSTEM.ADDRESS must be
type SYSTEM.ADDRESS. N must be an expression of
type UNIVERSAL_INTEGER. The attribute returns a value of
type SYSTEM.ADDRESS, which represents the address designated by N.

Implementation-Dependent Characteristics F-31

F

• Within any of the run time configuration packages:
Use of unchecked conversion within an address clause requires the
generation of elaboration code but the configuration packages are not
elaborated.

• In any instance where N is greater than INTEGER’LAST:
Such values are required in address clauses which reference the upper
portion of memory. To use unchecked conversion in these instances requires
that the expression be given as a negative integer.

• To place an object at an address, use the ’REF attribute:
The integer_value in the following example is converted to an address
for use in the address representation clause. The form avoids
UNCHECKED_CONVERSION and is also useful for 32-bit unsigned addresses.

 F.4.0.4 X’TASK_ID

For a non-passive task object or value X, X’TASK_ID yields the unique task ID
associated with the task. The value of this attribute is of the
type SYSTEM.TASK_ID . If the task object or value X denotes a passive task,
the result is the passive task header record object associated with the passive
task. The result type is then of type SYSTEM.PASSIVE_TASK_ID .

 F.4.0.5 ’COMPILER_KEY

For a prefix N that denotes the name of an entity, N’COMPILER_KEY yields the
full pathname of the compiler key, which indicates the compiler that was used
to generate code for the unit containing the definition of N.

The entity named by N can be a program unit (package, subprogram, task, or
generic), an object (variable, constant, named number, or parameter), a type or
subtype (but not an incomplete type), or an exception.

The value returned by this attribute is of type STRING .

 --place an object at an address
 for object use at SYSTEN,ADDRESS’REF (integer_value)
 --to use unsigned addresses
 for VECTOR use at SYSTEM.ADDRESS’REF(16#808000d0#);
 TOP_OF_MEMORY : SYSTEM.ADDRESS := SYSTEM.ADDRESS’REF(16#FFFFFFFF#);

F-32 SPARCompiler Ada Programmer’s Guide

F

This attribute can be used for runtime detection of incompatibilities in data
representation. It typically is used when passing messages over a network to
ensure that the reader and writer agree on how to interpret the message. See
also ’COMPILER_VERSION.

 F.4.0.6 ’COMPILER_VERSION

For a prefix N that denotes the name of an entity, N’COMPILER_VERSION
yields the version of the compiler that was used to generate code for the unit
containing the definition of N.

The entity named by N can be a program unit (package, subprogram, task, or
generic), an object (variable, constant, named number, or parameter), a type or
subtype (but not an incomplete type), or an exception.

The value returned by this attribute is of type STRING .

This attribute can be used for runtime detection of incompatibilities in data
representation. It typically is used when passing messages over a network to
ensure that the reader and writer agree on how to interpret the message. See
also ’COMPILER_VERSION.

 F.4.0.7 ’DOPE_ADDRESS

For an array object A, A’DOPE_ADDRESS yields the address of the dope vector
that describes A. The value is of type SYSTEM.ADDRESS. If the object
denoted by A has no dope vector, this value is 0.

This attribute can be used in conjunction with ’DOPE_SIZE for retrieving
information about the object, as when reconstruction the array when passing
messages over a network. See Dope Vectors on page 27 for additional
information.

 F.4.0.8 ’DOPE_SIZE

For an array object A, A’DOPE_ADDRESS yields the size in bits of the dope
vector. The value is of type UNIVERSAL_INTEGER .

A positive value is always returned, whether or not the object denoted by A
has a dope vector. Use ’DOPE_ADDRESS to determine whether the dope
vector actually exists.

Implementation-Dependent Characteristics F-33

F

This attribute can be used in conjunction with ’DOPE_SIZE for retrieving
information about the object, as when reconstruction the array when passing
messages over a network. See Dope Vectors on page 27 for additional
information.

 F.4.0.9 ’ENTRY_NUMBER

For a prefix E that denotes a task entry or generic formal subprogram,
E’ENTRY_NUMBER yields a UNIVERSAL_INTEGER value the uniquely
identifies the entity denoted by E.

 F.4.0.10 ’HOMOGENEOUS

For a prefix T that denotes an access type, T’HOMOGENEOUS yields a boolean
value. The value returned is TRUE if all objects in the collection will always
have the same constraints. The converse, however, is not true.

Applying this attribute to a type that is not an access value is a semantic error.

Note that the attribute is a property of the type, not of the subtype. Thus, for
any access type T, T’HOMOGENEOUS yields the same value as
T’BASE’HOMOGENEOUS. For example:

At the implementation level, the attribute indicates whether the constraint
information is stored with allocated objects.

 F.4.0.11 ’TYPE_KEY

For a prefix T denoting a type name, T’TYPE_KEY yields a string that uniquely
identifies type T. This attribute typically is used when passing messages of a
given type over a network to ensure that the reader and writer agree on the
type to use when interpreting the message.

type T1 is access String (1..10);-- T1’HOMOGENEOUS = TRUE
type T2 is access String;-- T2’HOMOGENEOUS = FALSE
type T3 is new T2 (1..10);-- T3’HOMOGENEOUS = FALSE
type T4 is new T1; -- T4’HOMOGENEOUS = TRUE

F-34 SPARCompiler Ada Programmer’s Guide

F

F.5 Restrictions On ‘Main’ Programs
 requires that a ‘main’ program be a non-generic, parameter-less subprogram
that is either a procedure or a function returning an Ada STANDARD.INTEGER
(the predefined type). A ‘main’ program cannot be a generic subprogram or an
instantiation of a generic subprogram.

F.6 Generic Declarations
 does not require that a generic declaration and the corresponding body be part
of the same compilation and they are not required to exist in the same library.

F.7 Shared Object-code For Generic Subprograms
The compiler generates code for a generic instantiation that can be shared by
other instantiations of the same generic thus reducing the size of the generated
code and increasing compilation speed. There is an overhead associated with
the use of shared code instantiations because the generic actual parameters
must be accessed indirectly and in the case of a generic package instantiation,
declarations in the package are also accessed indirectly. Greater optimization is
possible for unshared instantiations because exact actual parameters are
known. It is the responsibility of the programmer to decide whether space or
time is most critical in a specific application.

To give the programmer control of when an instantiation generates unique
code or shares code with other similar instantiations, pragma SHARE_CODE is
provided. This pragma can be applied to a generic declaration or to individual
instantiations.

It is not practical to share the code for instantiations of all generics. If the
generic has a formal private type parameter, the generated code to
accommodate an instantiation with an arbitrary actual type is extremely
inefficient.

The compiler does not share code by default. The INFO directive
SHARE_BODY can be specified in a library to cause the compiler to always
share generic code bodies. pragma SHARE_CODE can be applied to generic
units or generic instances to control whether specific instances are shared.

Implementation-Dependent Characteristics F-35

F

To override the default, the pragma SHARE_CODE(name, FALSE) must be
used. If there are formal subprogram parameters, instantiations are not shared
unless an explicit pragma SHARE_CODE(name, TRUE) is used.

pragma SHARE_CODE is used to indicate the desire to share or not share an
instantiation. The pragma can reference either the generic unit or the
instantiated unit. When it references a generic unit, it sets sharing on or off for
all instantiations of that generic unless overridden by specific SHARE_CODE
pragmas for individual instantiations. When it references an instantiated unit,
sharing is on or off only for that unit.

The pragma SHARE_CODE is allowed only in the following places:
immediately within a declarative part, immediately within a package
specification or after a library unit in a compilation but before any subsequent
compilation unit. The form of this pragma is

pragma SHARE_CODE (generic, boolean_literal);

Note that a parent instantiation (the instantiation that creates the shareable
body) is independent of any individual instantiation. Therefore reinstantiation
of a generic with different parameters has no effect on other compilations that
reference it. The unit that caused compilation of a parent instantiation need
not be referenced in any way by subsequent units that share the parent
instantiation.

Sharing generics causes a slight execution time penalty because all type
attributes must be indirectly referenced (as if an extra calling argument were
added). However, it substantially reduces compilation time in most
circumstances and reduces program size.

We have compiled a unit, SHARED_IO, in the standard library that
instantiates all Ada generic I/O packages for the most commonly used base
types. Thus, any instantiation of an Ada I/O generic package shares one of the
parent instantiation generic bodies unless the following pragma is used:

pragma SHARE_CODE (generic, FALSE);

References
pragma SHARE_CODE, “Pragmas and Their Effects” on page FF-2

SHARE_BODY INFO directive, SPARCompiler Ada Reference Guide

F-36 SPARCompiler Ada Programmer’s Guide

F

F.8 Representation Clauses
Representation Clauses — supports bit-level representation clauses.

pragma PACK — does not define any additional representation pragmas.

Length Clauses — supports all representation clauses.

Enumeration Representation Clauses — Enumeration representation clauses
are supported.

Record Representation Clauses — Representation clauses are based on the
target machine’s word, byte and bit order numbering so is consistent with
machine architecture manuals for both ‘big-endian’ and ‘little-endian’
machines. Bits within a STORAGE_UNIT are numbered according to the target
machine manuals. It is not necessary for a user to understand the default
layout for records and other aggregates since fine control over the layout is
obtained by the use of record representation clauses. It is possible to align
record fields correctly with structures and other aggregates from other
languages by specifying the location of each element explicitly. The
’FIRST_BIT and ’LAST_BIT attributes can be used to construct bit
manipulation code applicable to differently bit-numbered systems.

