
ALTO OPERATING SYSTEM

REFERENCE MANUAL

Compiled on: June 26, 1975

Computer Sciences Laboratory
Xerox Palo Alto Research Center

3333 Coyote Hill Road'
Palo Alto, California 94304

Copyright © 1975 by Xerox Corporation.

Alto Operating System

1. Introduction

June 26, 1975

Alto Operating ~ystem Reference Manual
Version 1

2

This manual describes the operating system for the Alto. The manual will be
revised as the system changes. Parts of the system which are likely to be changed
are so indicated; users should try to isolate their use of these facih ties in routines
which can easily be modified, or better yet, avoid them entirely, if possible.

The system (and its description in this manual) can be separated into three parts:

a) User-callable procedures, which are of two .kinds: standard procedures which
are always provided, and library procedures which must be loaded with the
user's program if they are desired. At the moment, all procedures are
standard except those for parsing command files (GP); procedures for doing
page-oriented disk I/O are also available as library proceaures (BFS).

b) Data structures, such as disk files and directories, which are used by the
system but which are also accessible to user procedures and subsystems.

The s~stem is currently written almost entirely in Dcpl. Its procedures are invoked
with the standard Bcpl calling sequence, and it expects the subsystems it calls to be
in the format produced by the Alto Bcpl loader.

2. Hardware summary

This section provides an overview of the Alto Hardware. Briefly, every Alto has:

a) A memory of 48k or 64k words of 16 bits each, plus parity. The cycle time
is 850ns. , •

b) An emulator for the Nova instruction set, except the input/out~ut
instructions (which include MUL, DIV, HLT and the instructions whlch
control the interrupt system). The only other incompatibilities are:

1) Addresses are 16 bits, rather than 15, so that bit 0 of an index
register affects the addressing. .

2) Indirect addresses are also 16 bits, so that bit 0 is part of the
address, rather than specifying another level of indirection.

3) Auto-increment and auto-decrement are not implemented.
There are some new instructions which are listed In Table 2.1. The Alto
executes emulated instructions in about 1.5 times the time required by the
Nova 800: about 1.2 us for register instructions, 2 us for loads and stores.

c) Secondary memory, which may consist of one or two Diablo 31 cartridge
disk drives, or one Diablo 44 cartridge disk drive. The properties of these
disks are summarized in Table 2.2. The formats of the disk and of disk
commands are described in section 4.2.

d) An 875 line TV monitor on which a raster of square dots can be displayed,
606 dots wide and 808 dots. high. The display is refreshed from Alto

Al to Operating System June 26, 1975 3

memory under control of a list of display control blocks whose format is
described in section 4.5. Each blocK describes what to display on a
horizontal band of the screen by specifying:

the height of the band, which must be even;
the width, which must be a multiple of 32; the space remaining on the

right is filled with background;
The indentation, which must be a multiple of 16; the space thus reserved

on the left is fi ned wi th background;
the color of the background, black or white;
the address, .of the data (must be even), in which 0 bits specify

background. Each bit controls the color of one dot. The ordering is
increasing word addresses and then bit numbers in memory, top to
bottom and then left to right on the screen; and

a half-resolution flag which makes each dot twice as wide and twice as
high.

There is also a 16 x 16 cursor which can be positioned anywhere on the
screen. If the entire screen- is filled at full resolution, the display takes
about 60% of the machine cycles and 30704D words of memory .

e) A 44-key keyboard, 5-finger keysetJ and mouse

f) A Diablo printer interface

g) An Ethernet interface

h) Interfaces for analog-to-digital and digital-to-analog
camera input, and for a RS-232b (teletype) connection

conversion, for TV

i) A real-time clock and an interval timer (see table 2.1 for brief descriptions)

3. User-callable procedures

This section describes the operating system facilities Jlrovided by procedures which
can be called from user programs using the standard Bcpl calling sequence. At the
moment, all of these procedures are a permanent part of the operating system,
automatically available to any user program.

3.1. Initialization

Because of the deficiencies of the Bcpl loader, it is necessary to use a kludge to
link the user program to the operating system routines. This kludge is embodied in
a routine called INITALTOIO, which must be loaded with the user program, and
must be called before any operating system procedure is ·called. This routine finds
out where the system routines are and plants their addresses in the statics through
which the user program references them. Statics which are set up by INITALTOIO
are called system procedures in this document, or system scalars if they aren't
procedures. Most system scalars contain the addresses of locations in the system
which contain interesting information, so that d SC IS a system scalar, rv SC will
be the proper expression to use in a program.

INITALTOIO takes an optional parameter, which is the maximum number of disk
streams which will exist during execution of the user program - 3. It may be
omi tted if the user program needs no more than 3 disk streams. In any case it
should not be larger than' 4; if your program needs more that five disk streams,
consult me. The need for this parameter will disappear shortly.

Alto Operating System June 26, 1975 4

The space occupied by INITALTOIO can be reclaimed after it has been called by
loading it at the end of your program, and doing SetEndCode(INITALTOIO) after
calling it. Multiple calls of the routine are harmless provided they are
parameterless (unless, of course, you have smashed it as described in the last
sentence).

3.2. Errors

There is a standard routine, SYSERR, which is called whenever the system detects
an error from which it doesn't know how to recover, and the user program has not
supplied its own error routine. It takes two parameters:

N: a number whose significance depends on the kind of errorj
EC: an error code, which can be interpreted by looking it up In Table 3.1.

SYSERR simply types N (in octal), followed by EC, the error code, which
unfortunately comes out in octal. After doing its typing, it says

Type F to finish
and waits for inputs. Typing F (or f) will do a finish. Typin~ two successive
control-Rls will do a return (normally not a good idea). Anything else will be
echoed and ignored. The reason for this pause is to provide an opportunity for
invoking Swat.

In this document errors are described as "fatal", meaning that a ,return from
SYSERR is useless, or "non-fatal," meaning that something reasonable will happen if
SYSERR returns.

There is also a routine called SWATCmessage) which just types the message and
then says "Type F ... " as above.

3.3. Streams

The purpose of streams is to provide a 'standard interface between pro~rams and
their sources of sequential inEut and sinks for. sequential output. There IS a set of
standard operations, defined for all streams, which are sufficient for all, ordinary
input-output requirements. In addition, some streams may have special operations
defined for them. Programs which use any non-standard operations thereby forfeit
complete compatibility.

Streams transmit information in atomic units called items. Usually an item' is a
byte or a word, and this is the case for all the streams supplied by the operating
system, but the I6-bit quantity which Bcpl passes as an argument or receives as a
result could be a pointer to some larger object such as a string. In this case, the
storage allocation conventions for the objects thus transmitted would have to be
defined. Of course, a stream supplied to a program must have the same ideas about
the kind of items it handles as the program does, or confusion will result.
Normally, streams which transmit text use byte items, and those which transmit
binary information use words.

The user is free to construct his own streams by setting up a suitable data structure
(defined in section 4.1) which provides links to his own procedures which implement
the standard operations.

The system should take precautions ,to ensure that its streams will be destroyed in
an orderly way when execution of a program is complete, in case the program has
forgotten to CLOSE them, but unfortunately at present it does not, and programs
should therefore take care to close all their streams before finishing. The routine
CLOSEALL will do this automatically.

