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Abstract

Virtual machines (VMs) are a popular target for language implementers. A long-
running question in the design of virtual machines has been whether stack or reg-
ister architectures can be implemented more efficiently with an interpreter. Many
designers favour stack architectures since the location of operands is implicit in the
stack pointer. In contrast, the operands of register machine instructions must be
specified explicitly. In this paper, we present a working system for translating stack-
based Java virtual machine (JVM) code to a simple register code. We describe the
translation process, the complicated parts of the JVM which make translation more
difficult, and the optimisations needed to eliminate copy instructions. Experimental
results show that a register format reduced the number of executed instructions by
34.88%, while increasing the number of bytecode loads by an average of 44.81%.
Overall, this corresponds to an increase of 2.32 loads for each dispatch removed. We
believe that the high cost of dispatches makes register machines attractive even at
the cost of increased loads.
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1 Motivation

Virtual machines (VMs) are a popular target for language implementers who
wish to distribute programs in a portable, architecture-neutral format, which
can easily be interpreted or compiled. Virtual machine code is also a standard
intermediate format for efficient, general-purpose virtual machine interpreters.
The most popular virtual machines use a virtual stack architecture for eval-
uating expressions, rather than the register architectures that are commonly
used in real processors.

A long-running question in the design of virtual machines has been whether
stack or register architectures can be implemented more efficiently with an
interpreter. Many designers favour stack architectures since the location of
operands is implicit in the stack pointer [5,6,19]. In contrast, the operands
of register machine instructions must be specified explicitly. The interpreter
must fetch these operands from the virtual machine code, increasing the in-
terpreter overhead, when compared with a stack architecture. It is also widely
believed that stack architectures allow more compact virtual machine code,
again because operands are specified implicitly. In addition, stack code is eas-
ier to generate in the compiler than register code. At the very least, a stack
machine eliminates the need for a complicated register allocator.

For these reasons, a stack machine was chosen as the intermediate represen-
tation for the original implementation of Pascal. The Pascal source code was
compiled to P-code, which ran on a virtual machine, the most popular im-
plementation of which was the P4 [24]. P-code was the first really successful
virtual machine, and it helped establish the concept as a real alternative for
language implementations. Later, a stack architecture was also chosen for the
virtual machine in the ground-breaking Smalltalk programming environment
[16,20]. Since then, stack architectures have been used as the intermediate
representations for several popular virtual machines including the Java VM
and .NET VM.

More recently, a number of authors and implementors of virtual machines have
suggested that virtual register machines could be more efficient. Gregg et al.
[13] mentioned the possibility in a general discussion of interpreter optimisa-
tions. Furthermore, the Parrot VM - the intermediate representation for Perl
6 - will use a register architecture because the implementers belief in the supe-
riority of register machines. The Parrot VM has provoked a number of lively
debates on newsgroups such as comp.compilers and comp.lang.perl on the rel-
ative merits of virtual stack and register machines. Despite the controversy,
neither side has presented significant quantitative results comparing the two
approaches, so no conclusion could be reached.
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In this paper, we present a working system for translating stack-based Java
virtual machine (JVM) code to a simple register code. We describe the trans-
lation process, the complicated parts of the JVM which make translation more
difficult, and the optimisations needed to eliminate copy instructions. We also
present a number of design choices, which can have a significant impact on the
number of instructions in the resulting register machine program. We present
quantitative results for real, large programs: the standard SPECjvm98 and
Java Grande benchmark suites. We find that our virtual register architecture
significantly reduces (34.88%) the number of executed instructions in the Java
programs we tested, although at the cost of increasing the number of bytecode
fetches by 44.81%.

The rest of this paper is organised as follows. Section 2 describes the basic
functioning of a virtual machine interpreter, and the most important types
of instruction dispatch. In section 3 we describe the main differences between
virtual stack and virtual register machines. Section 4 looks at the particular
strengths and weaknesses of the two types of virtual architecture, and esti-
mates the relative advantages of each. In section 5 we present our translation
system to convert stack Java bytecode to an equivalent virtual register code.
Section 6 examines techniques for eliminating move instructions from register
code. Finally in section 7 we present results showing that a register format can
significantly reduce the number of executed instructions for the same program.

2 Virtual Machine Interpreters

The Java Virtual Machine uses a stack-based bytecode to represent the pro-
gram. Interpreting a bytecode instruction consists of accessing arguments, per-
forming the function of the instruction, and dispatching (fetching, decoding
and starting) the next instruction.

Instruction dispatch typically consumes most of the execution time in virtual
machine interpreters. The reason is that most VM instructions require only
a small amount of computation, such as adding two numbers or loading a
number onto the stack, and can be implemented in a few machine code in-
structions. In contrast, instruction dispatch can require up to 10–12 machine
code instructions, and involves a time consuming indirect branch. For this rea-
son, dispatch consumes a the greater proportion of the running time of most
efficient interpreters [7].