The only restriction on record representation clauses is that if a component
does not start and end on a storage unit boundary, it must be possible to get it
into a register with one move instruction.

The size of object modules is aligned. It is assumed that ”mod 2” is a worst
case restriction assuming that even the C compiler aligns things to a 2 byte
boundary.

Note that the alignment clause portion of a record representation must be a
power of 2. The alignment is obeyed for all allocations of the record type with
the following exceptions:

• objects declared within a procedure
• objects created by an allocator

For these two exceptions, the maximum alignment obeyed is the default stack
and heap alignment.

If a record is given a representation clause, but no alignment clause, then the
compiler assumes that the record may be arbitrarily aligned (at an arbitrary bit
offset within another structure, for example). The compiler can generate much

Implementation-Dependent Characteristics F-37

F

more efficient code for accessing the fields of a record, if it knows that all
instances of the record type will be naturally aligned. Therefore, to achieve the
best performance, you should include an appropriate alignment clause with
each representation clause specifying the natural alignment of the record as
determined by its largest scalar component.

Refer to Figure F-5, which illustrates SPARC addressing and bit numbering.

F-38 SPARCompiler Ada Programmer’s Guide

F

Figure F-5 SPARC Addressing and Bit-numbering Scheme

07
L
S
B

M
S
B

07
L
S
B

M
S
B

815
L
S
B

M
S
B

1623
L
S
B

M
S
B

2431
L
S
B

M
S
B

07
L
S
B

M
S
B

815
L
S
B

M
S
B

address A

address A+1address A

address A+3address A+2address A+1address A

M
S
B

L
S
B

most significent bit

least significent bit

address of the bit field

bit field bit numbers
7070707

address ...address A+2address A+1address A

1 2 3 4 5 6 7 8 9 1011 . . .

0

SPARC Addressing and Bit Numbering*

For Ada instructions, the bits are numbered differently.
This numbering is used for record representation

clauses.

bits within
a byte

bit within
a halfword

bit within
a word

address of the halfword

address of the word

Implementation-Dependent Characteristics F-39

F

Address Clauses — Address clauses are supported for the following entities:

• objects

• entries

• subprograms

Some Considerations when Using Address Clauses

A fairly common usage of Ada address clauses is to locate an Ada object at a
specific location in memory, for example:

x: some_type;
for x use at some_address;

Be aware that some Ada types require default initialization; the compiler
generates code to initialize the memory locations where the object is located.
The compiler will give a warning when an object that requires default
initialization is given an address clause.

Data types which require default initialization include:

• access types (access types are initialized to 0)
• records with user-defined default initialization
• records with dynamic sized components (e.g., an array whose bounds aren’t

known at compile time).
• records or arrays whose component type is any of the above

If you use an address clause to locate an object at a memory location but you
do not want any writes to this memory except those that your Ada program
explicitly provides, you must take care to define your types so that default
initialization is not required.

For example, for access types, one approach is to put a 32-bit integer at the
memory location and assign the access value using an
UNCHECKED_CONVERSION.

Caution – Code that references memory mapped devices using a for use at
clause to locate an object at the I/O address should be used with caution. The
default optimization of the compiler eliminates redundant moves to and from
memory. If this is a problem, compile with pragma OPTIMIZE_CODE(OFF) .

!

F-40 SPARCompiler Ada Programmer’s Guide

F

References
converting INTEGER values to ADDRESS values 18

Interrupt Entries on Solaris — allows task entries to be associated with
Solaris signals. Solaris handles all interrupts and faults initially and returns
control to the user program as a signal.

The available Solaris signals are described in Solaris documentation,
SIGNAL(3) . Some of the signals cannot be caught due to restrictions in
Solaris. The attempt to assign an entry to these signals results in a kernel error
‘replace vector ’

#defineSIGKILL 9/* kill */

The following example program shows how a user can attach to the
<CONTROL-C>or interrupt-from-keyboard signal:

Figure F-6 Attach interrupt-from-keyboard Signal

with system; use system;
with text_io;
task interrupt is

entry SIGINT;
for SIGINT use at address’ref(2); -- interrupt

end;
task body interrupt is
begin

loop
accept SIGINT do

text_io.put_line(”SIGINT”);
end;

end loop;
end;

Implementation-Dependent Characteristics F-41

F

Signal handlers are set up for the following signals by the Runtime
System:worksworks

Note – The use of signal handlers is complicated when non-Ada routines are
used.

References
signal handlers with non-Ada routines

Change of Representation— Change of representation is supported.

package SYSTEM — The specification of package SYSTEM is available both
earlier in this chapter and on line in the file system.a in the standard
release library. The pragmas SYSTEM_NAME, STORAGE_UNIT and
MEMORY_SIZE are recognized by the implementation but have no effect. The
implementation does not allow SYSTEM to be modified by means of pragmas.
However, the same effect can be achieved by recompiling the SYSTEM package
with altered values. Note that such a compilation causes other units in the
standard library to become out of date. Consequently, such recompilations
should be made in a library other than standard .

References
 “Specification of package SYSTEM ” on page F-21

Figure F-7 Signals

Signal
Name

Signal
Number

Description

SIGILL 4 illegal instruction

SIGFPE 8 floating point exception

SIGSEGV 11 segmentation violation

SIGTERM 15 Solaris MT Ada
(asynchronous abort of another task)

SIGWAITI
NG

32 Solaris Threads

SIGLWP 33 Solaris Threads

F-42 SPARCompiler Ada Programmer’s Guide

F

System-Dependent Named Numbers —The specification of package
SYSTEM is listed earlier in this chapter. This specification is also available on
line in the file system.a in the standard release library.

Representation Attributes — The ’ADDRESS attribute is supported for the
following entities.

• variables
• constants
• procedures
• functions

If the prefix of an address attribute is an object that is not aligned on a storage
unit boundary, the attribute yields the address of the storage unit containing
the first bit of the object. This is consistent with the definition of the
FIRST_BIT attribute.

All other Ada representation attributes are fully supported.

Representation Attributes of Real Types — These attributes are supported.

References
“Predefined Packages And Generics” on page FF-20

Machine Code Insertions — Machine code insertions are supported.

References
Chapter 4, “Machine Code Insertions

Interface to Other Languages — The interface to other languages is discussed
in the Interface Programming chapter and in the section Pragmas and Their Effects.

References
Chapter 5, “Interface Programming

“Pragmas and Their Effects” on page F F-2

Unchecked Deallocations — Both UNCHECKED_DEALLOCATION and
UNCHECKED_CONVERSION are provided.

Implementation-Dependent Characteristics F-43

F

Unchecked Type Conversions — The predefined generic function
UNCHECKED_CONVERSION cannot be instantiated with a target type that is an
unconstrained array type or an unconstrained record type with discriminants.

Unchecked Storage Deallocations — Any object allocated can be deallocated.
No checks are currently performed on released objects. However, when an
object is deallocated, its access variable is set to null. Subsequent deallocations
using the null access variable are ignored. For information about pool-based
memory allocation, see Pool Based Allocation: Pool on page .

F.9 Dope Vectors
An array dope vector is a sequence of long words (32 bits) containing
precomputed offset expressions used for indexing arrays. For an N
dimensional array subtype:

array (I_1, I_2, ..., I_N) of element_type;

the dope vector is layout is shown in Figure F-8

F-44 SPARCompiler Ada Programmer’s Guide

F

Figure F-8 Dope Vector Layout

F.9.1 Allocation of Dope Vectors

An array subtype is completely static if its bounds are all static and its
component subtype is static sized. The dope vector for a completely static
array subtype is initialized statically; all other dope vectors are initialized by
generated inline code.

Dope vectors are allocated in different ways:

E_0 = element_size

F_1 = I_1’first

L_1 = I_1’last

E_1 = (L_1-F_1-1) * E_0

F_2 = I_2’first

L_2 = I_2’last

 ...

F_N = I_N’first

L_N = I_N’last

E_N = (L_N-F_N-1)*E_(N-1)

Low address

High address

Implementation-Dependent Characteristics F-45

F

Static Allocation
If the array subtype is:
(a) completely static, or
(b) declared within a library level package spec or body
then the dope vector is allocated statically.

Stack Allocation
If the array subtype is dynamic and declared within a task, declare block, or
subprogram body, the dope vector is allocated on the stack.

Heap Allocation
If the array subtype is declared in an allocator for an unconstrained array
type, the dope vector is allocated in the words immediately preceding the
allocated array object. For example,

type ACC_STR is access STRING;
A: ACC_STR := new STRING(1..N);

Record Allocation
If the array subtype is a dependent array subtype (i.e,. one of its bounds is a
discriminant of an enclosing record), the dope vector is allocated in the
static part of the record. The dope vector is initialized by record
initialization code. For example,

type rec(a: integer) is record;
b: string(1..a);
c: integer;
d: string(1..a);
e: integer;
f: string(1..a);
end record;

 is represented as:

F-46 SPARCompiler Ada Programmer’s Guide

F

Figure F-9 Record Allocation of Dope Vectors

a

dope vector for b

c

ptr to dynamic component d

dope vector for d

dynamic component b

dynamic component d

NOTE: The pointer to dynamic
component d is an offset
from the location of the
pointer to the start of d.

dynamic component f

e

ptr to dynamic component f

dope vector for f

NOTE: The pointer to
dynamic component b is
implicit since it is the
first dynamic component.

Implementation-Dependent Characteristics F-47

F

F.10 Parameter Passing
When calling other languages, parameters are passed in registers and by
pushing values (or addresses) on the stack. Extra information is passed for
records (’CONSTRAINED) and for arrays (dope vector address).

