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Abstract 
 

This paper exhibits and explains esthetically-pleasing constructions using scaled-down polyhedra that have been 
iteratively arranged on the faces of a starting polyhedron. Sierpinski triangles usually arise when half-scale 
polyhedra are iteratively arranged on three faces meeting at a vertex. In contrast, a regular array results when half-
scale polyhedra are iteratively arranged on four faces meeting at a vertex. The convex hulls of such constructs are 
the duals of the starting polyhedra for a variety of polyhedra. These arrangements can be thought of as generalized 
Haüy constructions using a scaling factor less than one. One half is shown to be a special number for such 
scalings. When arrangements are made about vertices with five faces, a scaling factor of the square of the Golden 
mean results in a fractal that can be described as a Sierpinski pentagon.  

 
 

1.  Haüy Constructions and a Fractal Crystal 
 
Three-dimensional fractals can be created by iteratively arranging successively smaller generations of 
polyhedra around a starting polyhedron. In what is probably the first example of computing what one of 
these structures might look like, William Gosper and Hans Morovec in the 1970’s found out that an 
iterative arrangement of tetrahedra in a 3-dimensional analog to the Koch Snowflake forms a cube [1]. 
Some of the structures described here have been reported previously, and other closely-related structures 
have been described. A fractal arrangements of cubes is described in Reference 2, arrangements of 
octahedra in References 3 and 4, dodecahedra in Reference 5, and stellated dodecahedra in Reference 6.  
 
 We showed previously that arranging half-scale cubes by centering the smaller cubes on the faces of 
larger cubes leads to a “fractal crystal” with an octahedron as its convex hull and which exhibits myriad 
Sierpinski triangles [7], as shown in Figure 1. All of the figures in this paper, with the exception of 
Figures 7-9, were generated in Mathematica. 
 
 Over 200 years ago, as part of his investigations into crystallography, René Just Haüy described a 
technique to obtain several other polyhedra by arranging cubes in layers [8]. The simplest example is the 
construction of an octahedron, for which six cubes are placed on the faces of a starting cube, then 
additional cubes are placed on the faces of those cubes, etc., as shown in Figure 2. The parallel to the 
construction of Figure 1 is clear, and the construction in Figure 1 can be thought of as the s = 1/2 case of a 
generalized Haüy construction with variable scaling factor s.  
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Figure 1:  A iterated arrangement of cubes constructed through five generations with a 
scaling factor of 1/2. The octahedral shell at right illustrates the Sierpinski triangles 
formed by the outermost smallest-generation polyhedra.  

 

 
Figure 2:  The second through fourth steps in an Haüy construction of cubes leading, in 
the limit, to an octahedron.   

 
 Examining other scaling factors reveals that 1/2 is a special number for which cubes that 
meet always do so in a face-to-face fashion, without partial penetration. Another special scaling 
factors is 1/3, which results in the outermost edges of cubes lying in planes that define a rhombic 
dodecahedron, as shown in Figure 3.  
 
 

3. An Infinite Family of Prism Constructions 
 

Like the cube, the hexagonal prism is a space-filling polyhedron; i.e., multiple copies can be used to tile 
three-dimensional space. For such polyhedra, Haüy-type constructions analogous of that of Figure 2 can 
be carried out, in which a polyhedron is placed on each face of the starting polyhedron, etc. For the 
hexagonal prism case, this will lead in the limit to a hexagonal dipyramid, as shown in Figure 4.  If a 
scaling factor of 1/2 is used, the structure shown in Figure 5 is obtained. This construction has as its 
convex hull a hexagonal dipyramid, the faces of which exhibit elongated Sierpinski triangles.  
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Figure 3: An arrangement of cubes with a scaling factor of 1/3, along with a partially 
transparent rhombic dodecahedron in whose faces edges of cubes lie.   

 

 
 

Figure 4:  An Haüy construction of hexagonal prisms that forms, in the limit, a 
hexagonal dipyramid.  