Switch dispatch is the simplest and most widely used approach. The main
loop of the interpreter consists of a large switch statement with one case for
each opcode in the JVM instruction set. Figure 1 shows how this approach is
implemented in C.
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typedef enum {

add /* ... */

} Inst;

void engine()

{

static Bytecode program[] = { iadd /* ... */ };

Bytecode *ip;

int *sp;

while (1)

switch (*ip) {

case iadd:

dest = ip[1];

s1 = ip[2];

s2 = ip[3];

reg[dest]=reg[s1]+reg[s2];

ip+=4;

break;

/* ... */

}

}

Fig. 1. Instruction dispatch using switch

Switch dispatch is simple to implement, but rather inefficient for a number
of reasons. First, most compilers produce a range check to ensure that the
opcode is within the range of valid values. In the JVM this is unnecessary,
since the bytecode verifier already checks that bytecodes are valid. Secondly,
the break is translated into an unconditional jump back to the start of the
loop. Given that the loop already contains a jump, it would be better to
structure the loop as a set of routines that jump to one another. A final
source of inefficiency results from there being only a single indirect branch
for dispatching instructions. On machines with programmer visible pipelines,
such as the Philips Trimedia processor for embedded systems, it is difficult to
overlap this branch with other instructions [14]. On processors with current
branch predictors, this branch is mispredicted more than 95% of the time [7].

An alternative to using a switch statement is threaded dispatch. Threaded
dispatch is based on making explicit the sequence of steps generated by a
compiler to implement a switch statement. Once these steps appear at the
source level, the programmer can optimize the code by removing unnecessary
work. Unfortunately, it is not possible to break a switch statement into its
component parts in ANSI C, because there is no facility for goto statements
that can jump to multiple different locations. To implement threaded dispatch,
one requires a language with labels as first class value, such as GNU C, the
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typedef void *Inst;

void engine()

{

static Bytecode program[] = { iadd /* ... */ };

Bytecode *ip;

Inst dispatch_table = { &&nop, &&aload_null, .... };

int *sp;

goto dispatch_table[*ip];

iadd:

dest = ip[1];

s1 = ip[2];

s2 = ip[3];

reg[dest]=reg[s1]+reg[s2];

ip+=4;

goto dispatch_table[*ip];

}

Fig. 2. Instruction dispatch using token threading in GNU C

language accepted by the GCC compiler.

Figure 2 shows how token threaded dispatch can be implemented using GNU
C. The range check has been eliminated, as has the jump back to the dispatch
routine at the end of the code for each VM instruction. Instead, the dispatch
code is appended to the end of the code for each virtual machine instruction.
This increases the size of the interpreter slightly, although it is usually faster.
Another effect of replicating the dispatch code is that it allows the dispatch
branch to be scheduled more efficiently with the code to implement the byte-
code instruction, and it also greatly increases the prediction accuracy of the
indirect branch on processors with branch target buffers (45% versus 2%–20%
for switch dispatch) [7].

If one is willing to build a more complicated interpreter system, even more
efficient dispatch mechanisms can be used. For example, direct threaded dis-
patch [1] removes the cost of the table lookup by translating the bytecode
to a format where each VM instruction is represented by a pointer to the C
code to implement that instruction. This requires a pre-translation process,
and greatly increases the size of the VM code (typically by a factor of 2–4 on
a 32 bit machine).

Similarly, a variety of schemes have been proposed to reduce the cost and/or
number of dispatches required to execute virtual machine code [8]. Essentially
there are two main approaches. The first is to replicate the executable code to
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implement VM instructions, which improves the predictability of the indirect
branch in the dispatch code. A second approach is to combine sequences of
VM instructions into single “superinstructions” which perform the work of
the full sequence, but require only a single dispatch to execute. Either of these
schemes can be implemented to work at either interpreter-build-time, or at
the time when the interpreter is already running, with varying trade-offs in
simplicity, code size and portability.

3 Stack versus registers

The cost of executing a virtual machine instruction consists of three compo-
nents:

• Instruction dispatch
• Operand access
• Performing the computation

The cost of dispatching an instruction is essentially the same for virtual regis-
ter and stack machines. However, a given computation can often be expressed
using fewer register machine instructions than stack ones. For example, the
local variable assignment a = b + c might be translated to JVM code as
ILOAD c, ILOAD b, IADD, ISTORE a. In a virtual register machine, the same
code would be the single instruction IADD a, b, c. Thus, virtual register ma-
chines have the potential to significantly reduce the number of executed in-
structions. By how much? It depends on how often values must be loaded to,
stored from, or shuffled around the stack. If the computation can be organ-
ised so that operands can always be found on top of the stack, changing to a
register architecture will give no reduction in executed instructions.

