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 5 

Summary 6 

The phyllosphere represents the habitat provided by the aboveground parts of plants, and on a 7 

global scale supports a large and complex microbial community. Microbial interactions in the 8 

phyllosphere can affect the fitness of plants in natural communities, the productivity of 9 

agricultural crops, and the safety of horticultural produce for human consumption. The 10 

structure of phyllosphere communities reflects immigration, survival and growth of microbial 11 

colonists, which is influenced by numerous environmental factors in addition to leaf physico-12 

chemical properties. The recent use of culture independent techniques has demonstrated 13 

considerable previously unrecognised diversity in phyllosphere bacterial communities. 14 

Furthermore there is significant recent evidence that plant genotype can play a major role in 15 

determining the structure of phyllosphere microbial communities. The main aims of this 16 

review are (i)  to discuss the diversity of phyllosphere microbial populations (ii) to consider 17 

the processes by which microbes colonise the phyllosphere (iii) to address the leaf 18 

characteristics and environmental factors which determine survival and growth of colonists 19 

(iv) to discuss microbial adaptations which allow establishment in the phyllosphere habitat 20 

and (v) to evaluate evidence for plant genotypic control of phyllosphere communities. Finally, 21 

we suggest approaches and priority areas for future research on phyllosphere microbiology.  22 

 23 
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 1 

Introduction 2 

The aerial parts of living plants including leaves, stems, buds, flowers and fruits provide a 3 

habitat for microorganisms termed the phyllosphere. Bacteria are considered to be the 4 

dominant microbial inhabitants of the phyllosphere, although archaea, filamentous fungi, and 5 

yeasts may also be important. These microbes can be found both as epiphytes on the plant 6 

surface and as endophytes within plant tissues (Arnold, et al. 2000; Inacio et al. 2002; Lindow 7 

and Brandl 2003; Stapleton and Simmons 2006). The global surface area of the phyllosphere 8 

has been estimated to total over 4 x 108 km2, supporting bacterial populations in the region of 9 

1026 cells (Morris and Kinkel 2002). Furthermore, recent estimates of the diversity of 10 

phyllosphere bacteria in the 20 000 vascular plants inhabiting the Brazillian Atlantic forest, 11 

suggests the possible occurrence of 2 to 13 million phyllosphere bacterial species in this 12 

habitat alone (Lambais et al. 2006). 13 

The phyllosphere represents a niche with great agricultural and environmental 14 

significance. There is growing evidence for important interactions of phyllosphere microbial 15 

inhabitants which may affect the fitness of natural plant populations and the quality and 16 

productivity of agricultural crops. Phyllosphere bacteria can promote plant growth and both 17 

suppress and stimulate the colonisation and infection of tissues by plant pathogens (Lindow 18 

and Brandl 2003; Rasche et al., 2006). Similarly, fungal endophytes of leaves may deter 19 

herbivores, protect against pathogens and increase drought tolerance (Arnold et al. 2003; 20 

Schweitzer et al. 2006). Furthermore, interactions in the phyllosphere zone determine the 21 

extent to which human pathogens are able to colonise and survive on plant tissues, an area of 22 

increasing importance with the rise in cases of human disease associated with consumption of 23 

fresh salad, fruit and vegetable produce (Whipps et al. 2008).  24 
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There is evidence for functional roles within the phyllosphere microbial community which 1 

given the size of the habitat could have global significance. The best studied of these is 2 

nitrogen fixation. Measured rates of bacterial nitrogen fixation in the phyllosphere vary 3 

widely, but in the phyllosphere of trees in some tropical habitats has been reported at rates of 4 

over 60 kg N ha-1, although amounts fixed in the phyllosphere of temperate trees is generally 5 

considerably lower (Freiberg 1998). Furthermore, N2 fixation or the presence of N2 fixing 6 

bacteria has been reported in the phyllosphere of many crop plants (e.g. Murty 1983; 7 

Miyamoto et al. 2004). Other environmentally important microbial processes for which there 8 

is evidence in the phyllosphere include methanol degradation (Corpe and Rheem, 1989; Van 9 

Aken et al. 2004) and nitrification (Papen et al. 2002), although the rates of these process and 10 

their ubiquity within the phyllosphere remains to be elucidated.  11 

Most knowledge of the structure and activities of phyllosphere microbial communities has 12 

been established using culture-dependant methods. However, these are recognised to 13 

significantly underestimate diversity, with only 0.1-3 % of environmental bacteria considered 14 

culturable (Wagner et al. 1993). Data gathered using these methods therefore relate only to 15 

culturable members of the community and provide no information on the vast majority of 16 

microbes present in samples. As in other areas of environmental microbiology, the recent 17 

application of culture-independent methods based on the characterisation of small subunit 18 

rRNA gene sequences for microbial community analysis is providing new insights into the 19 

complexity of phyllosphere microbial communities and their interactions with plants and the 20 

wider environment.  21 

 In the current paper we  review the extent to which the use of culture independent 22 