Alto Operating System June 26, 1975 5

The standard operations on streams are (S is the stream; "error" means that
ERRORS(S,EC) is executed, where EC is an error code):

GETS(S)

PUTS(S,I)

RESETS(S)

PUTBACK(S,I)

ENDOFS(S)

CLOSES(S)

STArrEOFS(S)

ERRORS(S,EC)

OPENS(S)

returns the next item; error if ENDOFS(S) is true
before the call

writes I into the stream as the next item; error
only if there is no more space or some hardware
problem.

restores the stream to some initial state, generally
as close as possible to the state is is in just after
it is created.

modifies S so that the next GETS(S) will return I
and leaves S in the state it was in before the
PUTBACK. Error if there is already a putback in
force on S.

true if there are no more i terns to be gotten from
S. Not defined for output streams.

destroys S in an orderly way, and frees the space
allocated for it. Note that this has nothing to do
wi th deleting a disk file. .

returns a word of state information which is
dependent on the type of stream.

reports the occurrence of an err0t: wi.t~ ~rx:or code
Ee on the stream. ERRORS 1S 1n1 tlahzed to
SYSERR (see section 3.2), but the user can replace
it with his own error routine.

for display and EIA-inllut, turns the stream on; for
other types, does noth1ng. This operation will be
abolished shortly.

Currently, a stream is created by a call of CREATES(P, TYPE, ERR), which returns
the new stream. ERR is the error routine; if it is 0 or mi.ssing, gYSERR is -used.
P is a parameter whose interpretation depends on the type. The ppssible types are
listed in Table 3.2; these symbols are clefined in the file OSSYMS. Properties
which are specific to each type are described in the following subsections.

3.3.1. Disk streams

A disk stream is the standard interface to a disk file. Section 3.4 describes how to
obtain a stream for doing inQut or output to a particular file. This section
describes operations peculiar to aisk streams.

A disk file is a sequence of bytes numbered from 0 to N; it is divided into ~ of
512 bytes which are numbered starting at 1. The lenjith of the file is N+l. Auisk
stream is always positioned at some byte P of the tde; if the items are words, P
will always be even. -.

When it is created, a disk stream is positioned at the beginning of the fil~ i.e.,
P=O. RESETS repositions it to the beginning. GETS returns b'yte P and sets .t"=P+1
(for a word stream, it returns bytes P and P+l, and sets P=P+2), unless P)N, in
which case it calls ERRORS. PUTS writes its argument into byte P and sets P=P+l

Alto Operating System June 26, 1975 6

(and accordingly for a word stream); it also sets N to max(N,P). ENDOFS returns
true if P)N. CLOSES updates the disk image of the file, if necessary, and destroys
the stream; it does not truncate a file. Tllis action is performed by CLOSEAFILE
(see section 3.4)Or lJELETEFILES(stream, pagenumber, bytenumber), which sets N
to the specified byte (note that data pages are numbered starting at 1, so byte 514
is page 2, byte 2). If pag!!number IS 0 or missing, the file associated with the
stream is entirely deleted. For this and other uninteresting reasons, it is better not
to use CLOSES on disk streams in the current system. This peculiarity will be
remedied soon.

There are several functions which deal with file positions:

POSITIONPAGE(S, N)

POSITIONPTR(S, N)

MOVESTREAM(S, N)

FilePos(S, vector)

FileLength(S, vector)

posi tions to byte 0 of page N. The disk file is
lengthened if necessary to make this possible, and
filled in wi th garbage. Don't forget that the first
data page is numbered 1.

posi tions to byte N -2 (sorry about. that) of the
current page, lengthening the file if necessary. Do
not position word streams to odd bytes.

posi tions to byte (P - P mod 2)+2*N, where P is
the current position and N is signed, using the two
previous functions.

returns the current byte position in the stream,
modulo 2**16. If vector is supplied, it also returns
the position in double-precision in vector!O (msb)
and vector! 1 (Is b).

returns the length in bytes of the file associated
wi th the stream, modulo 2**16. If vector is
supplied, it also returns the length in double
precision in vector!O and vector!1. It positions the
file to the end.

Finally, there are two functions for block transfers. Do not use them if the current
position is not even.

READVEC(S, addr, count)

WRITEVEC(S, addr, count)

reads max(count+1, number of words rem~ning)
from S into memory, putting the first word at
addr. Returns the number of' words read - 1. If
the length of the file is odd, the last bJ'te will be
read, together with a garbage byte. READVEC is
equivalent to:

for i=O to count do addr!i=GETS(S)
if S doesn't run out, but it is much more

efficient, runnins at full disk speed except,
perhaps, for. the first and last pages.

writes count+1 words into S from memory, taking
the first word from addr. The current version can
only write one page per two disk revolutions, or
one page per four disk revolutions if the file is
being extended.

Disk streams are normally created using the functions of section 3.4. It is also
possible, however, to use the function CREATES with a disk stream type and P the
address of a file identifier (see section 3.4).

Al to Operating System June 26, 1975 7

Each disk file has a leader page associated with it which contains various
infornlation. The first six words of the leader page contain (in order) the time of
creation, time of last write and time of last read of the tile. (These times are
obtained from the DAYTIME procedure, section 3.7.) Each time a file is opened, the
mode in which it is opened is used to update these times: if a file is opened
read/write (the default) both read and write times are updated. Therefore, try to
specify exactly what you want to do when you do the open.

ReadFileS tuff(stream, v)

3.3.2. String streams

Read the leader page of the file open on "stream"
into the vector v (which had better have room for
256 words).' Currently the. only interesting
information in the leader page is the time stamps.

A standard Bcpl string can be made into a stream by CREATES(strin~,
STRINGOPEN). It then behaves much like a disk stream, except that ERRORS IS
called if any attempt is made to extend its len~tR beyond 255 oytes (in accordance
with the BcpI convention, the length is stored In the left byte of strlng!O, and the
first byte IS in the r!ght half). The disk stream operations DELETEFILES,
POSITIONPAGE, READVEC and WRITEVEC do not work on string streams, but
everything else is identical.

To handle big strings, use CREATES(stringvec, BIGSTRINGOPEN), where stringvec!O
contains the length, and stringvcc!1 contains the first two bytes, etc. Big string
streams work exactly like string streams except that the length restriction is 65k
bytes instead of 255.

3.3.3. Display streams

This section describes the current facilities for managing the display screen and
putting text on it. These facilities will be substantially changed in the ne~r future.

There is a standard font which the system uses for text, unless the user specifies I
another one. . In this font, a full text line contains 72 characters and requires 508
words of memory . The characters are 14 dots high and 8 dots wide, including the
surrounding space.

The system takes 6 text lines (84 scan lines) at the top of the screen. This. area
can be accessed through a stream which can be found in the system scalar DSP.

The user can create his own display streams with CREATES(V,DISPLAYOPEN).
Once a display stream S is created, it can be appended to the existing display by
OPENS(S), and removed by CLOSES(S).

