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1. Introduction

0008 We need some set theory every now and then. We use Zermelo-Fraenkel set theory
with the axiom of choice (ZFC) as described in [Kun83] and [Jec02].

2. Everything is a set

0009 Most mathematicians think of set theory as providing the basic foundations for
mathematics. So how does this really work? For example, how do we translate the
sentence “X is a scheme” into set theory? Well, we just unravel the definitions: A
scheme is a locally ringed space such that every point has an open neighbourhood
which is an affine scheme. A locally ringed space is a ringed space such that
every stalk of the structure sheaf is a local ring. A ringed space is a pair (X,OX)
consisting of a topological space X and a sheaf of rings OX on it. A topological
space is a pair (X, τ) consisting of a set X and a set of subsets τ ⊂ P(X) satisfying
the axioms of a topology. And so on and so forth.
So how, given a set S would we recognize whether it is a scheme? The first thing
we look for is whether the set S is an ordered pair. This is defined (see [Jec02],
page 7) as saying that S has the form (a, b) := {{a}, {a, b}} for some sets a, b. If
this is the case, then we would take a look to see whether a is an ordered pair (c, d).
If so we would check whether d ⊂ P(c), and if so whether d forms the collection of
sets for a topology on the set c. And so on and so forth.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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So even though it would take a considerable amount of work to write a complete
formula ϕscheme(x) with one free variable x in set theory that expresses the notion
“x is a scheme”, it is possible to do so. The same thing should be true for any
mathematical object.

3. Classes

000A Informally we use the notion of a class. Given a formula ϕ(x, p1, . . . , pn), we call
C = {x : ϕ(x, p1, . . . , pn)}

a class. A class is easier to manipulate than the formula that defines it, but it is not
strictly speaking a mathematical object. For example, if R is a ring, then we may
consider the class of all R-modules (since after all we may translate the sentence
“M is an R-module” into a formula in set theory, which then defines a class). A
proper class is a class which is not a set.
In this way we may consider the category of R-modules, which is a “big” category—
in other words, it has a proper class of objects. Similarly, we may consider the “big”
category of schemes, the “big” category of rings, etc.

4. Ordinals

05N1 A set T is transitive if x ∈ T implies x ⊂ T . A set α is an ordinal if it is transitive
and well-ordered by ∈. In this case, we define α + 1 = α ∪ {α}, which is another
ordinal called the successor of α. An ordinal α is called a successor ordinal if there
exists an ordinal β such that α = β + 1. The smallest ordinal is ∅ which is also
denoted 0. If α is not 0, and not a successor ordinal, then α is called a limit ordinal
and we have

α =
⋃

γ∈α
γ.

The first limit ordinal is ω and it is also the first infinite ordinal. The first uncount-
able ordinal ω1 is the set of all countable ordinals. The collection of all ordinals is
a proper class. It is well-ordered by ∈ in the following sense: any nonempty set (or
even class) of ordinals has a least element. Given a set A of ordinals, we define the
supremum of A to be supα∈A α =

⋃
α∈A α. It is the least ordinal bigger or equal to

all α ∈ A. Given any well-ordered set (S,<), there is a unique ordinal α such that
(S,<) ∼= (α,∈); this is called the order type of the well-ordered set.

5. The hierarchy of sets

000B We define by transfinite recursion V0 = ∅, Vα+1 = P (Vα) (power set), and for a
limit ordinal α,

Vα =
⋃

β<α
Vβ .

Note that each Vα is a transitive set.

Lemma 5.1.000C Every set is an element of Vα for some ordinal α.

Proof. See [Jec02, Lemma 6.3]. □

In [Kun83, Chapter III] it is explained that this lemma is equivalent to the axiom
of foundation. The rank of a set S is the least ordinal α such that S ∈ Vα+1. By
a partial universe we shall mean a suitably large set of the form Vα which will be
clear from the context.

https://stacks.math.columbia.edu/tag/000C
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6. Cardinality

000D The cardinality of a set A is the least ordinal α such that there exists a bijection
between A and α. We sometimes use the notation α = |A| to indicate this. We
say an ordinal α is a cardinal if and only if it occurs as the cardinality of some set
A—in other words, if α = |A|. We use the greek letters κ, λ for cardinals. The first
infinite cardinal is ω, and in this context it is denoted ℵ0. A set is countable if its
cardinality is ≤ ℵ0. If α is an ordinal, then we denote α+ the least cardinal > α.
You can use this to define ℵ1 = ℵ+

0 , ℵ2 = ℵ+
1 , etc, and in fact you can define ℵα

for any ordinal α by transfinite recursion. We note the equality ℵ1 = ω1.

