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Abstract. Let S be a category with a Grothendieck topology. A stack over
S is a category fibered in groupoids over S, such that isomorphisms form a
sheaf and every descent datum is effective. If S is the category of schemes
with the étale topology, a stack is algebraic in the sense of Deligne-Mumford
(respectively Artin) if it has an étale (resp. smooth) presentation.

I will try to explain the previous definitions so as to make them accessible
to the widest possible audience. In order to do this, we will keep in mind one
fixed example, that of vector bundles; if you know what pullback of vector
bundles is in some geometric context (schemes, complex analytic spaces, but
also varieties or manifolds) you should be able to follow this exposition.

1. Introduction

Stacks (the french original name is champs [4]) have been part of algebraic geom-
etry for several decades now; algebraic stacks were introduced by Deligne and
Mumford in [3] in order to study the moduli space of curves, and their defini-
tion was later generalized by Artin [1]. Since then, algebraic stacks have become a
very useful tool for algebraic geometers, but still not a very popular one: possible
reasons are the lack of references (see however the recent book of Laumon and
Moret-Bailly [5]) and the long and technical definitions, which can discourage the
newcomer.

The idea of this exposition is to alternate rigorous, general definitions with
the study of one concrete example: the classifying stack parametrizing rank r
vector bundles. The “everybody” in the title means that you don’t have to be
an algebraic geometer: stacks, and even reasonable analogues of algebraic stacks,
can be defined in the context of complex analytic spaces, manifolds (your favorite
kind) and even topological spaces.
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2. A Category with a Grothendieck Topology

2.1. The base category S

We want to talk of geometric objects, so as a first step we have to specify what
kind of geometry we want to do. My favorite is a very small part of algebraic
geometry, namely the study of quasiprojective schemes over the complex numbers.
You might prefer other kind of schemes, or maybe complex analytic spaces, or
real (or complex) manifolds, or topological spaces. In any case, the objects of
our study form a category, i.e. we are also interested in morphisms among them;
regular morphisms for schemes, differentiable or analytic maps for manifolds, and
so on.

In this paper we will consider the category we work on as fixed, and when
needed will refer to it as S. Its objects will be called schemes, because “scheme”
makes for easier reading then “object of S” or “quasiprojective scheme over the
complex numbers”. Feel free to replace scheme by manifold (or variety, or complex
analytic space, etc) everywhere.

2.2. Cartesian diagrams and fiber products

A commutative diagram

T ′ f̄−−−−→ T

p′


�



�p

S′ f−−−−→ S

(1)

is called cartesian if it induces all other commutative diagrams with the same
lower-right corner; that is, for any other commutative diagram

U
g−−−−→ T

q



�



�p

S′ f−−−−→ S

there is a unique morphism h : U → T ′ such that q = p′ ◦ h and g = f̄ ◦ h.
Another way to express this is to say that T ′ is the fiber product of S′ and

T over S, and to write T ′ = S′ ×S T . In fact, given f and p, T ′, p′ and f̄ are
unique up to canonical isomorphism. One can also say that p′ is the base change
of p induced by the morphism f .

A concrete way to construct a fiber product is to consider the morphism
(f, p) : S′ × T → S × S and take the fiber product to be the inverse image of
the diagonal; you can check that this works for schemes over a fixed base (take
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the scheme-theoretic inverse image, given by the pullback ideal sheaf), topological
spaces, or sets. It also works for manifolds in case, say, p is a submersion (in which
case so is p′).

2.3. The étale topology

We will assume that the category S we work with has a Grothendieck topology,
that is given a scheme S, it makes sense to say whether any given collection of
morphisms {Si → S} is an open covering. You can find a precise definition of
Grothendieck topology in [2].

When objects of S are topological spaces, we can take open coverings to be
the usual ones. You can stick to this and proceed to the next section now if you
want: we will use the convention that, for an open covering {Si → S}, we write
Sij for Si ∩ Sj and similarly for Sijk.

However, in order to define algebraic stacks when S is a category of schemes,
the Zariski topology is not appropriate, because it’s too coarse; in particular, the
analogue of the implicit function theorem does not hold. An étale morphism (for
smooth schemes this means one whose differential is an isomorphism at every
point) is not necessarily a local isomorphism.

