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Some twenty years ago one problem we theoretical physicists had was that if we
combined the principles of quantumn mechanics and those of relativity plus certain tacit
assumptions, we seemed only able to produce theories (the quantum field theories) which
gave infinity.for the answer to certain questions. These infinities are kept in abeyance
(and now possibly eliminated altogether) by the awkward process of renormalization. In
an attempt to underrstand all this better, and perhaps to make a theory which would
give only finite answers from the start, ] looked into the “tacit assumptions™ to see if
they could be altered.

One of the assumptions was that the probability for an event must always be a
positive number. Trying to think of negative probabilities gave me cultural shock at
first, but when I finally got easy with the concept I wrote mysell a note so | wouldn’t
forget my thoughts. I think that Prof. Bohm has just the combination of imagination and
boldness to find them interesting and arpusing. I am delighted to have this opportunity
to publish them in such an appropriate place. I have taken the opportunity to add some
further, more recent, thoughts about applications to two state systems. :

Unfortunately I never did find out how to use the freeedom of allowing probabilities
to be negative to solve the original problem of infinities in quantum field theory!



It is usual to suppose that, since the probabilities of events must be
positive, a theory which gives negative numbers for such quantities must be
absurd. I should show here how negative proﬁabilities might be interpreted.

A negative number, 53y of apples, seems-like an absurdity. A man starting a
day with five apples who gives away ten and is given eight during the day has
three left. I can calculate this in two steps; 5 -10 = -5 and -5 + 8 = 3.

The final answer is satisfactorily positive and correct although in the inter-
mediate steps of calculation negative numbers appear. In the real situation
there pust be special limitations of the time in which the various apples are
received and given since he never really has a negative number, yet the use of
negative numbers as an abstract calculation pexmits us freedom to do our mathe-
matical calculations in any order simplifying the analysis enormously, and
permitting us to disregard inessential details. The idea of negative numbers
is an exceedingly fruitful mathematical invention. Today a person who balkslat
making a calculation in this way is considered backward or ignorant, or to have
some kind of a menial block. It is the purpose of this paper to point out that
we have a similar strong block against negative probabilities. By discussing

a pumber of examples, I hope to show that they are entirely rational of course,
and that their use simplifies calculation and thought in a number of applications
in physics.

First let us consider a simple probability problem, and how we usually
calculate things and then see what would happen if we allowed some of our normal
probabilities in the calculations to be negative. Let us imagine a roulette
wheel with, for simplicity, just three numbers: 1, 2, 3. Suppose however, the
operator by control of a switch under the table can put the wheel into one of
two conditions A, B in each of which the probability‘of 1, 2, 3 are different.
1f the wheel is in condition A, the probabilities of 1, Pyp © 0.3 say, of 2 is
Poa © 0.6, of 3 is Py = 0.1. But if the wheel is in condition B, these
probabilities are Py, = 0.1, Pop ™ 0.4, Pyp = 0.5 say as in the table. We,
of course, use the table in this way:

Cond. A Cond. B
Suppose the operator puts the wheel into | 1 0.3 0.1
condition A 7/10 of the time and into B ' 2 0.6 0.4
the other 3/10 of the time at random. 3 0.1 0.5

(That is the probability of condition A,

P, = 0.7, and of B, Py = 0.3.)
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Then the probability of getting 1 is Prob. 1 = 0.7 (0.3) + 0.3 (0.1) = 0.24,
etc. In general, of course, if a are conditions and Piq is a conditional
probability, the protubility of getting the result i if the condition a holds,
we have‘(piu = Prob (if a« then i))

AL R 4 ' \ (1)

where P are the probabilities that the conditions o obtain, and Py is the
consequent probability of the result i. Since some result must occur in any

condition, we have
[P, =1 (2)
1

where the sum is that. over all possible independent results i. If the system

is surely in some one of the conditions, so if
P =1
a

then
P71 . ) (3)

meaning we surely have some result, in virtue of (2).