The addition of cardinals κ, λ is denoted κ ⊕ λ; it is the cardinality of κ ⨿ λ. The
multiplication of cardinals κ, λ is denoted κ⊗ λ; it is the cardinality of κ× λ. If κ
and λ are infinite cardinals, then κ ⊕ λ = κ ⊗ λ = max(κ, λ). The exponentiation
of cardinals κ, λ is denoted κλ; it is the cardinality of the set of (set) maps from
λ to κ. Given any set K of cardinals, the supremum of K is supκ∈K κ =

⋃
κ∈K κ,

which is also a cardinal.

7. Cofinality

000E A cofinal subset S of a well-ordered set T is a subset S ⊂ T such that ∀t ∈ T∃s ∈
S(t ≤ s). Note that a subset of a well-ordered set is a well-ordered set (with induced
ordering). Given an ordinal α, the cofinality cf(α) of α is the least ordinal β which
occurs as the order type of some cofinal subset of α. The cofinality of an ordinal is
always a cardinal. Hence alternatively we can define the cofinality of α as the least
cardinality of a cofinal subset of α.

Lemma 7.1.05N2 Suppose that T = colimα<β Tα is a colimit of sets indexed by ordinals
less than a given ordinal β. Suppose that φ : S → T is a map of sets. Then φ lifts
to a map into Tα for some α < β provided that β is not a limit of ordinals indexed
by S, in other words, if β is an ordinal with cf(β) > |S|.

Proof. For each element s ∈ S pick a αs < β and an element ts ∈ Tαs which maps
to φ(s) in T . By assumption α = sups∈S αs is strictly smaller than β. Hence the
map φα : S → Tα which assigns to s the image of ts in Tα is a solution. □

The following is essentially Grothendieck’s argument for the existence of ordinals
with arbitrarily large cofinality which he used to prove the existence of enough
injectives in certain abelian categories, see [Gro57].

Proposition 7.2.05N3 Let κ be a cardinal. Then there exists an ordinal whose cofinality
is bigger than κ.

Proof. If κ is finite, then ω = cf(ω) works. Let us thus assume that κ is infinite.
Consider the smallest ordinal α whose cardinality is strictly greater than κ. We
claim that cf(α) > κ. Note that α is a limit ordinal, since if α = β + 1, then
|α| = |β| (because α and β are infinite) and this contradicts the minimality of α.
(Of course α is also a cardinal, but we do not need this.) To get a contradiction
suppose S ⊂ α is a cofinal subset with |S| ≤ κ. For β ∈ S, i.e., β < α, we have
|β| ≤ κ by minimality of α. As α is a limit ordinal and S cofinal in α we obtain
α =

⋃
β∈S β. Hence |α| ≤ |S| ⊗ κ ≤ κ ⊗ κ ≤ κ which is a contradiction with our

choice of α. □

https://stacks.math.columbia.edu/tag/05N2
https://stacks.math.columbia.edu/tag/05N3
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8. Reflection principle

000F Some of this material is in the chapter of [Kun83] called “Easy consistency proofs”.
Let ϕ(x1, . . . , xn) be a formula of set theory. Let us use the convention that this
notation implies that all the free variables in ϕ occur among x1, . . . , xn. Let M be
a set. The formula ϕM (x1, . . . , xn) is the formula obtained from ϕ(x1, . . . , xn) by
replacing all the ∀x and ∃x by ∀x ∈ M and ∃x ∈ M , respectively. So the formula
ϕ(x1, x2) = ∃x(x ∈ x1 ∧ x ∈ x2) is turned into ϕM (x1, x2) = ∃x ∈ M(x ∈ x1 ∧ x ∈
x2). The formula ϕM is called the relativization of ϕ to M .

Theorem 8.1.000G Suppose given ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn) a finite collec-
tion of formulas of set theory. Let M0 be a set. There exists a set M such that
M0 ⊂ M and ∀x1, . . . , xn ∈ M , we have

∀i = 1, . . . ,m, ϕM
i (x1, . . . , xn) ⇔ ∀i = 1, . . . ,m, ϕi(x1, . . . , xn).

In fact we may take M = Vα for some limit ordinal α.

Proof. See [Jec02, Theorem 12.14] or [Kun83, Theorem 7.4]. □

We view this theorem as saying the following: Given any x1, . . . , xn ∈ M the
formulas hold with the bound variables ranging through all sets if and only if they
hold for the bound variables ranging through elements of Vα. This theorem is a
meta-theorem because it deals with the formulas of set theory directly. It actually
says that given the finite list of formulas ϕ1, . . . , ϕm with at most free variables
x1, . . . , xn the sentence

∀M0 ∃M, M0 ⊂ M ∀x1, . . . , xn ∈ M
ϕ1(x1, . . . , xn) ∧ . . . ∧ ϕm(x1, . . . , xn) ↔ ϕM

1 (x1, . . . , xn) ∧ . . . ∧ ϕM
m (x1, . . . , xn)

is provable in ZFC. In other words, whenever we actually write down a finite list
of formulas ϕi, we get a theorem.
It is somewhat hard to use this theorem in “ordinary mathematics” since the mean-
ing of the formulas ϕM

i (x1, . . . , xn) is not so clear! Instead, we will use the idea of
the proof of the reflection principle to prove the existence results we need directly.

