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“A mysterious equality” E

Let v4 be a root of

1 2
r(x) = x*+4ax3+2x* - 3 aGC\{ig)},

and put
1
t(X) = x3 + (2 - 4> X + 27s.
Vg

One might, then, verify that for any given root & of t, thus
t(£) = 0, and any given root 7y # 4 of r, thus r(y) =0, the

equality , ; ,
e () - ()

holds, and so all three value pairs (on both sides of the equation)
coincide with one and the same invariant, which lies, in fact, in the
field of rational functions in the variable ~;.




The equality E as an exception to Vavilov rule

Nikolai Vavilov (PDMI, St. Petersburg) notes that (any!) formula,
taken from contemporary source on Number Theory (such as
Introduction to Modern Number Theory Fundamental Problems by
Manin Ju. & Panchishkin A.), which length exceeds 2.5 inches is
wrong! He does not exclude that the critical length might be up to
3.5 inches for some other disciplines, such as analysis. He further
comments that formulas derived and correctly written in an original
source (from nineteenth century, say) are too often transferred to
said contemporary books with multiple errors. The remedy to this
problem was known to Bartel Leendert van der Waerden: “Het is
niet alleen veel leerrijker, het geeft ook veel meer genot de klassieke
schrijvers zelf te lezen.” He goes on to say “Daarom zeg ik mijn
lezers met nadruk: geloof niets op mijn woord, maar kijk alles na!”

The equality E on the preceding slide was presented on April 16,
2014 at the 7' PCA conference in St. Petersburg. It (being
correct) is, thus, an exception to Vavilov's rule.



Towards proving the equality E

Ivan Kozhevnikov (CC RAS, Moscow) tested (by hand!) several
special cases, including the case when the expressions (on both
sides) coincide with (complex) infinity.

Mikhail Malykh (FNM MSU, Moscow) applied further numerical
(computer) tests, and employed Sage and Maple packages to
simplify the difference between the left-hand and the right-hand
sides with negative result!

Sergei Meshveliani (PSI RAS, Pereslavl-Zalessky) repoted a
machine-proof (employing Grobner basis techniques) which he
presented on May 21, 2014 at the 17*" Workshop on Computer
Algebra (Dubna, Russia).

Helmut Ruhland, in recent communication, presented an
elementary (no machine requiring) constructive proof, which |
(given his permission) shall present at this talk.
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Constructing (mysterious) equalities

1. Introduction

In [1] the following 2 polynomials and a mysterious equality (abbreviated in the
following with m. e.) are defined:

(1)

)=ttt 20 -5

(2)  po=r+ %74]”21

There it's proofed:

Leta#+2/3, lety;beany root of (1), y # s any other root of ( 1)
and g any root of (2 ), then for all 4 x 3 x 3 combinations of the roots
the following equality holds:

The lefright hand side is a rational function of v, i.e. € Q (y)

These polynomials and the equality are related to the modular
equation of level 3

2. Constructing the equalities

Here the equalities are constructed in an elementary manner without
any connection to eliptic functions or modular equations. But almost
all examples are related to these.

Let pa « (x) the polynomial of degree N, defined by the following equality:

e
(a1) M5

“ay) =)

ForN<0in (4.1)pa.« (x)is no polynomial, treating the polynomial in the
numerator as “ansatz” leads to a second polynomial r, i (x)
tiah
. 1

(42) x-p)"V=ay,

x

Properties: - the reciprocal polynomial i.e. p, (1/x) * X" = p 1/a, « (X)
- the reciprocal polynomial ra i (1/x) * X" = r 15 4 (x)
- Pak (x)and the substitution v — 1/y, ~rx (x)
-Tak(x) and the substitution yi— 1/ ~ pa .« (x)

Define the 2 polynomials:
(43)  px)=p, ,(x) and y be a root of p, (x)
(44)  p0)=p, (0 and £ be a root of p; (x)

Using the 4 factorisations of appendix A leads to this equality:

Q(r,) afunction of y; only

Special cases: k=0anda=1-Q()=1,1=0andb=1-Q()
Define the polynomial of degree N + 1
(45) q=G-1)p() = (-1)p, (1)

Rising ( 5 ) to the (N — 1)" power and using (4.4 ) and (4.5 )
for the left side yields
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By construction this equality is valid only for v the root of the linear
factor of gy (x), but the m. e. is valid for all roots!