Normally, parameters are passed in registers and by pushing values (or
addresses) on the stack. Extra information is passed for records
(’CONSTRAINED) and for arrays (dope vector address).

Small results are returned in registers; large results with known targets are
passed by reference. Large results of anonymous target and known size are
passed by reference to a temporary created on the caller’s stack. Large results
of anonymous target and unknown size are returned by copying the value
down from a temporary in the callee so the space used by the temporary can
be reclaimed.

The compiler assumes the following calling conventions:

1. Caller passes scalar arguments in %o0 - %o5 and floating point arguments
in the floating point registers; other arguments are passed on the stack.

2. Caller calls callee.

3. Callee gets a new register window and allocates space for locals with the
SAVE instruction.

4. Callee executes.

5. Callee leaves function results in %o0 or %f0 and %f1 .

6. Callee restores the previous register window with the RESTORE instruction.

7. Callee returns to caller.

8. Caller deallocates space used for arguments on the stack.

Machine code insertions can be used to explicitly build a call interface when
compiler conventions are not compatible or when interfacing to assembly
language.

F-48 SPARCompiler Ada Programmer’s Guide

F

For example, suppose an interface to a C function PASS_INT is desired, where
the C compiler generated code such that the callee deallocates space for the
parameters.

The following Ada code provides a wrapper to call this function, while
allowing the C function to handle the deallocation.

Figure F-10 Interface to C Function

References
Chapter 4, “Machine Code Insertions

int pass_int(x)
int x;
{...
}

with MACHINE_CODE;
function PASS_INT(X: INTEGER) return INTEGER is

RETURN_VAL: INTEGER;
procedure WRAPPER is

use MACHINE_CODE;
begin;

code_2’(sethi, hi(”_pass_int”), g1);
code_2’(ld, x’ref,o0);
code_3’(sub, sp, + 32, sp);
code_2’(mov, g4, l0);
code_2’(jmpl, g1 + lo(”_pass_int”), o7);
code_0’(op => nop);
code_2’(mov, l0, G4);
code_2’(st, o0, return_val’ref);
code_3(add, sp, + 32, sp);

end WRAPPER;
begin

WRAPPER;
return RETURN_VAL;

end PASS_INT;

Implementation-Dependent Characteristics F-49

F

F.11 Conversion And Deallocation
The predefined generic function UNCHECKED_CONVERSION cannot be
instantiated with a target type that is an unconstrained array type or an
unconstrained record type with discriminants.

There are no restrictions on the types with which generic function
UNCHECKED_DEALLOCATION can be instantiated. No checks are performed on
released objects.

F.12 Process Stack Size
The compiler and other large dynamic compiled programs occasionally give
problems due to the shell’s stack limit. Altering the stack size and recompiling
or re-executing is sometimes necessary. A process inherits its stack limit from
the invoking process, usually the shell.

The C shell allows the default stack size to be reset, usually up to the limit of
the process size. To change the stacksize for the C shell, execute the following
command or include it in the .login file.

limit stacksize number

Most Bourne shell implementations do not permit the stack size to be altered.

F.13 Types, Ranges and Attributes
The maximum ARRAY and RECORD type size limits have been increased to
256_000_000 bits.

Numeric Literals — uses unlimited precision arithmetic for computations
with numeric literals.

Enumeration Types — allows an unlimited number of literals within an
enumeration type.

Attributes of Discrete Types — defines the image of a character that is not a
graphic character as the corresponding 2- or 3-character identifier from
package ASCII of Ada LRM Annex C-4. The identifier is in upper case
without enclosing apostrophes. For example, the image for a carriage return is
the 2-character sequence CR (ASCII.CR).

F-50 SPARCompiler Ada Programmer’s Guide

F

The type STRING — Except for memory size, places no specific limit on the
length of the predefined type STRING . Any type derived from the
type STRING is similarly unlimited.

Floating Point Types — floating point types have the attributes given in the
following list:

Table F-15 type INTEGER Attribute Values

Name of
Attribute

Attribute Value
LONG_INTEGER

Attribute
Value of
SHORT_INTEGER

Attribute
Value of
TINY_INTEGER

SIZE 32 16 8

FIRST -2_147_483_648 -32_768 -128

LAST 2_147_483_647 32_767 127

Table F-16 Floating Point Type Attribute Values

Name of Attribute Attribute Value of
FLOAT

Attribute Value of
SHORT_FLOAT

SIZE 64 32

FIRST
LAST

-1.79769313486232E+308
1.79769313486232E+308

-3.40282E+38
3.40282E+38

DIGITS
MANTISSA

15
51

6
21

EPSILON 8.88178419700125E-16 9.53674316406250E-07

EMAX 204 84

SMALL
LARGE

1.94469227433161E-62
2.57110087081438E+61

2.58493941422821E-26
1.93428038904620E+25

SAFE_EMAX
SAFE_SMALL
SAFE_LARGE

1021
2.22507385850720E-308
2.24711641857789E+307

125
1.17549435082229E-38
4.25352755827077E+37

MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN

2
53

1024
-1021

2
24

128
-125

MACHINE_ROUNDS
MACHINE_OVERFLOWS

TRUE
TRUE

TRUE
TRUE

Implementation-Dependent Characteristics F-51

F

Fixed Point Types — provides fixed point types mapped to the supported
integer sizes.

Operations of Fixed Point Types — fixed point type DURATION has the
following attributes:

F.14 Input/Output
The Ada I/O system is implemented using host OS I/O. Both formatted and
binary I/O are available. There are no restrictions on the types with which
DIRECT_IO and SEQUENTIAL_IO can be instantiated, except that the element
size must be less than a maximum given by the variable
SYSTEM.MAX_REC_SIZE. This variable can be set to any value prior to the
generic instantiation; thus, the user can use any element size. DIRECT_IO can
be instantiated with unconstrained types but each element is padded out to the
maximum possible for that type or to SYSTEM.MAX_REC_SIZE, whichever is
smaller. No checking — other than normal static Ada type checking — is done
to ensure that values from files are read into correctly sized and typed objects.

Table F-17 Fixed Point Type Attribute Values

Name of
Attribute

Attribute Value
for DURATION

SIZE 32

FIRST
LAST

-214748.3648
 214748.3647

DELTA 1.00000000000000E-04

MANTISSA 31

SMALL
LARGE

1.00000000000000E-04
 2.14748364700000E+05

FORE
AFT

7
4

SAFE_SMALL
SAFE_LARGE

1.00000000000000E-04
 2.14748364700000E+05

MACHINE_ROUNDS
MACHINE_OVERFLOWS

TRUE
TRUE

F-52 SPARCompiler Ada Programmer’s Guide

F

 file and terminal input-output are identical in most respects and differ only in
the frequency of buffer flushing. Output is buffered (buffer size is 1024 bytes).
The buffer is always flushed after each write request if the destination is a
terminal. The procedure FILE_SUPPORT.ALWAYS_FLUSH (file_ptr)
causes flushing of the buffer associated with file_ptr after all subsequent output
requests. Refer to the source code for file_spprt_b.a in the standard
library. Note that the limited private type, file_type defined in TEXT_IO, is
derived from the type file_ptr in FILE_SUPPORT. Currently, you must
convert between them using UNCHECKED_CONVERSION, because the
derivation happens in the private part of the specification of TEXT_IO.

For example, the following procedure stops buffering for a text file:

Figure F-11 Stop Buffering for a Text File

Instantiations of DIRECT_IO use the value MAX_REC_SIZE as the record size
(expressed in STORAGE_UNITs) when the size of ELEMENT_TYPE exceeds that
value. For example, for unconstrained arrays such as a string where
ELEMENT_TYPE’SIZE is very large, MAX_REC_SIZE is used instead.
MAX_REC_SIZE is defined in SYSTEM and can be changed before instantiating
DIRECT_IO to provide an upper limit on the record size. The maximum size
supported is 1024 * 1024 * STORAGE_UNIT bits. DIRECT_IO raises
USE_ERROR if MAX_REC_SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL_IO use the value MAX_REC_SIZE as the record
size (expressed in STORAGE_UNITs) when the size of ELEMENT_TYPE exceeds
that value. For example, for unconstrained arrays such as STRING where
ELEMENT_TYPE’SIZE is very large, MAX_REC_SIZE is used instead.

with text_io;
with file_support;
with unchecked_conversion;
procedure dont_buffer(file: text_io.file_type) is

function cvt is new unchecked_conversion(
source => text_io.file_type,
target => file_support.file_ptr);

begin
file_support.always_flush(cvt(file));

end;

Implementation-Dependent Characteristics F-53

F

MAX_REC_SIZE is defined in SYSTEM and can be changed by a program before
instantiating SEQUENTIAL_IO to provide an upper limit on the record size.
SEQUENTIAL_IO imposes no limit on MAX_REC_SIZE.