Now, however, suppose that some of the conditional probabilities are
negative, suppose the table reads so that, as we shall say, if the system is
in condition B the probability of getting 1 is -0.4. This sounds absurd
but we must say it .this way if we wish

that our way of thought and language Cond. A Cond. B
be precisely the same whether the actual 1 0.3 ~0.4
quantities p, = in our calculations are 2 6.6 1.2
positive or negative. That is the essence 3 0.1 0.2

of the mathematical use of negative numbers -- to permit an efficiency in

reasoning so that various cases can be considered together by the same line of
reasoning, being assured that intermediary steps which are not readily
interpreted (like -5 apples) will not lead to absurd results. Let us see

what Pip = -0.4 "means” by seeing how we calculate with it. We have arranged
the. numbers in the table so that Pig * Pop * P3p = 1 in accordance with eq. (2).
For example, the condition A has probability 0.7 and B has probability 0.3,
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we have for the probability of result 1,
VP = 0.7 (0.3) + 0.3 (~0.4) = 0.09

which would be all right. We have also allowed P2p to exceed unity. A
probability greater than unity presents no problem different from that of
negative probabilities, for it represents a negative probability that the
event will not occur.’ |

Thus the probability of result 2 is, in the same way,

P, = 0.7 (0.6) + 0.3 {1.2) = 0.78 .

2

Finally, the probability of result 3 presents no problem for

Py = 0.7 (0.1) + 0.3 (0.2) = 0.13 .

The sum of these is 1.00 as required, and they are all positive and can have
their usual interpretation..

The obvious question is what happens if the probability of being in
condition B is larger, for example, if condition B has probability 0.6, the
probability of result 1 is negative 0.4 (0.3) + 0.6 (-0.4) = -0.12, But
suppose nature is so constructed that you can never be sure the system is in
condition B. Suppose there must always be a limit of a kind to the knowledge
of the situation that you can attain. And such is the limitation that you can
 never know for sure that condition B occurs. You can only know that it may
occur with a limited'probability (in this case less than 3/7 say). Then no
contradiction will occur in the sense that a result 1 or 2 or 3 will have a
negative probability of occurrence.

Another possibility of interpretation is that results 1, 2, 3 are not
directly observable but cone can only verify by a final observation that the

result had been 1, 2 or 3 with certain probabilities. For example, suppose

the truly physically verifiable observations can only distinguish two classes
of final events. Either the result was 3 or else it was in the class of being
either 1 or 2. This class has the probability P, o+ P2 which is always
pos?tive for any positive PA, PB‘ This case corresponds to the situation

that 1, 2 3 are not the finally observed results, but only intermediaries in

a calculatiom.
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Notice that the probabilities of conditions A and B might themselves be
negative (for example, PA = 1.3, PB = ~0.3) while the probabilities of the
results 1, 2, 3 still' remain positive.

It is not my intention here to contend that the final probability of a
verifiable physical event can be negative. On the other hand, conditional
probabilities and probabilities of imagined intermediary states may be negative
in a calculation of probabilities of physical events or states,

If a physical theory for calculating probabilities yields a negative
probability for a given situation under certain assumed conditions, we need
not conclude the theory is incorrect. Two other possibilities of interpre-
tation exist. One is that the conditions (for example, initial conditions) may
not be capable of being realized in the physical world. The other possibility
is that the situation for which the probability appears to he negative is not
one that can be verified directly. A combination of these two, limitation of
verifiability and freedom in initial conditions, may alsoc be a solution to the
apparent difficulty. l

The rest of this paper illustrates these points with a number of examples
drawn from physics which are less artificial than our roulette wheel.