Another reason for pessimism with the number of executed instructions on
register machines relates to register allocation. The number of virtual registers
is always limited, and if there are more live values than registers, some values
must be spilled to memory. Additional load and store instructions must be
added to access spilled values, increasing the number of executed instructions
rather than reducing them.

Our experience is that this argument is something of a red herring, at least for
the Java VM. The most commonly used instructions for loading and storing
local variables use a one-byte index, which specifies the number of the local
variable. A comparable virtual register machine would use a one-byte index
to specify each of its operands, allowing up to 256 virtual registers to be
used in each method. Measurements show that no methods in the standard
SPECjvm98 and Java Grande benchmarks contain anything like 256 local

6



variables or stack values, the values that could be allocated to registers. On
the contrary, most methods contain less than 25 such values [33] 2 .

The second component of the cost of executing a VM instruction is accessing
the operands. This consists of two separates costs — finding the location of
the operands, and accessing the operands themselves. Finding the operands’
locations is expensive for a virtual register machine. The location of each
operand must be fetched from the instruction stream 3 , and used as an index
into an array of virtual registers. In contrast the cost of locating operands
is lower on stack machine, since most operands are found on the top of the
stack. The main cost is updating the stack pointer, and even this is not always
necessary.

Virtual registers and virtual stacks are usually implemented as arrays in mem-
ory, so the cost of accessing the operands themselves is similar for both types
of virtual architecture. Stack caching can be used, however, to reduce the cost
of accessing virtual stacks by keeping the top one or two items in a register.
For example, Ertl [5] found that keeping the topmost stack item in a register
reduced memory traffic for stack items by about 50%.

It is very difficult to keep virtual register items in real machine registers,
because real machine registers cannot be accessed array-like, with an index.
However, virtual register machine instructions fetch and operate on all their
data in a single VM instruction. Thus, intermediate values are likely to be
kept in real machine registers during the execution of the VM instruction. In
contrast, a virtual stack machine might require more than one VM instruction
to perform the operation. The intermediate values between these different
instructions are likely to be written to the stack, resulting in real machine load
and store operations. Thus, a similar effect to stack caching can be achieved
by the virtual register machine.

2 Support for those very rare methods that contain more than 256 local variables
could be implemented by adding special instructions move values in and out of
a larger (16 bit indexed) local variable area. A few registers would be needed to
load and store these ’spilled’ values. In principle, a register allocator could be used
to allocate the most important variables to the first 256 registers. However, such
methods are likely to be so rare that the additional benefit of such an allocator
would be so low as to make it unnecessary.
3 An alternative to fetching each operand location separately is to use a four-byte
instruction containing the opcode and three register indices. This entire instruction
could be fetched in a single load. However, it would still be necessary to extract the
opcode and register numbers inside the four-byte instruction. This would involve
shifting and masking the loaded instruction. Clearly the cost of such operations
varies from one processor to another (for example the Pentium 4 has no barrel
shifter, so large shifts are expensive). But the cost is likely to be in the same ball-
park as the cost of four single byte loads.
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The final component of the cost of executing a VM instruction is actually
performing the computation itself. Given that most VM instructions perform
a simple computation, such as an add or a load, this is usually the smallest
part of the cost of executing a VM instruction. Generally, the type of virtual
machine will not make a difference to this cost. The basic computation has
to be performed, regardless of the format of our intermediate representation.
However, there are situations where a register architecture can allow more
efficient code. In particular, exploiting common sub-expressions (or more gen-
erally, partially redundant expressions) is easier on a register machine that
does not destroy its operands when using them, as a stack machine normally
does.

An important question is how great the benefit from eliminating partially re-
dundant expressions might be on a virtual register machine. We are unaware
of any measures of this optimisation on Java programs. However, Bodik et

al. [2] measured the effect of this optimisation on the standard SPECint 95
C benchmarks, and found that complete partial redundancy elimination al-
lowed only around 3% of operations to be eliminated. Furthermore, one of the
most common sources of common sub-expressions is in the shifting of array
subscripts, something that is not visible at the Java VM level. Therefore, the
virtual register machine’s advantage from being able to eliminate partially
redundant expressions is likely to be small.

4 Some estimates

Clearly, the difference in speed between a virtual stack machine and a corre-
sponding register machine can depend on many factors, especially on modern
out-of-order processors with branch prediction and caches that make perfor-
mance difficult to predict. However, we believe that the difference between the
two types of machine can be estimated by looking at four main factors. The
running of a virtual register machine (VRM) might be compared to a virtual
stack machine (VSM) as follows:

TV RM ≈ TV SM − #dispatches × Tdispatch + #fetches × Tfetch

In other words, the running time of a program on a VRM will be approximately
equal to the running time of the program on a corresponding stack machine,
minus the reduction in dispatches times the cost of a dispatch, plus the increase
in fetches of operand locations times the cost of each of those fetches.