approaches has changed our understanding of the structure and diversity of phyllosphere 23 

communities. A variety of plant, microbial and environmental factors control establishment of 24 

microbial communities in the phyllosphere, but recently there has been recognition of the role 25 
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that plant genotype plays in selecting phyllosphere communities. The evidence for the 1 

different factors which regulate the structure of phyllosphere communities is discussed with 2 

special reference to the role of plant genotype.  Finally, we suggest approaches and priority 3 

areas for future research on phyllosphere microbiology. Although much of the phyllosphere 4 

literature is concerned with interactions between plant and plant pathogens (bacteria and fungi 5 

that cause diseases in plants), in the current review emphasis is placed on studies of 6 

microorganisms that live in the phyllosphere without causing obvious damage to the plant, as 7 

absence of disease is the normal situation in nature. 8 

 9 

Microbial diversity in the phyllosphere 10 

The microbial communities of the phyllosphere are diverse, supporting numerous genera of 11 

bacteria, filamentous fungi, yeasts, algae and in some situations protozoans and nematodes 12 

(Morris et al. 2002; Lindow and Brandl 2003). Bacteria are the most numerous and diverse 13 

colonists of leaves, with culturable counts ranging between 102 to 1012 cells g leaf (Thompson 14 

et al. 1993; Inacio et al. 2002). Culture-based studies of sugar beet over the whole of the 15 

growing season have found more than 78 bacterial species representing 37 known bacterial 16 

genera (Thompson et al. 1993). Similar studies in wheat have revealed 88 bacterial species 17 

representing 37 known bacterial genera (Legard et al. 1994).  18 

Recent studies have demonstrated that profiling of phyllosphere communities based on 19 

culture dependent methods is likely to be inaccurate and to underestimate diversity (Rasche et 20 

al. 2006b). In the case of the phyllosphere, use of culture independent approaches has shown 21 

that although assumptions regarding the dominant inhabitants are largely correct, the diversity 22 

of phyllosphere communities is far greater than previously recognised.Analysis of 16S rDNA 23 

cloned directly from leaf samples has demonstrated that proteobacteria are the dominant 24 

group found on leaves (Table 1), confirming data obtained using culture-dependant methods 25 
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(e.g. Thompson et al. 1993). α and γ- proteobacteria are generally the dominant bacterial 1 

inhabitants of the phyllosphere, with bacteroidetes also usually important. β-proteobacteria 2 

and firmicutes can also form a large part of the bacterial community in some situations, with 3 

acidobacteria, actinobacteria and cyanobacteria occurring infrequently (Kadivar and Stapleton 4 

2003; Idris et al. 2004; Lambais et al. 2006; Rasche et al. 2006b,c).  5 

In a study of phyllosphere bacterial communities in a tropical Brazillian forest, 97 % of 6 

bacterial sequences were from previously undescribed species with phyllospheres of different 7 

plant species supporting from 95 to 671 bacterial species (Lambais et al. 2006). The extent to 8 

which such diversity occurs in other plant species is unclear. Those sequences showing 95 % 9 

or less homology to known bacterial species database entries comprised 15.2 % of sequences 10 

obtained from Thlapsi geosingense (Idris et al. 2004), and 7.9, 2.3, 3.5 and 1.2 % of those 11 

sequences obtained from Crocus, potato, pepper and maize respectively (Kadivar and 12 

Stapleton 2003; Rasche et al. 2006 a,b, Reiter and Sessitsch, 2006). However, in a study of a 13 

range of temperate agricultural crop species, 5 of 17 bands cut from 16S rRNA denaturant 14 

gradient gel electrophoresis gels had less than 90 % similarity to database entries, suggesting 15 

that in some situations phyllospheres of crop plants may support large numbers of novel 16 

bacteria (Yang et al. 2001). The number of sequences investigated in the culture independent 17 

studies conducted to date has been limited, so that only dominant members of the community 18 

are likely to have been detected, and the true extent of bacterial diversity in the phyllosphere 19 

therefore remains to be determined. 20 

Yeasts are the major epiphytic fungal group in the phyllosphere with filamentous fungi 21 

largely occurring as dormant spores rather than active mycelia except on older leaves 22 

(Andrews and Harris 2000; de Jager et al. 2001). Culturable yeast populations can range 23 

between 10 and 1010 colony forming units g leaf (Thompson et al. 1993, Inacio et al. 2002). 24 

The diversity of culturable yeasts appears to be mostly limited to the genera Cryptococcus, 25 

Deleted: s



     6

Sporobolomyces and Rhodotorula, although total species number can reach over 40, with 1 

multiple species of each coexisting in the phyllosphere, together with a number of other 2 

genera which occur less frequently (Thompson et al. 1993; Inacio et al. 2002; Glushakova 3 

and Chernov 2004).  4 

Filamentous fungus population sizes can range between 102 and 108 colony forming units g 5 

leaf. Cladosporium and Alternaria are usually considered the most abundant fungi found on 6 

leaves, although several other genera, including Penicillium, Acremonium, Mucor and 7 