 

     
 

Figure 5:  An iterative construction of half-scale hexagonal prisms through four 
generations at left, and five generations at right with a hexagonal dipyramid shell 
illustrating the Sierpinski triangle character of the outer layer.  

 
 The octagonal prism is not space a filling polyhedron, so an Haüy-type construction isn’t possible. 
However, a construction using half-scale prisms is possible. While some partial overlaps occur in the 
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inner region, the outer portion does not have this problem. Focusing on it, a construction is obtained with 
an octagonal dipyramid as its convex hull, again exhibiting elongated Sierpinski triangles, as shown in 
Figure 6.  

 
 It is apparent that an analogous construction will be obtained for decagonal prisms, dodecagonal 
prisms, etc. If the construction of Figure 1 is thought of as a collection of square prisms with a square 
dipyramid as its convex hull (rather than cubes with an octahedral convex hull), it is seen to be the first of 
an infinite family of analogous constructions. Note that prisms with an odd number of square faces do not 
follow this pattern as a result of the fact that the prisms will occur in two orientations, preventing such an 
orderly progression as smaller generations are added.   

 

 
 

Figure 6: An iterative construction of half-scale octagonal prisms through four 
generations, along with a partially-transparent octagonal dipyramid shell. 

 
 

4. Fractal Arrangements on a Face of the Convex Hull 
 

In order to understand why the faces of the above constructions exhibit Sierpinski triangles, consider a 
vertex of a starting polyhedron where three identical faces meet, as shown at left in Figure 7. If half-scale 
polyhedra of the same type and orientation are placed in the middle of each face, these three polyhedra 
will form an equilateral triangle defining a plane. Looking in the direction normal to the plane, the next 
layer of smaller polyhedra will form three equilateral triangles, as shown in the second figure from the 
left. Two more iterations are shown, from which it can be seen that a Sierpinski triangle is forming.  
 

 
 
Figure 7:  Arrangement of smaller polyhedra around a vertex where three faces meet.  
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 If the three faces of the starting polyhedron are not all of the same type, for example in the case of a 
hexagonal prism, this will have the effect of distorting the starting triangle. However, the plane defined by 
the three second-generation polyhedra will still be parallel to the plane in which the nine third-generation 
polyhedra lie, etc. The arrangement will then exhibit distorted Sierpinski triangles, as seen in Figures 5 
and 6 above.  
  
 If we consider a vertex at which four identical faces meet, the four second-generation polyhedra will 
form a square. With a scaling factor of 1/2, additional iterations form a regular array of polyhedra, as 
shown in Figure 8. This explains the result reported previously for iteratively arranging half-scale 
octahedra about a central octahedon [7], where a structure forms with regular arrays of small octahedra 
defining the square faces of a cube.  
 

 
 

Figure 8:  Arrangement of smaller polyhedra around a vertex where four faces meet.  
 
 If five half-scale polyhedra are arranged about a vertex at which five identical faces meet, scaling by 
half results in partial overlaps of second-generation polyhedra. Using the square of the Golden Mean as a 
scaling factor produces a more orderly arrangement, as shown in Figure 9. In this case, a ring of ten 
uniformly-spaced polyhedra forms. Further iteration results in a structure that has been described as a 
Sierpinski pentagon [9], with fractal curves developing that have been referred to as pentakoch curves 
[10]. 
 
 

 
 

Figure 9:  Arrangement of smaller polyhedra around a vertex where five faces meet.  
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5. Further Examples 
 

The rhombic dodecahedron is a space-filling polyhedron with the cuboctahedron as its dual. An Haüy-like 
construction can be made using this polyhedron, with concentric shells of rhombic dodecahedra placed 
around a central rhombic dodecahedron. In the limit this construction yields the cuboctahedron. For the 
half-scale case, this polyhedron serves as an interesting test case because it has vertices where three 
rhombic faces meet and vertices where four rhombic faces meet. The resulting construction, carried 
through four generations, is shown in Figure 10. In the directions defined by vectors pointing from the 
center of the starting polyhedron outward and passing through four-valent vertices, square faces form 
with regular arrays of polyhedra. In the directions defined by vectors passing through three-valent 
vertices, equilateral-triangle faces form that exhibit Sierpinski triangles. The convex hull of the 
construction is a cuboctahedron.  
 