Generally, we would expect that the increase in fetches is likely to be large,
since most VM instructions need between one and thee extra immediate
operands to specify register locations. The cost of each of these fetches is
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likely to be low, however, since each usually corresponds to just an additional
load instruction.

The reduction in dispatches is much more difficult to estimate without look-
ing at real programs. However the cost of dispatch can be measured with at
least some degree of accuracy. Ertl and Gregg [7] found that virtual machine
interpreters contain very large numbers of indirect branches (up to 13% of all
executed real machine instructions). Furthermore, these branches are highly
(60%-97%) unpredictable on current desktop and workstation processors. The
cost of each indirect branch misprediction is very high, because it requires
that the entire pipeline be drained, consuming 6–30 cycles, depending on the
length of the pipeline. Thus, an interpreter using threaded dispatch (typical
indirect branch misprediction rate 60%) running on a processor with a branch
misprediction penalty of 20 cycles would expect to lose an average of 12 cycles
on branch mispredictions for each VM instruction executed. Also we would
expect the other dispatch code to take a couple of additional cycles to execute,
for a total average dispatch cost of perhaps 14 cycles. Using switch dispatch
would result in many more (around 97% misprediction rate) indirect branch
mispredictions, and a few more cycles for the other dispatch code.

Ertl and Gregg [7] found that more than half of the execution time of many
efficient interpreters is spent on indirect branch mispredictions. Almost any-
thing that reduces the number of dispatches has the potential to significantly
improve performance. Therefore, if register virtual machines allow the same
computation to be performed using fewer VM instructions, they may be sig-
nificantly faster.

However, as noted above the cost of all dispatch mechanisms is not the same;
threaded dispatch is about twice as fast as switch dispatch, although it cannot
be implemented in ANSI C. Similarly, other interpreter optimisations which
reduce the cost and/or number of dispatches will strongly affect the relative
performance of stack and register architectures. Thus, register machines might
prove more efficient where the interpreter must be written in ANSI C for
maximum portability, while a stack architecture might have an edge where
GNU C or assembly language is acceptable.

5 From stack to register

To compare the relative benefits of virtual stack and register machines, we
constructed a system for translating stack-based Java bytecode to a similar
register code. The JVM performs almost all its computations on the stack.
Values must be loaded from memory before they can be operated upon. JVM
instructions consist of a (usually) single-byte opcode, followed by zero or more
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ILOAD 4 IMOVE r10, r4 ; load local 4

ILOAD 5 IMOVE r11, r5 ; load local 5

IADD IADD r10, r10, r11 ; integer add

ISTORE 6 IMOVE r6, r10 ; store TOS to local 6

ILOAD 6 IMOVE r10, r6 ; load local 6

IFEQ 7 IFEQ r10, 7 ; branch by 7 if TOS == 0

Fig. 3. Example of stack and corresponding register code

one-byte operands. Operands typically specify the location of local variables to
be loaded, immediate arguments for arithmetic instructions, offsets to the pro-
gram counter for branches, and indexes into the constant pool for instructions
that invoke methods, access fields of objects, or use large constants.

Our register machine instruction set was chosen to provide direct counterparts
to the JVM instructions. Each register machine instruction consists of a (usu-
ally) single-byte opcode, followed by exactly the same single-byte operands as
in the JVM stack code. However, an additional one-byte immediate operand
is added to specify the source and destination register of each value read from
or written to the stack 4 . Thus, most arithmetic instructions consist of only
a single-byte opcode in the JVM, but the corresponding register instructions
require an opcode and three operands.

Our translation scheme is based on mapping local variables and stack locations
to a single set of virtual registers. In the JVM, all local variables are numbered,
and we translate local variable numbers directly to virtual register numbers
(so local variable zero is mapped to register zero).

Mapping stack locations to virtual register numbers is a little more compli-
cated. Each stack location is given a number, and those numbers start just
after the position of the last local variable. Mapping stack locations to register
numbers is much simplified by Java’s strict stack discipline. It is not possible
to write code that, for example, increases the number of items on the stack
on each iteration of a loop, as can be done in Forth. At every point in the
program, the height of the stack must be fixed, and can be determined by
simple static analysis. At control flow join points the height of the stack must
be equal on both incoming control flow edges. Thus, by tracking the value of
the stack pointer at each point in the program, it is possible to map stack
locations to register numbers.