The parameter V is interpreted as follows:

a) V=O or V!O=O or V!!=O: the system display stream DSP is returned. This is
for compatibility with earlier versions of the system.

b) otherwise: V should be a 4-word vector. V!O and V!! are taken as the
starting address and ending address of a region of memory which is allocated
for the display. Independently if V!2 is non-zero, it is taken as a font
pointer (see section 4.5), and V!3 as the number of words to allocate for
each scan line (must be even); the number of characters which will fit on a
line (for a fixed-pitch font) IS then 16*V!3/width of a character in dots.

Al to Operating System June 26, 1975 8

3.3.4. Keyboard

There is a sing-le k~board stream in which characters are buffered. It can be
obtained by dOlng CREATES(O,KEYSOPEN), and can also be found in the system
scalar KEYS. The only non-null operations are GETS, ENDOFS, which is true if no
characters are waiting, and RESETS, which clears the input buffer.

There are currently _no system facilities for handling the keyset or mouse, exce\lt for
the system scalar MOUSELINK, which has the pr_ol?~rty that the cursor coordlnates
will follow the mouse coordinates iff rv MOUSELINK is not false.

3.4. Disk files

The system distinguishes three kinds of object which have something to do with
storing data on the disk:

stream:

file:

directory:

used by a program to transfer information to or
from a disk file; .

a vector of bytes of data held on the disk,
organized into 512-byte ~ for some purposes;

a file which contains a list of pairs <string name,
file>.

A stream exists only in memory, is defined by a structure described in section 4.1
and is named by a. pointer to this structure. A file exists only Qn the disk (excel?t
that parts of it may be in memory if an output stream is associated with it) and lS
named by a 64-bit entity which consists of a 32-bit serial number, a 16-bit version
number, and a 16-bit disk address of the leader page for the hIe (this is a vlrtual
dlsk address; see section 4.4). This name, together with some other information, is
pack~ged by the system into a data structure in memory, called a file identifier
tsecbon 4.2).

Most user programs do not concern themselves with file identifiers, but use sxstem
routines which go directly from string names to streams. These routines wlll be
described first, and the interested reader can obtain more details further on.

3.4.1. File names

By a "file name" we mean strins: which can be converted into a' file identifier by
looking it up in a directory. Flle names are arbitrary Bcpl strings which contain
only upper and lower case letters, digits, and characters in the string n+_.?I$". File
names are stored in directories as they are typed, but no distinction is made
between upper and lower case letters when they are looked up. Dots (".") are used
to separate file names into parts. If there is more than one part, the last part is
called the extension, and is conventionally used much like extensions in Tenex.

3.4.2. Functions for the naive user

The current system supports a single directory. It is always available as a stream
which can be accessed from the system scalar SYSTEMDIR. All the operations in
this section look things up in this' directory. The directory is a file, and the file
appears in the directory itself under the name SYSDIR.

GETAFILE(string, type L error routine]) looks up the string in the director¥l
and creates a new file and a new directory entry 11

Alto Operating System June 26, 1975 9

it doesn't find the string there. Then it creates a
stream for the file, with the specified type (see
Table 3.2 and section 3.3) and returns It. 'the
type defaults to read/write words (DISKRW). The
QI!tional third parameter is used to set the stream's
ERRORS; if it is missing, SYSERR is used.

OPENAFILE(string, type [, error routine]) is identical to GETAFILE, except
that it will return 0 if it doesn't find the name In
the directory; i.e., it will not create a new file.

CLOSEAFILE(s tream)

DELETEAFILE(string)

will destroy the stream" in an orderly way, writing
onto the disk any data still in memory and
releasing all the memory occupied by the stream.
If the stream was created write-only, the file will
be truncated at the current position, unless it is
posi tioned at the beginning.

deletes the file and removes the directory entry.

The naive user should consult sections 3.3 and 3.3.1 for information about how to
use the streams created by GETAFILE and OPENAFILE.

3.4.3. Lower-level directory functions

As was explained in the last section, the current system supports a singJe directory
file, whicli is always kept open as a stream, the system scalar SYSTEMDIR. This
file has its leader page in disk page 1, and appears in itself under the name
SYSDIR. The routines of the last section all work on SYSDIR.

The routines in this section, on the other hand, will work on any stream which has
the format of a directory: a seq,uence of entries, each one a data structure
described in section 4.3. These routInes all take a parameter DIR which is a stream
of type DISKRW for the file to be used as the directory. The parameter NAME is
a Bcpl string.

LOOKUPENTRY(DIR,NAME) looks up NAME in DIR. If it is found, DIR is
left (lositloned at the first word of the entry and
true IS returned; otherwise, false is returned.-

FINDHOLE(DIR,N) leaves DIR positioned at the first word of a free
space (or hole) at least N words long. The value
is the size 0 the hole, or 0 if it is at the end of "
the file.

MAKENTRY(DIR,NAME,TYPE) If TYPE=NILTYPE(=O), deletes the entry for
NAME from DIR; non-fatal error if no such entry
exists. Note that the file is not deleted, only the
entry. If TYPE=REALTYPE(=f),makes a new file
with the specified name and enters it on DIR; non
fatal error if anentr:y for NAME already exists.
In both cases, there IS a non-fatal error if the
NAM"E contains a character which is forbidden in
file names. Fatal error if TYPE is not one of
these cases.

There is currently no routine to make a directory entry for an existing file, but it
is easy to program. Don't forget that if FINDHOLE returns a non-zero value which
isn't the right size, you must write an appropriate hole entry after the new entry
you make.

Alto Operating System June 26, 1975 10

3.4.4. Disk errors

The system will repeat five times any disk operation which causes an error. On the
last three repetitions, it will do a restore operation on the disk first. If five
repetitions do not result in an error-free operation, a (hard) disk error occurs; it is
re~orted b~ a call of ERRORS for the stream involved. The rv of system scalar
REXQTCOUNT contains the number of times a disk operation has been repeated
because of an error.

3.5. Memory management

Table 3.3 shows the layout of memory . Table 3.4 tells how to obtain the current
values of the symbohc locations in Table 3.3. The free space (EndCode to
StackEnd) can be manipulated as follows:

GetFixed(nwords)

FreeFixed(pointer)

FixedLeft()

SetEndCode(new value)

returns a pointer to a block of nwords words, or 0
if there isn't enough room. It won't leave less
than 100 words for the stack to expand.

frees a block provided by GetFixed.

returns the size of the biggest block which
GetFixed would be willing to return.

resets endCode explicitly. It is better to do this
only when endCode is ~eing decreased.

The allocator is not very bright. FreeFixed decrements endCode if the block being
returned is immediately below the current endCode (it knows because GetFixed puts
the length of the block in the word preceding the first word of the block it
returns; please do not rely on this, however, since there is no guarantee that later
aHocators will use the same scheme). Otherwise it puts the block on a freelist.
When another FreeFixed is done, any~ blocks on the freelist which are now just
below endCode will also be freed. However, the allocator makes no attempt to
aHoca te blocks from the freelist.