Since the result must ultimately have a positive probability, the question
may be asked, why not rearrange the calculation so that the probabilities are
positive in all the intermediate states? The same question might be asked of
an accountant who subtracts the total disbursements before adding the total
receipts. He stands a chance of goiﬁg through an intermediary‘negative sum.
Why not rearrange the calculation? Why bother? There is nothing mathematically
. wrong with this method of calculating and it frees the mind to think clearly
and simply in a situation otherwise quite complicated. An analysis in terms
of various states or conditions may simpiify a caleculation at the expense of re-
quiring negative probabilities for these states. It is not really much expense,

Our first physical example is one in which one usually uses negative
probabilities without noticing it. It is not a very profound example and is
practically the same in content as our previous example. A particle diffusing
in one dimension in a rod has a probability of being at x at time t of P(x,t)
satisfying aP(x,t}/5t = -azP[x,t)/axz. Suppose at x = 0 and x = 7 the rod has
absorbers at both ends so that P(x,t) = 0 there. Let the probability of being
at x at t = 0 be given as P(x,0) = £(x). What is P(x,t) thereafter? It is
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P{x,t) - I Pn sin nx exp(-nzt) 4
n=1
where P is given by‘.
-
£x) = 1 P, sin nx (5)
n=l
or .
P ‘.2'1 f(x) sin nx dx 6
n . : . (6)

The easiest way of analyzing this {and the way used if P{(x,t) is a temperature,
for example) is to say that there are certain distributions that behave in an
especially simple way. If £(x) starts as sih nx it will remain that shape
simple decreasing with time, as e ™ t. Any distribution f(x} can be thought
of as a superposition of such sine waves. But f£{x) cannot be sin nx if f(x)
is a probability and probabilities must always be positive. Yet the analysis
is so simple this way that no one has Teally objected for long.

To make the relation to our previous analysis more clear, the various
conditions o are the conditions n (that is, the index a is replaced by n).
The a priori probabilities are the numbers P . The conditions i afe the positions
x (the index i is replaced by X) and the conditional probabilities (if n then x

at time %) are

-t .
Pia * Px,n ° e sin nx .
Equation_(4) is then precisely Eq. (1), for the probabilities P; of having
result n is now what we call P(x,t). Thus Eq. (4) is easily interpreted as
saying that if the system is in condition n, the chance of finding it at x is
exp (-n®t) sin nx, and the chance of f£inding it in condition n is P .
No objection should be made to the negative values of these probabilities.

" However, a natural question is what are the restrictions which ‘insure that the
"Final probability for the event (finding a particle at x at time t} are always

positive. In this case they are simple. It is that the a priori probabilities,

although possibly negative, are restricted by certain conditions. The condition

» These do not satisfy Eq. (2) for we have particles "1o§t" off the end of
the rod, and the state of being off the rod is not included among the

possibilities i.
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is that they must be such that they could come from the Fourier analysis of.
an everywhere positive function. This condition is independent of what value
of x one wishes to ohbserve at time t.

In this example, the restrictions to insure positive probabilities can be
stated once and for all in a form that does not depend on which state we measure.
They are all positive simultaneously. o

Another possibility presents itself. It can best be understood by returning
to our roulette example. It may be that the restrlctlons on the conditions A,

B which yield a positive probability may depend on what question you ask. In an
extreme example, there may be no choice for the Pa that simultaneously make all
P positive at once. Thus, although certain restrictions may make probability
of result 1 positive, result 3 under these circumstances would have a negative
probability. Likewise, conditions ensuring that P3 is positive might leave P1
or P negative. In such a physical world, you would have such statements as

"if you measure 1 you cannot be sure to more than a certain degree that the
condition is A, on the other hand it will be alright to think that it is certainly
in condition A provided you are only going to ask for the chance that the result
is 3." For such a circumstance to be a viable theory, there would have to be
certain limitations on verification experiments. Any method to determine that
the result was 3 would automatically exclude that at the same time you could
determine whether the result was 1, This is reminiscent of the situation in
quantum mechanics in relation to the uncertainty principle. A particle can have
definite momentum, or a definite position in the sense that an experiment may be
devised to measure either one. But no experiment can be devised to decide what
the momentum is, to error of order Ap, which at the same time cén determine that
the position x is within Ax unless Ax > -1/Ap. ,

It is possible, therefore, that a closer study of the relation of classical -
and quantum theory might involve us in negative probabilities, and so it does.

