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Phylogeny of the Infraorder Caridea Based on Mitochondrial 
and Nuclear Genes (Crustacea: Decapoda) 

HEATHER D. BRACKEN1, SAMMY DE GRAVE2 & DARRYL L. FELDER3 

1 University of Louisiana at Lafayette, Department of Biology, Lafayette, Louisiana, U.S.A. 
2 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, United Kingdom 

ABSTRACT 

Shrimps of the infraorder Caridea occur commonly throughout marine and freshwater habitats. De
spite general knowledge of the group, phylogenetic relationships within the infraorder remain poorly 
known. The few studies that have focused specifically on the classification and evolutionary history 
within the Caridea have relied entirely on morphological characters and suggest conflicting phylo
genetic relationships. Robust molecular analysis is required to test current hypotheses. We present 
the first comprehensive molecular phylogeny of the group, combining nuclear and mitochondrial 
gene sequences, to evaluate the relationships among 14 superfamilies and 30 families. Bayesian 
and likelihood analyses were conducted on a concatenated 18S/16S alignment composed of 1835 
basepairs. Results indicated no evidence contrary to hypotheses of monophyly within the families 
Alpheidae, Processidae, and Alvinocarididae. Ogyrididae is resolved as a sister clade to the Alphei-
dae, as has been previously suggested. Our findings raise questions as to the systematic placement 
of the Procarididae within Caridea and suggest polyphyletic and paraphyletic relationships among 
genera within the families Atyidae, Pasiphaeidae, Oplophoridae, Hippolytidae, Gnathophyllidae, 
and Palaemonidae, as currently defined. Our results in some cases confirm and in others reject 
placements of controversial taxa within higher-level phylogeny and provide new insights for classi
fications within the Caridea. 

1 INTRODUCTION 

The range of adaptation and biological diversity within the infraorder Caridea is remarkable among 
the decapod crustaceans. While many caridean families inhabit marine shallow tropical and subtrop
ical waters, some can be found associated with hydrothermal vents and hydrocarbon seeps, while 
others occur in freshwater lakes, mountain streams, anchialine caves, and deep-sea basins (Shank 
et al. 1999; Anker & Iliffe 2000; Komai & Segonzac 2003; Cai & Anker 2004; Martin & Wicksten 
2004; Alvarez et al. 2005; Richardson & Cook 2006; Komai et al. 2007; Page et al. 2007; De Grave 
et al. 2008). With approximately 36 families, 361 genera, and 3,108 species (Fransen & De Grave 
this volume), carideans dominate the natantian decapods in terms of morphological and ecological 
diversity (Martin & Davis 2001; Bauer 2004; De Grave & Moosa 2004). 

Members of the infraorder Caridea are abundant in epifaunal and fouling communities and 
contribute to the structure and function of aquatic ecosystems (Richardson & Cook 2006). They 
commonly establish temporary or lifelong associations with other organisms including cnidarians, 
sponges, molluscs, echinoderms, echiurans, stomatopods, fish, and other crustaceans (Knowlton 
1980; Knowlton & Keller 1983; Pratchett 2001; Duffy 2002; Hayashi 2002; Khan et al. 2003; 
Silliman et al. 2003; Bauer 2004; Marin et al. 2005; Macdonald et al. 2006). Many aspects of these 
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unique associations make caridean shrimps ideal organisms for studies of symbiosis, communica
tion, behavioral ecology, and evolutionary biology. 

1.1 Evolutionary history of the Caridea 

Over the last five decades, several studies have addressed the systematic placement of the infraorder 
Caridea within the decapods (Burkenroad 1963, 1981; Abele & Felgenhauer 1982; Christoffersen 
1988a; Abele 1991; Chace 1992; Porter et al. 2005), but phylogenetic relationships within the in
fraorder remain poorly known. Few studies have specifically examined the systematic arrangements 
and evolutionary relationships among superfamilies and families within the Caridea (Holthuis 1955; 
Thompson 1967; Christoffersen 1986, 1987, 1988b, 1989, 1990; Chace 1992; Holthuis 1993). Al
though these studies were crucial in contributing to an evolutionary understanding of the group, they 
relied entirely on morphological characters and resulted in conflicting patterns of phylogeny. 

Difficulties in determining relationships among carideans have been attributed to inconsistent 
and insufficient coding of morphological characters, lack of comparative larval and molecular stud
ies, a limited fossil record (Thompson 1967; Schram 1986; Christoffersen 1990), and a general 
dearth of phylogenetic work. One study examined evolutionary relationships using 16S data but 
lacked sufficient taxon sampling (n = 20) and showed little support for the resulting phylogeny (Xu 
et al. 2005). Some workers have attempted classifications at the superfamilial and familial levels 
with relative trepidation, all acknowledging that further work is necessary to validate current hy
potheses (Holthuis 1955; Thompson 1967; Christoffersen 1990; Chace 1992; Holthuis 1993). Here 
we acknowledge a few studies that were essential to constructing the currently applied classification 
of the Caridea (for a further summary of early studies, see Christoffersen 1987). 

Early comparative work by Thompson (1967) divided the Caridea into 10 superfamilies and 23 
families on the basis of adult morphology. In this account, he suggested a suite of evolutionarily 
informative characters, such as chelae adaptations, mandible shape, telson armature, and branchial 
formula, and proposed an updated classification of Caridea. Thompson assumed the group to be a 
monophyletic unit, and his hypothesized evolutionary tree suggested an early branching of the fami
lies Pasiphaeidae, Stylodactylidae, Glyphocrangonidae, and Crangonidae, while postulating that the 
remaining families arose from an oplophorid-like ancestor. Thompson's diagram included what are 
now regarded as some unnatural groupings, such as the polyphyly of Heterocarpodoidea, Bresil-
ioidea, and Oplophoroidea, but did provide hypotheses for subsequent testing and called attention 
to morphological characters later used in cladistic analyses. 