The system is initialized with 3 disk streams (plus SYSTEMDIR), 8 string streams,
1 keyboard stream, and 2 display_ streams. The number of disk streams can be
increased (once) by rvIOREFILES(N), where N is the number of extra strelms; it
must be Ie 4. The space is allocated inside the system, and this action is undone
by a FINISH. If INITALTOIO is given a parameter N, it calls MOREFILES(N). If
absolutely necessary, the number of other objects can be'· increased in an
undocumen ted way.

3.6. Subsystems and user programs

The information in this section is likely to become invalid in the next few months.
Try to isolate any use you make of it in your programs.

All subsystems and user programs are stored as save files. which normally have no
extension. Such a fi Ie is genera ted by Bldr anQls gl ven the name of the first
binary file, unless some other name is specified for it. The format of an Alto save
file is specified in section 4.7 and table 4.11.

To swap in a save file and send control to its starting address, do OVERWRITECS
[,swatflag]), where S is a DISKRO or DISKRW stream for the file, positioned at the
beginning of the file. Swatflag is an optional flag, which if true causes SWAT to
be called just before control is given to the program being called. The new program

Al to Operating System June 26, 1975 11

gets control with the system in a clean state (no streams open except SYSTEMDIR,
no user stack). OVERWRITE puts the statics and the code where
SV.BLV.startOfStatics and SV.BLV.startOfCode say they should go. It checks that
the OS and the stack will not be overwritten.

The Jlrogram will be started by a call to its starting address (SV.H.startingAddress),
which will normally be the first function of the first file given to Bldr. ThIs
function is passed a single argument, which is a 32 word layout vector described in
Table 4.10 (taken from the Bcpl manual). When it returns, eIther by doing a
return from the function -which was first called, or by doing a FINISH, the system
is reinitialized and control goes back to the command processor.

Don't forget that INITALTOIO must be called before any calls on the operating
system are made by a newly invoked program.

Subsystems conventionally take their arguments from a file called COM.CM, which
contains a string which normally is simply the contents of the command line which
invoked the subsystem (see section 5). The subroutine package GP contains a
pJ:ocedure to facihtate reading this string according to the conventions (copied from
Nova DOS) by which it is normally formatted. This is not a standard routine but
must be loaded with your program. (For more informatfOil on GP, see PACKAGES
documentation.)

3.7. Miscellaneous

This section describes a collection of miscellaneous useful routines:

WS(string)

WO(n)

WSS(S, string)

WOS(S, n)

BSTORE(addr, v, c)

BMOVE(source, dest, c)

TIMER(tv)

DAYTIME(dv)

SETDA YTIME(dv)

writes the string on the standard output system
(currently always the system display)

writes an unsigned octal representation of n on the
standard output stream

wri tes the string on stream S

writes an unsigned octal representation of n on
stream S

stores v into addr!O ... addr!c (note: c+l store'i are
done)

does dest!Of-source!O ... dest!cf-source!c
moves are done)

(note: c+l

Reads the 32-bit- millisecond timer into tv!O and
tv!1. Returns tV!1 as its value.

Reads the current time-of-day (32 bits, with a
grain of 1 second) into dv!O and dv!1. Returns dv
as its value. (Subroutines for converting time-of
day into more useful formats for human
consum1?tion are available in CTIME.C. See
subroutine package documentation, under TIME.)

Sets the current time-of-day from dv!O and dv! 1.
(N arm ally it should not be necessary to do this, as
the time is set when the operating system is
booted and has an invalid time. Thereafter, the
timer facilities in the operating system maintain
the current time.)

Alto Operating System June 26, 1975 12

4. Data structures

This section describes the data structures used by the operating system. Each
structure is described by a Bcpl structure declaration, if appropriate, together with
eXj)lanator~ text. All the structure declarations can De found in the file
OSSTRUCTURES.

Table 4.1 lists all the addresses in page 1 which are used by the standard Alto.

4.1. Streams

Table 4.2 gives the minimal structure for a stream. Any particular stream structure
may be larger. The standard entries are all Bcpl procedures. Blank entries are
type-dependent. The type field is the parameter given to CREATES for a system
provi ded stream.

4.2. Disk files

A sector on the disk contains a 2-word header. an 8-word label and a 256-word data
record, each with a checksum. Table 4.3 gives the structures of the header and the
label, and· also defines the subsidiary structures of a disk address and a serial
number. The ·DH.packld field is currently always 0, but will eventually be used to
identify the ~ack. The SV.random field IS currently always 0, but may someday be
used to specdy that information about the disk addresses of the file pages is
recorded on the disk.

Disk activity is specified by disk command blocks. Table 4.4 gives the structure of
a DCB and also of a disk com""iilllnd and a status word.

A file is named by a file identifier whose structure is given in Table 4.5. The
FID.fileNumber field is---cllrrently unused. The FID.name field is also currently
unused, but it will be a Bcpl string which. is the name which was used to access the
file. Its maximum size is 128 words, although no more space need be allocated than
is actually required for the name in any specific case.

4.3. Directories

A directory file is a sequence of directory entries, each with the structure specified
in Table 4.6. It should have the SN.directory bit set in its serial number. Note
that it is P9ssible to have a sequence of free entries, since they are not coalesced
until FIND HOLE tries to obtain space. Note alsC? that free entries may be of any
size.

4.4. Disk allocation

Free space on the disk is kept track of in two ways. First, each free block has a
label which is zero, except for the DL.serialNumber and versionNumber fields, which
are all ones. Second, there is a bit table which contains a bit for each disk
page: the bi t is 0 if the page is free, 1 if it is allocated. Whenever the system
allocates disk space, it uses the bit. table to find a free page and checks the label to
make sure it is free, and then immediately rewrites the label to reflect its newly
allocated status. The bit table is indexed by virtual disk address; the leftmost bit
in a word is bit O. The virtual address for a sector with real address a is:

a«DA.sector + 12 * a«DA.head + 24 II< a«DA.track
There are two system functions for conversion: VIRTUALADDRESS(real address)
and MAKEADDRl virtual address).

Alto Operating System June 26, 1975 13

The bit table is stored on a file called SYS.STAT, followed by two words containing
the lar~est serial number so far. It is also kept in core in a vector which may be
found In the system scalar BITTABLE. The disk copy is updated whenever a
su bsystem returns.

4.5. Display

The display is defined by a list of control blocks, each of which specifies a band or
contiguous grou:Q_of scan lines. Table 4.7 gives the format of a display band control
block. DBchainHead in page 1 points to the first DB; if it is 0 the display will be
off. .

There is a standard format for Alto fonts, which has been chosen to be compatible
with the scan conversion instruction; it is given in Table 4.8. The font pointer
passed to CREATES must point to the characterFCDpointers word of the font.

4.6. The Bcpl stack

The Bcpl compiler determines the format of a frame, which is given in Table 4.9,
and the calhng convention. The strategy for allocating frames, however, is
determined by the operating system. We begin by describing the compiler
conventions, which are useful to know for writing machine-language routines.