Aspergillus are also found (Thompson et al. 1993; Inacio et al. 2002). Filamentous fungi 8 

appear to occur ubiquitously as endophytes, the diversity of which may be substantial, 9 

particularly in long lived tropical leaves. Using culture dependant approaches, over 340 10 

genetically distinct taxa were recovered from individuals of 2 tropical forest understory plant 11 

species at 2 sites. Furthermore, there was evidence for host preference within the endophyte 12 

community (Arnold et al. 2000). Culture independent approaches have not yet been used to 13 

characterise fungal diversity in the phyllosphere.  14 

There are various developing technologies which show promise to significantly increase 15 

throughput of analysis to provide a finer resolution of understanding about the diversity and 16 

structure of phyllosphere communities and to link diversity with functioning. Culture-17 

independent analysis using phylogenetic specific primers represents a powerful method to 18 

investigate the dynamics and distribution of specific bacterial groups of interest (Sessitsch et 19 

al. 2002; Miyamoto et al. 2004). Additionally multiplex TRFLP, in which several phylogentic 20 

groups or functional genes can be analysed at the same time provides an opportunity to 21 

improve throughput of samples in a cost effective manner (Singh et al. 2006). However, these 22 

techniques remain time consuming, and future developments will depend on high throughput 23 

methods.  Phylogenetic microarrays clearly provide a way forward, allowing the presence and 24 

amount of thousands of microorganisms to be determined simultaneously, and could also be 25 
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used to detect novel members of phylogenetic groups.  Similarly, functional gene arrays 1 

provide a means of characterising activity of the phyllosphere community, and when used 2 

with phylogenetic microarrays, for linking community structure to function (Sessitsch et al., 3 

2006).  4 

 5 

In order to understand and predict the diversity and structure of phyllopshere communities, it 6 

is necessary to understand the biological and environmental factors which control the 7 

establishment and dynamics of microbial communities on the leaf surface. This is the focus of 8 

the remainder of the review.  9 

 10 

 11 

Sources of microbes colonising the phyllosphere 12 

The sources of microorganisms on the phyllosphere can be manifold. Epiphytic filamentous 13 

fungi, yeasts and bacteria may arrive on the leaf surface through insect-, atmosphere-, seed- or 14 

even animal-borne sources. Tree buds, seeds of annual plants and the debris from previous 15 

crops are likely to be the most important sources for the colonization of new plants and leaves 16 

as they are a major source of bacteria already adapted to the phyllosphere (Manceau and 17 

Kasempour 2002).  18 

Those microorganisms that show no or limited multiplication in the phyllosphere are 19 

considered transient epiphytes whereas those with the capacity for multiplication in the 20 

absence of wounds are known as residual epiphytes (Suslow 2002). Microbial populations can 21 

vary in size among and within plant species over short periods of time (Hirano and Upper 22 

1989) as well as over the growing season (e.g. Thompson et al. 1993; Legard et al. 1994; 23 

Inacio et al. 2002), with few epiphytic bacteria present on leaves shortly after emergence from 24 

buds or seeds, but increasing in quantity subsequently (Hirano and Upper 1993). There is a 25 
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general succession of microbial populations on leaves over the growing season with bacteria 1 

dominating initially, followed by yeasts and finally filamentous fungi (Kinkel 1997). 2 

The atmospheric microflora can vary in composition and concentration diurnally and 3 

seasonally as well as in response to environmental events such as rainfall and high wind 4 

(Kinkel 1997; Zak 2002), directly influencing the immigration of microorganisms to the 5 

phyllosphere. Local vegetation, and in areas of crop production, agricultural practices such as 6 

harvesting and cultivation, also influence atmospheric microbiology and colonisation of 7 

nearby plants (Lindemann et al. 1982; Lacey 1996; Lighthart 1997). Immigration of 8 

microorganisms to leaves from the atmosphere can take place through impaction onto the leaf 9 

surface, sedimentation or rain splash as well as from contamination with soil (Venette and 10 

Kennedy 1975; Lacey 1996).  11 

There is increasing evidence that microorganisms on seeds or roots can become 12 

endophytic in the roots, enter the vascular system and be transferred internally to the aerial 13 

parts of plants where they establish as phyllosphere endophytes (Lamb et al. 1996; Wulff et 14 

al. 2003). Endophytes can also arise from ingression into the internal leaf spaces following 15 

colonisation by epiphytes, suggesting that epiphytes and endophytes are really part of a 16 

continuum in the phyllosphere (Wilson et al. 1999; Beattie and Lindow 1999). 17 

Once microorganisms have arrived in the phyllosphere they have to become established 18 

and colonise the leaf to become a residual epiphyte. The pattern of distribution of 19 

microorganisms on leaves is not even.  The most common sites of bacterial colonisation are in 20 

the epidermal cell wall junctions (Blakeman 1985; Davis and Brlansky 1991) especially in 21 

protected sites in grooves along the veins (Mansvelt and Hattingh 1987; Leben 1988; Mariano 22 

and McCarter 1993), at stomata (Mew and Vera Cruz 1986; Mariano and McCarter 1993), 23 

and at the base of trichomes (Mew and Vera Cruz 1986; Mansvelt and Hattingh 1987; 24 