‘The same construction for the polynomials r « (x) ( 4. 2 ) changes almost
nothing. Only ( 5.2 ) has to be replaced by:

Do

"™

5.3 o
(53) 4,(0) b

this differs from ( 5.2 ) in the power of & on the left hand side
and b, y, are in the denominator on the right hand side.

3. Conditions to be a mysterious equality i.e. an equality
for all roots v,

Now we ook for conditions under that (5.2 ) or (5.3 ) is an equality for all
roolts v, of @ (¥

Atfirst some examples:
Example 1:

N=3, b,I=free (bR, 1€2)

For these parameters and the specialisation b = - 2, 1= 1
(5.2) s equals to (3 ), p 2.1 (x) is proportional to ps (x)in (2)
and (4.3)q ()= (x- ) * p-us.+ () is proportional to

which of course by construction is reducible in Q ()

Setting the coefficient of x* to 4*a this is exactly ps (x) in ( 1).

This pa (x) is irreducible in Q () with Galois group S.

Now a sufficient condition (8 ):

If the degree N + 1 polynomial o (x)in (4.3 ) after a rational reparametrisation

by a s ieducible over Q (a) and the Galois group is at least 2-transitive
then the equality ( 5.2 ) is fulfilled for all roots v, of qy (x) i.e. is a m.e.

These are exactly the polynomials and the m. e. from [1].
Comment to the parametrization of ps () and elliptic curves:

It can bee seen easily seen that this parametrization of ps (x) by b € R, I € Z
is just a deformation of the coelliptic polynomial tn (x) in [1] that causes a linaer
transformation on the sy () and therefore does not change the value of B’. So
this parametrized ps (x) is something like a generalised coelliptic polynomial?
Of course the m. e. (5.2 ) with b and | then can be derived from the formula
with 1, (0) and t (0) in [1].

Example 2:

N=2, ak=free(@eR kez), b=11=0

> (1
L)

(5.1)forN=2

S U B U )
7 1)
P2 (x) is independent from v,, 50 € = + 1, and the left hand side is equals 1
The right hand side is 1 for arbitrary v, qs (x) could be replaced by an even
more general polynomial (of arbitrary degree)

Though this is a litle bit trivial example, this shows that condition (8 )
not necessary (a reparametrisation of qs (x) to get irreducibility is not possible)

Example 3:

N=1, a=free(acR)k

\I=free (bR, €2)

i|ra py(x)=x-by,

reparameterising with o =

leads to the ireducible (fora # 9 * a?) ¢,(x) =x*+6xa +a

Fora = 4 these are the polynomials and the equality related to the modular




equation of level 4 (see table 1),

is the 4" degree equation for the primitive, nontrivial (z 1 are the trivial)
4-division points, see [2]. See the polynomials Ry (x) and Sy (x)
in appendix B too.

level [ZX[N| a | k | remarks R/S
2 [z 1| 1 |4 Rz
FREAEEAE DA are % Ry
4 [Z1] 4 [ q(x) = +6xa+4 843
6 |z7/3| 3 [1]» 3 Re.1

%.2
ERESAERE T EX
122 2
24 (2, 201

Table 1: the examples to m. e. s

» use pra « (x) and formulas ( 4.x* ) and ( 5.x*
e reciprocal to gy (x) of level 3, the m.e. is now ( 5.3 ) with € instaed of £° !

Questions:
- are there other p, « (x) than in table 1 that fulfl the condition (8 )?
- can the coelliptic polynomials t (x) for p = 5, 7, ... in [1] parametrized too,

50 B’ does not change?

Appendices
Appendix A: Factorising the p; (x) and p, (x) for roots

Now the p (x)'s (4.1) fory, € with different arguments can be expressed
as products, due to the special form (4 )

(81) pM=pM-r 1)
Adding multiples of the defining equation for y does not change the right hand
side, but this cancels the term y with highest degree, the right hand side
now factors

(71 pr=-r-1)" " -ay vy

1y byl
ol

the constant term with y° is canceled, the right hand side now factors

(62) , l’i‘

Gty caby®

¥

(6.3) p(8)=p(0)=pLC)
the term with £" is canceled, the right hand side now factors

(73)  p@=-1)" " aywby))

(64) ,(L): (L)
z)rlz
the constant term with €° is canceled, the right hand side now factors.