4 An exception is with some JVM local load and store instructions such as ILOAD 0,
in which the immediate operand is encoded into the opcode. We use only a single
register MOVE instruction, in which both the source and destination are specified as
immediate operands. Given that we eliminate most MOVE instructions, we judged
that the benefit of specialised versions for particular source or destination registers
would be small.
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Figure 3 shows an example of Java stack bytecode and the corresponding regis-
ter code. Note that in the register code, the first register operand is always the
destination. We assume that there are ten local variable slots in this method
(r0..r9), so the stack pointer for the initially empty stack will point to r10.
Thus, when we translate an ILOAD instruction which copies the value in local
variable 4 to the top of the stack, we translate this as an integer move (IMOVE)
instruction from register r4 to register r10.

Similarly, we translate the IADD stack instruction to a register IADD instruction
that takes the topmost item in the stack (r11) and the second from top (r10),
adds the two and places the result in the new topmost stack item (r10),
which will be one lower than the previous top of stack because IADD reduces
the height of the stack by one.

Using this scheme, it is relatively easy to translate any sequence of stack Java
bytecode to an equivalent register format. It is important to note that the
resulting code will often contain unnecessary and redundant MOVE instructions.
For example, the original stack code contains the sequence ISTORE 6, ILOAD

6, which stores the topmost stack item to local variable number 6, and then
reloads the value to the top of the stack. This type of sequence is actually
extremely common in code produced by the javac compiler. Presuming that
the value is stored to the local variable to allow it to remain live after the end
of the basic block, it is not possible to express this in fewer instructions. In
the corresponding register code, however, it is easy to remove many of these
IMOVE instructions.

One type of stack instruction that needs special handling in the translation
is method invocation instructions. Standard (stack) JVM invoke instructions
take their parameters from the top of the stack. These n topmost stack items
become the first n local variables of the invoked method. Thus, invoke in-
structions can consume several values, and they destroy these values in the
process.

In theory, this scheme allows extremely fast parameter passing, since making
the topmost stack elements into the first local variables simply involves one
assignment to the frame pointer. In practice, however, the parameters are
rarely already on the stack, and most JVM invoke instructions are preceded
by one or more load instructions. Furthermore, once the parameters have been
passed to the invoked method, they are in local variables and must be loaded
to the stack before they can be used.

The simplest way to translate the parameter passing mechanism to register
format would be a completely literal translation, where the topmost registers
of the caller become the first registers of the callee. In our first implementation
we used this scheme, but found that it prevented us from removing a very large
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number of load instructions when translating to register format. The problem
is that invoke instructions consume several values, each of which must be in
a specific register, and so cannot be moved.

Our new scheme uses an alternative scheme where each invoke takes as an
immediate argument a list of the registers that it takes as parameters. Al-
though this increases the number of loads necessary to identify the location
of operands, it allows us to eliminate the great majority of MOVE instructions
in register code.

6 Eliminating Moves

Translating the Java bytecode to register code does not automatically reduce
the number of executed instructions. The translation process outlined in the
previous section simply converts each instruction directly from a stack to a
register format. To eliminate unnecessary MOVE instructions, we apply a copy
propagation algorithm that rewires the source and destination registers of
instructions to bypass MOVEs. Once the sources and destinations have been
changed, many of the MOVE instructions become dead code and can be elimi-
nated.

We implemented two copy propagation algorithms, the first operating only on
basic blocks and the second operating on the entire Java method. The basic
block algorithm is both simple and efficient, and allows copy operations to
be bypassed within a basic block. It is important to note that most values
that are loaded to the stack are used very soon afterward, so a basic block
algorithm can be very effective.

One complication that normally arises with single-basic-block copy propaga-
tion is that it is difficult to eliminate dead copies, because it is not clear which
values are still alive at the end of the basic block. In Java bytecode, the prob-
lem is very much easier, since most destinations of MOVE instructions are on
the stack. We can easily identify when most values on the stack become dead
because the stack pointer moves below them (anything above the stack pointer
is dead). Furthermore, the standard idiom used by the javac compiler is that
the stack should be empty at the start and end of each statement. Thus, in
the great majority of cases, the stack is empty at the end of each basic block,
and all the items on the stack are dead.

Our second copy propagation algorithm operates on an entire method at a
time. It uses classic dataflow analysis to compute liveness sets and propagate
copies across basic block boundaries. Thus, it is much slower and more com-
plicated that our basic block algorithm, and is probably not suitable for using
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in a scheme that translates from stack code to register code at load time. How-
ever, when we compared the two algorithms we found that there is a difference
of less than 1% in the results. Clearly, a simple, efficient basic-block approach
with liveness based on stack position is sufficient in most cases.

7 Experimental Evaluation

Our basic hypothesis is that virtual register machines have the potential to be
interpreted more efficiently than stack machines by reducing the number of
executed instructions. To test this hypothesis, we implemented a system for
translating Java bytecode to a corresponding register format, and measured
the differences using the SPECjvm98 [31] and Java Grande [3] benchmarks.
These benchmarks consists of several large programs with real data, which are
intended to be representative of a wide range of Java applications.