F-54 SPARCompiler Ada Programmer’s Guide

F

Index-1

Index

Symbols
.prrc, 1-3, 1-9
”new”, A-12, A-23, A-32

A
a.app, 2-1
a.pr, 1-1, 1-2
a.prof

statistical profiling, 3-1
access

global variables, 5-13
access type

constraints, F-33
activate

section of source text, 2-24
Ada, 5-3
Ada delay

minimize, A-31
Ada entities

machine code operands, 4-6
Ada interface to curses, 5-2
Ada PreProcessor language, 2-3
Ada subprograms

call from other languages, 5-24
ADA.LIB file

user library configuration, A-6

ada.lib file
user library configuration, A-6

ADA_IO_MUTEX_ATTR_ADDRESS, A-
29

ADA_KRN_I.ALLOC, A-32
ADA_PUT, 5-22
ADAPATH reference, A-16
address

effective address of first storage
unit, F-30

memory allocation table, A-23
routine to call for ”new”

allocations, A-23
small block sizes table, A-12
task level debugging structure, A-24

address clause
supported for objects and entries, F-

39
SYSTEM.ADDRESSREF(N)attribute',

F-31
address clauses

considerations when using, F-39
ADDRESS', F-42
addressing, F-38
align record fields

record representation clauses, F-36
ALLOC_ADDRESS, A-32
ALLOC_SIZE, A-32

Index-2 SPARCompiler Ada Programmer’s Guide

allocation
dope vectors, F-44

allocation routines
memory allocation table, A-23

allocation strategy, A-12
ALLOCATION_STRATEGY, A-12
allow

implicit code, F-6
APP

Ada PreProcessor language, 2-3
INFO directive, 2-2

appendix F
address clauses, F-39
addressing, F-37
array slices, F-29
bit numbering, F-37
calling conventions, F-47
change of representation, F-41
COMPILER_KEY', F-31
COMPILER_VERSION', F-32
conversion, F-49
deallocation, F-49
discrete types, F-49
dope vectors, F-43
DOPE_ADDRESS', F-32
DOPE_SIZE', F-32
ENTRY_NUMBER', F-33
enumeration representation

clauses, F-36
enumeration types, F-49
fixed point types, F-51
floating point types, F-50
generic declarations, F-34
HOMOGENEOUS', F-33
implementation defined

attributes, F-30
input/output, F-51
interrupt entries, F-40
length clauses, F-36
numeric literals, F-49
package CALENDAR, F-23
package MACHINE_CODE, F-23
package SEQUENTIAL_IO, F-26
package SYSTEM, F-41
package UNSIGNED_TYPES, F-26

parameter passing, F-47
pragma PACK, F-36
pragmas, F-2
predefined packages and generics, F-

20
process stack size, F-49
record representation clauses, F-36
REF', F-30
representation attributes, F-42
representation attributes of real

types, F-42
representation clauses, F-36
restrictions on main programs, F-34
shared object code for generic

subprograms, F-34
specification of package SYSTEM, F-

21
specification of package

UNSIGNED_TYPES, F-27
SYSTEM.ADDRESSREF(N)', F-30
system-dependent named

numbers, F-42
type STRING, F-50
TYPE_KEY', F-33
types, ranges and attributes, F-49
unchecked deallocations, F-42
unchecked storage allocations, F-43
unchecked type conversions, F-43
XREF', F-30
XTASK_ID', F-31

appropriate privilege, B-3
arguments

pass to target linker, F-12
ARRAY

maximum size, F-49
array slices, F-29
array types

interface programming, 5-7
assembly language

machine code insertions, 4-1
assembly language interface, F-23
assignment statements

preprocessor, 2-24
attach

Index-3

CONTROL-C to signal, F-40
attribute

COMPILER_KEY', F-31
COMPILER_VERSION', F-32
DOPE_ADDRESS', F-32
DOPE_SIZE', F-32
ENTRY_NUMBER', F-33
HOMOGENEOUS', F-33
REF', F-30
SYSTEM.ADDRESSREF(N)', F-30
TASK_ID', F-31
TYPE_KEY', F-33
XREF', F-30

attribute/value lists and functions
XView, C-9

attributes
discrete types, F-49
DURATION, F-51
fixed point types, F-51
FLOAT, F-50
implementation defined, F-30
LONG_FLOAT, F-50
preprocessor, 2-16
SHORT_INTEGER, F-50
task, F-17
TINY_INTEGER, F-50
types, ranges, and attributes listed, F-

49
avoid

complex initialization, 5-26
elaboration, 5-26

B
bit manipulation

record representation clauses, F-36
bit numbering, F-38
BIT_PACK, F-2
block

specify size allocated with ”new”, A-
12

blocks
preallocated, A-12
small block sizes, A-10

board_conf, A-8
BOOLEAN type

preprocessor, 2-13
buffer

standard output, F-52
build

test library during user library
configuration, A-6

user library, A-2
BUILT_IN, F-2
BYTE_PACK, F-2

C
C

corresponding types between C,
Fortran, and Ada, 5-3

interface to Ada, 5-1, 5-9
support calls to, F-10

CALENDAR, F-23
call

Ada from other languages, 5-24
Ada from other languages

restrictions, 5-24
Ada subprograms from foreign

languages, F-5
subroutines defined in other

languages, 5-9
CALL statement, 4-11
call task

stack size, A-15
CALL_TASK_ATTR, A-15
CALL_TASK_PRIO, A-15
CALL_TASK_STACK_SIZE, A-15
calling conventions, F-47

example to C program, F-48
machine code insertions, F-47

calls
to other languages, F-10

case statement
preprocessor, 2-27

change
ADA.LIB file during

configuration, A-6

Index-4 SPARCompiler Ada Programmer’s Guide

ada.lib file during configuration, A-6
change of representation

supported, F-41
character special file, B-3
class-specific functions

POSIX, B-25
clauses

representation, F-36
coalesce

avoid coalescing blocks, A-12
code statements

machine code insertions, 4-3
CODE_N code-statement

place multiple data items in code, 4-
13

comments
formatter, 1-4

compilation
units in separate source files, 5-25

compile
user library configuration files, A-5

compiler
implementation dependent

features, F-1
COMPILER_KEY', F-31
COMPILER_VERSION', F-32
complex initialization

avoid, 5-26
components

primary in preprocessor, 2-1
user library configuration, A-9

concepts
POSIX, B-4

conditional processing
preprocessor, 2-24

conditional-compilation
preprocessor, 2-7

configuration
ADAPATH reference, A-16
build test library, A-6
building the user library, A-2
CALL_TASK_ATTR, A-15
CALL_TASK_PRIO, A-15

CALL_TASK_STACK_SIZE, A-15
change the ADA.LIB file, A-6
change the ada.lib file, A-6
compile test program, A-7
compile user configuration files, A-5
CONFIGURATION_TABLE, A-16
copy the configuration files, A-4
create an Ada library, A-3
DEBUG_TASK_ATTR, A-15
DEBUG_TASK_PRIO, A-15
DEBUG_TASK_STACK_SIZE, A-15
edit test program, A-7
edit user configuration package, A-5
FLOATING_POINT configuration

parameters, A-22
heap memory callout configuration

parameters, A-23
host OS signal configuration

parameters, A-24
INITIALIZE_PROC_ADDR, A-14
link test program, A-7
memory allocation configuration

table, A-23
run test program, A-7
scheduling configuration

parameters, A-30
SELF_SIGNAL, A-14
SMALL_BLOCK_SIZES_TABLE, A-

10
stack configuration parameters, A-20
steps to configure user library, A-2
task level debugging, A-13
taskdeb configuration structure, A-24
taskdeb structure, A-13
time slice configuration

parameters, A-25
TRAP_INSTRUCTION, A-15
TRAP_INSTRUCTION_LENGTH, A

-15
TRAP_INSTRUCTION_USE, A-15
TRAP_INTR_VECTOR_ID, A-15
user library components, A-9
user library configuration files, A-8
V_CIFO_ISR, A-35
V_GET_HEAP_MEMORY, A-32
V_KRN_ALLOC_CALLOUT, A-37

Index-5

V_PASSIVE_ISR, A-33
V_PENDING_OVERFLOW_CALLO

UT, A-36
V_SIGNAL_ISR, A-34
V_START_PROGRAM, A-38
V_START_PROGRAM_CONTINUE,

A-38
configuration file

formatter, 1-3
CONFIGURATION_TABLE, A-16
constant declarations

examples in preprocessor, 2-12
constant object declaration

preprocessor, 2-9, 2-11
control

scheduling, A-30
signals, A-24
time slicing, A-25

CONTROLLED, F-2
conventions

calling, F-47
conversion

program, 5-20
UNCHECKED_CONVERSION, F-49

conversions
type in preprocessor, 2-22

corresponding types
C, Fortran and Ada, 5-3

create
parallel data types, 5-2

current time
get, F-23

curses
Ada interface, 5-2

D
data type naming conventions

XView, C-8
data types

interface programming, 5-2
requiring default initialization, F-39

DATA_1 code-statement, 4-13
deactivate

section of source text, 2-24
debug and call task configuration

task level debugging support, A-15
debug task

stack size, A-15
DEBUG_TASK_ATTR, A-15
DEBUG_TASK_PRIO, A-15
DEBUG_TASK_STACK_SIZE, A-15
debugging

machine code, 4-16
declaration

local in preprocessor, 2-11
scope in preprocessor, 2-8

declarations
preprocessor, 2-8
scope, 2-30

declarative region
preprocessor, 2-29

declare
preprocessor object, 2-8

declare statement
preprocessor, 2-29

default
files used by preprocessor, 2-2
formatter specifications, 1-2
time slicing interval, A-25
user library configuration, A-8