7,) (-aby, +1)

) v

(7.4) /)’(

Remark:

could be used too,

ay'p ()
Instead of (6.1) this (1) =P (1) ==~




this cancels the term with y° instead of y" and factorises too. The result is
equals to (7.1) using the defining equality (4 ) for p., (x) . Similar for the
3cases (6.2) - (6.4)

For the polynomials r (x) (4.2 ) slightly different results are obtained, but the
result is the same quotients.

Appendix B: Division points for the essential elliptic curve Eg

4r-12ax-4x

The essential elliptic curve:
Some addition formulas (only for the x-components):

o 0 B 118
N 1 xB+1 x+B
x T TapHl
The doubling formula:
LGP _2(- D+ DR, (%)
3 7 2 =

“The tripling formul
R, ()

R(x)
The equations of the primitive division points:
The following table lists the polynomials for the 7 levels with unit group Z;

column # : number of primitive division points, for level > 2 each x-division point
exists twice (for £ y), s the sum all degrees is only #/ 2

For reciprocal polynomials the polynomials S (x) of half degree are given
R()=S(x+1/x)

The 7R (x) polynomials of degree 3 are the cubic resolvents of degree 4
polynomials

level ‘ # ‘ R (x)

Ry, =x+3ax+]

=3xt60 4120 a

RR:=3x* -6 +4x-8+16a*

4 |12
6 |24
8 |48
12 | 96

R,
R, =x+60x’+6x+6ax+]
S, =xlbax+4

R, :=(x=2) (" ~4x+36

e Ry = 68— 120
RR, =+ 627 +12x+72 - 144 o
Ry y=x'+12ax7+ 282+ 84 a0’ 424 (6 + 144 o) + 84 ' + 28 67+ 12 x4 1

=120 4247 448 x4 144 o - 48

24+ 192 x + 18432 o — 4608 ~ 20736 o*

4P

2+ B+ax+ 627 Brxtp

) .16
637 +12x+24 - 16 ——
=

—4xt e (<120 -2)-4x+1

S, =x-dx-12a-4

44X (12a-2)+4x+1

S,

~Pdx+12a-4

R,

yy =+ 24 o+ x (88 472 a?) +840 x4 x

Sy 3= xt 424 axT 4+ (80472 a?) x4 672 a x® + (416 + 3456

S 87400 (-20 + T2 ) +x° (56 - 96 @ + 144 a?) *

S =8 4 (244 720) 0 + (3296 0+ 144 a7) 1+ 16 +96 0 — 144 o

87 +x°(-20 - 72 @) +x" (~56 — 96 0. - 144 0?) T

874 (-24-720) 27 +(-32-96 0 - 144 o’) x + 16 - 96 o — 144 o

Prag o+ (144 07 +432) + 7440 57 o *




s, +48 x5 a (144 0+ 416)x™ + 6720 ¥ a o
The following table shows, how a polynomial splits for the half/third of the points
24 38415 32519+ (~1248 & —352) x™ + (-8064 @ — 2688 — 16128 o?)x* *
level 1/2 div. points level 1/3 div. points
16432 x4 (1248 o~ 352) 6! + (~8064 o + 2688 + 16128 o) x'7 * 2 Rer RinRiz 2 Res Res
Rez  Ris Re2 Rez
+192x127a + (2880 2 + 6848 ) ™ + (13824 @ + 505920 o) ¥ * 3 R RewRez R 4 Rur Ruiz
Rez Rz
R R
Table 2: polynomials for the division points of E; 3 Rus
pow! P . 4 Rui Rey 8 Roi  Ra
*** Ry, yis reciprocal to R Riz  Raz Rez  Raz
oo e ’ Ry Res Res  Ruus
Special values:  j=1,a=%1/V2,B=%V2,+1/2 6 Re1 Riz 1, Riz.2
§=0,a=%1/33,B=13/2:i/2=12" unit roots with Rsz  Ru
re>0 12 Rt Raz
Rizz  Raat

Rizs  Rus
Table 3: splitting of the polynomial of division points
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An essential elliptic function and its associated curve

Associate to a fixed (elliptic modulus) 8 € C\ {—1, 0, 1} a value
a = a(f) = (8+1/p)/3 and

> a (cubic) polynomail g(x) := x3 +3ax? + x,

v

an elliptic function Rg, with a (double) pole at zero,
satisfying the differential equation

x? = 4q(x),

v

Ag: the lattice of Rg,

v

a complex (projective) elliptic curve (associated with R3)
Es:y?=4q(x).

