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Abstract

The queue data structure is fundamental and ubiquitous. Lock-
free versions of the queue are well known. However, an impor-
tant open question is whether practical wait-free queues exist. Un-
til now, only versions with limited concurrency were proposed.
In this paper we provide a design for a practical wait-free queue.
Our construction is based on the highly efficient lock-free queue of
Michael and Scott. To achieve wait-freedom, we employ a priority-
based helping scheme in which faster threads help the slower peers
to complete their pending operations. We have implemented our
scheme on multicore machines and present performance measure-
ments comparing our implementation with that of Michael and
Scott in several system configurations.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features — Concurrent program-
ming structures; E.1 [Data structures]: Lists, stacks, and queues

General Terms Algorithms, Performance

Keywords concurrent queues, wait-free algorithms

1. Introduction

The proliferation of multicore systems motivates the research for
efficient concurrent data structures. Being a fundamental and com-
monly used structure, first-in first-out (FIFO) queues1 have been
studied extensively, resulting in many highly concurrent algorithms
(e.g., [14, 19, 21]). A concurrent queue algorithm supports lineariz-
able enqueue and dequeue operations, which add and remove
elements from the queue while observing the FIFO semantics.

A highly desired property of any concurrent data structure im-
plementation, and queues in particular, is to ensure that a pro-
cess (or a thread) completes its operations in a bounded number
of steps, regardless of what other processes (or threads) are do-
ing. This property is known in the literature as (bounded) wait-
freedom [9, 11, 15]. It is particularly important in systems where
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strict deadlines for operation completion exist, e.g., in real-time
applications or when operating under a service level agreement
(SLA), or in heterogenous execution environments where some of
the threads may perform much faster or slower than others. Yet,
most previous queue implementations (e.g., [14, 17, 19, 21, 24, 25])
provide the weaker lock-free property; lock-freedom ensures that
among all processes accessing a queue, at least one will succeed to
finish its operation. Although such non-blocking implementations
guarantee global progress, they allow scenarios in which all but one
thread starve while trying to execute an operation on the queue.
The few wait-free queue constructions that exist, as discussed later,
are either stem from general transformations on sequential objects
and are impractical due to significant performance drawbacks, or
severely limit the number of threads that may perform one or both
of the queue operations concurrently.

In fact, when considering concurrent data structures in general,
one realizes that with only a few exceptions (e.g., [5, 22]), wait-
free constructions are very rare in practice. A possible reason for
this situation is that such constructions are hard to design in an
efficient and practical way. This paper presents the first practical
design of wait-free queues, which supports multiple concurrent de-
queuers and enqueuers. Our idea is based on the lock-free queue
implementation by Michael and Scott [19], considered to be one of
the most efficient and scalable non-blocking algorithms in the liter-
ature [11, 14, 24]. Our design employs an efficient helping mech-
anism, which ensures that each operation is applied exactly once
and in a bounded time. We achieve wait-freedom by assigning each
operation a dynamic age-based priority and making threads with
younger operations help older operations to complete. Moreover,
we believe the scheme used to design the operations of our queue
can be useful for other data structures as well. In addition to the
base version of our wait-free algorithm, we propose several op-
timizations to boost the performance when the contention is low
and/or the total number of threads in the system is high.

We have implemented our design in Java and compared it with
an implementation of Michael and Scott’s lock-free queue [19]
using several benchmarks and various system configurations. Our
performance evaluation shows that the wait-free algorithm is typ-
ically slower than the lock-free implementation, but the slow-
down depends on the operating system configuration. Issues such
as scheduling policy, memory management, policy of allocating
threads to computing cores might have a crucial impact on the pro-
duced interleavings in thread executions. Interestingly, the wait-
free queue is even faster than the lock-free one, in some realistic
cases, in spite of its much stricter progress guarantee.

2. Related Work

Lock-free queue implementations are known for more than two
decades, starting from works by Treiber [23], Massalin and Pu [17]
and Valois [25]. The algorithm presented by Michael and Scott [19]



almost 15 years ago is often considered the most scalable lock-free
queue implementation to date [11, 14, 24]. Several recent works
propose various optimizations over this implementation [14, 21].

Yet, until now, a practical wait-free implementation of the queue
data structure remained an important open question. All previous
proposals limited concurrency in queue operations. The first such
implementation was introduced by Lamport [16] (also in [11]); it
allows only one concurrent enqueuer and dequeuer. Also, the queue
in [16] is based on a statically allocated array, which essentially
bounds the number of elements that the queue may contain. More
recently, David [8] proposed a wait-free queue that supports mul-
tiple dequeuers, but only one concurrent enqueuer. His queue is
based on infinitely large arrays. The author states that he may get a
bounded-array based implementation at the price of increased time
complexity. Following David’s work, Jayanti and Petrovic [13] pro-
posed a wait-free queue implementation supporting multiple en-
queuers, but only one concurrent dequeuer. The elements of their
queue are stored in dynamically allocated nodes.