During the 1980s and early 1990s, Christoffersen conducted a series of cladistic analyses exam
ining the phylogenetic relationships within the Caridea (Christoffersen 1986, 1987, 1988a, 1988b, 
1989, 1990). During the course of his work, he resurrected, revalidated, rejected, restricted, and re
assigned many groups to construct a new superfamily and family level classification of the Caridea. 
In his final contribution, he divided the Caridea into eight superfamilies and 36 families using 19 
adult and larval synapomorphies (Christoffersen 1990). Unfortunately, this classification was based 
on a limited number of characters. Furthermore, the characters for a number of species were scored 
using available literature only, which even the author conceded to be inadequate and subject to pos
sible misinterpretation. Christoffersen's work was not accepted at the time but is slowly gaining 
some recognition. He was the first to attempt a true phylogenetic analysis of the group, using cladis
tic methods and establishing polarities for morphological characters. As did Thompson (1967), he 
offered a potential explanation for the evolutionary transition from a pelagic to benthic lifestyle, 
proposing a suite of morphological characters that were derived from this adaptation. 

Two years later, a strikingly different classification of the Caridea was presented, which grouped 
superfamilies and families on the basis of morphological similarity (Chace 1992). Primarily based 
on the three anterior pairs of pereopods and six pairs of mouthparts, the infraorder was divided into 
15 superfamilies and 28 families. It was acknowledged that this arrangement might not necessarily 
indicate relationships, since superfamilial and familial arrangements were constructed using relative 
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similarity. However, with minor alterations, the currently used caridean classification stems from 
this work, and it has yet to be challenged by molecular systematists or morphological cladists. 

A recently published consensus on classification divided the Caridea into 36 families (Martin 
& Davis 2001) after a review of varied morphologically based analyses (Holthuis 1955; Thompson 
1967; Christoffersen 1986, 1987, 1988a, 1988b, 1989, 1990; Chace 1992; Holthuis 1993), which 
we follow as our frame of reference, with two minor revisions. It should be noted that since this 
publication the family Mirocarididae has been synonymized with Alvinocarididae, and a new family, 
Pseudochelidae, has been described (De Grave & Moosa 2004). 

The current subdivision of the infraorder may not reflect phylogenetic relationships, given afore
mentioned limitations of cladistic morphological analyses and the lack of previous studies exam
ining higher-level caridean relationships on the basis of molecular data. Here, we present the first 
comprehensive molecular phylogenetic analysis for the infraorder Caridea, combining nuclear and 
mitochondrial sequences, to investigate relationships among 30 families, 75 genera, and 104 species. 
It is intended to identify monophyletic and polyphyletic groups and highlight congruence or incon
gruence between molecular phylogenies and currently applied classifications. 

2 MATERIALS AND METHODS 

2.1 Ingroup taxa and outgroup selection 

Representatives from 30 families, 75 genera, and 104 species of caridean shrimp were used in 
this analysis. Families containing a greater number of genera and species were sampled more 
extensively than others. Sequences of the families Galatheacarididae, Bresiliidae, Pseudochelidae, 
Campylonotidae, Barbouriidae, and Physetocarididae were not available for inclusion in the analy
ses because material was unattainable. Specimens were collected during cruise and field expeditions 
or requested on loan from various museums (National Museum of Natural History—Smithsonian 
Institution, Oxford University Museum of Natural History, Universidad Nacional Autonoma de 
Mexico). Sequences from 18 of the 104 caridean species used in this study were obtained from 
GenBank (Table 1). Fresh specimens were either frozen in glycerol at — 80°C and later transferred 
to 80% ethyl alcohol (EtOH) or placed directly into 80% EtOH. Identifications of all materials were 
confirmed by two or more authors to limit the chance of misidentifications. 

Since the identity of the sister group to the Caridea remains debatable, we included 10 outgroup 
taxa to represent all of the other presently recognized decapod suborders, infraorders, and superfam-
ilies (Penaeoidea, Sergestoidea, Anomura, Brachyura, Stenopodidea, Astacidea, Palinuroidea, and 
Thalassinidea). Additionally, we included one representative of the order Euphausiacea, putative 
sister order to the Decapoda within the superorder Eucarida. Sequences representing the putative 
sister order Amphionidacea were not available for inclusion in the analysis. Sequences for eight of 
the ten outgroup taxa were obtained from GenBank (Table 1). 

2.2 DNA extraction, PCR, and sequencing 

Total genomic DNA was extracted from the abdomen, gills, pereopods, and pleopods under one 
of three different extraction protocols. Extraction kits included the Genomic DNA Extraction Kit 
for Arthropods (Cartagen Cat. No. 20810-050) and Qiagen DNeasy® Blood and Tissue Kit (Cat. 
No. 69504). For some extractions, we used an isopropanol precipitation as follows: Muscle was 
ground and then incubated for 12h in 600 pi of lysis buffer (100 mM EDTA, 10 mM tris pH 7.5, 
1% SDS) at 65°C; protein was separated by the addition of 200 /xl of 7.5 M ammonium acetate 
and subsequent centrifugation. DNA was precipitated by the addition of 600 pi of cold isopropanol 
followed by overnight refrigeration (4°C) and later centrifugation (10-30 min at 14,000 rpm); the 
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resulting pellet was rinsed in 70% EtOH, dried in a speed vacuum system (DNA110 Speed Vac®), 
and resuspended in 10-50 /il of nanopure water (Robles et al. 2007). 