Attention! The latter (canonical) form ought not be confused
with “the Weierstrass normal form”. The justification for
deviating from the (much) established convention is given in
[1, 2].
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Two correspondences

The map
(C//\g — Eﬁ

z — (Rp(2), Rj5(2)),

which turns out being an isomorphism of Riemann surfaces, as well
as, an isomorphism of groups, enables an identification (exploiting
the modular j-invariant) of isomorphism classes of projective
complex elliptic curves with the homothety classes of lattices
L/C*, which might, in turn, be identified with the fundamental
domain D := PSL(2,Z)\H for the action of the modular group
PSL(2,Z) upon the (extended) upper half plane H.






An explicit analytic inverse of the modular invariant

An explicit analytic inverse k of the modular invariant j was given
in [3] as a composition

k := kg o ky o ky,
where
imM(vVi=x) N iy
kO(X) = M(X) ) kl(X) = f7

ka(x) == g <k3x) + k3(x)) -1,
k3(x) := VV/x2 — x3 — x,

and M(x) is the arithmetic-geometric mean of 1 and x.



Key properties of the inverse of the modular invariant

Strictly speaking, the function M is (doubly) infinitely-valued as its calculation
entails choosing one of two branches of the square root function at infinitely
many steps. Consequently, the function k is, as well, an infinitely-valued
function. However, its values, up to a sign, differ by the action of the modular
group PSL(2,Z). We mean that by flipping the sign, if necessary, we might
assume that the function k never assumes values in the lower half plane, and,
furthermore, its values might be brought via the action of the modular group
PSL(2,Z) to a single value in the (or any) fundamental domain. In other
words, while k is not strictly a left inverse of j, it is a right inverse, that is,

Vx €C, jok(x)=x,1

for the modular invariant j does not separate points, in its domain, as long as
they differ by the action of the modular group PSL(2,Z), and no troubles arise
in extending the latter equality to the whole Riemann sphere, including the
point at (complex) infinity.

1An analogy is afforded by a branch of the logarithmic function which is (regradless of the choice of
the branch) a right (but not left) inverse of the exponential function. While the values of the logarithm,
at a given point, constitute a discrete subset of a line, the values of the functions k and M do not. We
have already indicated that the function M is (doubly) infinitely-valued, suggesting that its values (at a
given point) constitute a discrete subset of C (not contained in any one-dimensinal subset over R), and
so is the function k.



Verifying the formula for the inverse k at (the image of j at
the corners of the fundamental domain) 0 and 1

Before we move on to the modular equation, we must clarify the
calculation of the inverse function k for the two special values of j
at the corners: j(¢) = 0 and j(i) = 1.? So, we point out that the
(set) values of the composition, kj o ky at 0 and 1, coincide with
set values of the elliptic moduli 8 at 7 = ¢ and 7 = i, which,
respectively, are the four values 3 € {£i(, £i¢?} and the six values
B € {+i,£1//2,41/2}. Certainly, ko has a removable singularity
at zero and must be evaluated to —1 there, whereas kp(1) = 1/2.
Thus, ¢ € k(0) = ko o ki(—1), and i € k(1) = ko o k1(1/2).3

2We denoted by ¢ a primitive cube root of unity, so ¢3 =1 # (.
3Implying, unsurprisingly, that the values 0 and 1 are fixed by the (identity)
function j o k.



The Inverse of the Modular Invai

1. Introdu

In [1], page 1 the following inverse of the modular invariant j(r) presented
at the CCRAS (Moscow, Russia) is given:

GL1-x)1
G(T,x)

Ax(x+4) the square of ki (x)

The equation for ks (j) is:

(6)  a'+200j+)

If x is a solution, also j / x is a solution (the — sign for the square root in (4 ))

The equation for ks (ks (j)) is:

The degree of this equation is only 3, because in (3 ) ks (j) and j / ks () yield
the same k, (j) !