default initialization
data types that require, F-39

DEFAULT_TASK_ATTRIBUTES, A-27
DEFAULT_TASK_STACK_SIZE

user library configuration, A-20
define

object in Ada library, 2-8
object on preprocessor command

line, 2-10
definition

implicit code, 4-16
runtime checks, 4-15

definitions
POSIX, B-3

delay
specify minimum time, A-31

Index-6 SPARCompiler Ada Programmer’s Guide

delimiters
preprocessor, 2-4

device-specific functions
POSIX, B-25

DIRECT_IO, F-52
directives

important to XView, C-4
directories

board_conf, A-8
POSIX, B-21
usr_conf, A-8
XView, C-2

DISABLE_INTR_STATUS, A-24
DISABLE_SIGNALS_33_64_MASK, A-24
DISABLE_SIGNALS_MASK, A-24
disallow

implicit code, F-6
discrete types

attributes, F-49
dope vector

address, F-32
size, F-32

dope vector address
parameter passing, F-47

dope vectors, F-43
allocation, F-44

DOPE_ADDRESS', F-32
DOPE_SIZE', F-32
DURATION, F-51
dynamic array types

interface programming, 5-7
dynamic initialization, F-9

E
edit

user configuration package, A-5
effective address

first storage unit, F-30
ELABORATE, F-2
elaborated code

suppress, F-13
elaboration

avoid, 5-26
elaboration checks

suppress all, F-17
ELABORATION_TABLE, 5-26
enable

time slicing, A-25
entity

identifying number, F-33
ENTRY_NUMBER', F-33
enumeration clauses

representation specifications, F-36
enumeration types, F-49
environment

process, B-17
error codes

POSIX, B-11
error messages

formatter, 1-3
evaluate

array slice, F-29
evaluation

expressions in preprocessor, 2-20
example

.prrc file, 1-9
Ada library directives for

preprocessor, 2-9
attach CONTROL-C to signal, F-40
definition of object defined on

command line, 2-11
expressions in preprocessor, 2-19
formatter configuration file, 1-9
formatter invocation, 1-11
formatter output, 1-10
formatter use, 1-7
interface to C function, F-48
machine code insertions, F-25
machine code startup routine, 4-9
mapping parallel data structures, 5-

15
numeric type conversion in

preprocessor, 2-23
pragma INTERFACE_NAME, 5-9
preprocessor attributes, 2-18
preprocessor comments, 2-5

Index-7

preprocessor declarations and
visibility, 2-36

preprocessor identifiers, 2-5
preprocessor numeric literals, 2-5
preprocessor string literals, 2-5
primaries in preprocessor, 2-19
program conversion, 5-20
string type conversion in

preprocessor, 2-23
unsigned types, F-26
using intermediate routines in

conversion, 5-12
exception

print traceback registers, A-31
exception unwinding

stack size, A-20
EXCEPTION_STACK_SIZE, A-20
exceptions

POSIX, B-11
expand

recursive calls, F-9
explicit separator

preprocessor, 2-4
EXPORT_FUNCTION, F-3
EXPORT_OBJECT, F-3
EXPORT_PROCEDURE, F-3
expression evaluation

preprocessor, 2-20
expressions

preprocessor, 2-19
preprocessor example, 2-19

extended security control, B-4
EXTERNAL, 5-24, F-5

program conversion, 5-20
external subprograms

declare in interface programming, 5-
9

EXTERNAL_NAME, 5-24, F-5
program conversion, 5-20

F
FAST_RENDEZVOUS_ENABLED, A-21
features

implementation dependent, F-1
file

POSIX, B-3
file access permissions, B-4
file group class, B-3
file times update, B-4
files

defaults used by preprocessor, 2-2
POSIX, B-21
user library configuration, A-8

find
correct object, 5-25

fixed format specification
formatter, 1-3

fixed point types, F-51
attributes, F-51

FLOAT
attributes, F-50

floating point types, F-50
FLOATING_POINT configuration

parameters, A-22
FLOATING_POINT_CONTROL, A-22
FLOATING_POINT_SUPPORT, A-22
foreign languages

reference variables in, F-11
support calls to, F-10

formatter
command line option precedence, 1-4
comments, 1-4
configuration file, 1-3
default specifications, 1-2
error messages, 1-3
example invocation, 1-11
example output, 1-10
examples, 1-7
fixed format specification, 1-3
invoke, 1-2
line length specification, 1-6
output, 1-4
pagination, 1-5
place error messages in separate

file, 1-3
source code formatter, 1-1

Index-8 SPARCompiler Ada Programmer’s Guide

specify comment format, 1-4
splitting lines, 1-5
tabs, 1-7
warning messages, 1-3

Fortran
support calls to, F-10

fortran
corresponding types between C,

Fortran and Ada, 5-3
FSR register

default values, A-22
specify initial value, A-22

functions
POSIX class-specific, B-25
POSIX device-specific, B-25

G
generate

reference to entity, F-30
subprograms callable by other

languages, 5-24
generic

specify type, F-5, F-9
generic declarations, F-34
generic function

UNCHECKED_CONVERSION, F-49
UNCHECKED_DEALLOCATION, F

-49
generic instantiations

share code, F-15
GENERIC_POLICY, F-5
generics

instantiations, F-5, F-9
GET_HEAP_MEMORY_CALLOUT, A-

23, A-32
global variables

interface programming, 5-13
guarantee

load and stores, F-19

H
heap memory callout configuration

parameters, A-23
HEAP_EXTEND, A-23
HEAP_MAX, A-23
HOMOGENEOUS', F-33

I
idle task

stack size, A-21
IDLE_STACK_SIZE, A-21
if statement

preprocessor, 2-25
image array

suppress, F-13
implementation

system-dependent issues, F-1
implementation defined attributes, F-30
implementation requirements

POSIX, B-10
implicit calls

replace, F-15
implicit code

allow/disallow, F-6
definition, 4-16

IMPLICIT_CODE, 4-16, F-6
IMPORT_FUNCTION, F-7
IMPORT_OBJECT, F-7
IMPORT_PROCEDURE, F-7
inactivate

section of source text, 2-24
include

files in a compilation, 2-32
INITIAL_INTR_HEAP, A-12
INITIALIZE, F-9
initialize

objects in package, F-9
task level debugging support, A-14

INLINE, 4-15, 5-20, F-9
inline

always inline subprogram, F-9
inline expansion

machine code insertions, 4-15

Index-9

INLINE_ONLY, F-9
input/output, F-51

interface programming, 5-27
input/output primitives

POSIX, B-23
INSTANCE_POLICY, F-9
instantiation

parent, F-35
instantiations

share code, F-15
INTEGER type

preprocessor, 2-13
integrate

XView Notifier with Ada tasking, C-
18

INTERFACE, 5-9, F-10
restrictions, 5-11

interface
assembly language, F-23

interface package structure
XView, C-7

interface programming
access subprograms and macros, 5-9
Ada interface to curses, 5-2
array component restriction, 5-18
array types, 5-7
avoiding elaboration, 5-26
C and Ada, 5-1
calling Ada from other languages, 5-

24
declare external subprograms, 5-9
directly access variables defined in

other language, 5-10
dynamic array types, 5-7
finding the right object, 5-25
generate subprograms callable by

other languages, 5-24
global variables, 5-13
input/output, 5-27
linking a non-Ada main program, 5-

26
map parallel data structures

example, 5-15
map to parallel data structures, 5-15

non-reentrant code, 5-27
overhead reduction, 5-20
parallel data types, 5-2
pointers and address types, 5-8
pragma EXTERNAL, 5-24
pragma EXTERNAL_NAME, 5-24
pragma INLINE, 5-10
program conversion, 5-20
program conversion example, 5-20
record types, 5-5
resolve references, 5-22
run time considerations, 5-27
simple types, 5-3
steps, 5-2
string types, 5-8
support macros and

preprocessing, 5-10
terminal characteristic macros, 5-19
using intermediate routines, 5-12

INTERFACE_NAME, 5-9, F-11
access global variables, 5-13
example, 5-9

intermediate routines
interface programming, 5-12

interrupt entries
task entries and signals, F-40

interrupt entry
backwards compatibility, A-30

INTERRUPT_ENTRY_ISR
active task, A-34
passive task, A-33

interval
time slicing, A-25

INTR_OBJ_SIZE, A-12
INTR_TASK_ATTRIBUTES, A-29
invocation

preprocessor, 2-2
invoke

formatter, 1-2
preprocessor from ada command, 2-2
source code formatter, 1-2

ISR
maximum number of pending

requests, A-30

Index-10 SPARCompiler Ada Programmer’s Guide

issue
error, 2-34
warning, 2-33

J
jump table

via absolute addresses, 4-14

K
key

compiler, F-31

L
language-specific services

POSIX, B-27
length clauses

representation specifications, F-36
lexical elements

preprocessor language, 2-3
library directive

preprocessor, 2-8
limitations

interface to XView, C-4
XView Notifier, C-5

line length
specify for formatter, 1-6

link
non-Ada main program, 5-26

LINK_WITH, F-12
LIST, F-13
list

aggregate of small block sizes, A-10
listing

package MACHINE_CODE, 4-19
local data

machine code insertions, 4-13
local object declaration, 2-11
LONG_FLOAT

attributes, F-50

M
machine code insertions

Ada entities as operands, 4-6
arguments to code functions, 4-6
CALL statement, 4-11
calling conventions, F-47
code statements, 4-3
DATA_N code statement, 4-13
debugging, 4-16
example, F-25
example startup routine, 4-9
expand routine inline, 4-15
implicit code generation, 4-16
jump table via absolute addresses, 4-

14
local data, 4-13
OPCODE, 4-3
operands, 4-3
optimization, 4-16
package MACHINE_CODE, F-23
parameter passing, 4-12
place multiple data items in code, 4-