One mitochondrial gene and one nuclear gene were selected due to their utility in resolving 
phylogenetic relationships at different taxonomic levels (Spears et al. 1992; Spears et al. 1994; 
Giribet et al. 1996; Schubart et al. 2000; Stillman & Reeb 2001; Tudge & Cunningham 2002; 
Porter et al. 2005; Mantelatto et al. 2006; Mantelatto et al. 2007; Robles et al. 2007). The 16S large 
ribosomal subunit (^550 bps) was selected as our mitochondrial gene, and the complete 18S, large 
ribosomal subunit (^1850 bps) was selected as the nuclear gene. Targeted sequences were ampli
fied by means of the polymerase chain reaction (PCR). The mitochondrial gene, 16S, was amplified 
with the primers 16SL2, 16S-ar, and 1472 to create one overlapping region of approximately 550 
basepairs in length (Palumbi et al. 1991; Crandall & Fitzpatrick 1996; Schubart et al. 2002). The 
nuclear gene, 18S, was amplified with the primers A-L, C-Y, and O-B to yield three overlapping 
regions of approximately 600-700 basepairs in length each (Medlin et al. 1988; Apakupakul et al. 
1999). Additionally, slightly shorter internal 18S primers (B-D18slR, D18s2F-D18s2R, D18s3F-
D18s3R, D18s4F-D18s4R, and D18s5F-A) were designed to yield five overlapping regions ranging 
from approximately 450-600 basepairs in length each (all primers listed in Table 2). 

Reactions were performed in 25 /il volumes containing 0.5 /iM forward and reverse primer for 
each gene, 200 /xM each dNTP, PCR buffer, magnesium chloride, 5 M betaine, 1 unit AmpliTaq-
GOLD® polymerase, and 30-50 ng extracted DNA. The thermal cycling profile conformed to the 
following parameters: initial denaturation for 10 min at 94°C followed by 40 cycles of 1 min at 
94°C, 1.5 min at 46-58°C, 1.5 min at 72°C, and a final extension of 10 min at 72°C. PCR prod
ucts were purified using filters (Microcon-100® Millipore Corp., Billerica, MA, USA or EPOCH 
GenCatch PCR Clean-up Kit Cat. No. 13-60250) and sequenced with ABI BigDye® terminator 
mix (Applied Biosystems, Foster City, CA, USA). A Robocycler 96 cycler was used in all PCR 
and cycle sequencing reactions and sequencing products were run (forward and reverse) on a 3100 
Applied Biosystems automated sequencer. 

Table 2. 16S and 18S primers used in this study. 

Gene Primer Primer Pair Sequence 5' —> 3' Ref. 

16S 
16S 
16S 
18S 
18S 
18S 
18S 
18S 
18S 
18S 
18S 
18S 
18S 
18S 
18S 
18S 
18S 

16S-ar 
16S-L2 
1472 
18S-A 
18S-L 
18S-C 
18S-Y 
18S-0 
18S-B 
D18slR 
D18s2F 
D18s2R 
D18s3F 
D18s3R 
D18s4F 
D18s4R 
D18s5F 

1472 
1472 
16S-ar/16S-L2 
18S-L 
18S-A 
18S-Y 
18S-C 
18S-B 
18S-0 
18S-B 
D18s2R 
D18s2F 
D18s3R 
D18s3F 
D18s4R 
D18s4F 
18S-A 

CGC CTG TTT ATC AAA AAC AT (1) 
TGC CTG TTT ATC AAA AAC AT (2) 
AGA TAG AAA CCA ACC TGG (3) 
AAC CTG GTT GAT CCT GCC AGT (4) 
CCA ACT ACG AGC TTT TTA ACT G (5) 
CGG TAA TTC CAG CTC CAA TAG (5) 
CAG ACA AAT CGC TCC ACC AAC (5) 
AAG GGC ACC ACC AGG AGT GGA G (5) 
TGA TCC TTC CGC AGG TTC ACC T (4) 
CTT AAT TCC GAT AAC GAA CGA GAC TCT G New 
TCT AAG GGC ATC ACA GAC CTG New 
AGA TAC CGC CCT AGT TCT AAC C New 
GGT TAG AAC TAG GGC GGT ATC New 
TGG AGG GCA AGT CTG GTG New 
GCA ACA AAC TTT AAT ATA CG New 
TGG TAA TTC TAG AGC TAA TAC New 
GTT ATT TTT CGT CAC TAC CTC CC New 

References: (1) Palumbi et al. 1991, (2) Schubart et al. 2002, (3) Crandall & Fitzpatrick 1996, (4) Medlin et al. 
1988, (5) Apakupakul et al. 1999. 
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2.3 Phylogenetic analyses 