Thus, we are not aware of any previous implementation of a
wait-free queue, which supports multiple concurrent enqueuers and
multiple concurrent dequeuers. In particular, we are not familiar
with an implementation that does not require such a queue to
be statically allocated and does not use primitives stronger than
compare-and-swap (CAS), widely available on modern processors.

In the context of non-blocking concurrent data structures, we
should also mention universal constructions [10, 11]. These con-
structions are generic methods to transform any sequential object
into lock-free (or wait-free) linearizable concurrent object. The first
such construction was proposed by Herlihy [10]. His idea was to al-
low each concurrent process to create a private copy of the object,
apply its changes locally and then attempt to modify the shared
root pointer of the object to point the private copy. For the wait-
free transformation, he employed a similar mechanism to ours, in
which each process writes in a special array the details of the oper-
ation it is going to perform, while other processes may access this
array and assist slower peers to complete their operations.

Herlihy’s construction has two very significant performance
drawbacks. First, the copying can be very costly, especially for
large objects. Second, the construction precludes disjoint-access
parallelism since it requires an atomic update of a single root
pointer. Thus, even if concurrent operations modify different parts
of the structure, as happens in queues, they still will contend. Al-
though many optimizations were proposed to address one or both
of these limitations [3, 4, 7, 20], universal constructions are hardly
considered practical. It is worth mentioning that the recent work by
Chuong et al. [7] gives a refined construction for queues, which al-
lows concurrent enqueue and dequeue operations. Their queue,
however, is implemented as a statically-allocated array, thus the up-
per bound on the total number of elements that can be inserted into
the queue has to be set upfront. In addition, their work does not
provide any performance evaluation.

3. Wait-Free Queue Algorithm

We start by presenting the idea of our wait-free queue, including
the scheme by which the queue operations are implemented (Sec-
tion 3.1). Following that, we provide the full implementation in
Java of our base algorithm (Section 3.2). Preferring the simplicity
of the presentation of principal ideas over performance optimal-
ity, we defer the discussion of potential optimizations of the base
algorithm to Section 3.3. Utilizing the fact that Java is a garbage-
collected language, in our base algorithm we do not deal with mem-
ory management and problems related to that. We elaborate on how
our algorithm can be implemented in other runtime environments,
such as C++, in Section 3.4. In our code, we follow the style of the
lock-free algorithm by Michael and Scott [19] as it appears in [11].

For simplicity, we assume the queue stores integer values, though
the extension for any generic type is trivial.

3.1 Theidea in a nutshell

Similarly to the queue in [19], our wait-free implementation is
based on the underlying singly-linked list and holds two refer-
ences to the head and tail of the list, respectively called head
and tail. Our implementation significantly extends the helping
technique already employed by Michael and Scott in their original
algorithm [19]. Every thread ¢; starting an operation on the queue
chooses a phase number, which is higher than phases of threads that
have previously chosen phase numbers for their operations (we will
explain later how the phase number is chosen). Then it records this
number, along with some additional information on the operation it
is going to execute on the queue, in a special state array.

Next, t; traverses the state array and looks for threads with
entries containing a phase number that is smaller or equal than the
one chosen by ¢;. Once such a thread ¢; is found (it can be also ¢;
itself), ¢; tries to help it execute its operation on the queue, i.e., to
insert ¢;’s node into the queue (enqueue) or to remove the first
node from the queue on behalf of ¢; (dequeue). The thread ¢;
learns the details on ¢;’s operation from the state array. Finally,
when ¢; has tried to help all other threads with a phase number not
larger than it has, it can safely return the execution to the caller of
the (dequeue or enqueue) operation. That is, ¢; can be confident
that its own operation on the queue has been completed either by ¢;
or by some other concurrently running and helping thread.

Our algorithm is carefully designed to handle concurrent assis-
tance correctly, and in particular, to avoid applying the same op-
eration more than once. Essentially, this is the most sophisticated
part of our design. The idea is to break each type of operation (i.e.,
dequeue and enqueue) into three atomic steps, so that steps be-
longing to the same operation can be executed by different threads,
yet they cannot interleave with steps of other concurrent operations
of the same type. These steps form the implementation scheme of
the operations, and are presented hereby. (Under “internal structure
of the queue” we mean the underlying linked list along with the
head and tail references).

1. Initial change of the internal structure of the queue, such that all
concurrent threads performing the operation of the same type
realize that there is some operation-in-progress. At the end of
this step, the operation-in-progress is linearized.

2. Updating the entry in the state array belonging to the thread
that invoked the operation-in-progress with the fact that the
thread’s operation was linearized.