The equation for ki (kz (ks (i))) ~ 2 (formula (2 * ) is:

The formula ( 8 ) above is equivalent to the equation for A in formula (3.3) in [2]:

4 (R(0) = A + 1)

T Rmem -

So k() =4~
The well known inverse of the modular invariant in the appendix A of[2]:
1, Ay 3
PG EL1I-A
s W .
Fi(55152)

So formula (1) with the inverse of the modular invariant in terms of the
arithmetic — geometric mean G (1, x) follows from the well known identity:

1L

1

G(l4x) =
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The modular equation

Assume, unless indicated otherwise, that nis an odd prime. The
functional pair (j(7),j(n7)) is known to be algebraically dependent
(over Q), and is said to satisfy the modular polynomial of level n,
that is

®,(i(7), j(n7)) =0,

where the modular polynomial ®,, possesses integer (rational)
coefficients. Moreover, ®,, is symmetric in its two variables, that is
®,(x,z) = Pp(z,x). When 7 is fixed, and so is j(7), the
polynomial ®,(j(7),x) might be viewed as a polynomial in a single
variable x over the (base) field Q(j(7)),* and we shall call its roots,
the roots of the modular equation of level n.

*In fact, it might be viewed as a polynomial over the ring Z[j(T)].



Galois criterion for depressing the degree of the modular
equation

A modular equation, of prime level n > 5, is depressible, from
degree n+ 1 to degree n (and no lower), iff (its group) PSL(2,Z,)
possesses a subgroup of index n iff n € {5,7,11}. Via explicitly
constructing a permutation representation for the three exceptional
groups, embedding them, respectively, in the three alternating
groups As, A7 and A11,% Galois must, in particular, be solely
credited for solving the general quintic via exhibiting it as a
modular equation of level 5.

®For n=5,7,11, the subgroup of index n in PSL(2,Z,) turn out to be
isomorphic to A4, Ss and As, respectively. These are precisely the symmetry
groups of the platonic solids. The tetrahedron, being self-dual, has A4 as its
symmetry group. Ss is the symmetry group for the hexahedron and the
octahedron, whereas As is the symmetry group for the dodecahedron and the
icosahedron.



Three suppressed and forgotten “snapshots” of history

In 1830, Galois competed with Abel and Jacobi for the grand prize of the
French Academy of Sciences. Abel (posthumously) and Jacobi were awarded
(jointly) the prize, whereas all references to Galois’ work (along with the work
itself!) have (mysteriously) disappeared. The very fact that Galois’ lost works
contained contributions to Abelian integrals is either unknown (to many) or
deemed (by some) no longer relevant to our contemporary knowledge.

Liouville acknowledged in September 1843 that he “recognized the entire
correctness of the method”, which was, subsequently (in 1846), published in
the Journal de Mathématiques Pures et Appliquées Xl, giving birth to Galois
theory. Liouville declared an intention to proceed with publishing the rest of
Galois' papers. Yet, most unfortunately, subsequent publication never ensued,
and neither Gauss nor Jacobi had ever fulfilled Galois modest request to merely
announce the significance (tacitly alleviating the burden of judging the
correctness) of his (not necessarily published) contributions. In 1847, Liouville
published (instead) his own paper “Legons sur les fonctions doublement
périodiques” .

In 1851, in a paper published in Annali di Tortolini, Betti futily asked Liouville
not to deprive the public any longer of Galois’ (unpublished) results. Then, in
1854, Betti showed that Galois' construction yields a solution to the quintic via
elliptic functions.