Mariano and McCarter 1993). They are also found under the cuticle (Corpe and Rheem, 25 
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1989), in depressions in the cuticle (Mansvelt and Hattingh 1987), near hydrathodes (Mew et 1 

al. 1984) and in specific sites that only occur on particular plants such as stomatal pits in 2 

oleander and pectate hairs in olive (Surico 1993). In general, greater numbers of bacteria are 3 

found on lower than upper leaf surfaces (Leben 1988; Surico 1993) possibly due to the lower 4 

leaf surface having a greater density of stomata or trichomes, or a thinner cuticular layer 5 

(Beattie and Lindow 1999). 6 

Bacterial populations in the phyllosphere can differ in distribution over very small scales, 7 

as little as 0.1 mm2  (Kinkel et al. 1995) and are often well-described by a log-normal 8 

distribution (Hirano et al. 1982; Ishimaru et al. 1991) whereas yeasts and filamentous fungi 9 

may be better described by a normal distribution (Kinkel et al. 1989). Microorganisms may 10 

occur individually on the leaf surface but frequently, they occur as aggregates or biofilm-like 11 

structures containing bacteria, (Kinkel et al. 1995; Morris et al. 1997, 1998; Jacques et al. 12 

2005), yeasts (Last 1955) and filamentous fungi (Bernstein and Carroll 1977). 13 

Clearly, not all microorganisms that arrive in the phyllosphere are able to colonise and 14 

grow. To some extent this reflects processes of emigration through dispersal mechanisms 15 

such as rain splash, wash-off, bounce-off, water movement or removal by insects (Kinkel 16 

1997).  Ability to survive and grow are dependent on the environmental, physicochemical and 17 

genetic features of the plant and specific properties exhibited by the phyllosphere 18 

microorganisms, which together determine the structure and diversity of the microbial 19 

community. Evidence for such selection is supported by the findings of Miyamoto et al. 20 

(2004), in which 16S rRNA-Terminal Restriction Fragment Length Polymorphism (TRFLP) 21 

with Clostridia specific primers was used to show the presence of diverse Clostridia 22 

populations within Miscanthus sinensis, which were shown to be distinct to those Clostridia 23 

populations inhabiting soil around plants. Furthermore, since a substantial proportion of those 24 

bacteria inhabiting the phyllosphere appear to be novel to this habitat there have been 25 
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suggestions that some may be unique or specialists to this habitat (Yang et al. 2001; Lambais 1 

et al. 2006).  2 

There are a number of areas relating to the colonisation of phyllosphere which require more 3 

complete understanding. The transmission of microorganisms from roots to aerial parts of 4 

plants appears to have been a neglected area of research and the importance of this 5 

environmentally protected phyllosphere colonisation route needs to be elucidated. This could 6 

be particularly important for soils contaminated with human pathogens.  7 

 8 

 9 

Leaf characteristics and environmental factors controlling phyllosphere microbiology 10 

Following arrival of microbial cells or propagules on the leaf surface, a variety of factors 11 

determine whether cells are able to colonise the leaf, and where cells become localised. 12 

Establishment is determined by interaction between leaf and environmental characteristics 13 

which interact to control conditions prevailing in the phyllosphere habitat. The first point of 14 

contact of microbial cells immigrating to the phyllosphere is the cuticle (Beattie 2002). This 15 

waxy surface, often microcrystalline in nature, serves several functions: a diffusion barrier, 16 

reducing water and solute loss and aqueous pollution ingress; as a reflectant to minimise 17 

temperature fluctuations; conferring water repellancy; and providing protection from 18 

pathogens (Beattie 2002). The water repellancy is particularly important in preventing 19 

immigration of microorganisms to the leaf surface. This is so especially on young leaves 20 

where the cuticle is intact relative to older leaves because as the cuticle erodes, wettability 21 

increases (Beattie 2002). In addition, cuticle-mediated limitation of nutrient loss from the leaf 22 

is particularly important in supporting epiphytic microbial populations. Use of whole cell 23 

bacterial biosensors for sucrose, fructose and glucose have revealed that these sugars are 24 

present only in discrete localised sites on the leaf (Leveau and Lindow 2001; Miller et al. 25 
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2001). This, and recent microscopical evidence (Monier and Lindow 2005), suggests that 1 

most microbial immigrants to the phyllosphere are exposed to nutrient poor environments and 2 

that only few cells randomly land in zones of relatively abundant nutrients that support 3 

growth. Other discrete sites of nutrient loss such as wounds or glandular trichomes (Monier 4 

and Lindow 2005), or sites of nutrient enrichment including pollen (Diem 1974) or honeydew 5 