9. Constructing categories of schemes

000H We will discuss how to apply this to produce, given an initial set of schemes, a
“small” category of schemes closed under a list of natural operations. Before we do
so, we introduce the size of a scheme. Given a scheme S we define

size(S) = max(ℵ0, κ1, κ2),
where we define the cardinal numbers κ1 and κ2 as follows:

(1) We let κ1 be the cardinality of the set of affine opens of S.
(2) We let κ2 be the supremum of all the cardinalities of all Γ(U,OS) for all

U ⊂ S affine open.

Lemma 9.1.000I For every cardinal κ, there exists a set A such that every element
of A is a scheme and such that for every scheme S with size(S) ≤ κ, there is an
element X ∈ A such that X ∼= S (isomorphism of schemes).

Proof. Omitted. Hint: think about how any scheme is isomorphic to a scheme
obtained by glueing affines. □

https://stacks.math.columbia.edu/tag/000G
https://stacks.math.columbia.edu/tag/000I
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We denote Bound the function which to each cardinal κ associates
(9.1.1)046U Bound(κ) = max{κℵ0 , κ+}.
We could make this function grow much more rapidly, e.g., we could set Bound(κ) =
κκ, and the result below would still hold. For any ordinal α, we denote Schα the
full subcategory of category of schemes whose objects are elements of Vα. Here is
the result we are going to prove.

Lemma 9.2.000J With notations size, Bound and Schα as above. Let S0 be a set of
schemes. There exists a limit ordinal α with the following properties:

(1)000K We have S0 ⊂ Vα; in other words, S0 ⊂ Ob(Schα).
(2)000L For any S ∈ Ob(Schα) and any scheme T with size(T ) ≤ Bound(size(S)),

there exists a scheme S′ ∈ Ob(Schα) such that T ∼= S′.
(3)000M For any countable1 diagram category I and any functor F : I → Schα, the

limit limI F exists in Schα if and only if it exists in Sch and moreover, in
this case, the natural morphism between them is an isomorphism.

(4)000N For any countable index category I and any functor F : I → Schα, the
colimit colimI F exists in Schα if and only if it exists in Sch and moreover,
in this case, the natural morphism between them is an isomorphism.

Proof. We define, by transfinite induction, a function f which associates to every
ordinal an ordinal as follows. Let f(0) = 0. Given f(α), we define f(α + 1) to be
the least ordinal β such that the following hold:

(1) We have α+ 1 ≤ β and f(α) ≤ β.
(2) For any S ∈ Ob(Schf(α)) and any scheme T with size(T ) ≤ Bound(size(S)),

there exists a scheme S′ ∈ Ob(Schβ) such that T ∼= S′.
(3) For any countable index category I and any functor F : I → Schf(α), if

the limit limI F or the colimit colimI F exists in Sch, then it is isomorphic
to a scheme in Schβ .

To see β exists, we argue as follows. Since Ob(Schf(α)) is a set, we see that
κ = supS∈Ob(Schf(α)) Bound(size(S)) exists and is a cardinal. Let A be a set of
schemes obtained starting with κ as in Lemma 9.1. There is a set CountCat of
countable categories such that any countable category is isomorphic to an element
of CountCat. Hence in (3) above we may assume that I is an element in CountCat.
This means that the pairs (I, F ) in (3) range over a set. Thus, there exists a set
B whose elements are schemes such that for every (I, F ) as in (3), if the limit or
colimit exists, then it is isomorphic to an element in B. Hence, if we pick any β
such that A ∪ B ⊂ Vβ and β > max{α + 1, f(α)}, then (1)–(3) hold. Since every
nonempty collection of ordinals has a least element, we see that f(α + 1) is well
defined. Finally, if α is a limit ordinal, then we set f(α) = supα′<α f(α′).
Pick β0 such that S0 ⊂ Vβ0 . By construction f(β) ≥ β and we see that also
S0 ⊂ Vf(β0). Moreover, as f is nondecreasing, we see S0 ⊂ Vf(β) is true for any
β ≥ β0. Next, choose any ordinal β1 > β0 with cofinality cf(β1) > ω = ℵ0. This
is possible since the cofinality of ordinals gets arbitrarily large, see Proposition 7.2.
We claim that α = f(β1) is a solution to the problem posed in the lemma.
The first property of the lemma holds by our choice of β1 > β0 above.

1Both the set of objects and the morphism sets are countable. In fact you can prove the lemma
with ℵ0 replaced by any cardinal whatsoever in (3) and (4).

https://stacks.math.columbia.edu/tag/000J
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Since β1 is a limit ordinal (as its cofinality is infinite), we get f(β1) = supβ<β1 f(β).
Hence {f(β) | β < β1} ⊂ f(β1) is a cofinal subset. Hence we see that

Vα = Vf(β1) =
⋃

β<β1
Vf(β).