Elliptic polynomials as factors of the division polynomial

Denote by F := Q(«) the base field of the polynomial r,, which
roots are the first coordinates of the points (on Eg) of order n. Call
rn the division polynomial of level n. The field F[~,,], obtained by
adjoining a root v, of r, to the base field F, is the splitting field for
the elliptic polynomial of level n

(n—1)/2
rmn(x) =[] (x—=1-7m)-

=1

where the dot is used to indicate the multiplication of the first
coordinate to yield the first coordinate of the /-multiple (on Eg).
The polynomial ry,, divides r,, and the first index (m) of r,,, might
be employed to designate n+ 1 pairwise coprime elliptic polynomial

factors of ry:
n+1

ra(x) = ] rmn(x)-
m=1



Coelliptic polynomials

The group of automorphisms Aut(F[vy,,]/F) of each field extension
Flym]/F, 1 < m < n+ 1, is cyclic of order (n — 1)/2. One might,
in fact, establish the isomorphism

Aut (Flym]/F) = Zy /{+1},

where the group, on the right hand side of the isomorphism,
denoted by Z) is the multiplicative subgroup of Z,: the (prime)
field of integers modulo n. To (each) elliptic polynomial rp,, we
shall associate a coelliptic polynomial

tm(X) = X rma(x)% = 24" (x) rl (X) Fn(X)+

+4.q(x) (1 n(x)* = 1 (%) rmn(x)) -



Calculating the roots of the modular equation

Now, let (for a fixed 7 € D) the value of j(7) be given by

_4(d+1)?

()= =g g d=d(3) = (8-1/8)°,

then the roots of the modular equation, of level n, are

4(dm+1)°
27 dn,

ﬁ2 — Sm(_ﬁ) — Sm(o)
" sm(=1/B) — sm(0)

where sp,(+) is the n-th degree fractional transformation given by

Jm = , dm = d(B2),

, 1<m<n+1,

tm(x)
Fmn(x)?

Sm(x) :=



An action of S3

Each such root ji, is invariant as 32, is subjected to the action of
the triangle group S3, which is generated by the two inversions S
and T given by

1
S:x——, T:x—1-x.
X

This action on 32, corresponds to the action of S; as the
permutation group of the three symbols {0, 3,1/}, appearing on
the right hand side of the defining expression for 32,.

The elliptic curves Eg and Eg, are said to be related by cyclic
isogeny of degree n.



The modular equation of level 3 and 5

P3(x, y) = 2176782336 x>y — 2811677184 (x3y? + y3x?) — 729 (x* + y*) + 779997924 (x3y + y3x) —
1886592284694 x2y? — 15552000 (x° + y3) — 3754781568000 (x2y + y2x) — 110592000000 (x> + y?) +
188194816000000 x y — 262144000000000 (x + y).

3 (x,y) = x3y3 — 2232 (3y? + x%y3) — x* — y* + 1069956 (x3y + xy®) — 2587918086 x?y* —
36864000 (x° + y3) — 8900222976000 (x%y + y?x) — 452984832000000 (x? + y?) 4 770845966336000000 x y —
1855425871872000000000 (x + y). (Smith 1879)

®5(x, y) = 8916100448256 x>y — 19104382909440 (x°y* + y5x*) + 13589034024960 (x°y> + y°x3) —
4974647446705766400 x*y* — 3505336473600 (x°y? + y°x2) — 186414787904261990400 (x*y3 + y*x3) — x® —
y5 + 246683410050 (x°y + y°x) — 383083609779811215375 (x*y? + y*x?) +

441206965512914835246100 x> y® — 1136117760 (x> 4 y°) — 74387615108118528000 (x*y + y*x) —
15566255126377738181376000 (x°y2 + y3x?) — 430254526762844160 (x* + y*) +
64453772899964735127552000 (x> y + y3x) — 1711644060233550509015040000 x2y2 —
54313315434020026285414400 (x> + y3) — 7084552847250663218872320000 (x2y + y°x) —

750608416927050074633011200 (x? + y2) + 29617595563122405481849552896 x y —
3457795560648760910413824000 (x + y) — 5309626171273360722362368000.

d); (x,y) =

xPy® — 3720 (xPy* + y*x%) + 4550040 (x°y3 + y°x3) — 1665999364600 x*y* — 2028551200 (x°y? + y°x?) —
107878928185336800(x*y3 + y*x3) — x8 — y0 + 246683410050 (x°y + y®x) — 383083609779811215375 (x*y? +
y*x?) + 441206965512014835246100 x>y — 1963211489280 (x° + y°) — 128541798906828816384000 (x*y +
y*x) — 26898488858380731577417728000 (xy? + y3x?) — 1284733132841424456253440 (x* + y*) +
192457934618928299655108231168000 (x>y + y>x) — 5110941777552418083110765199360000 x2y? —
280244777828439527804321565297868800 (x° + y°) — 36554736583949629295706472332656640000 (x°y +
y2x) — 6692500042627997708487149415015068467200 (x> + y?) +
264073457076620596259715790247978782949376 x y — 53274330803424425450420160273356509151232000 (x +
y) — 141359947154721358697753474691071362751004672000. (Berwick 1916)