Our translation system was built into CVM, a small implementation of the
Java 2 Micro Edition (J2ME) standard. It supports the full JVM instruction
set, as well as full system-level threads. We made a number of small additions
to CVM to enable it to run the SPEC benchmarks and to allow us to safely
compile it at a higher level of optimization than the standard distribution.
All quoted figures are for the basic block implementation of copy propagation
and dead copy elimination, as we believe this to be the most practical scheme.
The whole-method copy propagation gives only slightly (less than 1%) better
results.
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Fig. 4. Breakdown of statically appearing register code instructions into moves elim-
inated, moves that could not be eliminated and other instructions.
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Benchmark Instructions Moves % Eliminated % Code growth%

compress 28,612 9,852 34.43% 8,227 28.75% 43.26%

jess 38,537 13,557 35.18% 11,392 29.56% 41.03%

db 29,365 10,167 34.62% 8,434 28.72% 42.38%

javac 59,545 22,442 37.69% 19,179 32.21% 36.94%

mpegaudio 58,823 18,126 30.81% 16,135 27.43% 53.84%

mtrt 33,969 12,004 35.34% 10,079 29.67% 42.72%

jack 44,709 15,027 33.61% 12,737 28.49% 45.94%

MolDyn 31,873 10,465 32.83% 8,811 27.64% 45.80%

RayTracer 20,999 7,006 33.36% 5,739 27.33% 43.90%

Euler 28,003 9,684 34.58% 8,178 29.20% 46.28%

MonteCarlo 23,442 8,010 34.17% 6,477 27.63% 42.76%

Search 21,328 7,005 32.84% 5,717 26.81% 45.08%

Average 34,636 11,838.85 34.11% 9,982 28.56% 44.17%

Table 1
The number of static instructions that can be potentially removed and the the
number that are actually removed, compared with the total number of instructions.
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Fig. 5. Breakdown of dynamic register code instructions into moves eliminated,
moves that could not be eliminated and other instructions.

The first time each method is invoked we translate it to register format. Thus,
we present measurements only for methods that are executed at least once. It is
important to note that we do not advocate run-time translation from stack to
register format as the best or only way to use virtual register machines. Clearly,
this is a possibility, maybe even an attractive one. But our main intention in
doing this work is to evaluate free-standing virtual register machines. Run-
time translation is simply a mechanism we use to easily compare stack and
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Benchmark Instructions Moves % Eliminated % extra loads loads/dispatch

compress 4,917 1,713 34.84% 1372 27.91% 5280 3.85

jess 979 419 42.82% 349 35.73% 657 1.88

db 1,135 541 47.68% 428 37.69% 750 1.75

javac 1,335 571 42.82% 440 32.95% 952 2.17

mpegaudio 4,805 1,779 37.04% 1509 31.40% 4387 2.91

mtrt 970 350 36.13% 346 35.63% 667 1.93

jack 611 277 45.40% 229 37.48% 347 1.52

MolDyn 7,589 3,663 48.26% 3147 41.48% 2883 0.92

RayTracer 7,177 2,654 36.98% 2596 36.18% 7594 2.92

Euler 10,162 4,100 40.35% 3830 37.69% 9082 2.37

MonteCarlo 1,625 609 37.52% 498 30.67% 1717 3.45

Search 4,780 1,924 40.26% 1531 32.04% 4563 2.98

Average 3,545 1,431 41.28% 1252 34.88% 2991 2.32

Table 2
The number of executed instructions (in millions) that can be potentially removed
and that are actually removed, compared with the original total. The net increase in
bytecode fetches (in millions) is shown in second rightmost column. The rightmost
column shows the number of extra bytecode loads for each VM instruction dispatch
eliminated.

register versions of the JVM.

7.1 Instruction Dispatches

Table 1 and figure 4 show the breakdown of instructions after translation to
register format, based on statically appearing code. Overall, an average of
34.11% of statically appearing instructions are MOVE instructions. 28.56% of
total instructions are MOVEs that can be eliminated with copy propagation and
dead code elimination.

Table 2 and figure 5 show the breakdown of dynamically executed instructions.
Interestingly, 41.28% of dynamically executed instructions are MOVEs. Clearly,
local loads and stores are not distributed evenly throughout the programs,
and code with larger numbers of such instructions tends to be executed more
frequently. An average of 34.88% of executed instructions were eliminated
by translating to a register format. At more than one third of executed in-
structions, this is a very large number and strongly suggests that our virtual
register machine could be interpreted more efficiently than the corresponding
stack machine. This is especially likely to be true where the interpreter uses
switch dispatch (see section 2), such as where the interpreter must be written
in ANSI C.