Now, let S ∈ Ob(Schα). We define β(S) to be the least ordinal β such that S ∈
Ob(Schf(β)). By the above we see that always β(S) < β1. Since Ob(Schf(β+1)) ⊂
Ob(Schα), we see by construction of f above that the second property of the lemma
is satisfied.
Suppose that {S1, S2, . . .} ⊂ Ob(Schα) is a countable collection. Consider the
function ω → β1, n 7→ β(Sn). Since the cofinality of β1 is > ω, the image of
this function cannot be a cofinal subset. Hence there exists a β < β1 such that
{S1, S2, . . .} ⊂ Ob(Schf(β)). It follows that any functor F : I → Schα factors
through one of the subcategories Schf(β). Thus, if there exists a scheme X that
is the colimit or limit of the diagram F , then, by construction of f , we see X is
isomorphic to an object of Schf(β+1) which is a subcategory of Schα. This proves
the last two assertions of the lemma. □

Remark 9.3.000O The lemma above can also be proved using the reflection principle.
However, one has to be careful. Namely, suppose the sentence ϕscheme(X) expresses
the property “X is a scheme”, then what does the formula ϕVα

scheme(X) mean? It
is true that the reflection principle says we can find α such that for all X ∈ Vα we
have ϕscheme(X) ↔ ϕVα

scheme(X) but this is entirely useless. It is only by combining
two such statements that something interesting happens. For example suppose
ϕred(X,Y ) expresses the property “X, Y are schemes, and Y is the reduction of
X” (see Schemes, Definition 12.5). Suppose we apply the reflection principle to the
pair of formulas ϕ1(X,Y ) = ϕred(X,Y ), ϕ2(X) = ∃Y, ϕ1(X,Y ). Then it is easy
to see that any α produced by the reflection principle has the property that given
X ∈ Ob(Schα) the reduction of X is also an object of Schα (left as an exercise).
Lemma 9.4.000P Let S be an affine scheme. Let R = Γ(S,OS). Then the size of S is
equal to max{ℵ0, |R|}.
Proof. There are at most max{|R|,ℵ0} affine opens of Spec(R). This is clear since
any affine open U ⊂ Spec(R) is a finite union of principal opens D(f1)∪ . . .∪D(fn)
and hence the number of affine opens is at most supn |R|n = max{|R|,ℵ0}, see
[Kun83, Ch. I, 10.13]. On the other hand, we see that Γ(U,O) ⊂ Rf1 × . . . × Rfn

and hence |Γ(U,O)| ≤ max{ℵ0, |Rf1 |, . . . , |Rfn |}. Thus it suffices to prove that
|Rf | ≤ max{ℵ0, |R|} which is omitted. □

Lemma 9.5.000Q Let S be a scheme. Let S =
⋃

i∈I Si be an open covering. Then
size(S) ≤ max{|I|, supi{size(Si)}}.
Proof. Let U ⊂ S be any affine open. Since U is quasi-compact there exist finitely
many elements i1, . . . , in ∈ I and affine opens Ui ⊂ U ∩Si such that U = U1 ∪U2 ∪
. . . ∪ Un. Thus

|Γ(U,OU )| ≤ |Γ(U1,O)| ⊗ . . .⊗ |Γ(Un,O)| ≤ supi{size(Si)}
Moreover, it shows that the set of affine opens of S has cardinality less than or
equal to the cardinality of the set∐

n∈ω

∐
i1,...,in∈I

{affine opens of Si1} × . . .× {affine opens of Sin}.

https://stacks.math.columbia.edu/tag/000O
https://stacks.math.columbia.edu/tag/000P
https://stacks.math.columbia.edu/tag/000Q
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Each of the sets inside the disjoint union has cardinality at most supi{size(Si)}. The
index set has cardinality at most max{|I|,ℵ0}, see [Kun83, Ch. I, 10.13]. Hence
by [Jec02, Lemma 5.8] the cardinality of the coproduct is at most max{ℵ0, |I|} ⊗
supi{size(Si)}. The lemma follows. □

Lemma 9.6.04T6 Let f : X → S, g : Y → S be morphisms of schemes. Then we have
size(X ×S Y ) ≤ max{size(X), size(Y )}.