Sequences were assembled using the computer program Sequencher 4.7 (GeneCodes, Ann Arbor, 
MI, USA). Once assembled, sequences were aligned using MUSCLE (multiple sequence compari
son by log-expectation), a computer program found to be more accurate and faster than other align
ment algorithms (Edgar 2004). Since many regions within the 16S and 18S datasets were extremely 
divergent and difficult to align, we used GBlocks v0.91b (Castresana 2000) to omit poorly aligned 
positions (GBlocks parameters optimized for dataset and modeled after previous studies (Porter 
et al. 2005): minimum number of sequences for a conserved position = 62/57; minimum number of 
sequences for a flanking position = 104/95; maximum number of contiguous non-conserved posi
tions = 8/8; minimum length of a block = 6/6; allowed gap positions = half/half). GBlocks pruned 
approximately 400 and 170 basepairs from the 18S and 16S alignments, resulting in two datasets 
composed of 1458 and 377 characters, respectively. Recent studies have shown an increase in phy
logenetic resolution when multiple genes are combined in phylogenetic analyses. These approaches 
have gained popularity over single gene studies because of their potential to resolve phylogenies at 
different taxonomic levels (Ahyong & O'Meally 2004; Porter et al. 2005). For these reasons, we 
concatenated our 18S and 16S datasets into a single alignment consisting of 1835 basepairs and 
122 sequences. We conducted a partition test of heterogeneity (incongruence length difference test 
(ILD)) (Bull et al. 1993), as implemented in PAUP* (Swofford 2003), and results indicated that the 
two gene regions could be combined. Before concatenation, we generated single gene trees (16S and 
18S). Although we observed similar patterns of phylogeny, the 18S tree showed better resolution at 
the deeper nodes, while the 16S tree showed higher resolution between species. 

The model of evolution that best fit the individual datasets (18S, 16S) was determined by 
MODELTEST 3.06 (Posada & Crandall 1998) before conducting maximum likelihood (ML) and 
Bayesian Inference (BAY) analyses. The ML analysis was conducted using RAxML (Random
ized Axelerated Maximum Likelihood) (Stamatakis et al. 2005) with computations performed on 
the computer cluster of the Cyberinfrastructure for Phylogenetic Research Project (CIPRES) at the 
San Diego Supercomputer Center. The BAY analysis was conducted in MrBayes v3.0b4 (Huelsen-
beck & Ronquist 2001). Each analysis was run three times to evaluate the consistency among 
runs. 

Likelihood settings followed the General Time Reversible Model (GTR) with a gamma dis
tribution and invariable sites and RAxML estimated all free parameters following a partitioned 
dataset. Confidence in the resulting topology was assessed using non-parametric bootstrap esti
mates (Felsenstein 1985) with 1000 replicates. Values > 50% are presented on the BAY phylo-
gram (Fig. 1). The BAY analysis was performed using parameters selected by MODELTEST. A 
Markov chain Monte Carlo (MCMC) algorithm ran for 2,000,000 generations, sampling one tree 
every 100 generations. Preliminary analyses and observation of the log likelihood (L) values al
lowed us to determine burn-ins and stationary distributions for the data. Once the values reached 
a plateau, a 50% majority rule consensus tree was obtained from the remaining saved trees. Clade 
support was assessed with posterior probabilities (pP), and values > 0.5 are presented on the BAY 
phylogram (Fig. 1). Trees were initially generated as unrooted phylograms to help designate out-
group taxa. Ten taxa showed a clear separation from the Caridea and were selected as outgroups 
(Table 1). 

Figure 1. (Opposite Page) Bayesian (BAY) phylogram for the infraorder Caridea (n = 112) and selected out
groups (n = 10) based on 18S (rDNA) and 16S (rDNA) concatenated dataset. ML bootstrap values and BAY 
posterior probabilities are noted above branches (ML/BAY). Values < 50% are not shown. Vertical black bars 
indicate 8 major clades within the Caridea. Clades I-IV and VIII represent multiple families and Clades V-VII 
represent a single family or genus. * = node for each clade. 
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3 RESULTS 

Our study included representatives from 14 of the 16 superfamilies and 30 of the 36 families 
presently encompassed in the infraorder Caridea. In total, we generated 87 new complete 18S 
(-1850 bps), 7 new partial 18S (-700-1450 bps), and 88 new partial 16S sequences (-550 bps) 
(Table 1). Missing data were designated as a "?" for partial sequences. The ILD test showed no 
significant incongruence (P = 0.65) between datasets, so the 18S and 16S alignments were com
bined. After the 18S and 16S alignments were run through GBlocks, they were concatenated; of the 
1835 basepairs for 122 sequences used in the phylogenetic analyses, 1458 were for 18S and 377 for 
16S gene sequences. The optimal model of evolution selected in MODELTEST for the individual 
datasets was the General Time Reversible (GTR) model (18S) with gamma-distributed among-site 
rate heterogeneity and invariant sites (base frequencies = 0.2639, 0.2217, 0.2725, 0.2419; Rmat = 
1.4462, 2.6478, 1.2472, 1.1228, 4.5836; gamma shape parameter = 0.4927; proportion of invariable 
sites = 0.3884) and the Transition (TIM) model (16S) with gamma-distributed among-site rate het
erogeneity and invariant sites (base frequencies = 0.3833, 0.1700, 0.0553, 0.3914; Rmat = 1.0000, 
8.9199, 0.7503, 0.7503, 4.2441; gamma shape parameter = 0.4938; proportion of invariable sites = 
0.2420). ML and BAY analyses showed similar tree topologies, but because the ML phylogeny was 
less resolved at deeper nodes, the BAY tree is presented (Figs. 1, 2). 

