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ABSTRACT. In this note, we get some explicit approximations for the Lambert W function W (z), defined

by W(:p)ew(z> =z for ¢ > —e~!. Also, we get upper and lower bounds for the hyperpower function

h(z) = 2=*

1. INTRODUCTION

The Lambert W function W (z), is defined by W (z)e"®) = z for z > —e~'. For —e~' < z < 0, there
are two possible values of W (x), which we take such values that aren’t less than —1. The history of the
function goes back to J. H. Lambert (1728-1777). One can find in [2] more detailed definition of W as a
complex variable function, historical background and various applications of it in Mathematics and Physics.
Expansion
(loglog )™
(log z)k+m’

W(z) = 1ogx—1oglogx+z Z Chm

k=0m=1

holds true for large values of , with ciy, = (_ni,) -S[k+m, k+1] where S[k-+m, k+1] is Stirling cycle number
[2]. The series in above expansion being to be absolutely convergent and it can be rearranged into the form

Ly Ly(Ly—2) Ly(2L2 — 9Ly +6) Lo\*
W(z) =Ly — Ly + == of (=2
W) =bi= Lot b = 6L} oW\ )

where L; = logz and Ly = loglogz. Note that by log we mean logarithm in the base e. Since Lam-
bert W function appears in some problems in Mathematics, Physics and Engineering, having some explicit

approximations of it is very useful. In [5] it is shown that
(1.1) logz —loglogz < W(x) < logz,

which the left hand side holds true for x > 41.19 and the right hand side holds true for x > e. Aim of present

note is to get some better bounds.

2. BETTER APPROXIMATIONS OF THE LAMBERT W FUNCTION

It is easy to see that W (—e~!) = —1, W(0) = 0 and W (e) = 1. Also, for 2 > 0, since W (z)eV®) =z >0
and eV'(®) > 0, we have W (x) > 0. About derivation, an easy calculation yields that
d W (x)
—W() = —~F—.
dx (=) x(1+W(x))
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So, 2L W (z) > 0 holds true for z > 0 and consequently W (z) is strictly increasing for > 0 (and also for
—e~1 < <0, but not by this reason).

Theorem 2.1. For every x > e, we have
1
(2.1) logz — loglogz < W(x) <logz — 3 loglog x,

with equality holding only for x = e. The coefficients —1 and —% of loglog x both are best possible for the

range r > e.
Proof. For constant 0 < p < 2 consider the function

f(z) =logx — %loglogx - W(x),
for x > e. Easily

d _ plogz —1—W(x)
dx (z) = px(1+ W(z))logz’

and if p = 2, then
if(x) _ (logz — W(z)) + (logz — 1)
dx B 2z(1+ W(z))logz '
Considering right hand side of (1.1) implies - f(z) > 0 for z > e and consequently f(z) > f(e) = 0, and this

gives right hand side of (2.1). Trivially, equality holds for only x =e. If 0 < p < 2, then %f(e) = % <0,
and this yields that the coefficient —% of loglog x in the right hand side of (2.1) is best possible for the range
x> e.

For the another side, note that log W(x) = logz — W(x) and the inequality log W (z) < loglog x holds for
x > e, because of the right hand side of (1.1). Thus, logz — W (x) < loglogz holds for x > e with equality
only for z = e. Sharpness of (2.1) with coefficient —1 for loglogx comes from the relation :,;h_{go (W(z) —

log x + loglog ) = 0. This completes the proof. O

Now, we try to obtain some upper bounds for the function W (z) with main term logz — loglogx. To do

this we need the following lemma.

Lemma 2.2. For everyt € R and y > 0, we have
(t —logy)e' +y >,
with equality for t =logy.

Proof. Letting
f(t) = (t —logy)e' +y— ¢,
we have p
-/ () = (t—logy)e’
and
d? "
Now, we observe that

fllogy) = % logy) =0,
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and
d2
ﬁf(logy) =y>0.
This means the function f(t) takes its minimum value equal to 0 at ¢ = logy, only. This gives the result of

lemma. O

Theorem 2.3. Fory > é and x > —% we have

r+y
2.2 <1 P ——
(22 Wia) < tog (1510,
with equality only for x = ylogy.
Proof. Using the result of above lemma with ¢t = W (z), we get
(W(z) ~logy)e" @ — (V) —y) >0,

which considering W (x)eV' ®) = x gives (14 logy)e"V (*) < x4y and this is desired inequality for y > L and
x> —%. The equality holds when W (z) = logy, i.e. x = ylogy. O

Corollary 2.4. For x > e we have
(2.3) logz — loglogz < W (x) < logz — loglogx + log(1 + e 1),
where equality holds in left hand side for x = e and in left hand side for x = et!.