Proof. Let S =
⋃

k∈K Sk be an affine open covering. Let X =
⋃

i∈I Ui, Y =⋃
j∈J Vj be affine open coverings with I, J of cardinality ≤ size(X), size(Y ). For

each i ∈ I there exists a finite set Ki of k ∈ K such that f(Ui) ⊂
⋃

k∈Ki
Sk. For

each j ∈ J there exists a finite set Kj of k ∈ K such that g(Vj) ⊂
⋃

k∈Kj
Sk. Hence

f(X), g(Y ) are contained in S′ =
⋃

k∈K′ Sk with K ′ =
⋃

i∈I Ki ∪
⋃

j∈J Kj . Note
that the cardinality of K ′ is at most max{ℵ0, |I|, |J |}. Applying Lemma 9.5 we see
that it suffices to prove that size(f−1(Sk) ×Sk

g−1(Sk)) ≤ max{size(X), size(Y ))}
for k ∈ K ′. In other words, we may assume that S is affine.
Assume S affine. Let X =

⋃
i∈I Ui, Y =

⋃
j∈J Vj be affine open coverings with I,

J of cardinality ≤ size(X), size(Y ). Again by Lemma 9.5 it suffices to prove the
lemma for the products Ui ×S Vj . By Lemma 9.4 we see that it suffices to show
that

|A⊗C B| ≤ max{ℵ0, |A|, |B|}.
We omit the proof of this inequality. □

Lemma 9.7.04T7 Let S be a scheme. Let f : X → S be locally of finite type with X
quasi-compact. Then size(X) ≤ size(S).

Proof. We can find a finite affine open covering X =
⋃

i=1,...n Ui such that each Ui

maps into an affine open Si of S. Thus by Lemma 9.5 we reduce to the case where
both S and X are affine. In this case by Lemma 9.4 we see that it suffices to show

|A[x1, . . . , xn]| ≤ max{ℵ0, |A|}.
We omit the proof of this inequality. □

In Algebra, Lemma 107.13 we will show that if A → B is an epimorphism of rings,
then |B| ≤ max(|A|,ℵ0). The analogue for schemes is the following lemma.

Lemma 9.8.04VA Let f : X → Y be a monomorphism of schemes. If at least one of
the following properties holds, then size(X) ≤ size(Y ):

(1) f is quasi-compact,
(2) f is locally of finite presentation,
(3) add more here as needed.

But the bound does not hold for monomorphisms which are locally of finite type.

Proof. Let Y =
⋃

j∈J Vj be an affine open covering of Y with |J | ≤ size(Y ). By
Lemma 9.5 it suffices to bound the size of the inverse image of Vj in X. Hence
we reduce to the case that Y is affine, say Y = Spec(B). For any affine open
Spec(A) ⊂ X we have |A| ≤ max(|B|,ℵ0) = size(Y ), see remark above and Lemma
9.4. Thus it suffices to show that X has at most size(Y ) affine opens. This is clear if
X is quasi-compact, whence case (1) holds. In case (2) the number of isomorphism
classes of B-algebras A that can occur is bounded by size(B), because each A is
of finite type over B, hence isomorphic to an algebra B[x1, . . . , xn]/(f1, . . . , fm)

https://stacks.math.columbia.edu/tag/04T6
https://stacks.math.columbia.edu/tag/04T7
https://stacks.math.columbia.edu/tag/04VA
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for some n,m, and fj ∈ B[x1, . . . , xn]. However, as X → Y is a monomorphism,
there is a unique morphism Spec(A) → X over Y = Spec(B) if there is one, hence
the number of affine opens of X is bounded by the number of these isomorphism
classes.
To prove the final statement of the lemma consider the ring B =

∏
n∈N F2 and

set Y = Spec(B). For every ultrafilter U on N we obtain a maximal ideal mU
with residue field F2; the map B → F2 sends the element (xn) to limU xn. Details
omitted. The morphism of schemes X =

∐
U Spec(F2) → Y is a monomorphism

as all the points are distinct. However the cardinality of the set of affine open
subschemes of X is equal to the cardinality of the set of ultrafilters on N which is
22ℵ0 . We conclude as |B| = 2ℵ0 < 22ℵ0 . □

Lemma 9.9.000R Let α be an ordinal as in Lemma 9.2 above. The category Schα

satisfies the following properties:
(1) If X,Y, S ∈ Ob(Schα), then for any morphisms f : X → S, g : Y → S the

fibre product X ×S Y in Schα exists and is a fibre product in the category
of schemes.

(2) Given any at most countable collection S1, S2, . . . of elements of Ob(Schα),
the coproduct

∐
i Si exists in Ob(Schα) and is a coproduct in the category

of schemes.
(3) For any S ∈ Ob(Schα) and any open immersion U → S, there exists a

V ∈ Ob(Schα) with V ∼= U .
(4) For any S ∈ Ob(Schα) and any closed immersion T → S, there exists an

S′ ∈ Ob(Schα) with S′ ∼= T .
(5) For any S ∈ Ob(Schα) and any finite type morphism T → S, there exists

an S′ ∈ Ob(Schα) with S′ ∼= T .
(6) Suppose S is a scheme which has an open covering S =

⋃
i∈I Si such that

there exists a T ∈ Ob(Schα) with (a) size(Si) ≤ size(T )ℵ0 for all i ∈ I, and
(b) |I| ≤ size(T )ℵ0 . Then S is isomorphic to an object of Schα.