         
 

Figure 10:  Iterative arrangement of half-scale rhombic dodecahedra carried through 
four generations. The cuboctahedron shell at right illustrates how the outermost layer of 
polyhedra exhibit regular square arrays on the square faces and Sierpinski triangles on 
the triangular faces.   
 

 The icosahedron is a polyhedron with five identical faces meeting at each vertex, so it serves as good 
test case for the arrangement illustrated in Figure 9. Its dual is the dodecahedron. Arrangements of both 
these polyhedra were examined. In the case of the dodecahedron, arranging half-scale dodecahedra 
around a central dodecahedron results in a construction with an icosahedron as its convex hull and 
Sierpinski triangles on each of the faces, as shown at left in Figure 11. For the icosahedron, arranging 
icosahedra scaled by the square of the Golden mean (≈ 0.382) yields a construction with a dodecahedron 
as its convex hull and the expected Sierpinski pentagon faces, as shown at right in Figure 11.  

 
 A final example shows that the situation is not always so straightforward. The truncated octahedron is 
a space-filling polyhedron that has as its dual the tetrakis hexahedron. An Haüy-type construction created 
by adding successive layers of truncated octahedra is shown in Figure 12. While one might expect the 
structure to form a tetrakis hexahedron in the limit, it actually forms a rhombic dodecahedron. 
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Figure 11:  Iterative arrangement of dodecahedra and icosahedra with partial fourth 
generations of polyhedra and partially-transparent shells that are the duals of the 
starting polyhedra.  

 

 
 

Figure 12: An Haüy construction of truncated octahedra that forms, in the limit, a 
rhombic dodecahedron. 
 

 This result can be understood by examining the first step in constructing the half-scale case, shown at 
left in Figure 13. There are three faces meeting at each vertex, such as the one marked by a black dot in 
the figure. When the plane is located that contains the three polyhedra placed on those faces, it turns out 
that a fourth polyhedron also lies in that plane. These four form a rhombus, and a rhombic face forms in 
each direction from the center of the starting polyhedron out toward the midpoint of each edge shared by 
two hexagons. The convex hull of the half-scale construction is a rhombic dodecahedron, and the outer 
layer of polyhedra forms regular rhombic arrays on each face.   

 
 

6.  Conclusions 
 

We have shown structures built from scaled-down polyhedra that have been iteratively arranged on the 
faces of a starting polyhedron. Several of the examples shown are space-filling polyhedra, and for these 
the resulting constructions have been compared to Haüy constructions. The convex hulls of both the 
Haüy-type constructions and the half-scale constructions are in most cases the duals of the starting 
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polyhedra. A Sierpinski triangle arises when half-scale polyhedra are iteratively arranged on three faces 
meeting at a vertex, as long as no additional polyhedra lie in the plane defined by those three polyhedra. 
In contrast, a regular array results when half-scale polyhedra are iteratively arranged on four faces 
meeting at a vertex, as long as those four polyhedra lie in a plane. When arrangements are made about 
vertices with five faces, a scaling factor of the square of the Golden mean results in a fractal that can be 
described as a Sierpinski pentagon. 

 

       
 

Figure 13: An iterative construction of truncated octahedra, at left through two 
generations. The solid and dashed triangles together mark four polyhedra that lie in a 
plane. The construction is shown at right through three generations, along with a 
rhombic dodecahedron shell illustrating how each face exhibits a regular rhombic array 
of polyhedra.  
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