(Dik et al. 1992) also provide sites for microbial growth. Other nutrients such as N-sources or 6 

iron are not considered as growth limiting to microorganisms on the phyllosphere as C-7 

sources (Lindow and Brandl 2003). Interestingly, when the resurrection fern, Polypodium 8 

polypodioides, is exposed to rainfall after a period of desiccation, the complex phyllosphere 9 

community undergoes changes in overall structure and activity, reflecting use of labile 10 

organic substrates in the form of an enrichment culture (Jackson et al. 2006). Whether this 11 

occurs with other plants is unknown. 12 

Plant leaves also release a wide range of volatile organic compounds into the boundary 13 

layer around leaves. These can include small molecules such as CO2 and acetone, medium 14 

sized molecules including terpenoids and a number of aldehydes and alcohols, as well as large 15 

molecules such as long-chain hydrocarbons and sesquiterpenoids; sulphides and nitrogen-16 

containing compounds also occur. It is unclear whether these could be nutrient sources 17 

directly, but there is evidence that some of these compounds can be inhibitory or toxic to 18 

some fungi (Mechaber 2002). Similarly, some proteins secreted by glandular trichomes can 19 

inhibit some pathogens (Shepherd et al. 2005). There are also data to suggest that plants can 20 

release a number of compounds in response to damage that not only promote microbial 21 

development but can selectively inhibit microbial growth as well (Dingman 2000). 22 

Characteristics of the plant species themselves may also influence the microbial carrying 23 

capacity of the leaf. The total number of culturable bacteria from broad leaf succulent 24 

herbaceous plants such as cucumber, lettuce and bean can be significantly higher than that 25 



     12

from grasses or waxy broad-leaved plants such as cabbage and citrus (O’Brien and Lindow 1 

1989; Lindow and Andersen 1996; Kinkel et al.  2000). Culture independent approaches have 2 

demonstrated that community structure on leaves from individuals of the same species is 3 

similar, but varies significantly between species (Yang et al. 2001). Lambais et al. (2006) 4 

showed that just 0.5 % of bacterial species recorded in tropical tree canopies were common to 5 

all tree species.  Furthermore, both bacterial and fungal population size on leaves has been 6 

correlated with leaf position, plant architecture and height in the canopy (Wildman and 7 

Parkinson, 1979; Oliveira et al. 1991; Jacques et al. 1995). We would suggest that microbial 8 

diversity and community structure are also influenced by these factors, although this  remains 9 

to be shown. 10 

Information is needed to characterise the arrangement and dynamics of communities to time 11 

and space, especially at the landscape scale. In particular the relative importance of 12 

environmental factors, location and plant species in determining the composition and 13 

dynamics of phyllosphere communities needs to be addressed. Biogeographical approaches to 14 

the analysis of microbial communities show potential to elucidate these fundamental 15 

relationships (Ramette and Tiedje, 2007). 16 

 17 

Microbial adaptations to the phyllosphere habitat 18 

In addition to plant and environmental factors, properties of the microbial colonists 19 

themselves determine the extent to which they are able to establish on the leaf surface. For 20 

some microorganisms this reflects their inherent ability to survive in the existing habitat 21 

whereas others are capable of modifying the environment to ameliorate the levels of stress 22 

they are exposed to. 23 

Culture independent analyses have indicated that tolerance to UV radiation is likely to be an 24 

important selection pressure for survival and growth this habitat (Kadivar and Stapleton, 25 
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2002; Stapleton and Simmons, 2006), and most isolated phyllosphere microorganisms are 1 

capable of withstanding high UV radiation levels on the leaf surface (Sundin 2002). In fungi, 2 

dark melanin-type pigments are thought to play a key role as protective pigments along with 3 

UV-B induced hyphal-wall thickening, the latter protecting lower levels of the fungal colony 4 

(Fourtouni et al. 1998; Sundin 2002). Interestingly, the most UV-B tolerant strains of bacteria 5 

from the peanut phyllosphere were those that produced pink or orange pigments (Sundin and 6 

Jacobs 1999) and so multiple UV-B protectant mechanisms may be exhibited by phyllosphere 7 

microorganisms. 8 

A low level of water availability and nutrients are key limiting factors for microbial growth 9 

in the phyllosphere so epiphytes display a variety of mechanisms to overcome these 10 

limitations. For example, some epiphytic Pseudomonas spp. can release surfactants that 11 

increase the wettability of leaf surfaces making it easier for microorganisms to use water and 12 

increasing solubilisation and diffusion of nutrients, thereby increasing substrate availability to 13 

epiphytic bacteria (Bunster et al.  1989). A number of phyllosphere bacteria have recently 14 

been shown to increase permeability of the cuticle enhancing water and nutrient availability in 15 

the phyllosphere (Schreiber et al. 2005). Another, potentially related, mechanism to increase 16 