Four special values of the modular invariant

Suppose that j is (correctly) normalized with j(i) = 1, then

j(4(51i3j:1)) _
(1-v5

37
5
= (239) <1190448488 — 858585699 v/2 — 540309076 /5 + 374537880 v/10 +
3

+i\/V5 (693172512 — 505746414 /2 — 407357424 /5 + 240819696 \/10) )) ,

J,(5(41i7j:1)> _

37
1—+/5
= ((2\3{) <1190448488 + 858585699 v/2 — 540309076 /5 — 374537880 v/10 +

3

+i\/ V5 (693172512 4 505746414 /2 — 407357424 /5 — 240819696 \/10) )) .

These special values (along with other values) were derived in an article titled
“Multiplication and division on elliptic curves, torsion points and roots of modular equations”
and forwarded for publication yesterday!



The equality E as a (simplest non-trivial) special case

Denote the roots of a coelliptic polynomial t,, by &, 1 < k < n,
and pick an index j so that 1 <j < n+1 and j # m. One then
finds that, for any given root 7 of the elliptic polynomial rj,, the

equality ,
& (rn <§1k) /m(@)) -

= —112(0)?" tn(0) (ni_l[)/2 <tm </17> [tm(!- 7))2

I=1

merely reflects two (out of many) distinct ways of calculating one
and the same the coordinate on Eg. In other words, as k runs
through n values on the left-hand side of the equality, whereas ~
runs through (n — 1)/2 values for each of the n possibles values for
J, all n(n+ 1)/2 permissible values (thus obtained) turn out to
coincide with one and the same.



Back to equality E and (merely) a single step beyond

o <r3(1/s)>2 o <73 %(1/7))2,

>

r3() tm(7)
4
r(x) == x*+4ax®+2x> - 3= H rm3(x), rm3(x) = xX—~m,
m=1
tm(x) = 33+ (= 4) x+27m, tm(€) = 13(7) = 0 # Fm3 (7).
| 2
2
25 r5(1/£)>2 2 5 (1) ( 1 )
= -2 Am lbm m| — ) tm| =— tm tm(2- ’
e (L po | ¥t (2) 10 (572 ) /(10 () )
rs(X):X12+@—21x8—6Ox6—25x4—10x2+1+12ax3<x8+4x6_1gx4_%_7>+
5 5
6 3.5
+144o¢2><4 (%—3)(2—2) 1728 a7 x "];Il 5(x), rms(x )7X2_/\mx+ﬂm:(X_'Ym)(X_Q"Ym)y

tm(x) = x° + (4432, 710um+12)\mo¢) x> = 2(Am + 2 A ftm + 24 pum ) X+
+ (202 = 1244m + 510, + 12 2m im @) X+ 2 Am i tm(€) = 15(7) = 0 # Fms(7):



Two quotes from “Récoltes et Semailles” by Grothendieck

“Je suis persuadé d'ailleurs qu'un Galois serait allé bien plus loin
encore que je n'ai été. D'une part a cause de ses dons tout a fait
exceptionnels (que je n'ai pas regus en partage, quant a moi).”

“Mais au dela de ces différences accidentelles, je crois discerner a
cette “marginalité” une cause commune, que je sens essentielle.
Cette cause, je ne la vois pas dans des circonstances historiques, ni
dans des particularités de “tempérament” ou de “caractere”
(lesquels sont sans doute aussi différents de lui a moi qu'ils
peuvent |'étre d'une personne a une autre), et encore moins certes
au niveau des “dons” (visiblement prodigieux chez Galois, et
comparativement modestes chez moi). S'il y a bien une “parenté
essentielle”, je la vois a un niveau bien plus humble, bien plus
élémentaire.”



A few references to related works by the speaker and
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[
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