3.1 Monophyly, paraphyly, and polyphyly of the infraorder Caridea 

Our results can be interpreted to support monophyly of the infraorder Caridea as presently consti
tuted, but at the same time they offer support for treatment of the family Procarididae as a separate 
infraorder (Fig. 1). While the basally positioned procaridids grouped more closely to carideans than 
to any other represented infraorder of pleocyemates, branch length between the procaridids and 
carideans was comparable to branch lengths between different infraorders of outgroup taxa, rather 
than those between other families of carideans. Furthermore, in unrooted trees (not shown here) the 
procaridids were positioned as a distinct lineage, separated from the remaining carideans. 

There was no overwhelming support for the monophyly of the currently proposed superfami
lies (those containing > 1 family). However, our analyses strongly suggested (bootstrap values > 
0.9, pP = 1.0) three major multi-familial clades within the infraorder Caridea (Clades II, III, VIII, 
Figs. 1, 2). Additionally, there was weaker support (pP > 0.88) for the formation of two additional 
assemblages composed of two or more families (Clades I, IV, Fig. 1). Our analysis provides some 
evidence for a relationship between the families Agostocarididae, Oplophoridae, Nematocarcinidae, 
Pasiphaeidae, Psalidopodidae, and Alvinocarididae (Clade I, pP = 0.92). There is significant sup
port for Clade II, which includes all families within Palaemonoidea, excluding Typhlocarididae, and 
there is no support for the inclusion of the typhlocaridids within the Palaemonoidea, as presently 
classified. The Ogyrididae is resolved as a sister clade to the Alpheidae (Clade III), and Atyidae + 
Xiphocarididae (Clade VIII) form a monophyletic assemblage with high support. Clade IV, uniting 
Crangonidae, Processidae, Thalassocarididae, and Glyphocrangonidae, has low support (pP = .88), 
but the subclade grouping Processidae and Thalassocarididae is marginally significantly supported 
with posterior probabilities (pP = 0.94). The remaining clades (V-VII) represent single families; 
two are weakly supported (Clade V: pP = 0.70, Clade VI: pP = 0.90) and one is strongly supported 
(Clade VII: bootstrap values = 1.0, pP = 1.0). The Hippolytidae, as currently defined, is split between 
clades V and VII, and Clade VI is limited to the Pandalidae. 

Although superfamilial support is missing or low, our analyses suggest that many families form 
monophyletic units. Approximately 8 of 16 proposed superfamilies within the Caridea each contain 
a single family. Our present observations are limited to those families that have multiple genera 
represented in our tree, and thus we cannot comment on the monophyly of families represented 
by a single genus (i.e., Stylodactylidae, Rhynchocinetidae, Bathypalaemonellidae, Agostocarididae, 
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Figure 2. Bayesian (BAY) phylogram for the infraorder Caridea and selected outgroups based on 18S (rDNA) 
and 16S (rDNA) concatenated dataset. ML bootstrap values and BAY posterior probabilities are noted above 
the branches (ML/BAY). Values < 50% are not shown. For ease of interpretation, branches are collapsed to 
show caridean families (solid bars), superfamilies (open bars), and outgroup taxa (solid bars). I-VIII indicate 
the 8 major clades within the Caridea. •* = node for each clade. STY = Stylodactyloidea, NEM = Nematocar-
cinpidea, CAM = Campy lonotoidea, BRE = Bresilioidea, OPL = Oplophoroidea, PAS = Pasiphaeoidea, PSA 
= Psalidopodoidea, PAL = Palaemonoidea, ALP •= Alpheoidea, CRA•= Crangonoidea, PRC = Processoidea, 
PAN = Pandaloidea, ATY = Atyoidea, PRO = Procaridoidea. 
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Nematocarcinidae, Psalidopodidae, Anchistioididae, Hymenoceridae, Desmocarididae, Kakaducari-
didae, Euryrhynchidae, Typhlocarididae, Ogyrididae, Thalassocarididae, Eugonatonotidae, Discia
didae, Procarididae, and Glyphocrangonidae). Results are congruent with hypotheses of mono-
phyly within the families Alvinocarididae, Alpheidae, Crangonidae, and Processidae. The mono-
phyly of the Pandalidae is only marginally supported with posterior probabilities. Our findings 
suggest polyphyletic relationships among genera within the families Pasiphaeidae, Oplophoridae, 
Hippolytidae, and Palaemonidae (both Palaemoninae and Pontoniinae) and paraphyletic relation
ships within Gnathophyllidae and Atyidae (Figs. 1,2). 

Systematic placement of Typhlocarididae and Eugonatonotidae is unclear considering there is 
little support for their position in relation to other families within the tree's topology. The families 
Procarididae, Disciadidae, Rhynchocinetidae, Stylodactylidae, Bathypalaemonellidae, Atyidae, and 
Xiphocarididae represent basal (less derived) lineages, which we address in the discussion. 

4 DISCUSSION 

Aside from the phylogenetic discussions that follow, it does not escape our attention that euphau-
siaceans are positioned as a sister clade to the non-caridean pleocyemate outgroups included in the 
analysis. This is not entirely unexpected, because we did not enforce rooting to only the Euphausi-
acea as in a previous analysis by colleagues (Porter et al. 2005). While it is not our primary interest 
to resolve phylogenetic positioning of this group, it is noteworthy that other recent molecular stud
ies have also yielded enigmatic placements for this putative sister group of the decapods. While 
sometimes at low support values, positioning in trees based on protein-coding genes can place eu-
phausiaceans as an immediate sister group to the decapods or outside the eucarids altogether as 
a sister group to stomatopods (Podsiadlowski & Bartolomaeus 2006). Somewhat controversially, 
euphausiaceans, on the basis of 28S rDNA sequences, have been allied more closely to the mysi-
daceans than to dendrobranchiate decapods, but no pleocyemate decapods were included in that 
analysis (Jarman et al. 2000). Recent ontogenetic studies do not support a closer phylogenetic rela
tionship to mysids than to dendrobranchiate decapods (Casanova et al. 2002). 