Because of this, in the definition of algebraic stack one uses the étale topology ;
that is, define an open covering to be a collection of étale morphisms {Si → S}
such that ∪Si → S is surjective. We will use the following notational convention:
if {Si → S} is an open covering, we write Sij for the fiber product Si ×S Sj and
analogously for Sijk. For fixed j, {Sij → Sj} is an open covering of Sj because the
property of being étale is invariant under base change. If each Si → S is an open
embedding, then Sij is canonically isomorphic to Si ∩ Sj .

3. A Category Fibered in Groupoids

3.1. Our guiding example: the category Vr

I assume you know what a vector bundle over a scheme is (remember, if you
want you can read manifold wherever I write scheme), and what the pullback of a
vector bundle is. To fix notation, if E is a vector bundle over S, and f : T → S is
a morphism of schemes, I will call a diagram

F
f̄−−−−→ E



�



�

T
f−−−−→ S

(2)

pullback diagram if F is a vector bundle over T , and the diagram makes F into
the pullback of E via f (hence, the diagram is cartesian and f̄ induces a linear
isomorphism on fibers). We will also say that (F, f̄) is a pullback of E via f .

Pullback is essentially unique; that is, given another pullback (F ′, f̄ ′), there
exists a unique isomorphism α : F ′ → F of vector bundles over T such that f̄ ′ =
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f̄ ◦α. This uniqueness depends on having fixed not only the bundle F but also the
morphism f̄ .

We define the category Vr as follows. Its objects are rank r vector bundles over
schemes; its morphisms are pullback diagrams, i.e. diagram (2) defines a morphism
from F to E. You can figure out for yourself how composition of morphisms is
defined. There is a natural forgetful functor from Vr to S, which associates to
every bundle its base scheme and to every pullback diagram (2) the morphism f
of the bases.

3.2. Schemes as categories over S

A category over S is a category X with a fixed covariant functor π : X → S. We
say that an object E of X is over a scheme S, or lifts S, or is a lifting of S, if
π(E) = S, and similarly for morphisms. If S is a scheme, the fiber of X over S is
the subcategory of objects over S, and morphisms over the identity of S.

For instance, Vr is a category over S; the fiber over S is the category whose
objects are vector bundles over S, and whose morphisms are the isomorphisms
among them.

To a scheme S we can associate a category S/S (the category of S-schemes)
over S as follows: the objects are morphisms with target S in S; a morphism from
f : T → S to f ′ : T ′ → S is a g : T → T ′ such that f = f ′ ◦ g; the projection
functor sends the object T → S to T and a morphism g to itself.

Pictorially,

T T ′


�

g−−−−→


�

S S

means that

T
g−−−−→ T ′



�



�

S S

commutes .

In the particular case where S is a point p (or a final object in the category S,
if you find this clearer), the category S/p is just the category S itself, and the
natural projection is the identity functor.

3.3. Morphisms of categories

A morphism of categories over S is a covariant functor commuting with the pro-
jection to S.

Let S be a scheme, X a category over S, f : S/S → X a morphism of
categories over S. To this morphism we can associate an object E of X over S,
the image of idS : S → S.

For instance, to every morphism S/S → Vr we can associate a vector bun-
dle E over S. Conversely, given the associated vector bundle E, a morphism S/S →
Vr is determined by the datum, for every T → S, of a vector bundle F over T , to-
gether with a pullback diagram (2) (to prove this, use that every object f : T → S
in S/S has a unique morphism to idS , namely f itself).

If S and T are schemes, and f : S/T → S/S is a morphism of categories
over S, then the associated object is a morphism g : T → S, and f is uniquely
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determined by g. Hence, morphisms of categories over S from S/T to S/S are the
same as morphisms of schemes T → S: therefore, the category S/S determines
the scheme S up to isomorphism.

From now on we will use the same letter to indicate a scheme S and the
stack S/S.

3.4. 2-morphisms and isomorphisms of categories

If X and Y are categories over S, and f , g are morphisms from X to Y , a 2-mor-
phism f → g is a natural transformation over the identity functor on S.

Because of the existence of 2-morphisms, categories over S form a 2-category,
i.e., morphisms can be isomorphic without being equal; the situation is analogous
to that of homotopy theory, where two continuous maps can be homotopic without
being equal.