3. Finalizing the operation-in-progress, fixing the internal struc-
ture of the queue.

For the enqueue operation, we utilize the lazy nature of the
original implementation [19], where this operation is done in two
distinct phases. There, a thread tries first to append a new node
to the end of the underlying linked list and then updates tail to
refer the newly appended node. The important aspect of this lazy
implementation is that other threads do not execute the first phase
of their enqueue operation until the tail reference is updated,
ensuring that at most one node can be beyond the node referenced
by tail in the underlying linked list. (We refer to such a node
as dangling). This lazy implementation fits nicely into the scheme
presented above: The initial change of the queue in Step (1) is
the appending of a new node to the end of the underlying linked
list. Following this step, other threads cannot start their enqueue
operations, but only can learn about the existence of an operation-
in-progress and assist its completion with the next two steps of the
scheme.



: class Node {

1

2 int value;

3 AtomicReference<Node> next;

4: int enqTid;

5:  Atomiclnteger deqTid;

6:  Node (int val, int etid) {

7 value = val;

8: next = new AtomicReference<Node>(null);
9: enqTid = etid;
10: deqTid = new Atomiclnteger(-1);
1:  }
12: }

13: class OpDesc {

14:  long phase;

15:  boolean pending;

16: boolean enqueue;

17:  Node node;

18:  OpDesc (long ph, boolean pend, boolean enq, Node n) {

19: phase = ph;

20: pending = pend;
21: enqueue = eng;
22: node =n;
230}

24: }

Figure 1. Internal structures.

In the original implementation [19], the dequeue operation is
implemented in one atomic step (the update of head), and thus
its adaption for our scheme is more complicated. We solve it by
adding a field to each node of the underlying linked list: A thread
starts the dequeue operation by writing its ID into this field at
the first node of the list. More precisely, a thread ¢; executing the
dequeue operation on behalf of t; writes the ID of ¢;. This is the
first step of our scheme. Other threads cannot remove nodes from
the list before they assist the thread whose ID is written in the first
node to complete the next two steps of the scheme.

Special care should be given to the case of an empty queue.
Since a dequeue operation on an empty queue can be executed
by t; on behalf of another thread t;, ¢; cannot simply throw an
exception (or return a special “empty” value), as this will occur
in a wrong execution context. Thus, ¢; has to indicate this special
situation in ¢;’s entry of the state array. Also, to avoid ¢; from
racing with another thread ¢; that helps ¢;’s dequeue operation
and thinks that the queue is actually non-empty, we require ¢ to
update ¢;’s entry in state with a reference to the first node in the
underlying list. This update has to take place before ¢; executes the
first step of the scheme described above, i.e., before ¢, puts ¢;’s ID
into the special field of the first node in the list. All further details
are elaborated and exemplified pictorially in Section 3.2.

It remains to describe how ¢; chooses its phase number. To pro-
vide wait-freedom, we need to ensure that every time ¢; chooses a
number, it is greater than the number of any thread that has made
its choice before ¢;. For this purpose, we chose a simple implemen-
tation in which ¢; calculates the value of the maximal phase stored
in the state array and chooses this value plus one. The idea is
inspired by the doorway mechanism proposed by Lamport in his
famous Bakery algorithm for mutual exclusion [15]. Alternatively,
one may use an atomic counter, which can be incremented and read
atomically. This idea is described in Section 3.3.

3.2 Implementation

Internal structures and auxiliary methods

The code for internal structures used by our queue implementation
is given in Figure 1, while auxiliary methods are in Figure 2. Our
queue uses a singly-linked list with a sentinel node as an underlying

25: AtomicReference<Node> head, tail;
26: AtomicReferenceArray<OpDesc> state;

27: WFQueue () {

28:  Node sentinel = new Node(-1, -1);

29:  head = new AtomicReference<Node>(sentinel);

30:  tail = new AtomicReference<Node>(sentinel);

31:  state = new AtomicReferenceArray<OpDesc>(NUM_THRDS);
32:  for (inti=0;1i < state.length(); i++) {

33: state.set(i, new OpDesc(-1, false, true, null));

34:  }

35}

36: void help(long phase) {
37:  for (inti=0;1i < state.length(); i++) {

38: OpDesc desc = state.get(i);

39: if (desc.pending && desc.phase <= phase) {
40: if (desc.enqueue) {

41: help_enq(i, phase);

42: }else {

43: help_deq(i, phase);

44: }

45: }

46:  }

47: }

48: long maxPhase() {
49: long maxPhase = -1;
50:  for (inti=0;1i < state.length(); i++) {

51: long phase = state.get(i).phase;
52: if (phase > maxPhase) {

53: maxPhase = phase;

54: }

55:  }

56:  return maxPhase;

57}

58: boolean isStillPending(int tid, long ph) {
59:  return state.get(tid).pending && state.get(tid).phase <= ph;
60: }

Figure 2. Auxiliary methods.

representation, and relies on two inner classes: Node and OpDesc.
The Node class (Lines 1-12) is intended to hold elements of the
queue’s underlying list. In addition to the common fields, i.e., a
value and atomic reference to the next element (implemented with
AtomicReference class of Java), Node contains two additional
fields: engTid and deqTid. As their names suggest, these fields
hold the ID of the thread that performs or has already performed
(probably, helped by another thread) the insertion or removal of the
node to/from the queue. (In the following, we refer to ID of a thread
as tid).