4.1 Procaridoidea + Caridea clade? 

Ever since the discovery of the anchialine shrimp Procaris ascensionis Chace & Manning, 1972, 
there has been a debate as to its systematic position in relationship to other shrimp-like decapods. 
Initially, procaridids were placed within their own family (Procarididae) and superfamily (Pro
caridoidea) within the infraorder Caridea (Chace & Manning 1972). Over the years, many studies 
have retained procaridids within the carideans (Chace & Manning 1972; Holthuis 1973; Abele & 
Felgenhauer 1986; Kensley & Williams 1986; Kim & Abele 1990). Kensley & Williams (1986) de
scribed a new genus and species of procaridid shrimp, Vetericaris chaceorum, and based on a suite 
of morphological characters agreed with the phylogenetic placement proposed by Chace & Man
ning some years earlier. Moreover, a phenetic and cladistic analysis suggested the procaridids be 
placed within the carideans on the basis of a single shared morphological character, the 2nd abdom
inal pleura overlapping the 1st and 3rd somites without the 1st being reduced (Abele & Felgenhauer 
1986). In 1988, Felgenhauer & Abele discovered that Procaris ascensionis carried its eggs attached 
to the pleopods and secured the group's placement within the Pleocyemata. Molecular evidence 
presented by Kim & Abele (1990) again suggested a close affinity between the carideans and pro
caridids. However, this study lacked robust representation of caridean groups (n = 2), mandating a 
more thorough molecular investigation. While many studies position procaridids basally within the 
Caridea, there is some morphological evidence for the separation of the two groups (Felgenhauer & 
Abele 1983, 1985, 1989; Schram 1986). In foregut morphology, procaridids appear to be more like 
dendrobranchiates than carideans (Felgenhauer & Abele 1983, 1985, 1989), and after review of sev
eral morphological characters (e.g., gills, protocephalic, and foregut) Felgenhauer & Abele (1983) 
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concluded that the procaridids be elevated to infraordinal level. Other characters potentially sup
porting separation of procaridids and carideans include distinct cephalic and thoracopodal anatomy 
(Fransen & De Grave this volume; Schram 1986). 

Present results strongly separate (long branch length) procaridid shrimp basally as a sister group 
to all other putative carideans. The group is separated, along with carideans sensu stricto, from all 
other pleocyemate infraorders. This could be interpreted as support for treatment of the Procari-
doidea at the infraordinal level within the Pleocyemata, especially if substantiated by analysis of 
additional genes and a more robust representation of pleocyemate taxa. 

4.2 Superfamily Palaemonoidea 

The superfamily Palaemonoidea is an extremely diverse group, currently composed of eight fami
lies, including Anchistioididae, Gnathophyllidae, Hymenoceridae, Palaemonidae, Desmocarididae, 
Kakaducarididae, Euryrhynchidae, and Typhlocarididae. Representatives from all the aforemen
tioned families are presented in our analysis, and, with the exclusion of Typhlocarididae, Palae
monoidea is strongly supported. 

Throughout the years, the systematic position of the freshwater troglobitic family, Typhlocaridi
dae, has been controversial. Until recently, the typhlocaridids were thought to be close relatives of 
the euryrhynchids on the basis of overall mouthpart similarity (Chace 1992, 1993; Holthuis 1993). 
However, a recent review of morphological characters identifies a suite of fundamental differences 
between the two families and confirms that similarity in mouthpart structure is shared amongst many 
genera within Palaemonidae (De Grave 2007). Our analyses reject a close relationship between Eu
ryrhynchidae and Typhlocarididae and question the systematic position of Typhlocarididae within 
Palaemonoidea, as defined by Chace (1992). Instead, our results strongly suggest Desmocarididae as 
the sister clade to Euryrhynchidae. Both families inhabit freshwater in South America (Euryrhynchi
dae) and West Africa (Euryrhynchidae, Desmocarididae) (De Grave et al. 2008) and share the pres
ence of cuspidate setae on their appendix masculina in addition to other morphological features (De 
Grave 2007). 

Leptopalaemon gagadjui, an Australian freshwater representative of the family Kakaducaridi
dae, forms a strong affinity with the freshwater genera Macrobrachium and Cryphiops, which agrees 
with a recent molecular study (Page et al. 2008b). Although the placement of the Kakaducarididae 
in relation to these genera appears unclear in our analyses, Page et al. (2008) demonstrate how the 
use of many genes (16S/18S/28S/H3) help clarify the monophyletic position of this family. 

The radiantly beautiful coral reef families, Gnathophyllidae and Hymenoceridae, had long been 
recognized as a single family (Gnathophyllidae) until Chace (1992) once again separated the two on 
the basis of the 3rd maxilliped. They both share morphological characteristics such as a broadened 
3rd maxilliped and similarity in mandible structure (Holthuis 1993). Our analyses strongly support 
an affinity between Gnathophyllidae and Hymenoceridae, which is in accordance with results found 
by Mitsuhashi et al. (2007). However, our study includes the genus Gnathophylloides, which was 
lacking in the former study. This inclusion identifies Gnathophyllidae to be a paraphyletic assem
blage with the genus Gnathophyllum more closely related to Hymenocera than to Gnathophylloides. 
Mitsuhashi et al. (2007) grouped the Gnathophyllidae + Hymenoceridae clade within the subfam
ily Pontoniinae, while providing evidence for the paraphyly of the Pontoniinae. Larval morphology 
corroborates the close relationship among the three aforementioned taxa (Bruce 1986, 1988; Yang 
& Ko 2002). Our analyses show an obvious association between Hymenoceridae, Gnathophyllidae, 
and the genus Pontonia, but we do not find strong support for the inclusion of the other pontoniine 
taxa (Kemponia, Coralliocaris, Periclimenaeus). This may be due to the limited number of pontoni
ine taxa in our analysis (n = 4 genera). 