As an example, define f : Vr → Vr by associating to each vector bundle its
dual. Then f is a morphism of categories over S and there is a 2-isomorphism
between f ◦ f and the identity of Vr.

An isomorphism of categories over S is a morphism which is an equivalence
of categories, that is it induces bijections on morphisms and is surjective on objects
up to isomorphism. An isomorphism has an inverse up to 2-isomorphisms, although
to prove this one may need some form of the axiom of choice.

Let G be an algebraic group (or a Lie group, or a topological group, as you
prefer); we can make a category BG over S whose objects are principal G-bundles,
and morphisms are pullback diagrams. We can define an isomorphism from Vr to
BGL(r) by associating to each vector bundle its frame bundle.

3.5. A category fibered in groupoids

The existence and uniqueness-up-to-isomorphism property for the pullback of vec-
tor bundles can be restated in categorical language by saying that Vr is a category
fibered in groupoids over S.

Definition 3.1. A category X over S is called a category fibered in groupoids, or
groupoid fibration, over S if for any choice of a morphism of schemes f : T → S
and of a lifting E of S to X, there exists a lifting f̄ : F → E of f to X, and the
lifting is unique up to unique isomorphism: i.e., for any other lifting f̄ ′ : F ′ → E
there is a unique isomorphism α : F ′ → F over idT such that f̄ ′ = f̄ ◦ α.

As a partial motivation for the name, note that any morphism of X over an
isomorphism of S is also an isomorphism; in particular, for every scheme S, the
fiber of X over S defined in 3.2, is a groupoid, a category where all morphisms are
isomorphisms.

4. Stacks

As we saw, a category fibered in groupoids over S is something that “pulls back
like bundles”. It is a stack if, moreover, it glues like bundles.
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4.1. Notational conventions

Let X be a groupoid fibration over S. We assume that for every morphism f : T →
S, and every object E over S, we have chosen one lifting fE : f∗E → E of f with
target E. This can be achieved by direct construction, or by a suitable version of
the axiom of choice. Note that it is not required, in this choice, that g∗(f∗E) =
(f ◦ g)∗E; the two are only canonically isomorphic. This choice of pullback is not
logically necessary; it just makes it easier to write down the definition of stack (see
also §6.3).

If E′ is another object over S, and α : E′ → E is a morphism in the fiber
(hence an isomorphism) there is a unique (iso)morphism f∗α : f∗E′ → f∗E such
that the diagram

f∗E′ fE′−−−−→ E′

f∗α



�



�α

f∗E
fE−−−−→ E

commutes.
A further bit of convention: if the morphism f : T → S is clear from the

context, we write E | T or E over T instead of f∗E, and similarly for morphisms.

4.2. Descent data

Let {Si → S} be an open covering of a scheme, and E a vector bundle on S; let Ei

be a pullback of E to Si. We cannot reconstruct E from knowing the Ei’s only; for
instance, we may have different bundles which become trivial on the same open
covering.

However, the fact that Ei is the pullback of E means that we have induced
isomorphisms αij : Ei | Sij → Ej | Sij , which satisfy the cocycle condition on Sijk,
and E can be recovered up to isomorphism by knowing Ei and αij . This motivates
the following:

Definition 4.1. Let X be a category fibered in groupoids over S. A descent datum
for X over a scheme S is the following: an open covering {Si → S}; for every i,
a lifting Ei of Si to X; for every i, j an isomorphism αij : Ei | Sij → Ej | Sij in
the fiber which satisfies the cocycle condition αik = αjk ◦ αij over Sijk.

The descent datum is said to be effective if there exists a lifting E of S
to X together with isomorphisms αi : E | Si → Ei in the fiber such that αij =
αj | Sij ◦ (αi | Sij)−1.

You can think of the covering {Si} as lying over S (after all, it covers it); we
have a collection of bundles above, and we ‘descend’ them to a bundle over S.

4.3. Definition of stack

Before giving the definition of stack, we must introduce another ‘technical’ condi-
tion, the categorical expression of the fact that isomorphisms between bundles on
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the same scheme can be defined locally on an open covering and then glued in a
unique way, once they agree on the overlaps.