15



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

co
m

pr
es

s
jes

s db
jav

ac

m
pe

ga
ud

io
m

trt
jac

k

M
olD

yn

Ray
Tra

ce
r

Eule
r

M
on

te
Car

lo

Sea
rc

h

Code size

Loads

Fig. 6. Increase in code size and resulting net increase in bytecode loads from using
a register rather than stack architecture.

7.2 Code Size and Bytecode Loads

One of the drawbacks of register code is that it is usually larger than corre-
sponding stack code, because the locations of operands must appear explicitly
in the code. Figure 6 and the rightmost column of table 1 shows the per-
centage increase in code size. There are two effects at work here, pulling in
opposite directions. First, translating to a register format increases the number
of operands in the bytecode. Secondly, applying copy propagation and dead
copy elimination allows us to eliminate a large number of instructions, thus
reducing both the number of opcodes and operands. The increases in code
size are similar across all programs. Overall, the register code is an average of
44.17% larger than the corresponding stack code.

Perhaps the most important result of the increase in code size is that it will
increase the number of real machine instructions required to load the byte code
instructions, including operands. Figure 6 shows the net increase in bytecode
loads in the interpreter caused by the register format. These figures assume
that each opcode and each register operand occupies one byte, each of which
must be loaded separately. Whereas the code size increases are consistent
across all programs, there is a wide variation in the number of additional
dynamically executed loads caused by using a register architecture. This result
is not necessarily surprising, because programs spend most of their time in
small parts of the code, which may vary considerably from the rest of the
program. Overall, the register format requires an average of 44.81% extra
bytecode loads. Clearly this is a large number, but loads are usually very
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much less costly than the indirect branches in instruction dispatches.
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Fig. 7. Increases in dynamically loaded bytecode instructions per VM instruction
dispatch eliminated by using a register rather than stack architecture.

We also examined the ratio of the increase in the number of loads to the re-
duction in dispatches. That is, how many additional loads must be executed
for each dispatch eliminated? As shown in figure 7 and the rightmost column
of table 2, there is a considerable variation from one program to another.
For example, 0.92 extra loads per dispatch eliminated for MolDyn, compared
with 3.85 for compress. As in figure 6, the number of dynamic bytecode loads
is strongly influenced by relatively small pieces of frequently executed code.
Overall the SPECjvm98 and Grande benchmarks, translating to bytecode in-
creased the number of bytecode loads by an average of 2.32 for every dispatch
eliminated. We believe that for switch based interpreters running on mod-
ern pipelined processors where the cost of branch mispredictions is very high,
even 2.32 extra loads for each dispatch removed will still result in a significant
benefit to the virtual register machine interpreter.

7.3 Local Data Memory Accesses

As was seen in section 3, virtual register machine instructions fetch and operate
on all their data in a single VM instruction. Thus, intermediate values are likely
to be kept in real machine registers during the execution of the VM instruction.
In contrast, a virtual stack machine must write these intermediate values to
the stack. In many implementations, the stack is represented entirely as an
array in memory, so these extra accesses correspond to real machine load and
store instructions.

Figure 8 shows the static number of loads and stores to access the virtual
registers of our virtual register machine (assuming intermediate values within
a VM instruction are kept in registers), as a percentage of the loads and stores
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Fig. 8. Static number of real machine loads and stores required to access virtual
registers in our virtual register machine as a percentage of the corresponding loads
and stores to access the stack and local variables in a virtual stack machine.
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Fig. 9. Dynamic number of real machine loads and stores required to access virtual
registers in our virtual register machine as a percentage of the corresponding loads
and stores to access the stack and local variables in a virtual stack machine.

needed to access the stack and local variables in the virtual stack machine.
Overall, there is very little difference. Although there is some reduction in
memory accesses due to intermediate operands being kept in registers, this is
offset by our more clumsy parameter passing mechanism, which requires that
all operands be copied.
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In contrast, the dynamic reduction in memory accesses is much larger (figure
9). This is not surprising, given that more MOVEs are eliminated dynamically
than statically (see figures 4, 5), and thus there is more potential for interme-
diate values to be kept in registers in the frequently executed code.

It is also interesting to note that the percentage reduction in stores is consis-
tently greater than that in loads. Stores to the stack are mostly the result of
JVM local load instructions such as ILOAD, which read a value from a local
variable and write it to the stack. In contrast, a much smaller proportion of
reads from the stack are the result of JVM local store instructions, such as
ISTORE. Many other frequently executed VM instructions also read from the
stack. So when the JVM code is translated to register code, and many of the
MOVE instructions are eliminated, there is a disproportionate reduction in real
machine stores. However, real machine loads are more frequent than real ma-
chine stores, so the total weighted reduction is closer to the reduction in real
machine loads.
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Fig. 10. Dynamic number of real machine memory accesses eliminated by converting
to virtual register code per VM instruction executed.