A procedure call: peal, a2, ...), is. imJllemented in the following way. The first two
actual arguments are put into ACO and ACI (AC2 always contains the address of the
current frame, except durin~ a call or return). If there .are exactly three actual
arguments, the third is rut Into F.extraArguments. If there are more than three, the
frame-relative address 0 a vector of their values is put there (except for the first
two), so that the value of the i-th argument (counting from 1) is
frame»F.extraArguments!(frame+i). Once the arguments are set up, code to transfer
control is i?:enerated which puts tne old PC into AC3 and sets the PC to p. At this
point, AC3rO will be the number of actual arguments, and the PC should be set to
AC3+ 1 to return control to the point following the call. "-

A procedure declaration: let p(fl, f2, ...) be ... , declares p as a static whose value
after loading will be the address of the Instruction to which control goes when p is
called. The first four instructions of .a procedure have a standard form:

STA 3 1,2 ; AC2»F.savedPC+-AC3
L: JSR @GETFRAME

number of words needed for this procedure's frame
JSR @STOREARGS ."

The Bcpl runtime routine GETFRAME allocates storage for the new frame, NF).. saves
AC2 in NF»F.callersFrame field, sets AC2 to NF, and stores the values of AliO and
AC1 (the first two arguments) at NF»F.formals to and 1. If there are exactly
three actual arguments, it stores the third one also, at NF»F.formals 1'2. Then, if
there are three or fewer actual arguments, it returns to L+3, otherwise it returns to
L+2 with the address of the vector of extra arguments in AC1; at this point a JSR
@STOREARGS will copy the rest of the arguments. In both cases, the number of
actual arguments is in ACO, and this is still true after a call of STOREARGS. A
Bcpl procedure returns, with the result, if any, in ACO, by doing:

JMP @RETURN·
to a runtime routine which simply does:

LDA 2 0,2 ; AC2+-AC2»F.callersFrame
LDA 3 1,2 ; PC.-AC2»F.savedPC+l
JMP 1,3

The information above is a (hopefully) complete description of the interface between
a Bcpl routine and the outside world (excep! for some additional runtime stuff
whicli is supplied by the operating system). Note that it is OK to use the caller's

Alto Operating System June 26, 1975 14

F.Temp and F.extraArguments in a machine-language routine which doesn't get its
own frame, and of course it is OK to save the PC in the caller's F.savedPC.

The operating system currentlY allocates stack space contig'uously and grows the
stack down (see section 3.5). To allocate a new frame of size S, it simply computes
NF=AC2-S and checks to see whether NF) EndCode. If. not, there is a fatal error;
if so, NF becomes the new frame.

4.7. Save files

Table 4.11 gives the format of an Alto save file. The system routine OVERWRITE
(section 3.6) will read such a file into core and start it running. Someday this file
will have a variant which includes a saved stack, so that control can return from
OVERWRITE to its caller by saving the caller's state in such a file.

5. The command processor

The Alto command processor is itself a subsystem and lives on the file COMMAND;
if you don't like it, you can write your own. It is currently invoked from scratch
after the operating system is booted, and whenever a subsystem returns.. The
command processor is fully documented with SUBSYSTEMS; only a brief description
is presented here.

The command processor reads a command line from the keyboard, writes it (with
some interpretation) onto the file COM.CM, terminated with a carriage return, and
calls in the file named by the first word on the line (up to blank, / or carriage
return). The interpretation is as follows: .

a) If more than one display line is needed, a command line may be continued
on the next display line by preceding the carriage return with a t. This l'
simply causes the carriage return to be ignored; it does not act as a
separator. A t not followed by carriage return is treated as an ordinary
character. Line-feed characters are ignored. .

b) If the sequence @filename@ appears, the contents of the specified file are
treated as though they had been typed in at that point, instead of -the @
construction. Thls may be nested to any reasonable depth.

c) The backspace key, or a control-A, deletes the previous undeleted character;
a DEL deletes the whole line. A control-R retypes the line. Two slashes
(/ /) begin a comment, which is terminated by the carriage return or semi-
colon which terminates the command. .

d) Commands can be separated by semi-colons. If there is more than one
command in a command line, everything following the first command is
saved (after the interpretation described above) on a file called REM.CM,
and a password is stored into a location called REMCM in the _operating
system. When the commmand processor is invoked, it checks REMCM for
the password and simulates the typing of @REM.CM@ if it is there.

The command processor has some simple commands built into it, rather than
accessed through the subsystem machinery. Currently these are DELETE and TYPE.
They are handled exactly like other commands, but are somewhat more efficient, and
cannot be overridden by changing the save files with those names.

Al to Operating System June 26, 1975 15

6. Operating Procedures

6.1. Getting started

To get started on the Alto, obtain an Alto disk pack. It must be a twelve-sector
pack; i.e. it should say 902-12: H.D. on the front. Label the pack with your name
and other sui table identification, since unlabeled packs are liable to garbage
collection.

Find the pack labeled BASIC ALTO DISK, and put it into the bottom disk drive on
an Alto which has two drives. Push the white switch on the drive to RUN. When
the yellow READY light is lit, push the Alto's boot button, which you will find on
the rear of the keyboard. The screen should say

Hello, Basic Al to disk
some information about the status of the machine

>
You are now talking to the command processor. Type

QUICK cr

When it asks you if you are ready to proceed, move the BASIC ALTO DISK to the
top drive and put your new pack Into the bottom drive. Then say yes, and when it
asks you whetlier you are really ready, be sure that you have the disks in the right
drives (new disk in the bottom drive, BASIC disk in the top drive) and say P. The
program will copy the BASIC disk on to your new disk and will then read back the
new disk and com~are it with the BASIC disk. It will tell you when it is done.
Take out the BASIC disk and put it back in the rack. You can now boot from your
new disk, and you are ready to go. It is probably a Eood idea to start by
INSTALLing the system with your name in it; INSTALL is described in the
subsystems aocumentation.

6.2. Miscellaneous information

The key in the lower right corner of the keyboard is called the Swat key. If you
press it, the Swat debugger will be invoked. If you do this by mistake, cOl!trol-P
will resume your program without interfering witli its execution, and control-K will
do a finish.

You can force a finish at any time by depressing the Swat key together with the
left-hand shift key.

Al to Operating System June 26, 1975 16

Name

MUL
DIV

CYCLE
JSRII
CONVERT
DIR
EIR
BRI
RCLK

SIO
BLT

BLKS

SIT

JMPRAM
RDRAM

Opcode Address Function

61020
61021

60000
64400
67000
61000
61001
61002
61003

61004
61005

61006

61007

61010
61011

C
D
D

Same as NOVA MUL: ACO,1+-AC2*ACl+ACO
Similar to NOVA DIV: AC1+-ACO,I/AC2; ACO has
remainder. DIV (unlike NOVA version) skips the next
instruction if no overflow occurs.
ACO+-ACO ley (if C ne 0 then C else ACl)
AC3+-PC+1; PC+-rv (rv (PC+D))
character scan conversion
disable interrupts
enable interrupts
PC+-interruptedPC; EIR
ACO+-16 msb of clock (from realTimeClock); AC1+- 10
Isb of clock * # 100 + 6 bits of garbage; resolution is

.38.08 us.
start I/O
Block transfer of -AC3 words; ACO=address of first
source word-I; ACl=address of last destination word;
ACO and AC3· are updated during---ui"e instruction
Block store of -AC3 words; ACO=data to be stored·
ACl=address of last destination word; AC3 is updated
during the instruction
start interval timer. For an interrupt when the time
is timerInterruptTime, ACO should be 1 when this
instruction is executed
Emulator microcode PC+-AC1 in control RAM