Our results suggest a polyphyletic Palaemonidae, which is not unexpected due to the high de
gree of morphological diversity found within this family. However, definitive conclusions about 
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phylogenetic relationships cannot be drawn until a broader representation of taxa is included in the 
analysis, especially of the Pontoniinae. Undoubtedly, this group is ripe for multiple systematic and 
taxonomic revisions in the future. 

4.3 Superfamily Alpheoidea 

Currently, the superfamily Alpheoidea contains the families Alpheidae, Ogyrididae, Hippolytidae, 
and Barbouriidae. Our tree contains representatives from, all families except Barbouriidae, and 
results reject the monophyly of Alpheoidea. It is evident the family Hippolytidae represents a 
polyphyletic assemblage that qualifies for partitioning into several families as formerly suggested 
(Kemp 1914; Gurney 1942; Christoffersen 1987, 1990; Chace 1997; Posada et al. 2002). Our tree 
infers a strong relationship between the genera Thoralus and Latreutes, while Hippolyte, Tozeuma, 
and Trachy carls fall out as a supported single unit. Moreover, the genus Lysmata forms a distinct 
clade, clearly separated from the remaining hippolytids. In the past, Christoffersen (1987, 1990) 
placed Lysmata with other related genera within the family Lysmatidae Dana, 1952, and our anal
ysis supports this division. Since then, several studies have recognized unique morphological and 
reproductive traits (Bauer 2000; Lin & Zhang 2001; Bauer 2004) of these shrimp. 

Results support Ogyrididae as a sister clade to Alpheidae, confirming proposals of previous 
workers (Banner & Banner 1982; Christoffersen 1987; Anker et al. 2006). Recently, Anker et al. 
(2006) performed a cladistic analysis on the family Alpheidae, examining the phylogenetic rela
tionships among genera. Our results suggest some congruence with their morphological analysis 
such as the basal position of Yagerocaris cozumel and close associations between Fenneralpheus 
and Leptalpheus. However, our analysis does not place Synalpheus (including some representatives 
assigned to Zuzalpheus (Rios & Duffy 2007)) as sister taxon to Alpheus, as Anker et al. (2006) 
previously concluded. While the snapping claw, which is thought to have facilitated rich diversifica
tion found within Alpheus and Synalpheus, is concluded by morphological analyses to have evolved 
only once within the Alpheidae, our molecular evidence suggests this key innovation may have 
arisen more than one time. 

4.4 Atyidae + Xiphocarididae clade 

The genus Xiphocaris was formerly considered a primitive atyid by Bouvier (1925), and morpholog
ical studies have placed the xiphocaridids as a subfamily within the Atyidae (Christoffersen 1986). 
These taxa inhabit freshwater and possess a dactylar grooming comb on the 5th pereopod. However, 
other caridean families have dactylar grooming combs (e.g., palaemonids and campylonotids) and 
xiphocaridids lack the unique cheliped setal brushes used in filter feeding, a diagnostic character 
used to define membership in the family Atyidae. In 1992, Chace grouped xiphocaridids within the 
superfamily Nematocarcinoidea, because they shared large epipods on the anterior pereopods and 
similar mouthparts. Recently, a molecular analysis of atyid shrimp questioned the relationships be
tween selected genera and revisited the issue of possible relationships between xiphocaridids and 
atyids (Page et al. 2008a). Due to the phylogenetic resolution of the genes used in that study (16S, 
COI), the position of Xiphocarididae remained unclear, and the authors recommended "the addi
tion of more highly conserved nuclear genes . . . to resolve the deeper nodes fully" (Page et al. 
2008a). Our analysis clearly places the xiphocaridids as close relatives of the atyids, with Xipho
caris being positioned as the basal lineage of the group or nested within the Atyidae in many of our 
reconstructions. 

With the exclusion of the enigmatic position of Xiphocaris elongata, the division of the gen
era concurs with the findings of Page et al. (2008a). While delimitation of subfamilies within the 
Atyidae is yet to be taxonomically resolved, two clades are strongly supported in our topology, one 
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representing the subfamily Atyinae and the other containing members of the other three subfamilies 
within the Atyidae. 

4.5 Crangonidae + Processidae + Thalassocarididae subclade 

Our analysis suggests a weak affinity among the families Crangonidae, Processidae, and Thalasso
carididae, and similar arrangements have been suggested in the past. The first proposed classification 
for the Caridea (Dana 1852) placed the processids with the crangonids, along with other selected 
taxa, in the family Crangonidae. More recently, in a cladistic analysis based on morphological char
acters, Christoffersen (1987) noted a relationship between the two groups and transferred the family 
Processidae from the Alpheoidea into the Crangonoidea. Christoffersen (1990) again treated the 
crangonids and processids within the superfamily Crangonoidea, uniting the taxa on the basis of 
the length of pereopod 2. Molecular evidence lends some support for a relationship between Cran
gonidae and Processidae. However, our subclade. includes the family Thalassocarididae, a group 
traditionally assumed related to Pandalidae on the basis of mouthparts (Chace 1985). Other work
ers have suggested a close affinity between Thalassocarididae and Oplophoridae on the basis of 
larval morphology (Menon & Williamson 1971). The undivided carpus of the 2nd pereopod within 
some thalassocaridids (exception seen in Chlorotocoides) may suggest remote evolutionary ties with 
crangonids, and molecular evidence supports this grouping. Nevertheless, systematic placement of 
thalassocaridids remains controversial, and a more robust examination of this family is required. 