nutrient availability may relate to the ability to produce toxins that affect ion transport across 17 

plant cell plasma membranes (Quigley and Gross 1994; Hutchison et al. 1995). Plant 18 

pathogenic Pseudomonas syringae pv. syringae secrete the toxin syringomycin which 19 

eventually leads to cell lysis. Nevertheless, low levels are produced by non-pathogenic 20 

epiphytic strains of P. syringae pv. syringae such that necrosis and disease do not occur 21 

although release of plant nutrients is still stimulated (Hutchison et al. 1995). Interestingly, 22 

syringomycin also acts as a surfactant providing two possible mechanisms to enhance nutrient 23 

availability in the phyllosphere.  24 
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Another, perhaps more widespread mechanism, is the production and release of plant 1 

growth regulators. Production of indole-3-acetic acid (IAA) is common among bacterial 2 

epiphytes (Glickman et al. 1998; Brandl et al. 2001) and is associated with enhanced nutrient 3 

leakage and microbial fitness (Brandl and Lindow 1998; Manulis et al. 1998). Lindow and 4 

Brandl (2003) have also made the suggestion that presence of a functional type III secretion 5 

pathway in Pseudomonas fluorescens and Pseudomonas putida (Preston et al. 2001), which 6 

provides the capacity to modify the local habitat, may be needed for growth and survival in 7 

the phyllosphere. Production of pili and flagellae may also be important in allowing bacterial 8 

attachment and colonisation of the phyllosphere (Romantschuk et al. 2002). A whole range of 9 

genes and gene products that are important for phyllosphere colonisation are now being 10 

identified using molecular techniques (Gal et al. 2003; Gourion et al. 2006) and may provide 11 

further insights into mechanisms involved in epiphytic growth. 12 

As mentioned earlier, bacterial distribution on the leaf surface is not uniform and frequently, 13 

aggregates of cells occur (Morris and Monier 2003). The presence of these aggregates may 14 

provide the epiphytes with an ability to colonise and survive in the phyllosphere and modify 15 

the local environment. The production of extracellular polysaccharides (EPS) by bacteria may 16 

protect the bacteria from water stress and help anchor the cells to the leaf surface (Morris et 17 

al. 1997; Gal et al. 2003). By analogy with biofilms (Morris et al. 2002; Morris and Monier 18 

2003), these aggregates may also protect from UVR, predation and bacteriocides, moderate 19 

pH and gas exchange, enhance genetic exchange particularly through plasmid transfer, and 20 

allow cell density – dependent behaviour. The latter, often mediated by accumulation of 21 

diffusible molecules such as N- acyl homoserine lactones through quorum sensing may have 22 

numerous effects on microbial behaviour including EPS and antibiotic production as well as 23 

pathogenicity traits (Swift et al. 1994; Greenberg 1997). Interestingly, if signalling controls 24 

the formation and functioning of aggregates, it may be possible in future to manipulate the 25 
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microbial populations on the phyllosphere if the molecular signals and receptors essential for 1 

aggregate behaviour can be identified (Morris et al. 2002). 2 

 3 

 4 

Plant genotype and phyllosphere microbiology  5 

It is clear that microbial populations in the phyllosphere can vary markedly in size and 6 

composition both spatially and temporally on the same plant, differ between different plants 7 

and parts of plants in the same place, and even differ on the same plant species in different 8 

places (Lindemann et al. 1984; Morris and Lucotte 1993; Lindow and Andersen 1996; Kinkel 9 

1997). Much of the variability must reflect the environmental conditions prevailing at the time 10 

and place of sampling, thereby influencing the processes of microbial immigration, 11 

emigration, growth and death. However, the microbial population that does develop must 12 

relate to a large extent to the phenotypic characteristics exhibited by the plant, controlled 13 

ultimately by its genetic make-up. Certainly, there are “hot-spots” of microbial growth on the 14 

leaf associated with specific sites and it would be expected that these would similarly be 15 

under the influence of plant genetic characteristics. We suggest that within plant species, 16 

genotype has a key role in determining colonisation and establishment of microbial 17 

communities in the phyllosphere. However, few studies have addressed the relationship 18 

between plant genetic control of phenotypic characteristics and their concomitant effects on 19 

microbial populations in the phyllosphere, despite its potential importance.  20 

Several studies have used culture-dependent approaches to investigate the impact of plant 21 

genotype on phyllosphere microbiology. Adams and Kloepper (2002) showed that endophytic 22 

bacteria population sizes and structure differed between 9 cotton cultivars, and in pea 5 of 11 23 

cultivars were found to contain endophytic bacteria with one showing a higher colonisation 24 

level than the others (Elvira-Recuendo and van Vuurde 2000). In a gnotobiotic system with 25 
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tomato, one cultivar out of four supported fewer Pseudomonas sp. on the shoot exterior 1 

following application of the bacterium to the seed (Pillay and Nowak 1997). Differences in 2 

ability to support populations of Pseudomonas syringae pv. syringae were also found between 3 

different cultivars of snap bean (Hirano et al. 1996; Upper et al. 2003).  However, no 4 

differences in occurrence of native, epiphytic mycoparasites were observed between the 3 5 

main coffee cultivars or between clones of the same group (ten Hoopen et al. 2003). 6 