13
pragma IMPLICIT_CODE, 4-16, F-6
pragma INLINE, 4-15
pragma OPTIMIZE_CODE, 4-16
pragma SUPPRESS, 4-15
pragmas, 4-15
program control, 4-9
pseudo instructions, 4-17
reference Ada constants and

variables, 4-6
specify machine instruction, 4-3
subprogram call, 4-11
suppress runtime checks, 4-15
syntax of machine code statement, F-

23
variant record types, 4-3

machine code procedures, 4-2
restrictions, 4-2
syntax, 4-2

MACHINE_CODE, F-23
package listing, 4-19

macro substitution
preprocessor, 2-34

Index-11

main program
restrictions on `mainprograms', F-34

MAIN_TASK_ATTRIBUTES, A-28
MAIN_TASK_STACK_SIZE, A-20
map

between Ada and C subprogram
names, 5-11

parallel data structures, 5-15
mask

disable signals, A-24
MASTERS_MUTEX_ATTR_ADDRESS, A

-29
maximum

ARRAY size limit, F-49
RECORD size limit, F-49
size of heap, A-23
TYPE size limit, F-49

MEM_ALLOC_CONF_TABLE, A-11
MEM_ALLOC_CONF_TABLE_ADDRESS

, A-23
MEM_ALLOC_MUTEX_ATTR_ADDRES

S, A-29
memory

get more for ”new” allocation, A-32
memory allocation configuration table, A-

23
memory allocation parameters, A-11
memory allocation table, A-23
MEMORY_SIZE, F-13
MIN_LIST_LENGTH, A-12
MIN_SIZE, A-11
minimize

gaps between components, F-2, F-14
minimum

Ada delay, A-31
size of object to allocate, A-11
storage units requested, A-23
time for Ada delay, A-31

minimum list length of small blocks
list, A-12

modify
package SYSTEM, F-17
system.a, F-17

MULTITASK_SAFE_MALLOC, 5-28
mutex attributes

ADA_IO_MUTEX_ATTR_ADDRESS,
A-29

MASTERS_MUTEX_ATTR_ADDRES
S, A-29

MEM_ALLOC_MUTEX_ATTR_ADD
RESS, A-29

N
names

preprocessor, 2-15
simple preprocessor, 2-15

NO_IMAGE, F-13
NON_REENTRANT, F-13
non-reentrant code

interface programming, 5-27
NOT_ELABORATED, 5-26, F-13
Notifier

serialize access, C-19
Notifier limitations

XView, C-5
NUM_SMALL_BLOCK_SIZES, A-12
number

small object sizes handled by
allocator, A-12

numeric errors
catch with signals, A-25

numeric literals, F-49
numeric type conversions

preprocessor, 2-22
NUMERIC_SIGNAL_ENABLED, A-25

O
object

define on preprocessor command
line, 2-10

guarantee not changed by
optimization, F-19

minimum size to allocate, A-11
preprocessor defined entity, 2-8
shared object code, F-34

Index-12 SPARCompiler Ada Programmer’s Guide

object declaration, 2-11
definition, 2-11

OLD_STYLE_MAX_INTR_ENTRY, A-30
OPCODE, 4-3, F-24
operands

machine code insertions, 4-3
operators

preprocessor, 2-20
optimization

do not change object, F-19
on/off, F-14
suppress selectively, F-14

OPTIMIZE, F-13
OPTIMIZE_CODE, 4-16, F-14
optional facilities

POSIX, B-10
output

buffering, F-52
formatter, 1-4

overhead
reduce in interface programming, 5-

20
overhead reduction

interface programming, 5-20
override

default configuration, A-8

P
PACK, F-14, F-36
package

POSIX, B-5
POSIX_CALENDAR, B-20
POSIX_CONFIGURABLE_FILE_LIM

ITS, B-22
POSIX_CONFIGURABLE_SYSTEM_

LIMITS, B-20
POSIX_FILE_LOCKING, B-24
POSIX_FILE_STATUS, B-22
POSIX_FILES, B-21
POSIX_IO, B-23
POSIX_PERMISSIONS, B-21
POSIX_PROCESS_ENVIRONMENT,

B-19

POSIX_PROCESS_IDENTIFICATIO
N, B-17

POSIX_PROCESS_PRIMITIVES, B-
12

POSIX_PROCESS_TIMES, B-19
POSIX_SIGNALS, B-13
POSIX_TERMINAL_FUNCTIONS, B

-26
POSIX_UNSAFE_PROCESS_PRIMIT

IVES, B-12
package SYSTEM

specification, F-21
packages

CALENDAR, F-23
MACHINE_CODE, 4-19, F-23
SEQUENTIAL_IO, F-26
SHARED_IO, F-35
SYSTEM, F-21, F-41
UNSIGNED_TYPES, F-26

PAGE, F-14
pagination

formatter, 1-5
parallel data structures

mapping, 5-15
mapping example, 5-15

parallel data types, 5-2
parameter passing, F-47

machine code insertions, 4-12
parameters

memory allocation, A-11
passing in machine code

insertions, 4-12
parent instantiation, F-35
parent process ID, B-3
Pascal

support calls to, F-10
pass

arrays from C to Ada, 5-8
pass arguments

to target linker, F-12
PASSIVE, F-14
passive tasks

declare, F-14

Index-13

pathname
POSIX, B-4

PDEFINED', 2-16
PENDING_COUNT, A-30
PIMAGE', 2-17
place

multiple data items in machine code
procedure, 4-13

PLENGTH', 2-17
pointer list creation

XView, C-16
pointer list deallocation

XView, C-16
pointer list definitions

XView, C-15
pointer lists

XView, C-14
pointers

XView, C-11
pointers and address types

interface programming, 5-8
POSIX

class-specific functions, B-25
definitions, B-3
device-specific functions, B-25
directories, B-21
error codes, B-11
exceptions, B-11
files, B-21
general concepts, B-4
general requirements, B-3
general terminal interface, B-25
implementation requirements, B-10
input/output primitives, B-23
language-specific services, B-27
optional facilities, B-10
package, B-5
process environment, B-17
process primitives, B-12
release structure, B-2
signal type, B-16
system limits, B-10
terminology, B-3

POSIX_CALENDAR

package, B-20
POSIX_CONFIGURABLE_FILE_LIMITS

package, B-22
POSIX_CONFIGURABLE_SYSTEM_LIMI

TS
package, B-20

POSIX_FILE_LOCKING
package, B-24

POSIX_FILE_STATUS
package, B-22

POSIX_FILES
package, B-21

POSIX_IO
package, B-23

POSIX_PERMISSIONS
package, B-21

POSIX_PROCESS_ENVIRONMENT
package, B-19

POSIX_PROCESS_IDENTIFICATION
package, B-17

POSIX_PROCESS_PRIMITIVES
package, B-12

POSIX_PROCESS_TIMES
package, B-19

POSIX_SIGNALS
package, B-13

POSIX_TERMINAL_FUNCTIONS
package, B-26

POSIX_UNSAFE_PROCESS_PRIMITIVES
package, B-12

postamble code, F-6
pragmas

BIT_PACK, F-2
BUILT_IN, F-2
BYTE_PACK, F-2
CONTROLLED, F-2
ELABORATE, F-2
ERROR, 2-34
EXPORT_FUNCTION, F-3
EXPORT_OBJECT, F-3
EXPORT_PROCEDURE, F-3
EXTERNAL, 5-20, 5-24, F-5
EXTERNAL_NAME, 5-20, 5-24, F-5

Index-14 SPARCompiler Ada Programmer’s Guide

GENERIC_POLICY, F-5
implementation dependent, F-2
IMPLICIT_CODE, 4-16, F-6
IMPORT_FUNCTION, F-7
IMPORT_OBJECT, F-7
IMPORT_PROCEDURE, F-7
INCLUDE, 2-32
INITIALIZE, F-9
INLINE, 4-15, 5-20, F-9
INLINE_ONLY, F-9
INSTANCE_POLICY, F-9
INTERFACE, 5-9, F-10
INTERFACE_NAME, 5-9, 5-13, F-11
LINK_WITH, F-12
LIST, F-13
machine code procedures, 4-15
MEMORY_SIZE, F-13
NO_IMAGE, F-13
NON_REENTRANT, F-13
NOT_ELABORATED, 5-26, F-13
OPTIMIZE, F-13
OPTIMIZE_CODE, 4-16, F-14
PACK, F-14
PAGE, F-14
PASSIVE, F-14
preprocessor, 2-32
PRIORITY, F-15
RTS_INTERFACE, F-15
SHARE_BODY, F-15
SHARE_CODE, F-15, F-35
SHARED, F-16
STORAGE_UNIT, F-16
SUPPRESS, 4-15, 5-26, F-16
SUPPRESS_ALL, F-17
SUPPRESS_ELABORATION_CHEC

KS, F-17
SYSTEM_NAME, F-17
TASK_ATTRIBUTES, F-17
VOLATILE, F-19
WARNING, 2-33
WARNINGS, F-19

preallocated blocks, A-12
preamble code, F-6
predefined

packages and generics, F-20

predefined operators
preprocessor, 2-20

prelinker
resolve references in interface

programming, 5-22
preprocessor

activate source text, 2-24
Ada library directive, 2-8
Ada library directives example, 2-9
assignment operations, 2-12
assignment statements, 2-24
attributes, 2-16
BOOLEAN type, 2-13
case statement, 2-27
command line options, 2-2
comments example, 2-5
conditional processing, 2-24
conditional-compilation, 2-7
constant object declaration, 2-9, 2-11
control lines, 2-1
declaration visibility, 2-30
declarations, 2-8
declarative region, 2-29
declare statement, 2-29
declaring an object, 2-8
define a variable, 2-11
define object in Ada library, 2-8
define object on command line, 2-10
defined attributes, 2-16
defined identifier, 2-8
delimiters, 2-4
example (extended), 2-36
example of constant declarations, 2-