WRTRAM 61012

ACO+-(if AC1[4] then RAM else ROM)!AC1 (left half
if ACl[5], right half otherwise)
RAM!AC 1 +-(ACO,AC3)

Notes: Address: C=bits 12-15; D=bits 8-15; -=no'address
variables in function descriptions are machine registers or page 1
loca tions (see table 4.1)

Table 2.1: New instructions in Alto emulator
(see Hardware Manual, section 3.1 for more details)

Al to Operating System June 26, 1975 17

Device Diablo 31 Diablo 44
Number of drives/Alto 1 or 2 1
Number of packs 1 removable 1 removable

1 .fbced

Number of c~linders 203 406
Tracks/cylin er/pack 2 2
Sectors/track 12 12
Words/sector 2 header same

8 label
256 data

Data words/track 3072 3072
Sectors/pack 4872 9744

Rotation time 40 25 ros
Seek .time (approx.) 15+8.6*sqrt(dt) 8+3*sqrt(dt) ros

mln-avg-max 15-70-135 8-30-68 ros
Average access 80 32 (both packs) ms

to 1 mega byte

Transfer rates:
peak-avg 1.6-1.22 2.5-1.9 MHz
peak-avg 10.2-13 6.7-8 us-word
ter sector 3.3 2.1 ms
or full display .46 .27 sec

for big memory 1.03 .6 sec
whole drive 19.3 44 (both packs) sec

Table 2.2: Properties of Alto disks

Alto Operating System

0: Unspecified error
1: Bad stream
2: No such action

June 26, 1975

3: There is no more room for f'd~reams
4: Parameter too small
5: Parameter too big
6: Bad parameter
7: End of stream
8: Bad PUT
9: Bad GET
10: PUTBACK attempted when there is already a put back item
11: Hardware 1/0 error
12: Bad state
13: Bad name
14: No such entry in the directory
15: Bad file
16: Not yet imillemented
17: Page not full
18: Page number too small
19: Bad disk address
20: File already exists
21: Too many objects
200: Atteml?t to overlay stack
201: Stack IS too big
202: No more stack space
203: Statics overlap stack or system
204: Code overlaps stack or system
220: Interrupt address already exists
221: Interrupt channel already active

Table 3.1 System error messages; see section 3.2

18

Alto Operating System June 26, 1975 19

Numeric
~~ value Section Device Item Remarks

DISKRO 0 3.3.1 disk word read-only

DISKWO 1 3.3.1 disk word wri te-only truncated
at current IJosi tion
by CLOSEAFILE

DISKRW 2 3.3.1 disk word read-write

DISKROCH 3 3.3.1 disk byte read-only

DISKWOCH 4 3.3.1 disk byte wri te-only truncated
at current position
by CLOSEAFILE

DISKRWCH 5 3.3.1 disk byte read-write

STRINGOPEN 6 3.3.2 Bcpl string byte

BIGSTRINGOPEN 7 3.3.2 'big' string byte

KEYS OPEN 9 3.3.4 keyboard byte

DISPLAYOPEN 10 3.3.3 display byte for text only

Table 3.2: Stream types; see section 3.3

Al to Operating System

LastMemLoc'

StartSystem

StackBase

UserS tackBase

StackEnd

EndCode

June 26, 1975

Last memory location

Base of system

Root of stack

20

This region is permanently used by the system.
Don't mess with it.

Root of user's stack

Top of stack, which grows down

End of user program+ 1

This space contains user code and statics, loaded as
specified by the· arguments to Bldr. Default is to
start at StartCodeArea and load statics into the first
400 words, and code starting at StartCodeArea+400.
See Bldr manual.

StartCodeArea Start of user program area

1000 Start of Bcpl runtime and system machine-language
routines

400-777 Page 1: machine-dependent stuff (see Alto Hardware
Manual)

300-377 Bcpl runtime page 0

20-277 User page 0

0-17 Unused

Table 3.3: Memory layout (all numbers octal); see section 3.6

Alto Operating System June 26, 1975 21

LastMemLoc
StackBase
UserS tackBase

StackEnd
EndCode
S tartCodeArea

See text
rv(#1017)
System won't provide this, but user's initial routine
can compute it
Iv (first argument of current procedure) -4
Rv(#335)
Fixed at #6500

Table 3.4: Values of symbolic locations in Table 3.3
(all numbers octal)

Al to Operating System June 26, 1975

I I Page 1 reserved locations - from Alto hardware manual, Appendix B
I I and passim

manifest [

1/ display
DBchainHead = #420
verticalFieldlnterrupt = #421

1/ cursor
cursorX = #426
cursorY = #427
cursorBitMap = #431

/ / mouse

1/ disk

mouseX = #424
mouseY = #425

nextDiskCommand = #521
diskStatus = #522
lastDiskAddress = #523
sectorlnterrupts = #524

/ I interrupts
wakeupsWaiting = #452

activelnterru{?ts = #453
interruptedPC = #500
interruptVector = #500

/ I interval timer

/ / pointer to DB
/ / 60 times a second

// up to #450

/ / hardware increments or
/ / decrements these words

/ / Qointer to DCB
// @DS
/1 @DA

// bit 1 goes to
/ / interruptvector!1

1/ #501 to #517

timerlnterruptTime = #525'1 interrupt occurs when AC1
/ / after RCLK equals this word
/ / in the 10 msb

timerlnterrupts = #423
timerData = #422

/ I miscellaneous
realTimeClock = #430

trapPC = #527
trapVec = #530
convertMaskTable = #460

]

// units are 1024/30*875
/ / seconds or about 38 ms

1/ up to #567
/ / up to #477; the convert ins
/ / truction reguires that
1/ convertMask1'able!n=
/ / (2**(n+1))-1

/ / Table 4.1: Page 1 reserved locations

22

Al to Operating System

/ / minimal structure for a stream
structure ST[

blank word
open word
close word
gets word
puts word
reset word
putback word
error word
endof word
stateof word
blank word
blank word
blank word
type word
]

manifest lST=size ST/16

June 26, 1975

/ / Table 4.2 Basic stream structures; see section 4.1

23

Alto Operating System

I I disk address
structure DA[

sector bit 4
track bit 9
head bit 1
disk bit 1
restore bi t 1
]

1/ disk header
structure DH[

packld word
diskAddress @DA
]

1/ serial number
structure SN[

[
directory bit 1
random bit 1
jartl bit 14

= wordl word
jart2 word

I I disk label
structure DL[

next word

previous word

blank word
numberOfCharacters word

page word

fileld word 3 =

]

[
version word
serialNumber @SN
]

manifest IDL=size DL/16

June ~6, 1975

/ I disk address of next file
1/ page, or 0
II disk address of previous
I I file page, or 0

I I between 0 and 512 inclusive.
I I ne 512 only on last page
1/ leader is page 0, first data
II page is page 1