(7) For any S ∈ Ob(Schα) and any morphism f : T → S locally of finite type
such that T can be covered by at most size(S)ℵ0 open affines, there exists
an S′ ∈ Ob(Schα) with S′ ∼= T . For example this holds if T can be covered
by at most |R| = 2ℵ0 = ℵℵ0

0 open affines.
(8) For any S ∈ Ob(Schα) and any monomorphism T → S which is either lo-

cally of finite presentation or quasi-compact, there exists an S′ ∈ Ob(Schα)
with S′ ∼= T .

(9) Suppose that T ∈ Ob(Schα) is affine. Write R = Γ(T,OT ). Then any of
the following schemes is isomorphic to a scheme in Schα:
(a) For any ideal I ⊂ R with completion R∗ = limn R/I

n, the scheme
Spec(R∗).

(b) For any finite type R-algebra R′, the scheme Spec(R′).
(c) For any localization S−1R, the scheme Spec(S−1R).
(d) For any prime p ⊂ R, the scheme Spec(κ(p)).
(e) For any subring R′ ⊂ R, the scheme Spec(R′).
(f) Any scheme of finite type over a ring of cardinality at most |R|ℵ0 .
(g) And so on.

Proof. Statements (1) and (2) follow directly from the definitions. Statement (3)
follows as the size of an open subscheme U of S is clearly smaller than or equal

https://stacks.math.columbia.edu/tag/000R
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to the size of S. Statement (4) follows from (5). Statement (5) follows from (7).
Statement (6) follows as the size of S is ≤ max{|I|, supi size(Si)} ≤ size(T )ℵ0 by
Lemma 9.5. Statement (7) follows from (6). Namely, for any affine open V ⊂ T
we have size(V ) ≤ size(S) by Lemma 9.7. Thus, we see that (6) applies in the
situation of (7). Part (8) follows from Lemma 9.8.
Statement (9) is translated, via Lemma 9.4, into an upper bound on the cardinality
of the rings R∗, S−1R, κ(p), R′, etc. Perhaps the most interesting one is the ring
R∗. As a set, it is the image of a surjective map RN → R∗. Since |RN| = |R|ℵ0 ,
we see that it works by our choice of Bound(κ) being at least κℵ0 . Phew! (The
cardinality of the algebraic closure of a field is the same as the cardinality of the
field, or it is ℵ0.) □

Remark 9.10.000S Let R be a ring. Suppose we consider the ring
∏

p∈Spec(R) κ(p).
The cardinality of this ring is bounded by |R|2|R| , but is not bounded by |R|ℵ0 in
general. For example if R = C[x] it is not bounded by |R|ℵ0 and if R =

∏
n∈N F2

it is not bounded by |R||R|. Thus the “And so on” of Lemma 9.9 above should be
taken with a grain of salt. Of course, if it ever becomes necessary to consider these
rings in arguments pertaining to fppf/étale cohomology, then we can change the
function Bound above into the function κ 7→ κ2κ .

In the following lemma we use the notion of an fpqc covering which is introduced
in Topologies, Section 9.

Lemma 9.11.0AHK Let f : X → Y be a morphism of schemes. Assume there exists
an fpqc covering {gj : Yj → Y }j∈J such that gj factors through f . Then size(Y ) ≤
size(X).

Proof. Let V ⊂ Y be an affine open. By definition there exist n ≥ 0 and a :
{1, . . . , n} → J and affine opens Vi ⊂ Ya(i) such that V = ga(1)(V1)∪ . . .∪ga(n)(Vn).
Denote hj : Yj → X a morphism such that f ◦ hj = gj . Then ha(1)(V1) ∪ . . . ∪
ha(n)(Vn) is a quasi-compact subset of f−1(V ). Hence we can find a quasi-compact
open W ⊂ f−1(V ) which contains ha(i)(Vi) for i = 1, . . . , n. In particular V =
f(W ).
On the one hand this shows that the cardinality of the set of affine opens of Y
is at most the cardinality of the set S of quasi-compact opens of X. Since every
quasi-compact open of X is a finite union of affines, we see that the cardinality of
this set is at most sup |S|n = max(ℵ0, |S|). On the other hand, we have OY (V ) ⊂∏

i=1,...,n OYa(i)(Vi) because {Vi → V } is an fpqc covering. Hence OY (V ) ⊂ OX(W )
because Vi → V factors through W . Again since W has a finite covering by affine
opens of X we conclude that |OY (V )| is bounded by the size of X. The lemma
now follows from the definition of the size of a scheme. □

In the following lemma we use the notion of an fppf covering which is introduced
in Topologies, Section 7.

Lemma 9.12.0AHL Let {fi : Xi → X}i∈I be an fppf covering of a scheme. There exists
an fppf covering {Wj → X}j∈J which is a refinement of {Xi → X}i∈I such that
size(

∐
Wj) ≤ size(X).