12
example of expressions, 2-19
example of numeric type

conversion, 2-23
example of object defined on

command line, 2-11
example of primaries, 2-19
example of string type conversion, 2-

23
example of variable declarations, 2-

12
examples of attributes, 2-18

Index-15

explicit separator, 2-4
expression evaluation, 2-20
expressions, 2-19
hidden declaration, 2-30
identifier examples, 2-5
if statement, 2-25
image of integer value, 2-17
inactivate source text, 2-24
INFO directive, 2-2
INTEGER type, 2-13
invocation, 2-2
invoke from ada command line, 2-2
lexical elements, 2-3
local declaration, 2-11
local object declaration syntax, 2-11
macro substitution, 2-34
names, 2-15
number of components in object, 2-17
numeric literals example, 2-5
numeric type conversions, 2-22
object, 2-8
only declared entity, 2-8
operators, 2-20
PDEFINEDattribute', 2-16
PIMAGEattribute', 2-17
PLENGTHattribute', 2-17
pragma ERROR, 2-34
pragma INCLUDE, 2-32
pragma WARNING, 2-33
pragmas, 2-32
predefined operators, 2-20
primary components, 2-1
program structure, 2-6
PVALUEattribute', 2-17
range of a slice, 2-16
REAL type, 2-13
reference chapter, 2-3
regions, 2-29
reserved words, 2-4
restrictions on pragma INCLUDE, 2-

33
scope of a declaration, 2-8
scope of declarations, 2-30
simple names, 2-15
slice, 2-15
slice range, 2-16

statement, 2-7
string literals example, 2-5
STRING type, 2-14
string type conversions, 2-23
syntax and semantics of language, 2-

3
syntax of control lines, 2-1
TEXT type, 2-14
type conversions, 2-22
types, 2-12
value of a type, 2-17
variables, 2-12
visibility, 2-30
visibility rules, 2-29

pretty printer, 1-1
prevent

time slicing, A-25
primaries

preprocessor example, 2-19
primitives

POSIX input/output, B-23
process, B-12

printf, 5-22
PRIORITY, F-15
priority

call task, A-15
debug task, A-15
time slicing, A-26

procedures
machine code, 4-2

process
stack size, F-49

process environment
POSIX, B-17

process primitives
POSIX, B-12

profiling
statistical profiler, 3-1

program control
machine code insertions, 4-9

program conversion
example, 5-20
interface programming, 5-20

Index-16 SPARCompiler Ada Programmer’s Guide

program structure
preprocessor, 2-6

pseudo instructions
machine code insertions, 4-17

PVALUE', 2-17

R
ranges

types, ranges, and attributes listed, F-
49

read-only file system
POSIX, B-4

REAL type
preprocessor, 2-13

RECORD
maximum size, F-49

record representation clauses
align record fields, F-36

record types
interface programming, 5-5

recursive calls
expand, F-9

reduce
overhead in interface

programming, 5-20
task context switch times, A-22

REF', 4-6, F-30
reference

Ada operands from machine code
insertion, 4-6

generate reference to entity, F-30
variable or program from other

language, F-5
variables in foreign languages, F-11

reference chapter
preprocessor, 2-3

references
resolve in interface programming, 5-

22
regions

preprocessor, 2-29
registers

FSR initial value, A-22

parameter passing, F-47
rendezvous

enable fast rendezvous, A-21
fast, A-21
wait stack size, A-21

replace
default implicit calls, F-15

representation attributes, F-42
representation attributes of real types, F-

42
representation clauses, F-36
representation specifications, F-36

enumeration clauses, F-36
length clauses, F-36
pragma PACK, F-36

requirements
POSIX, B-3

reserved words
preprocessor, 2-4

resolve
references in interface

programming, 5-22
restrict

size of unconstrained records and
arrays, F-26

restrictions
calling Ada from other languages, 5-

24
machine code procedures, 4-2
main programs, F-34

return values
XView, C-17

RTS, 5-27
RTS_INTERFACE, F-15
run

test program during user library
configuration, A-7

runtime checks
definition, 4-15
suppress, 4-15
suppress all, F-17

runtime system
considerations in interface

Index-17

programming, 5-27

S
save

traceback registers, A-31
scheduling

control, A-30
scheduling configuration parameters, A-

30
scope

preprocessor declaration, 2-8
scope of declarations

preprocessor, 2-30
semantics

preprocessor language, 2-3
SEQUENTIAL_IO, F-26, F-52
serialize

access to XView Notifier, C-19
service requests

maximum number of pending, A-30
set

command for .prrc printing options
file, 1-3

sg_flags, 5-19
share

object code between instantiations, F-
15

object code for generic
subprograms, F-34

SHARE_BODY
pragma, F-15

SHARE_CODE, F-15, F-35
pragma, F-15

SHARED, F-16
shared object-code, F-34
SHARED_IO, F-35
SHORT_INTEGER

attributes, F-50
sig_header, A-34
signal configuration parameters

host OS, A-24
signal handlers, F-41

signal pending
task level debugging support, A-14

signal stack
stack size, A-21

signal type
POSIX, B-16

SIGNAL_TASK_ATTRIBUTES, A-28
SIGNAL_TASK_STACK_SIZE, A-21
signals

catch numeric errors, A-25
catch storage errors, A-25
control, A-24
mask used to disable, A-24

SIGSEGV, A-25
simple names

preprocessor, 2-15
simple types

interface programming, 5-3
size

exception stack, A-20
idle stack, A-21
main subprogram stack, A-20
minimum object size to allocate, A-11
process stack size, F-49
signal stack, A-21
task stack area, A-20
unconstrained records and arrays, F-

26
user storage, A-30

size limits
maximum for ARRAY and

RECORD, F-49
slice

preprocessor, 2-15
slices, F-29

evaluate, F-29
prefix, F-29

small block sizes
list aggregate, A-10

small block sizes table
starting address, A-12

small object sizes, A-12
SMALL_BLOCK_SIZES_ADDRESS, A-12

Index-18 SPARCompiler Ada Programmer’s Guide

SMALL_BLOCK_SIZES_TABLE, A-10
source code formatter, 1-2
SPARC addressing and bit numbering

illustration, F-38
specification

package SYSTEM, F-21
package UNSIGNED_TYPES, F-27

specifications
formatter, 1-2
formatter fixed format, 1-3

specify
allocation strategy, A-12
comments for formatter, 1-4
floating point support, A-22
initial value of floating point

register, A-22
initial value of FSR register, A-22
link name, F-5
machine instruction, 4-3
maximum line length, 1-6
maximum number of pending service

requests, A-30
minimum duration for Ada delay, A-

31
optimization on/on, F-14
preallocated blocks, A-12
size of block allocated with

”new”, A-12
timer adjustment, A-31

splitting lines
formatter, 1-5

stack
exception stack, A-20
idle task stack, A-21
process stack size, F-49
signal stack, A-21

stack configuration parameters, A-20
starting address

small block sizes table, A-12
statement

preprocessor, 2-7
static initialization, F-9
statistcal profiling, 3-1
storage deallocations

unchecked, F-43
storage errors

catch with signals, A-25
STORAGE_SIGNAL_ENABLED, A-25
STORAGE_UNIT, F-16
strategy

allocation, A-12
STRING, F-50
string creation

XView, C-12
string deallocation

XView, C-13
string definition

XView, C-12
string list creation

XView, C-14
string list deallocation

XView, C-14
string list definition

XView, C-13
string lists

XView, C-13
string manipulation

XView, C-12
STRING type

preprocessor, 2-14
string type conversions

preprocessor, 2-23
string types

interface programming, 5-8
strings

XView, C-11
strip

control and inactive lines from
preprocessor output, 2-2

subprogram
always inline, F-9
call from other languages, F-5
declare external in interface

programming, 5-9
do not call recursively, F-13
reference from other language, F-5
reference in other languages, F-11

Index-19

subprogram call
machine code insertions, 4-11

subprograms
callable by other languages, 5-24
calling Ada subprograms from other

languages, 5-24
substitution

macro, 2-34
SUPPRESS, 4-15, 5-26, F-16
suppress

all runtime checks, F-17
checks, F-16
elaborated code, F-13
elaboration checks, F-17
exception tables, F-16
image array, F-13
optimization selectively, F-14
runtime checks, 4-15
warnings, F-19

SUPPRESS_ALL, F-17
SUPPRESS_ELABORATION_CHECKS, F

-17
syntax

Ada preprocessor, 2-1
lexical elements in preprocessor, 2-3
machine code procedures, 4-2
machine code statement, F-23
preprocessor invocation, 2-2
preprocessor language, 2-3

SYSTEM, F-41
package specification, F-21

system limits
POSIX, B-10

system.a
modify, F-17
specification of package SYSTEM, F-

41
SYSTEM.ADDRESSREF(N)

implementationdefinedattribute', F-
30

usedinplaceofuncheckedconversion',
F-30

SYSTEM.MAX_REC_SIZE, F-26
SYSTEM_NAME, F-17

system-dependent implementation, F-1
system-dependent named numbers, F-42

T
table

small block sizes, A-12
tabs

formatter, 1-7
target linker

pass arguments to, F-12
task

attributes, F-17
entries associated with OS signals, F-

40
reduce context switch times, A-22
XTASK_ID', F-31

task attributes
DEFAULT_TASK_ATTRIBUTES, A-

27
INTR_TASK_ATTRIBUTES, A-29
MAIN_TASK_ATTRIBUTES, A-28
SIGNAL_TASK_ATTRIBUTES, A-28

task context switch times
reduce, A-22

task control block
set size of user storage, A-30

task level debugging
address, A-24
configuration, A-13
debug and call task configuration, A-