4.6 Basal lineages 

Felgenhauer & Abele (1989) suggested that morphological attributes of the foregut may provide 
insights into the evolutionary relationships among the carideans. They argued the armament of the 
foregut to be a conserved trait, more related to the phylogenetic history of the group than to feed
ing behavior and diet. In comparisons to the putatively ancestral state in the Dendrobranchiata, the 
least derived foregut among the carideans was thought to be a complete set of ossicles and a well-
developed gastric mill. Any. progressive reduction of chitinized structures was thus considered a de
rived feature. Felgenhauer & Abele (1983, 1985,1989) reported primitive states of caridean foreguts 
to occur in the families Atyidae, Nematocarcinidae, Stylodactylidae, and Rhynchocinetidae, with 
the least derived state found within the Procarididae. In our analysis, each of these families, and to 
a lesser extent the Nematocarcinidae, represents a basal lineage in the phylogeny. Furthermore, this 
morphological observation concurs with molecular results that imply separation of the procaridids 
from the infraorder Caridea. To our knowledge the foreguts in the other basally positioned lin
eages such as Discias and Bathypalaemonella have not been examined, but it would appear worth
while to determine if they follow the same trends. Derived foreguts were reported from families 
such as Alpheidae, Crangonidae, Palaemonidae, Hippolytidae, Gnathophyllidae, and Oplophoridae 
(Felgenhauer & Abele 1983, 1985, 1989). With the exception of the oplophorids, all these families 
can be considered derived within our phylogeny. 

Perhaps more intriguing are observations Felgenhauer & Abele (1989) noted within the Pasiphaei-
dae. While the genus Leptochela was reported to have a primitive well-developed foregut, the 
foregut within Pasiphaea appeared less chitinized and thus more derived. Our analysis suggests 
the Pasiphaeidae to be polyphyletic, despite the striking similarities in mouthparts and pectinate 
nature of the anterior chelipeds (Holthuis 1993). This result is in congruence with the findings of 
Felgenhauer and Abele (1989) and appears to argue for the separation of this family. 

Our findings argue that foregut morphology should be thoroughly revisited and considered as a 
potentially informative character in morphological cladistic analyses. Concordance between earlier 
reported trends in foregut morphology and our present molecular phylogenetic tree appears to be 
more than coincidental. 
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4.7 Testing morphological hypotheses with molecular data 

Although our phylogeny is not in complete congruence with the classifications and/or relationships 
proposed by Thompson (1967), Christoffersen (1990), or Ghace (1992), the current molecular analy
sis provides fresh insights on long-debated issues related to the evolution of caridean morphological 
characters and can also be used to formulate new testable hypotheses bearing on caridean phy
logeny. For example, Thompson (1967), among others, believed an oplophorid-like ancestor gave 
rise to many lineages within the carideans. Our analyses show the Oplophoridae nested within a 
larger clade and do not support this hypothesis. In fact, we find the oplophorids to be a polyphyletic 
group that requires more examination. Other hypotheses have suggested the superfamilial grouping 
of Crangonidae and Glyphocrangonidae on the basis of the subchelate 1st pair of pereopods. Our 
results would argue against the aforementioned superfamily classification and position us to test 
for convergent evolution among those groups. Finally, there is widely held consensus that subdivi
sion of the 2nd pereopod (polycarpidean lineage) occurred only once in the evolution of caridean 
families (Christoffersen 1990). Our tree suggests this trait arose multiple times throughout caridean 
history, a finding that agrees with Thompson's work (1967). Should these and other findings hold 
up to more exhaustive phylogenetic scrutiny, we are challenged, on a case-by-case basis, to find 
explanations in biology and evolutionary history, as well as to reflect them in taxonomic revisions. 

5 CONCLUSIONS 

Our study presents the most comprehensive treatment to date of caridean phylogeny. Results sug
gest the monophyly of the Caridea but also propose that this group may represent two separate 
infraorders. We find little congruence with present hypotheses of higher-level relationships among 
caridean families. There is no support for the current superfamily classification, and only the Alphei-
dae, Alvinocarididae, Crangonidae, and Processidae are retained as strongly supported monophyletic 
assemblages. Morphology has long suggested the procaridids may represent a distinct lineage sep
arate from the remaining carideans, and molecular data provide evidence to justify this division. 

Our phylogeny is not expected to resolve all debates currently surrounding classification of the 
group but, rather, should be treated as a milepost in our ongoing studies. It is intended to provide 
initial insights on a molecular genetic basis and lay groundwork for further testing. Our findings 
add validity to some current phylogenetic hypotheses while calling others into question, and in 
several cases suggest phylogenies that are difficult to rectify with morphological evidence and as
sumed biogeographic history. However, apparent polyphyletic and paraphyletic compositions of 
some caridean superfamilies and families are not surprising and have been suggested by previous 
morphological and molecular systematists. 
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