Similarly, no differences were found between epiphytes on three cultivars of apple (Becker 7 

and Manning 1983) or in endophytes in three cultivars of wheat (Larran et al. 2002).  8 

Culture-independent community profiling approaches have been particularly valuable for 9 

elucidating interactions between plant genotype and phyllosphere microbial community 10 

structure. Several studies have indicated that different cultivars of the same plant species 11 

exhibit different phyllosphere microbial populations. Phyllosphere populations of bacteria 12 

were found to differ between cultivars of sweet pepper and tomato (Correa et al. 2007; 13 

Rasche et al. 2006b) and both endophytes and epiphytes differed between varieties of potato 14 

(Sessitch et al. 2002; Rasche et al. 2006a, c). Plant genotype differences may affect some 15 

microbial communities more than others. For example, phyllosphere bacterial community 16 

structure was shown to vary between wheat cultivars, although there was found to be no 17 

difference in archaeal communities (Stapleton and Simmons 2006). Recently, lettuce cultivar 18 

was shown to affect colonisation of leaves by Salmonella enterica serovars (Klerks et al., 19 

2007), with significant serovar-cultivar interactions demonstrated. Furthermore, diversity of 20 

endophyte bacterial populations varied between the three lettuce cultivars used, and data 21 

suggested that the degree to which Salmonella enterica serovars were able to colonise plants 22 

endophytically was in part determined by competitive interactions with the natural endophyte 23 

bacterial community.   24 
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Culture dependent analysis showed that genetic modification of potato with an antibacterial 1 

peptide, magainin, failed to influence the number or structure of phyllosphere bacterial or 2 

fungal populations even though maganin-expressing potato tubers did exhibit lower total 3 

numbers of bacteria than unmodified plants (O’Callaghan et al. 2004). In contrast, genetic 4 

modification of potato with a gene producing anti-bacterial T4-lysozyme or attacin/cecropin, 5 

was shown to induce greater difference in phyllosphere microbial community structure to the 6 

parent line, relative to variations between three cultivars (Rasche et al. 2006a, c). However, 7 

field site and plant growth stage had greater effects on bacterial community structure than 8 

either cultivar or genetic modification. 9 

Furthermore, microbial communities selected by different genotypes can show differing 10 

responses to environmental variables. Rasche et al. (2006b) showed that chilling sweet pepper 11 

plants altered endophyte bacterial community structure, with the extent of the effect differing 12 

between cultivars, and dependant on cultivar chilling tolerance. Similarly, in a study of wheat 13 

cultivars, it was shown that the response of phyllosphere bacterial communities to UV-B 14 

radiation depended on host genotype. However it was not clear whether these differences 15 

reflected direct effects on the bacterial community or indirect effects associated with 16 

differences in the plant responses to UV-B (Stapleton and Simmons 2006). Furthermore, plant 17 

genotype can influence colonisation and survival of microbial inoculants in the phyllosphere. 18 

Correa et al. (2007) showed that the survival of a plant growth promoting Azospirillum 19 

inoculant differed in the phyllosphere of contrasting tomato genotypes, and that the response 20 

of the phyllosphere bacterial community to inoculation varied between genotypes. 21 

In the case of fungi, there is limited data on plant genotype-diversity relationships, although 22 

several studies have demonstrated differences in the nature of endophytes associated with 23 

contrasting host genotypes. For example, distinct communities of endophytes were shown to 24 
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be associated with different Populus hybrids, with the percentage condensed tannins in bark 1 

implicated in directing these differences (Schweitzer et al. 2006).  2 

Although plant genotype appears to be an important factor determining the structure of 3 

phyllosphere microbial communities, the mechanisms controlling these interactions remain to 4 

be elucidated. Various plant science resources are available which show potential for 5 

examining plant genotype-phyllosphere microbiology interactions. In particular recombinant 6 

inbred mapping populations (Asins, 2002) have the potential to identify plant genes 7 

controlling leaf microbiology.  8 

 9 

Conclusions and future directions 10 

Although culture-independent molecular analysis of microbial populations in the 11 

phyllosphere is still in its infancy, it is clear from recent studies that phyllosphere 12 

microbiology is greatly more complex than previously understood. Although progress has 13 

been made in elucidating the structure and distribution of microbial communities in the 14 

phyllosphere, much less is known of the functional consequences of the community or its 15 

composition for the fitness of individual plants, the quality and microbiological safety of fresh 16 

produce, and wider environmental processes. Microbes reach the phyllosphere by atmospheric 17 

deposition from plant and soil sources, but may also colonise plants through the roots, and 18 