In classical theory, we may have a distribution function F(x,p) which glves the
probability that a particle has a position x and a momentum p in dx and dp (we
take a simple particle moving in one dimension for simplicity to illustrate the
1deas) As Wigner has shown, the nearest thing to this in quantum mechanics is
a function {the density matrix in a certain representation) which for a particle

in a state with wave function ¥(x) is
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F(x,p) = [ f(xwarlz) exp-i(py)v(x+y/2)dy (N

(if the state is statlistically uncertain we simply average F for the various
possible wave functions wiﬁh their probabilities).
In common with the classical exéression, we have these properties:
(a) F(x,p) is real. '
(b) Its integral with respect to p gives the probability that the particle

is at x:
[ E(x,p)dp/ (27) = ¥ (0¥ X (8)

(c) Its integral with respect to x gives the probability that the momentum

is p
[ F(x,p)dx = # (P)9(P) . (9

where #(p) is the usual Fourier transform of vw(x). #(p) =‘[e'ipx¢(x)dx'
{d) The average value of a physical quantity M is given by

M) =IwM(x.p)F(x,p)dx dp s | (10)

where Wy, is a weight function depending upon the character of the physical
quantity.
 The only property it does not share is that in the classical theory F(x,p) is

positive everywhere, for in quantum theory it may have negative values for some
regions of x,p. That we still have a viable physical theory is ensured by the
uncertainty principle that no measurement can be made of momentum and position
simultaneously beyond a certain accuracy.

The restriction this time which ensures positive probabilities is that the
weight functions wM(x,p) are restricted to a certain class -- namely, those that
belong to hermitian operators. Mathematically, a positive probability will

result if w is of the form
wix,p) = [Xx-Y/2)e" Y X7 et/ 2)aY , a1

where X is any function and X* is its complex conjugate. Generally, if w(x,p)
is the weight for the gquestionm, vwhat is the probability that the physical

- quantity M has numerical value m?" w must be of the form (11) or the sum of
such forms with positive weights. With this limitatiom, final probabilities

are positive.
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To make the analogy closer to those previously used, we can take two
systems a, b, in interaction, such that measurements on b can provide predictions
of probabilities for m. Thus, using the one-dimensional case again, we have a
two-point correlation function F(pa,xa; pb,xb) defined via an obvious genera-
lization of Eq. (7) to two variables. This corresponds to the conditional
probabilitf Piq Then if a quantity M is measured in b, the a priori proba-
bilities for various Pp,,%, are given by an appropriate wM(xb,pb) (the analogue
of Pa in Eq. (1)). The probability that system "a' has position and momentum
X.,P, is (the analogue of P:3s then

P(x_.p,) = J Fx iP5 % Py (xpspypYdx, dpy s

the analogue of Eq. (1). As an example, we may take the strong correlation
possible arising from the two-particle wave function G(Xa-xb) which is

F(x,sPys X0Pp) = 8(p,*P)0(x,-Xp) »

which means that the particles a, b, have the same position and oppusite momenta
so that a measurement of b's position would permit a determination of a's and

a measurement of b's momentum would determine a's (to be the opposite). This
particular F is entirely positive and classical in its behavior so that letting
WM(xb’pb) be 6(;a-b)6(pa-Q) would not lead to negative probabilities directly,

for (1) gives P{xa.pa) = 6(xa-b]6(Pa+Q) in this case, but further use of such

a P in subsequent interactions has the danger of producing negative probabilities.
We have become quite used to the rules of thought and limitations of an experi- |
ment, which ensures that they never arise in quantum mechanics.

It is not our intention to claim that quantum mechanics is best understood
by going back to classical mechanical concepts and allowing negative probabilities
(for the equations for the development of F in time are more complicated and
inconvenient than those of‘w)*. _Rather we should like to emphasize the idea

« The classical equations for F for a particle moving in a potential are
"3F(x,p,t}/3t = -p/m + IF/3x+V'(x)dF/3p
while the quantum equations are .
' E(x,t)/3t = -p/m » 3F/dx+ [ 6(x,Q)F(x,p+Q)dQ
so instead of the momentum changing infinitesimally during an infinitesimal
time, At, it may jump by an amount Q with probability when it is at x,
At G(x,Q) = At + 2 Tmay part [e L\ V(x+¥/2)dY

which is a rTeal, but possibly negatiﬁe prdbabilityf
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that negative probabilities in & physical theory does not exclude that theory,
providing special conditions are put on what is known or verified. But how are
we to find and state ‘these special conditions if we have a new theory of this
kind? It is that'a situation for which a negative probability is calculated is
impossible, not in the sense that the chance fop,it happening is zerv, but
rather in the sense that the assumed conditions of preparation or verification
are experimentally unattainable.