Proof. Choose an affine open covering X =
⋃

a∈A Ua with |A| ≤ size(X). For
each a we can choose a finite subset Ia ⊂ I and for i ∈ Ia a quasi-compact open

https://stacks.math.columbia.edu/tag/000S
https://stacks.math.columbia.edu/tag/0AHK
https://stacks.math.columbia.edu/tag/0AHL
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Wa,i ⊂ Xi such that Ua =
⋃

i∈Ia
fi(Wa,i). Then size(Wa,i) ≤ size(X) by Lemma

9.7. We conclude that size(
∐

a

∐
i∈Ia

Wi,a) ≤ size(X) by Lemma 9.5. □

10. Sets with group action

000T Let G be a group. We denote G-Sets the “big” category of G-sets. For any ordinal
α, we denote G-Setsα the full subcategory of G-Sets whose objects are in Vα.
As a notion for size of a G-set we take size(S) = max{ℵ0, |G|, |S|} (where |G|
and |S| are the cardinality of the underlying sets). As above we use the function
Bound(κ) = κℵ0 .

Lemma 10.1.000U With notations G, G-Setsα, size, and Bound as above. Let S0 be
a set of G-sets. There exists a limit ordinal α with the following properties:

(1) We have S0 ∪ {GG} ⊂ Ob(G-Setsα).
(2) For any S ∈ Ob(G-Setsα) and any G-set T with size(T ) ≤ Bound(size(S)),

there exists an S′ ∈ Ob(G-Setsα) that is isomorphic to T .
(3) For any countable index category I and any functor F : I → G-Setsα, the

limit limI F and colimit colimI F exist in G-Setsα and are the same as in
G-Sets.

Proof. Omitted. Similar to but easier than the proof of Lemma 9.2 above. □

Lemma 10.2.000V Let α be an ordinal as in Lemma 10.1 above. The category G-Setsα

satisfies the following properties:
(1) The G-set GG is an object of G-Setsα.
(2) (Co)Products, fibre products, and pushouts exist in G-Setsα and are the

same as their counterparts in G-Sets.
(3) Given an object U of G-Setsα, any G-stable subset O ⊂ U is isomorphic to

an object of G-Setsα.

Proof. Omitted. □

11. Coverings of a site

000W Suppose that C is a category (as in Categories, Definition 2.1) and that Cov(C) is a
proper class of coverings satisfying properties (1), (2), and (3) of Sites, Definition
6.2. We list them here:

(1) If V → U is an isomorphism, then {V → U} ∈ Cov(C).
(2) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ji

∈ Cov(C),
then {Vij → U}i∈I,j∈Ji

∈ Cov(C).
(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C, then Ui ×U V

exists for all i and {Ui ×U V → V }i∈I ∈ Cov(C).
For an ordinal α, we set Cov(C)α = Cov(C)∩Vα. Given an ordinal α and a cardinal
κ, we set Cov(C)κ,α equal to the set of elements U = {φi : Ui → U}i∈I ∈ Cov(C)α

such that |I| ≤ κ.

We recall the following notion, see Sites, Definition 8.2. Two families of morphisms,
{φi : Ui → U}i∈I and {ψj : Wj → U}j∈J , with the same target of C are called
combinatorially equivalent if there exist maps α : I → J and β : J → I such that
φi = ψα(i) and ψj = φβ(j). This defines an equivalence relation on families of
morphisms having a fixed target.

https://stacks.math.columbia.edu/tag/000U
https://stacks.math.columbia.edu/tag/000V
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Lemma 11.1.000X With notations as above. Let Cov0 ⊂ Cov(C) be a set contained in
Cov(C). There exist a cardinal κ and a limit ordinal α with the following properties:

(1) We have Cov0 ⊂ Cov(C)κ,α.
(2) The set of coverings Cov(C)κ,α satisfies (1), (2), and (3) of Sites, Definition

6.2 (see above). In other words (C,Cov(C)κ,α) is a site.
(3) Every covering in Cov(C) is combinatorially equivalent to a covering in

Cov(C)κ,α.

Proof. To prove this, we first consider the set S of all sets of morphisms of C with
fixed target. In other words, an element of S is a subset T of Arrows(C) such that
all elements of T have the same target. Given a family U = {φi : Ui → U}i∈I of
morphisms with fixed target, we define Supp(U) = {φ ∈ Arrows(C) | ∃i ∈ I, φ =
φi}. Note that two families U = {φi : Ui → U}i∈I and V = {Vj → V }j∈J are
combinatorially equivalent if and only if Supp(U) = Supp(V). Next, we define
Sτ ⊂ S to be the subset Sτ = {T ∈ S | ∃ U ∈ Cov(C) T = Supp(U)}. For
every element T ∈ Sτ , set β(T ) to equal the least ordinal β such that there exists a
U ∈ Cov(C)β such that T = Supp(U). Finally, set β0 = supT ∈Sτ

β(T ). At this point
it follows that every U ∈ Cov(C) is combinatorially equivalent to some element of
Cov(C)β0 .
Let κ be the maximum of ℵ0, the cardinality |Arrows(C)|,

sup{Ui→U}i∈I ∈Cov(C)β0
|I|, and sup{Ui→U}i∈I ∈Cov0 |I|.