15
initialize, A-14
start program, A-14
trap instructions, A-14

TASK_ATTRIBUTES, F-17
TASK_ID', F-31
TASK_STORAGE_SIZE, A-30
taskdeb configuration structure, A-13, A-

24
TASKDEB_CONFIG_ADDRESS, A-24
tasking

integrate with XView notifier, C-18
terminal characteristic macros, 5-19

Index-20 SPARCompiler Ada Programmer’s Guide

terminal interface
POSIX, B-25

terminology
POSIX, B-3

TEXT type
preprocessor, 2-14

threaded runtime
pragma TASK_ATTRIBUTES, F-17

time slice configuration parameters, A-25
time slicing

control, A-25
default interval, A-25
enable/disable, A-25
interval, A-25
priority, A-26

TIME_SLICE_INTERVAL, A-25
TIME_SLICING_ENABLED, A-25
TIME_SLICING_PRIORITY, A-26
timer

adjust, A-31
TIMER_ADJUSTMENT, A-31
TIMER_MIN_DELAY, A-31
TINY_INTEGER, F-50
tools

source code formatter, 1-1
traceback registers

save, A-31
TRACEBACK_REGS, A-31
translating

programs from other languages, 5-1
trap instructions

task level debugging support, A-14
TRAP_INSTRUCTION, A-15
TRAP_INSTRUCTION_LENGTH, A-15
TRAP_INSTRUCTION_USE, A-15
TRAP_INTR_VECTOR_ID, A-15
type conversions

preprocessor, 2-22
unchecked, F-43

type name
identifying string, F-33

TYPE_KEY', F-33

types
array in interface programming, 5-7
corresponding between C, Fortran,

and Ada, 5-3
data in interface programming, 5-2
discrete, F-49
dynamic array in interface

programming, 5-7
enumeration, F-49
fixed point, F-51
floating point, F-50
pointers and address in interface

programming, 5-8
preprocessor, 2-12
record in interface programming, 5-5
simple in interface programming, 5-3
string, F-50
string in interface programming, 5-8
types, ranges and attributes listed, F-

49

U
unchecked

deallocations, F-42
storage deallocations, F-43
type conversions, F-43

unchecked conversion
SYSTEM.ADDRESSREF(N)', F-30

UNCHECKED language functions
support calls to, F-10

UNCHECKED_CONVERSION, F-49
UNCHECKED_DEALLOCATION, F-49
units

compile units in separate source
files, 5-25

unsigned addresses
to place an object, use

SYSTEM.ADDRESSREF(N)a
ttribute', F-31

unsigned types
example, F-26
illustrate, F-26

UNSIGNED_TYPES, F-26
specification, F-27

Index-21

user library
ADA_IO_MUTEX_ATTR_ADDRESS,

A-29
ADAPATH reference, A-16
ALLOCATION_STRATEGY, A-12
build test library, A-6
building the user library, A-2
change the ADA.LIB file, A-6
change the ada.lib file, A-6
compile test program, A-7
compiling the Ada files, A-5
configuration files, A-8
configuration package

components, A-9
CONFIGURATION_TABLE, A-16
copy the configuration files, A-4
create an Ada library, A-3
DEFAULT_TASK_ATTRIBUTES, A-

27
DEFAULT_TASK_STACK_SIZE, A-

20
DISABLE_SIGNALS_33_64_MASK,

A-24
DISABLE_SIGNALS_MASK, A-24
edit test program, A-7
editing the configuration package, A-

5
EXCEPTION_STACK_SIZE, A-20
FAST_RENDEZVOUS_ENABLED, A

-21
FLOATING_POINT configuration

parameters, A-22
FLOATING_POINT_CONTROL, A-

22
FLOATING_POINT_SUPPORT, A-

22
GET_HEAP_MEMORY_CALLOUT,

A-23
heap memory callout configuration

parameters, A-23
HEAP_EXTEND, A-23
HEAP_MAX, A-23
host OS signal configuration

parameters, A-24
IDLE_STACK_SIZE, A-21
INITIAL_INTR_HEAP, A-12

INTR_OBJ_SIZE, A-12
INTR_TASK_ATTRIBUTES, A-29
link test program, A-7
MAIN_TASK_ATTRIBUTES, A-28
MAIN_TASK_STACK_SIZE, A-20
MASTERS_MUTEX_ATTR_ADDRES

S, A-29
MEM_ALLOC_CONF_TABLE_ADD

RESS, A-23
MEM_ALLOC_MUTEX_ATTR_ADD

RESS, A-29
memory allocation configuration

table, A-23
MIN_LIST_LENGTH, A-12
MIN_SIZE, A-11
NUM_SMALL_BLOCK_SIZES, A-12
NUMERIC_SIGNAL_ENABLED, A-

25
OLD_STYLE_MAX_INTR_ENTRY,

A-30
PENDING_COUNT, A-30
run test program, A-7
scheduling configuration

parameters, A-30
SIGNAL_TASK_ATTRIBUTES, A-28
SIGNAL_TASK_STACK_SIZE, A-21
SMALL_BLOCK_SIZES_ADDRESS,

A-12
SMALL_BLOCK_SIZES_TABLE, A-

10
stack configuration parameters, A-20
steps to configure, A-2
STORAGE_SIGNAL_ENABLED, A-

25
TASK_STORAGE_SIZE, A-30
taskdeb configuration structure, A-24
TASKDEB_CONFIG_ADDRESS, A-

24
test program, A-7
time slice configuration

parameters, A-25
TIME_SLICE_INTERVAL, A-25
TIME_SLICING_ENABLED, A-25
TIME_SLICING_PRIORITY, A-26
TIMER_ADJUSTMENT, A-31
TIMER_MIN_DELAY, A-31

Index-22 SPARCompiler Ada Programmer’s Guide

TRACEBACK_REGS, A-31
V_CIFO_ISR, A-35
V_GET_HEAP_MEMORY, A-32
V_KRN_ALLOC_CALLOUT, A-37
V_PASSIVE_ISR, A-33
V_PENDING_OVERFLOW_CALLO

UT, A-36
V_SIGNAL_ISR, A-34
V_START_PROGRAM, A-38
V_START_PROGRAM_CONTINUE,

A-38
v_usr_conf.a, A-8
v_usr_conf_b.a, A-8
v_usr_data.a, A-8
v_usr_local.a, A-8
WAIT_STACK_SIZE, A-21
ZERO_STACKS_ENABLED, A-22

user storage
set size in task control block, A-30

usr_conf, A-8

V
V_CIFO_ISR, A-35
V_GET_HEAP_MEMORY, A-32
V_KRN_ALLOC_CALLOUT, A-37
V_PASSIVE_ISR, A-33
V_PENDING_OVERFLOW_CALLOUT,

A-36
V_SIGNAL_ISR, A-34
V_START_PROGRAM, A-38
V_START_PROGRAM_CONTINUE, A-

38
V_USR_CONF

components, A-9
v_usr_conf.a, A-8
v_usr_conf_b.a, A-8
V_USR_CONF_I, A-16
v_usr_data.a

user library configuration, A-8
V_USR_LOCAL.A

user library configuration, A-8
v_usr_local.a

user library configuration, A-8

variable
preprocessor, 2-12
reference from other language, F-5

variable declarations
examples in preprocessor, 2-12

variables
reference in other languages, F-11

variant record types
machine code insertions, 4-3

variant records
sequential_io, F-26

vector
dope, F-43

version
compiler, F-32

visibility
preprocessor, 2-30

visibility rules
preprocessor, 2-29

VOLATILE, F-19

W
waddch, 5-11
waddstr, 5-11
wait stack, A-21
WAIT_STACK_SIZE, A-21
warning messages

formatter, 1-3
WARNINGS, F-19
warnings

selectively suppress, F-19
winch, 5-17
window interface, C-1

X
XREF

implementationdefinedattribute', F-
30

XVI_NOTIFY
XView package, C-20

XVI_WIN_FUNC

Index-23

package extensions, C-22
XView

Ada kernel, C-18
attribute/value lists and

functions, C-9
compiling and linking programs, C-3
data type naming conventions, C-8
differences between Ada and C

Interface, C-9
directives, C-4
exceptions to interface package

definitions, C-8
integrate Notifier with Ada

tasking, C-18
interface limitations, C-4
interface package structure, C-7
library, C-2
Notifier limitations, C-5
package XVI_NOTIFY, C-20
pointer list creation, C-16
pointer list deallocation, C-16
pointer list definitions, C-15
pointer lists, C-14
pointers, C-11
product description, C-2
return values, C-17
serializing access to the Notifier, C-19
string creation, C-12
string deallocation, C-13
string definition, C-12
string list creation, C-14
string list deallocation, C-14
string list definition, C-13
string lists, C-13
string manipulation, C-12
strings, C-11
supplied directories, C-2
XVI_WIN_FUNC package

extensions, C-22
xview_examples directory, C-3
xview_v3 directory, C-2

Xview
using SunAda with it, C-2

xview_examples, C-3
xview_v3, C-2

Z
ZERO_STACKS_ENABLED, A-22