Proof. Consider (2.2) with y = £, and the left hand side of (2.1). O

Remark 2.5. Taking y = z in (2.2) we get W(z) < logz — log (Hl%), which is sharper than right hand
side of (2.1).

Theorem 2.6. For x > 1 we have

1
(2.4) W(z) > %(logm —loglogz + 1),
with equality only for x = e.
Proof. For t > 0 and x > 1, let
t—1
f(t) = ﬁ — (logt — loglog z),
We have
d 1 1
—f(t) = _
dtf( ) logz t’
and )
d 1
—_f() = =
dt? ®) 2z~ 0,

Now, we observe that %f(log x) =0 and so

min f(1) = f(log) = 0.

Thus, for ¢ > 0 and z > 1 we have f(t) > 0 with equality at ¢ = logz. Putting t = W(z) and simplifying,
we get the result, with equality at W (x) = logx or equivalently at = = e. O
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Corollary 2.7. For x > 1 we have

log =

W(z) < (log x)THos=

Proof. This refinement of the right hand side of (1.1), can be obtained simplifying (2.4) with W(x) =
log z — log W (). O

Bounds which we have obtained up to now have the form W (z) = logz — loglog x + O(1). Now, we give

loglog x

bounds with error term O(=22

) instead O(1), with explicit constants for error term.

Theorem 2.8. For every x > e we have

1 log] log]
(2.5) logl'—loglogl‘-‘v-*wSW(x)Slogx—loglogx+ € _OBOBT
2 logx e—1 logx
with equality only for x = e.
Proof. Taking logarithm from the right hand side of (2.1), we have
1 log 1
log W (z) < log (logz — - loglogz | = loglogz + log {1 — —=—52)
2 2logx

Using log W (z) = logz — W (z), we get

log1
W(z) > logx —loglogz —log [ 1 — l0g log ¥
2logx

which considering —log(1 —t) > ¢ for 0 <t <1 (see [1]) with ¢ = 3822 implies the left hand side of (2.5).

To prove another side, we take logarithm from the left hand side of (2.1) to get

log1
log W(z) > log(log x — loglog x) = loglog x + log (1 — o%gogx) .
ogx
Again, using log W (z) = logz — W (x), we get
logl
W(z) <logz — loglogxz — log (1 — w) .
logz

Now we use the inequality —log(1 —t) < & for 0 <t <1 (see [1]) with ¢ = logloez ¢4 get

logz
“tog (1- loglog x < log log 1 loglog x -t < iloglogx7
log log log x m logx
where m = 1;n>1£1 (1 — 101‘501%) =1-1. So, we have —log (1 - lolgol%) < ﬁlolgol%, which gives desired
bounds. This completes the proof. (Il

3. STUDYING THE HYPERPOWER FUNCTION h(z) = a”

Consider the hyperpower function h(z) = :czrl . One can define this function as the limit of the sequence
{hp(2) }nen with hi(z) =  and h,y1(z) = 2" @), Tt is proven that this sequence converge if and only if
e <z<er (see [4] and references therein). This function satisfies the relation h(z) = 2"(*)| which taking
logarithm from both sides and a simple calculation yields

oy — Wloze™)
log(z 1)
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In this section we get some explicit upper and lower bounds for this function. To do this we won’t use the
bounds of Lambert W function, cause of they holds true and are sharp for x large enough. Instead, we do

it directly.

Theorem 3.1. Taking A =e —1—log(e — 1) = 1.176956974 - - -, for e ¢ <z < ec we have

1+ log(1l — logx) < ) < A+ log(1 —logx)

3.1
(3.1) 1—2logx 1—2logx

where equality holds in left hand side for x = 1 and in the right hand side for v = ec.

Proof. Fort > 0 we have t > logt+1, which taking t = z—log z with z > 0, implies z(l—21og(z%)) > log (1—
log(z%)) +1, and putting 2+ = z, or equivalently z = h(z), it yields that h(z)(1—2logz) > log(1 —logz)+1;
this is the left hand side (3.1), cause of 1 — 2logx is positive for e7¢ < z < e<. Note that equality holds for
t=z=x=1.

For the right hand side, we define f(z) = z —logz with 1 < z < e. Easily we see that 1 < f(z) < e —1; in
fact it takes its minimum value 1 at z = 1. Also, consider the function g(t) =logt —t+ A for 1 <t <e—1,
with A = e — 1 —log(e — 1). Since 2g(t) = 1 — 1 and g(e — 1) = 0, we obtain the inequality logt —t + A > 0
for 1 <t <e—1, and putting t = z — log z with é < z < e in this inequality, we obtain log(l —logz) + A >
z(1-2 log(z%)). Taking z= = x, or equivalently z = h(z) yields the right hand side (3.1). Note that equality
holds for z = e* (z =e,t = e —1). This completes the proof. |
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