Since κ is an infinite cardinal, we have κ⊗ κ = κ. Note that obviously Cov(C)β0 =
Cov(C)κ,β0 .
We define, by transfinite induction, a function f which associates to every ordinal
an ordinal as follows. Let f(0) = 0. Given f(α), we define f(α+ 1) to be the least
ordinal β such that the following hold:

(1) We have α+ 1 ≤ β and f(α) ≤ β.
(2) If {Ui → U}i∈I ∈ Cov(C)κ,f(α) and for each i we have {Wij → Ui}j∈Ji

∈
Cov(C)κ,f(α), then {Wij → U}i∈I,j∈Ji ∈ Cov(C)κ,β .

(3) If {Ui → U}i∈I ∈ Cov(C)κ,α and W → U is a morphism of C, then {Ui ×U

W → W}i∈I ∈ Cov(C)κ,β .
To see β exists we note that clearly the collection of all coverings {Wij → U} and
{Ui ×UW → W} that occur in (2) and (3) form a set. Hence there is some ordinal β
such that Vβ contains all of these coverings. Moreover, the index set of the covering
{Wij → U} has cardinality

∑
i∈I |Ji| ≤ κ ⊗ κ = κ, and hence these coverings are

contained in Cov(C)κ,β . Since every nonempty collection of ordinals has a least
element we see that f(α + 1) is well defined. Finally, if α is a limit ordinal, then
we set f(α) = supα′<α f(α′).
Pick an ordinal β1 such that Arrows(C) ⊂ Vβ1 , Cov0 ⊂ Vβ0 , and β1 ≥ β0. By con-
struction f(β1) ≥ β1 and we see that the same properties hold for Vf(β1). Moreover,
as f is nondecreasing this remains true for any β ≥ β1. Next, choose any ordinal
β2 > β1 with cofinality cf(β2) > κ. This is possible since the cofinality of ordinals
gets arbitrarily large, see Proposition 7.2. We claim that the pair κ, α = f(β2) is
a solution to the problem posed in the lemma.
The first and third property of the lemma holds by our choices of κ, β2 > β1 > β0
above.

https://stacks.math.columbia.edu/tag/000X
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Since β2 is a limit ordinal (as its cofinality is infinite) we get f(β2) = supβ<β2 f(β).
Hence {f(β) | β < β2} ⊂ f(β2) is a cofinal subset. Hence we see that

Vα = Vf(β2) =
⋃

β<β2
Vf(β).

Now, let U ∈ Covκ,α. We define β(U) to be the least ordinal β such that U ∈
Covκ,f(β). By the above we see that always β(U) < β2.
We have to show properties (1), (2), and (3) defining a site hold for the pair
(C,Covκ,α). The first holds because by our choice of β2 all arrows of C are contained
in Vf(β2). For the third, we use that given a covering U = {Ui → U}i∈I ∈ Cov(C)κ,α

we have β(U) < β2 and hence any base change of U is by construction of f contained
in Cov(C)κ,f(β+1) and hence in Cov(C)κ,α.
Finally, for the second condition, suppose that {Ui → U}i∈I ∈ Cov(C)κ,f(α) and
for each i we have Wi = {Wij → Ui}j∈Ji ∈ Cov(C)κ,f(α). Consider the function
I → β2, i 7→ β(Wi). Since the cofinality of β2 is > κ ≥ |I| the image of this function
cannot be a cofinal subset. Hence there exists a β < β1 such that Wi ∈ Covκ,f(β)
for all i ∈ I. It follows that the covering {Wij → U}i∈I,j∈Ji is an element of
Cov(C)κ,f(β+1) ⊂ Cov(C)κ,α as desired. □

Remark 11.2.000Y It is likely the case that, for some limit ordinal α, the set of
coverings Cov(C)α satisfies the conditions of the lemma. This is after all what
an application of the reflection principle would appear to give (modulo caveats as
described at the end of Section 8 and in Remark 9.3).

12. Abelian categories and injectives

000Z The following lemma applies to the category of modules over a sheaf of rings on a
site.

Lemma 12.1.0010 Suppose given a big category A (see Categories, Remark 2.2).
Assume A is abelian and has enough injectives. See Homology, Definitions 5.1 and
27.4. Then for any given set of objects {As}s∈S of A, there is an abelian subcategory
A′ ⊂ A with the following properties:

(1) Ob(A′) is a set,
(2) Ob(A′) contains As for each s ∈ S,
(3) A′ has enough injectives, and
(4) an object of A′ is injective if and only if it is an injective object of A.

Proof. Omitted. □
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