I I Table 4.3: Disk format; see section 4.2

24

Alto Operating System June 26, 1975

I I disk status word. See hardware manual for detailed definitions
structure DS[

sector bit 4
done bit 4
seekFai led bi t
seeklnProgress bit
notReady bit
da taLa te bi t
noTransfer bit
checksum Error bit
finalStatus bit 2
]

I I disk command
structure DC[

seal bit 8
headerAction bit 2
labelAction bit 2
da taAction bi t 2
seekOnly bit 1
exchangeDisks bit 1

]

I I must be #110

I I disk controller inverts
I I DCB.diskAddress if this bit
II is set

I I possi ble disk actions in command word
manifest [diskRead = 0; diskCheck = 1; diskWrite = 2]

I / disk command block
structure DCB[

nextComm
status @DS
command @DC

word

header Address word
labelAddress word
da taAddress word
noErrorInterrupts word
error Interrupts word
header @DH =

]

[
blank word
diskAddress @DA
]

manifest IDCB=size DCB/16

1/ set when command ~s completed

I I these are memory addresses

1/ Table 4.4: Disk commands, see section 4.2

25

Al to Operating System

I I Bcpl strin~
structure STRING[

length byte
body 0,255 byte
]

I I file identifier
structure FID[

serialNumber @SN
version word
fileNumber word
diskAddress @DA
name @STRING
]

June 26, 1975

I I virtual disk address

I I Table 4.5: File identifier; see section 4.2

II directory entry
structure DE[

type bit 6
nwords bit 10 I I number of words in the entry
fid @FID I IW ARNING! the DA here is virtual
]

II directory entry types
manifest [DEfree = OJ DEfile = 1; DElink = 2]

1/ Table 4.6: Directory format; see section 4.2

"""'--"""'""'"""'--------

26

Alto Operating System June 26, 1975

I I display band control block
structure DB[

next word
resolution bit 1
background bi t 1
indentation bit 6
width bit 8
bi tMapAddress word
height word
] ,

manifest IDB=size DB/16

I I O=high
I I O=white
I I in units of 16 dots
// likewise; must be even
1/ must be even
1/ in double scan lines

I I Table 4.7: Display control; see section 4.5

// font character descriptor. If p points to a FCD., then
/ I p!(-p> > FCD.height) contains tlie first scan line of the character
/ I stored in the font, p!(-1) the last
structure FCD[

[blank bit 11; width bit 4] =
[blank bit 7; extension bit 8]

I I font

noExtension bit 1 1/ previous field is width ir
// this is 1; otherwise it is
I I extension and the width is 16

displacement bit 8 1/ character is pushed down this
II far

height bit 8 I I number of scan lines (words)
1/ of bitmap stored for this
I I character

]

structure FONT[
height word I I height of tallest character,

1/ in scan lines, including mIn-
1/ imum inter-line space. Must
II be even

variableWidth bit 1
blank bit 7
width bit 8 I I includes inter-character

I I spacing; maximum width if
1/ font is variable-width

I I The font pointer given to CREATES must point to the next word
characterFCDpointers 0,255 word /1 self-relative pointers to

1/ FCDs for 256 characters
extensionFCDpointers word' I likewise for extensions; as

I I many words as needed.

]
I I the FCDs follow immediately

I I Table 4.8: Standard Alto fo~ts; see section 4.5

27

Alto Operating System

/ / Bcpl frame
structure F[

callersFrame word
savedPC word

temp word

extraArgumen ts word
formals word

]

June 26, 1975

/ / this frame's PC is stored
/ / here during a call
/ / temporary storage; free
/ / dUring calls
/ / see manual for details

/ / the formal parameters are
/ / stored in successive words
/ / starti ng here.

/ / Table 4.9: Bcpl frame structure; see section 4.6

28

Alto Operating System June 26, 1975

/ / layou t vector passed to the program on startup
structure BLV[.

overlayAddress 0, 25 word
startOfStatics word
endOfStatics word / /
startOfCode word
after LastCode Word word

endCode word

blank word
]

/ / address of first static
address of last static

/ / address of first word of code
/ / 1 + largest address at which
/ / code is loaded (normally
/ / endCode is the same, and the
/ / system treats that value
// as the end of the program)
/ / first location which ma:y be
/ / used for data; used by the
/ / system to set EndCode

/ / Table 4.10: Bcpl layout vector

/ / format of an Alto save file
structure SV[

H [
startingAddress word

length word
type word

blank 1, 11 word
]

BLV @BLV
pageO 0, #277 word

statics 0, 0 word

code 0, 0 word

end word
]

/ / Table 4.11: Alto save file

// header
/ / initial value for PC.
/ / Loader sets this to
/ / SV.BLV.startOfCode
// unused
// should be 0 for an ordinary
/ / save file

/ / Bcpl layout vector
/ / The first #16 words are
// ignored; the rest are used to
/ / set words #16 to #277 of
i/ memory

/ / actually there are
/1 (BLV.endOfStatics -
/ / BLV.startOfStatics + 1)
/ / words here .
/ / actually there are
/ / (BLV.endCode-BLV.startOfCode)
/ / words here

29

Alto Operating System June 26, 1975 30

7. PARC Information

7.1. Getting Started

New Alto disks are stored in a cabinet in the Maxc room. Please tell Vicki Parish
the serial number of any new disk that you take.

The BASIC ALTO DISK is in a rack near the Alto in the cubicle adl·acent to
Vicki's. The procedure for executing QUICK to copy the BASIC ALTO D SK onto
another disk may be found in this manual (Operating System) under the section
entitledJ.. Operating Procedures. An alternative procedure for creating a new disk is
NEWDI::sK. The documentation may be found in the SUBSYSTEMS manual or on
<ALTODOCS>NEWDISK.TTY.

7.2. Al to Programs

Barbara Hunt maintains the following Alto directories:

1) The <ALTOSOURCE> directory. This directory contains the source files
for the subsystems and subroutine packages. It also contains the PUB files
for the documentation which is on <ALTODOCS>.

2) The <ALTODOCS> directory.

3) The <ALTO) directory.

Current versions of all the Alto proB"rams are kept on Maxc on the <ALTO)
directory. Programs are normally kept In executable form; thus the QUICK program
appears as <ALTO>QUICK. In addition to the executable file, some programs also
have a symbol file on <ALTO>. The symbol file name has the extension .BM. This
file is useful to the author when something goes wrong with a subsystem, but it is
not normally needed by users. Subsystems which need more than one file, either
because they have overlays or because they need data files, are kept as dum~ files
with the extension .DM. These dump files should be broken apart with LOAD after
you transfer them to your Al to disk.

Subroutine packages are kept on <ALTO> with an extension of .BR.

The maintainer of a subsystem or subroutine package submits a new or revised
release in a dump file which has the following contents: .

1) The source files from which the subsystem may be created.
tne file should be in the format, subsysname.DM. .

The name of

2) The command files which are needed to create the subsystem from the
enclosed source. The following are the usual requirements:

a) A command file containing statements to compile the enclosed
source. Compiler messages should be written to a file. For example:

BCPL/F FOO.SR.

The filename should be· in the format, COMPILEsubsysname.CM.

b) A command file containing statements to load the files which were
produced in step a. For example:

BLDR FOO

For PARe Alto Users May 2, 1975 31

The filename should be in the format, LOADsubsysname.CM.