Figure 10 shows the number of memory accesses eliminated per VM instruc-
tion executed. On average, 0.73 such memory accesses are eliminated per VM
instruction executed, as compared with an average of 2.32 extra bytecode
loads. So overall, there is still a significant increase in the number of real
machine memory operations required when interpreting code for our register
architecture.

Finally, it is important to note that these measurements assumes an unop-
timised implementation of the virtual stack machine. The number of real
machine loads and stores required for accessing values on the stack can be
reduced dramatically using stack-caching [5]. So in optimised implementa-
tions, the stack architecture is likely to require fewer real machine loads and
stores. Because theses numbers depend so heavily on how the VM interpreter
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is implemented, we have not integrated them with our other measures of loads
of instruction bytecodes.

In addition to the architecture-independent measurements presented in this
paper, in the future we could like to present actual running times for stack
and register versions of the JVM on various architectures. Although creating
an interpreter for a register architecture is relatively simple, other aspects
of the JVM such as concurrency, synchronisation, garbage collection, class
verification, and exceptions make changing the layout of code and data in a
JVM rather complicated. Initial experiments suggest that significant savings
are indeed possible, but at the time of writing we have no properly-working
implementation.

8 Related Work

Recent important developments in interpreters include the following. Inter-
preter generators simplify construction and maintenance of interpreters and
can allow automatic VM instruction combining [27] and stack optimizations
[9]. Stack caching [5] is a general technique for storing the topmost elements of
the stack in registers. Ertl and Gregg [7] showed that interpreters (especially
those using switch dispatch) spend most of their time in branch mispredic-
tions on modern desktop architectures. Interpreter software pipelining [14] is
a valuable technique for architectures with delayed branches (e.g. Philips Tri-
media) or prepare to branch instructions (e.g. PowerPC), which makes the
target of the dispatch branch available earlier by moving much of the dispatch
code into the previous VM instruction. Costa [28] discusses various smaller
optimizations.

The Sable VM [11] is an interpreter-based research JVM. This interpreter
uses a run-time code generation system [25], not dissimilar from a just-in-
time compiler. Sable uses a novel system of preparation sequences [12,10] to
deal with bytecode instructions that perform initialisations the first time they
are executed. Such instructions otherwise make code generation difficult.

Myers [22] attempts to refute the idea that stack machines will necessarily
result in smaller code, with lower cost to access operands. The argument is
based on measurements of real programs which show that the expression in
most assignment statements is extremely simple. Thus, in most cases operands
must be loaded to the stack for use, rather than already being there as part of
the evaluation of a complex expression. However, beyond measurements of the
complexity of expressions, Myers presents only a handful of small examples
showing situations where register code is superior to stack code.
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Myers’ arguments led to a series of articles debating the topic in Computer

Architecture News. Schulthess and Mumprecht [29] argue that Myers’ measure-
ments of the complexity of expressions is inconclusive, since programs contain
features other than expressions that are better expressed using stacks. These
include subroutine calls, parameter passing and multitasking. No quantitative
data is provided.

Keedy [17] proposes an architecture using a both a stack and a single regis-
ter accumulator. He argues that the accumulator allows a number of common
cases to be encoded in a smaller number of instructions than with the stack
alone, without a large increase in code size. Myers [23] replies to this with
further statistical data on expressions, arguing that two-address memory in-
struction sets can encode the commonest expressions most cheaply. Further
discussions [30,4,18] argue the merits of memory-to-memory and stack archi-
tectures.

The controversy between stack and register code has arisen again recently
because of the decision to make the the Parrot VM, the intermediate repre-
sentation for the Perl 6 language, a register rather than stack machine. Again,
arguments for this design decision [32] have been based on just a couple of
small examples, rather than any study of real programs. The VM for the Lua
[15] language also recently switched from a stack to a virtual machine, with the
release of version 5.0. Similar suggestions were proposed by McGlasham and
Bower [21] and Winterbottom and Pike [34], without studies of real programs.

9 Conclusion

Virtual register machines can be an attractive alternative to virtual stack
architectures because they allow the number of executed instructions to be
reduced by eliminating large number of loads to and stores from the stack.
This is especially important for interpreters running on modern pipelined pro-
cessors, where the cost of instruction dispatch is very high.

We have described a system for translating Java bytecode to a corresponding
register format. We have implemented this system in a real JVM and used
it to collect data on the the effect of translating the SPECjvm98 and Java
Grande benchmarks to register format. We believe that ours is the first quan-
titative data that measures hard numbers in real programs, rather than basing
arguments on small examples. We found that translating to a register format
decreases the number of executed instructions by an average of 34.88%, while
increasing the number of bytecode loads by an average of 44.81%. Overall, this
corresponds to an increase of 2.32 loads for each dispatch removed. We believe
that the high cost of dispatches makes register machines attractive even at the
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cost of increased loads.
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