Definition 4.2. Let X be a category fibered in groupoids over S. We say that iso-
morphisms are a sheaf for X if, for any scheme S and any E, E′ in the fiber over
S, for every open covering {Si → S} of S, and for every collection of isomor-
phisms αi : E | Si → E′ | Si in the fiber over Si such that αi | Sij = αj | Sij, there
is a unique isomorphism α : E → E′ such that α | Si = αi.

Definition 4.3. A stack is a category fibered in groupoids over S such that isomor-
phisms are a sheaf and every descent datum is effective.

If X is a stack, then for every descent datum as in definition 4.1, the (E,αi)
whose existence follows by effectivity are essentially unique: i.e., for any other
possibility (E′, α′

i) there exists a unique isomorphism β : E′ → E in the fiber such
that α′

i = αi ◦ β.
Morphisms of stacks are defined to be morphisms of categories over S, and

the same for 2-morphisms and isomorphisms.

4.4. Representable stacks and morphisms

The category S/S is always fibered in groupoids over S, but not a priori a stack:
this depends on the topology. It is true, and easy to prove, for each S we mentioned
(schemes, varieties, complex analytic spaces, manifolds, topological spaces, etc)
with the usual topology. It is also true for schemes with the étale topology.

Definition 4.4. A stack X over S is representable if it is isomorphic to the stack
S/S induced by a scheme S (see also §6.3).

Informally speaking, a representable morphism of stacks is one whose fibers
are schemes.

Definition 4.5. A morphism X → Y of stacks is representable if, for every mor-
phism S → Y with S (the stack associated to) a scheme, the fiber product S×Y X
is representable.

Oops! I didn’t tell you what the fiber product of stacks is, did I? Well, it
was done on purpose. The definition can be found in the last section; think of it
for the moment as enjoying a universal property analogous to the one we saw for
schemes. The proof of the next lemma is in §6.2.

Lemma 4.6. Let W be a vector space of dimension r. Define a morphism p → Vr

(recall that p is the category S/p) mapping every scheme T to the trivial bun-
dle T ×W , and every morphism to the obvious pullback diagram. Then for every
scheme S and every morphism S → Vr (with associated bundle E on S), the fiber
product S ×Vr p is a representable stack, isomorphic to the frame bundle of E.
Hence, the morphism p → Vr is representable.
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5. Algebraic Stacks and Groupoid Schemes

A property of morphisms of schemes is invariant under base change if, for any
cartesian diagram (1), if p has the property then so has p′.

Definition 5.1. Let P be a property of morphisms of schemes which is invari-
ant under base change. A representable morphism X → Y of stacks has prop-
erty P if, for every morphism S → Y with S a scheme, the induced morphism of
schemes S ×Y X → S has P .

As an example, among such properties there are smooth, étale, proper, an
open embedding, a closed embedding. If you’re not an algebraic geometer, smooth
is essentially the same as submersion, that is morphism of manifolds with surjective
differential at every point.

From now on, S is the category of quasiprojective schemes over the complex
numbers, with the étale topology. Many other choices are possible in the context of
algebraic geometry, but we are striving for clearness and not for generality. If you
want to keep thinking that S is complex analytic spaces, manifolds, etc, with the
usual topology, you can do so, as most of what follows still makes sense: however, I
don’t know whether there is an official definition of analytic or differentiable stack.

Definition 5.2. A stack X over S is algebraic in the sense of Deligne and Mumford
(resp. Artin) if there exists an étale (resp. smooth) and surjective representable
morphism S → X where S is (the stack associated to) a scheme: we say S → X
is a presentation of X.

Lemma 4.6 implies that p → Vr is representable, smooth and surjective.
Hence, the stack Vr is algebraic in the sense of Artin, and the morphism p → Vr

is a presentation.
The stack Vr is a special case of quotient stack. Let G be an algebraic group

acting on a scheme S on the left. Let [S/G] be the following category over S:
its objects are principal homogeneous G-bundles with a G-equivariant morphism
to S. In analogy with Vr, its morphisms are those pullback diagrams which are
compatible with the morphism to S. If S is a point p, with the trivial G action,
then [p/G] is BG defined before.

Theorem 5.3. The category [S/G] is an algebraic stack, there is a presentation S →
[S/G] which is smooth and surjective of relative dimension dimG.