If the subsystem is small, the two command files may be combined into one.
The name should be in the format, CREATEsubsysname.CM.

The following example will create the package for subsystem, FOO.

DUMP FOO.DM FOO.SR CREATEFOO.CM

The comIIland file, CREATEFOO.CM, contains the following statements:

BCPL/F FOO.SR
BLDR FOO INITALTOIO

A message should be sent to Barbara Hunt, describing the changes which will be
effective with this release. Include the name of the directory on which the files
may be found. The subject of the message should be the name of the subsystem or
subroutine package.

7.3. Documentation

The file <ALTO)MESSAGE.TXT contains all of the information which has been sent
to Alto users with SNDMSG. Information about recent chan~es to a specific
subsystem may be selected by using the 'subject string' option of the MSG
sub~stem. For example, y_ou may type
MSG (ALTO)MESSAGE.TXT
T S FOO
Or you can read the entire file by saying
File: (ALTO)MESSAGE.TXT
to READ MAIL. Every six months this file will be purged and its old contents left
on the next version of OLDMESSAGE.TXT.

Formal documentation is provided in two forms: a "perusal" form, which can be
conveniently t~ped at a TI or VTS terminal on Maxc or perused with BRAVO on an
Alto, and a 'notebook" form, which can only be printed on ears, and may have
fancy illustrations or fonts in it.

The "perusal" documentation is always stored on (ALTODOCS) under a fil~ name
like ~s.TTY, where "Sy5" is the name of the 5ubystem or package you are interested
in. For examQle, the documentation for a subroutine packa~e, FOO, would be found
on (A,LTODOCS)FOO.TTY. There is one exception to thIS rule: for very simple
subsystems (e.g~ DUMP and LOAD), the documentation is in
<ALTODOCS)SMALLSUBSYSTEMS.TTY.

The "notebook" documentation is packaged in larger packages to reduce storage
overhead and to provide more manageable sets of documentation for printing.
Currently, the following files on (ALTODOCS) may be copied to Ipt: for noteboolt
style documentation:

OS.EARS. Operating System manual. the last section of this manual contains
special information relating to Altos at PARC--where to find the software,
how to maintain it, etc.

BCPL.EARS. A new, revised BCPL' manual.

SUBSYSTEMS. EARS. Documentation for most Alto subsystems (exceJilt those listed
below). These are arranged alphabetically, with headings to Indicate which
system is being described. A directory at the front of the file contains
documentation about very simple subsystems.

Fer P ARC Al to Users May 2, 1975 32

PACKAGES.EARS. This contains documentation for the software packages available
for the Al to.

BRAVO.EARS, GYPSY.EARS. Currently, these subsystems have their own separate
ears documentation.

APERSCOMP.EARS. This is the "hardware" manual for the Alto.

These files are formatted, and should therefore be ~rinted with
@COPY FOO.x LPT: [confirm] ('x' is either TTY or EARS)
To -'print all the short documents on EARS, you can just say
@COPY <ALTODOCS)*.TTY LPT:DEFONT.EP cr

The "notebook" documentation for all the subsystems and subroutine packages may
be obtained by:
@COPY <ALTODOCS)SUBSYSTEMS.EARS to LPT: [confirm]
@COPY <ALTODOCS)PACKAGES.EARS to LPT: [confirm]

When you have a change to make to documentation, or wish to introduce new
documentation into the system, the following three steps are required:

1. Retrieve the relevant .PUB file from <ALTOSOURCE). The file name is in
the format, sys.PUB, where 'sys' is the name of the subsystem of subroutine
package. If JOU are creatIng brand new documentation, see the file
<ALTOSOURCE)TEMPLATE.PUB for an example.

2. Edit the pub file. If you wish to "try it out," simply pass it to PUB-- a
.TTY versIon of the documentation will be produced. .

3. When you are finished, send a message to Barbara Hunt telling her where (on
Maxc) she can find the updated pub file. You will probaoly include this
information in the message which you send regarding updated software.
Barbara will cOEY the pub file back to <ALTOSOURCE), make a .TTY version
for <ALTODOCS), if relevant, and periodically produce new versions of the
notebook documentation.

Please be sure to copy the pub files from <ALTOSOURCE> afresh each time y.ou
edit them, be'cause tney may have been edited to produce expurgated versions. tfor
distribution outside PARC), to produce indexes, remedy formatting problems, etc.

Please try to avoid needless references to PARC or Maxc facilities. For example, it
is frowned upon to mention the <ALTO) directory as a place to find something.
That is assumed for PARC users. Similarly, avoid needless references to GEARS or
EARS.

7.4. New Alto OS - 3/11/74

The new system has the following improvements:

1. The keyboard buffer has been expanded to 100 characters.

2. The undefined opcode tr~ vector is initialized to send control to location 2,
which contains a call to Swat~

3. The underline key (upper-case -) now goes in as control-X.

4. Creating a file is about twice as fast as it used to be.

Far PARC Alto Users May 2, 1975 33

5. The system maintains the time, using Peter Deutsch's timer routines
documented in (ALTODOCS)TIME.TTY. Three of these routines are
included in the operating system and defined by INITALTOIO:

TIMER(tv) - reads the 32-bit millisecond timer into tv!O and tv!1. Returns
tv!1 as Its value

DAYTIME(dv) - reads the current time-of-day (32-bits, with a grain of 1
second) into dv!O and dv!1. Returns dv as its value.

SETDAYTIME(dvY -- sets the current time-of-day from dv!O and dv!1.
Normally it shouf4 not be necessary to do this.

Peter's package (ALTO)TIME.DM includes CTIME, a Bcpl program which
converts the time-of-day into more useful formats for display. It is now a
self-contained program, which depends only on procedures declared in
INITALTOIO.

6. The time of creation, last write and last read are now maintained in the
first six words of the leader block of a" file, in that order. They are
obtained from the procedures just described. Note that if a file is opened
read/write (the default) both read and write times are updated. Therefore,
try to speciiy what you want when you do the open.

7. The leader page for a file can be obtained with ReadFileStuff(stream, v),
which reads the leader page into the vector v (which had better have room
for 256 words). Currently the only interesting information in the -leader
page is the time stamps.

8. CALLSUBSYS and OVERWRITE now take a second argument which causes a
call of SWAT just before control is given to the subsystem being called if it
is true.

9. Using! as a switch on the subsystem name will cause a call of SWAT just
before control is given to the subsystem.

10. Typing <tab) to the command processor will work just like ? (i.e. will
make it give you a list of the files which can gotten from what you have
typed), except that it will then delete the string it looked up. This is very
convenient for interrogating. the directory.

7.5. Miscellaneous

The Operating System was designed by Butler Lampson and initially implemented by
Gene McDaniel. It is currently being maintained and extended by Butler Lampson. .

A program exists for converting CU-format fonts into BR files which have the
format given in Table 4.8; see Diana Merry for details.

The files ERRORMESSAGES, OSSYMS, and OSSTRUCTURES referred to in the
manual may all be found on the Maxc <ALTO) directory.

