Lecture 20: Memory Technology

COS 471a, COS 471b / ELE 375

Computer Architecture and Organization

Princeton University Fall 2004

Prof. David August

Program Notes

Homework #3

- Due December 6th (Monday)
- Out this week

Reading

• Chapters 1-8, A-C

Today

Short Lecture

2

Old Stuff Revisited

Mercury Delay Line Memory

Maurice Wilkes, in 1947, with first mercury tank memories built for EDSAC.

4

Dynamic RAM (DRAM)

- Slower, cheaper, more dense than SRAM
- Dynamic?

Dynamic RAM Cell DRAM Word line

Write:

- 1. Drive bit line
- 2. Select row/word line

Read:

- 1. Precharge bit line to Vdd
- 2. Select row/word line
- 3. Cell and bit line share charge
- 4. Sense (sense amp can detect changes of ~10-100k electrons)

Pass transistor

Capacitor =

Bit line

5. Write: restore the value

Refresh (capacitor leaks):

1. Just do a dummy read to every cell.

12

Logic Diagram of a Typical DRAM

- Row and column addresses share the same pins (A)
 - RAS_L goes low: Pins A are latched in as row address
 - CAS_L goes low: Pins A are latched in as column address
 - RAS/CAS edge-sensitive
- Din and Dout share the same pins (D)
- Control Signals (RAS_L, CAS_L, WE_L, OE_L) typically active low

Summary

DRAM à slow, cheap, dense

- Good for BIG main memory
- Must be refreshed

SRAM à fast, expensive, not very dense

- Good choice for fast memory like caches!
- Holds state while power applied

Memory hierarchy to get the best of both!

Enjoy Your Thanksgiving Break!

20