The proof of the theorem is analogous to that of lemma 4.6: for any mor-
phism T → [S/G] (associated to a G-equivariant morphism P → S, where P is
a principal G-bundle), the fiber product T ×[S/G] S is naturally isomorphic to P .
Many moduli stacks arise as quotients; in fact, one of the key features of stacks is
that for any group action you can take a quotient which behaves as if the action
where fixed-point free.
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6. Final Remarks

6.1. Fiber product of stacks

Definition 6.1. If f : X → Y and g : Z → Y are morphisms of stacks over S,
their fiber product can be defined as follows. Its objects are triples (x, z, α) where
α : f(x) → g(z) is a morphism in a fiber of Y ; a morphism (x, z, α) → (x′, z′, α′)
is a pair of morphisms (β1 : x → x′, β2 : z → z′) in fibers of X and Z respectively
such that g(β2) ◦ α = α′ ◦ f(β1) : f(x) → g(z′).

This is indeed a stack and it enjoys 2-categorical properties similar to those of
the usual fiber product; there are natural morphisms from X×Y Z to X (mapping
(x, z, α) to x and (β1, β2) to β1) and to Z. The induced diagram

X ×Y Z −−−−→ Z


�



�g

X
f−−−−→ Y

does not commute, but only 2-commute, that is the two composition morphisms
X×Y Z → Y are not the same but only canonically 2-isomorphic. In analogy with
the case of schemes, the diagram ‘induces’ all other 2-commuting diagrams with
the same lower right corner.

6.2. Outline of proof of lemma 4.6

Recall that the frame bundle P of a vector bundle E over S has as fiber over s ∈ S
the set of possible bases for Es. Fix a basis B = (v1, . . . , vr) of W . For a scheme T ,
there is a natural bijection between pullback diagrams

T ×W
f̄−−−−→ E



�



�

T
f−−−−→ S

and morphisms g : T → P (given the pullback diagram, for every t ∈ T set g(t) =
f̄(B), a basis of Ef(t)).

Let Z be the fiber product S ×Vr p, and fix a scheme T . Spelling out defini-
tion 6.1 in this case, an object of Z over T is a pullback diagram

F
f̄−−−−→ E



�



�

T
f−−−−→ S

(the image via S → Vr of f) together with an isomorphism α : F → T × W of
vector bundles over T .
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We can define a morphism Z → P sending such an object to the mor-
phism T → P associated to the pullback diagram

T ×W
f̄◦α−1

−−−−→ E


�



�

T
f−−−−→ S ;

we leave it to the reader to define the functor Z → P on morphisms and to check
that it is an isomorphism (in fact, one can easily construct an explicit inverse).

6.3. Strictly speaking

Definitions 4.1 and 4.2 implicitly assume that (E | Si) | Sij is the same bundle
as (E | Sj) | Sij . This is not true, but each of them is canonically isomorphic to
Eij := E | Sij , and we have just omitted the canonical isomorphisms. Actually
my favorite convention is that fE : f∗E → E should mean any lifting of f with
target E (after all, they’re all canonically isomorphic).

In definition 4.4 a representable stack should be one isomorphic to the stack
associated to an algebraic space, not to a scheme, to be consistent with the existing
literature. As every scheme is an algebraic space, this means that the definition of
algebraic stack presented here is slightly narrower then the usual one.

6.4. Afterword

In analogy with the identification of a scheme S with the category S/S, a stack X
“is” the collection of all morphisms from any scheme to X: the fiber of X over
a scheme S is equivalent to the category of morphisms from S to X. The big
difference with S/S is that morphisms are allowed to be isomorphic without being
equal. The stack condition ensures that, as in the case of schemes, morphisms can
be defined locally and then glued.

The presentation can be used to define geometrical properties of an algebraic
stack: e.g., Vr is smooth of dimension −r2 (yes, it’s negative) because p is smooth
of dimension zero and p → Vr has relative dimension r2. Of course one has to
check that this does not depend on the choice of the presentation. In fact, many of
the usual tools of algebraic geometry can be extended to algebraic stacks: coherent
and locally free sheaves, cohomology, and even Riemann-Roch theorem and Chow
groups. I would like to tell you more, but (to quote a favorite author) my paper
reminds me to conclude.
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