become transported to aerial parts. The relative importance of these mechanisms remains to 19 

be determined. Although microbial establishment and colonisation has long been recognised 20 

to be the result of interplay between plant and environmental factors, and the physiological 21 

characteristics of microbial colonists, it has now been clearly demonstrated that within plant 22 

species, contrasting  genotypes can support different microbial communities. This 23 

understanding provides opportunities to understand the molecular mechanisms by which 24 

plants control microbial populations in the phyllosphere. Such studies could provide methods 25 
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to manipulate phyllosphere communities via plant genotype, providing exciting opportunities 1 

to manage applied aspects of phyllosphere microbiology, such as the survival of human 2 

pathogens or the activity of beneficial microbes. 3 

   4 
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Table 1 Percentage frequency of bacterial groups in 16S rRNA gene clone libraries prepared from DNA extracted directly from the phyllospheres 1 

of different species.  2 

Figures in brackets give total number of sequences obtained 3 

 Thlapsi 

geosingense1 

(76) 

Trichilia 

catigua2 

(109) 

Trichilia 

clausenii2 

(153) 

Campomanesia 

xanthocarpa2 

(166) 

Zea mays1,3 

 

 (30) 

Capsicum 

annum1,4 

(39) 

Solanum 

tuberosum1,5 

(137) 

Crocus 

albiflorus1 

α-proteobacteria 20.0 10.9 7.8 32.0 30.0 30.8 5.8 15.8 

β-proteobacteria 29.0 0.9 1.4 2.4 6.7 17.9 25.5 10.5 

γ-proteobacteria 12.0 75.2 63.7 11.4 23.3 25.6 38.6 60.5 

Bacteroidetes 17.0 12.9 23.7 20.6 16.7 0.0 2.2 0.0 

Cyanobacteria 0.0 0.0 0.0 14.5 0.0 0.0 0.0 2.6 

Actinobacteria  4.0 0.0 0.0 1.2 0.0 5.3 8.0 5.3 

Firmicutes 12.0 0.0 0.0 13.9 23.3 20.5 19.8 5.3 

Acidobacteria 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Reference Idris et al. 

2004 

Lambais et 

al. 2006 

Lambais et 

al. 2006 

Lambais et al. 

2006 

Kadivar and 

Stapleton 2003 

Rasche et 

al. 2006b 

Rasche et al. 

2006a 

Reiter and 

Sessitsch 

2006 
1 DNA extracted from surface sterilised shoot 4 
2DNA extracted from bacterial cells washed from leaf  5 
3Field grown, UV and no UV treatments combined 6 
4Non chilled and chilled milder Spiral and Ziegenhorn Bello varieties combined 7 
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5  Flowering and senescent Desire and Merkur cultivars combined 1 

 2 
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Most understanding of phyllosphere microbiology is derived from culture-based studies 

and although the culture-independent molecular analysis of microbial populations in the 

phyllosphere is still in its infancy, it is clear from recent studies that phyllosphere 

microbiology is greatly more complex than previously understood. Although progress has 

been made in elucidating the structure and distribution of microbial communities in the 

phyllosphere, much less is known of the functional consequences of the community or its 

composition for the fitness of individual plants, the quality and microbiological safety of 

fresh produce, and wider environmental processes.  

There are various developing technologies which show promise to significantly 

increase throughput of analysis to provide a finer resolution of understanding about the 

diversity and structure of phyllosphere communities and to link diversity with 

functioning. Culture-independent analysis using phylogenetic specific primers represents 

a powerful method to investigate the dynamics and distribution of specific bacterial 

groups of interest (Sessitsch et al. 2002; Miyamoto et al. 2004). Additionally multiplex 

TRFLP, in which several phylogentic groups or functional genes can be analysed at the 

same time provides an opportunity to improve throughput of samples in a cost effective 

manner (Singh et al. 2006). However, these techniques remain time consuming, and 

future developments will depend on high throughput methods.  Phylogenetic microarrays 

clearly provide a way forward, allowing the presence and amount of thousands of 

microorganisms to be determined simultaneously, and could also be used to detect novel 

members of phylogenetic groups.  Similarly, functional gene arrays provide a means of 



characterising activity of the phyllosphere community, and when used with phylogenetic 

microarrays, for linking community structure to function (Sessitsch et al., 2006).  

Although many studies have demonstrated that plant genotype is an important factor 

determining the structure of phyllosphere microbial communities, the mechanisms 

controlling these interactions remain to be elucidated. Various plant science resources are 

available which show potential for examining plant genotype-phyllosphere microbiology 

interactions. In particular recombinant inbred mapping populations (Asins, 2002) have 

the potential to identify plant genes controlling leaf microbiology. Such studies could 

provide methods to manipulate phyllosphere communities via plant genotype, providing 

opportunities to manage applied aspects of phyllosphere microbiology, such as the 

survival of human pathogens or the activity of beneficial microbes. 

 

 


	ADPEE.tmp
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap


