Overview of dietary flavonoids: nomenclature, occurrence and intake

J Nutr. 2003 Oct;133(10):3248S-3254S. doi: 10.1093/jn/133.10.3248S.

Abstract

Flavonoids and their polymers constitute a large class of food constituents, many of which alter metabolic processes and have a positive impact on health. Flavonoids are a subclass of polyphenols. They generally consist of two aromatic rings, each containing at least one hydroxyl, which are connected through a three-carbon "bridge" and become part of a six-member heterocyclic ring. The flavonoids are further divided into subclasses based on the connection of an aromatic ring to the heterocyclic ring, as well as the oxidation state and functional groups of the heterocyclic ring. Within each subclass, individual compounds are characterized by specific hydroxylation and conjugation patterns. Many flavonoids in foods also occur as large molecules (tannins). These include condensed tannins (proanthocyanidins), derived tannins and hydrolysable tannins. For proanthocyanidins, three subclasses (15 characterized) have been identified in foods. Monomers are connected through specific carbon-carbon and ether linkages to form polymers. Derived tannins are formed during food handling and processing, and found primarily in black and oolong teas. Flavonoids are widely distributed in nature, albeit not uniformly. As a result, specific groups of foods are often rich sources of one or more subclasses of these polyphenols. The polyphenolic structure of flavonoids and tannins renders them quite sensitive to oxidative enzymes and cooking conditions. Scientists in several countries have estimated intakes of a few subclasses of flavonoids from limited food composition databases. These observations suggest large differences in consumption, due in part to cultural and food preferences among populations of each country.

Publication types

  • Review

MeSH terms

  • Diet*
  • Flavonoids / administration & dosage*
  • Flavonoids / analysis
  • Flavonoids / chemistry
  • Food Analysis
  • Food Handling
  • Humans
  • Molecular Structure
  • Tea
  • Terminology as Topic*

Substances

  • Flavonoids
  • Tea