We may give one more example. In the quantum theory of electrodynamics,
the free photon moving in the 2 direction is supposed to have only two directions
of polarization transverse to its motion x,y. When this field is quantized, an
additional interaction, the instantanecus Coulomb interaction, must be added to

the virtual transverse photon exchange to produce the usual simple
Gy * 3y * 353, - jpig et/ . (12)

virtual interaction between two currents, j and j'. It is obviously'relativistically
jnvariant with the usual symmetry of the space jx’jy’jz and time jt components
of the current (in units where the velocity of light, is ¢=1). The original
starting Hamiltonian with only transverse components does not look invariant.
‘Innumerable papers have discussed this point from various points of view but
perhaps the simplest is this. Let the photon have four directions of polari-
zation of a vector x,¥,z,t no matter which way it is going. Couple the time
component with ie instead of e so that the virtual contribution for it will be
negative as required by relativity in Eq. (12); For real photons, then, the
probability of a t-photon emission is negative, proportional to ~|(f|jt]i)|2
the square of the matrix element of j, between initial and final states, just
as the probability to emit an x photon is +'(fljx[i)lz. The total probability
of emitting any sort of photon is the algebraic sum of the probabilities for

the four possibilities,

gl 15312 + LEEMTETE + Feels 19312 - 1€

£li 1% . (a3
It is always positive, for by the conservation of current there is a relation
of jt and the space components of j’kuju =0 if ku is the four-vector of the

. ....photon. _For example,. if k is in_ the z_direction, k = w, and kxfkya,o,so_jtzjz
and we see Eq.(13) is equal to the usual result where we add only the transverse
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emissions. The probability to emit & photon of definite polarization e is

(assume e, is not a null vector)
'. .

.| 2
REMCNESIRYICHET B

This has the danger of producing negative probabilities. The rule to avoid them
is that only photons whose polarization vector satisfies kn e, = 0 and e, € = -1
can be observed asymptotically in the final or initial states. But this
restriction is not to be applied to virtual photons, intermediary negative
probabilities are not to be avoided. Only in this way is the Coulomb interaction
truly understandable as the interchange of virtual photons, photons with time-
like polarization which are radiated as real photons with a negative probability.
This example illustrates a small point. If one t photon is emitted with a
negative probability -a(a > 0), and another t photon is emitted say independently
with probability -B(8 > 0), the chance of emitting both is positive (-a)(~8) =
af > 0. Should we not expect then to see physical emission of two such photons?
Yes, but (if these photons are moving in the z direction) there is a probability
to emit z photons ¢ and 8 also, and there are four emission states: two t
photons with probability +aB; two z photons with probability +aB; the first z
and second t probability (+a)(-8) = -aB and the first t second z with proba-
bilities -a8 so again, for total emission rate only the tramsverse photons
contribute.
Although it is true that a negative probability for some situations in
a theory means that that situation is unattainable or unverifiable, the
contrary .4s not true, namely a positive probability for a situation does
not mean that that situation is directly verifiable. We have no technique
for'detecting t photons which is not similarly sensitive to z photons
so that we can only always respond to a combination of them. Likewise, no
direct test can be made that the two t photons are indeed present without
including the additional probabilities of hgving g photons. The fact for example,
that F(x,p) is everywhere positive (exp(— /232? X for the ground state of an
oscillator does not mean that for that state we can indeed measure both x and

p simultaneously.
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As another example we will give an analogue of the Wigner function for a spin %
system, or other two state system. Jusi as the Wigner function is a function of z and
p, twice as many variables as in the wave function, here we will give a “probability” for
two conditions at once. We choose spin along the z-axis and spin along the x-axis. Thus
let ., represent the “probability” that our system has spin up along the z-axis and up
along the x-axis simultaneously. We shall define the quantity f., for a pure state to
be the expectation of 1(1 + 0, + 0; + 0,), where 0,,0,, and o, are the Pauli matrices.
For a mixed state we take an average over the pure state values. Likewise f,_ is the
expectation of %(1 + 0y — Op = a,), f-+ is the expectation of %(] wg;+0,~0,) and f__
is the expectation of 3(1 — 0, = 0. + 0,). '

Understanding that this “probability” can be negative, we shall train ourselves to
deal with it otherwise as a real probability and thus dispense with the warning quotes
hereafter. Analogously f.. is the probability that the spin is up along the z-axis and
_ down along the x-axis {that is pointing in the negative x direction). Likewise f., and
. f_. give the probability that the spin is along the negative z-axis and along the x-axis in
the positive or negative sense, respectively. These are all the possible conditions so we
have [, + fou + fos + fo- = 1. Asan example, we might have f,, = 0.6, f._ = -0.1,
fo,=03and f._ =02

Now the probability that the spin is up along z is simply the sum of the probability
that it is up along z and up along x, and the other possibility, that it is up along z
but down along x; that is simply fi4 + f4. or 0.6 + (~0.1) = 0.5 in our exampie.
The probability the spin is down along z is f-y + f... ,also 0.5. In the same way the
probability that the spin is along the positive x-axis, independent of its value along z is
fis + foy or 0.9. We, of course, cannot measure simultaneously the spin in the z and in
the x direection, so we cannot directly determine f,_ and there is no difficulty with its
negative value.

These four numbers give a complete expression of the state of the system, and the
probability for any other question you can ask experimentally is some linear combination
of them. For example, the probability that a measurement of spin along the y-axis gives
'up’ is fi4 + f-- or 0.8, and that it gives ‘down’ is fe- + f-4 or 0.2. In fact, for a two
state system any question is equivavent to the question vis the spin up along an axis
in some direction. If that direction is defined by the unit vector V with components
Ve.V,,V; then we can say the probability that the spin is up along this direction if the
condition of the electron is ++ is prs (V) = 1(1+V, + V, +V,). For the other conditions
we have py- (V) = %(1 +V, =V, = V,), p-s(V) = %(1 ~V,+V,-V,),and p_ (V) =
%(1'—- V,— V.4 V,). In the general case then where the {’s give the a priori probabilities of
each condition the probability of finding the spin up along V' is the sumon a of pa(V)fa or
%((1+V,+V,+V,)f+++(l+V,—V,—V,)f‘,m+(1-—V,-+—V,-V,)f..+ +{1 -V, -V +V, ) [}
In order that this always gives positive results, in addition to the condition that the sum
of the I’s is unity, there is the restriction that the sum of the squares of the four f’s be
less than 1. It equals } for a pure state.

If there are two electrons in a problem we can use classical logic, considering each
of them as being in one of the four states, +-+,+—,—+,——. Thus suppose we have
two electrons correllated so their total spin is zero moving into two detectors, one set

-
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to determine il the spin of the first electron is in the direction V, and the other set to
measure whether the second electron has its spin in the direction U. The probability
that both detectors respond is %(_1 - U.V). Thus if one is found up along any axis, the
other is surely down along the same axis. This situation usually causes difficulty to
a hidden variable view of nature. Suppose the electron can be in one of a number of
conditions @ for each of which the chance of being found to be spinning up along the
V-axis is pa(V). If the second electron is in condition b it’s probability of being found
along U is ps(U). Suppose now that the chance of finding the two electrons in conditions
a,b, respectively, is P,. This depends on how the electrons were prepared by the source.
Then the chance of finding them along the V and U axes is 2,5 Paspa(V)pe{U) which
is to equal §(1 — U.V). This is well known to be impossible if all the “probabilities” Py,
and p are positive. But everything works fine il we permit negative probabilities and
use for @ our four states with the p,(V) as defined previously. The probabilities for the

correllated states in the case that the total spin is zero are P, equals % if a and b are

different states, and —3 if they are the same.

For another example of a two state sytem consider an electron going thru a screen
with two smail holes to arrive at a second screen(see figure 1). We can say there are
four ways or conditions by which the electron can go thru the holes, corresponding to
the +-+,+—,—+, and —— conditions. If we take up spin to correspond to going thru
hole number 1 and down spin to represent going thru hole 2, then the other variable
corresponding to spin in the z direction means going thru the two holes equally in phase.
Ordinarily we cannot say which hole it goes thru and what the phase relation is (just
as ordinarily we do not say which way the 2-spin is and which way the x-spin is) but
now we can and do. For example, f_. gives the probability of going thru hole 2 but 180
degrees out of phase (whatever that could mean). For each of these conditions we can
calculate what the chance is that the electron arrives at a point x along the screen. For
example, Py, (z), the probability for arrival at z for the condition ++ (thru 1 in phase}
and P,_(z), the probability for +— (thru 1 but out of phase) are sketched roughly in
figure 1 as the curves b and c respectively. The independent probabilities are negative for
some values of . The functions thru hole 2 are these reflected in z; P..(z} = Py (~z)
and P_.(z) = P,_{—=z). The total chance to go thru hole 1, P, + P,_ , the sum of the
wo irregular curves shown in the figure is just the smooth bump, the solid line at a, with
its maximum under hole 1, not showing inteference effects. But the total probability to
arrive with holes out of phase, P,.. + P__ shows the typical inteference pattern at the
bottom of the figure at d.

Obviously the particular choice we used for the two state system is arbitrary, and
other choices may have some advantages. One way that generalizes to any number of
holes or of states, finite or otherwise, is this. Suppose an event can happen in more
than one way, say ways A4, B,C, etc. with amplitudes a,b, ¢, respectively, so that the
probability of occurring is the absolute square of a-+b+¢+ ... This can be described by
saying the event can happen in two ways at once. For example we can say that the event
happens by “coming” in way A and “going” in way B (or, if you prefer, by “looping” via

. A and B) with a “probability” P(4,B) = (1 + 7)a’b + ;(1 — 1)b"a where a’ stands for
the complex conjugate of a. The probability of “coming” and “going” by the same way

-~
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Ais P(A,A) = a’a.and is the conventional positive probability that the event would
occur if way A only were available to it. The total probability is the sum of these P for
every pair of ways. If the two ways in P, “coming”, and “going” are not the same, P is
as likely to be negative as positive.

The density matrix, g, if the states are { is then represented instead by saying a
system has a probability to be found in each of a set of conditions. These conditions are
defined by an ordered pair of states “coming” in ¢ and “going” in j with “probability”
p(i,5) equal to the real part of (1 + 1)pi;. The condition that all physical probabilities
reamain positive is that the square of p(1,7) not exceed the product p(i,1)p(s, 1) (equality
is reached for pure states).

Finally, suppose that, because of the passage of time, or other interaction, or simply
a change in basis, the state ¢ has an amplitude Sp; of appearing as state m, where § is
a unitary matrix (so the new density matrix p' is given by §7'pS). We then discover
vwe can find the new probabilities p'(m,n) by summing all alternatives t,J of p(s; )
times a factor that can be interpreted as the probability that the state “comning” in 1,
“going” in j turns into the state “coming’ in m, “going” in n. This “probability” is
(S Sy SiaSim) + §(SiimSin = SinSiom)-

With such formulas all the results of quanturn statistics can be described in classical
probability language, with states replaced by ‘conditions’ defined by a pair of states
(or other variables), provided we accept negative values for these probabilities. This is
interesting, but whether it is useful is problema.tica.l, for the equations with amplitudes
are simpler and one can get used to thinking with them just as well.

My interest in this subject arose from many attempts to quantize. electxo-
dynamics or other field theories with cutoffs or using advanced potentials,
in which work apparently negative probabilities often arose. It may have
applications to help in the study of the consequences of a theory of this
kind by Lee and Wick.
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