In more detail, when a node is created by a thread in the be-
ginning of the enqueue operation, the thread records its tid in
the engTid field of the new node. This field will be used by
other threads to identify the thread that tries to insert that partic-
ular node into the queue, and help it if needed. Similarly, during
the dequeue operation, the tid of the node trying to remove the
first node of the queue is recorded in the degTid field of the first
node in the underlying linked list. Again, this field is used to iden-
tify and help the thread performing a dequeue operation. Notice
that while engTid is set by only one thread (the one that wants to
insert a node into the queue), deqTid may be modified by mul-
tiple threads concurrently performing a dequeue operation. As a
result, while the former field is a regular (non-atomic) integer, the
latter field is implemented as an atomic integer.

The OpDesc class (Lines 13—24) defines an operation descrip-
tor record for each thread. This record contains information about
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(d) Thread 3 changes its pending flag to false
(Line 93)

(b) Thread 3 starts the enqueue operation
and initializes its entry in state (Line 63)

(c) Thread 3 succeeds to change the next refer-
ence of the last element in the queue (Line 74)
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(e) Thread 3 fixes tail (Line 94)

Figure 3. The flow of the enqueue operation performed solely by Thread 3.

the phase at which the thread has performed (or is performing right
now) its last operation on the queue (phase field), the type of the
operation (enqueue field), the flag specifying whether the thread
has a pending operation (pending field), and a reference to a node
with a meaning specific to the type of the operation (node field).
In case of the enqueue operation, the node field holds a refer-
ence to a node with a value that the considered thread tries to insert
into the queue. In case of the dequeue operation, this field refers
to a node preceding the one with a value that should be returned
from the operation (this will be clarified later in this section when
the dequeue operation is explained).

In addition to the definition of the inner classes, the Queue
class contains several fields. Being based on a linked list, it has
(atomic) references to the head and the tail of the list (Line 25). Ad-
ditionally, it contains an array of atomic references to the OpDesc
records of all threads, called state (Line 26). The size of the ar-
ray, denoted as NUM_THRDS, is assumed to be known and equal to
the number of threads that might perform operations on the queue’.
In the following, where it is not ambiguous, we refer to the entry of
a thread ¢, in the state array as t;’s state.

The auxiliary methods are straight-forward. The queue con-
structor (Lines 27-35) initializes the underlying linked list with
one sentinel (dummy) node. In addition, it initializes the state ar-
ray appropriately. help () (Lines 36-47) accepts a phase number.
It runs through all operation descriptors and calls help_eng/()
or help_deqg () methods (detailed later in this section) accord-
ing to the operation type recorded in the descriptor. Notice that
help_eng() and help._deq () are invoked only for operations
that are still pending and have a phase smaller or equal than the
one passed as a parameter to help (). maxPhase () method
(Lines 48-57) simply runs through the state array and cal-
culates the maximal phase written in the operation descriptors.
isStillPending () method (Lines 58-60) accepts tid and
phase and checks whether the thread with ID equal to tid has a
pending operation in a phase smaller or equal than the passed phase
parameter.

2 More precisely, NUM_THRDS can be an upper bound, not necessarily strict,
on the number of threads that might access the queue.

enqueue operation

The flow of the operation is presented in Figure 3. For simplicity,
Figure 3 considers the case in which a thread executes enqueue
without interference from other threads. The implementation is
given in Figure 4.

When a thread ¢; calls the enqueue operation (i.e., enqg ()
method of the queue), it first calculates the phase for the operation
by adding 1 to the result returned from maxPhase () (Line 62).
Then it creates a new node to hold the value to be enqueued and
updates the corresponding entry in the state array with a new
operation descriptor record (Line 63). We assume here that each
thread can access its tid, while the tid is a number in the range
[0,..., NUM_THRDS—1]. In Section 3.3 we discuss how the latter
can be relaxed. Note also that the new node is created with engTid
field set to the tid of the thread (¢ in our example). Later in the code,
this field will be used to locate the entry of ¢; in the state array
in order to complete ¢;’s enqueue operation.

Next, ¢; calls help () (Line 64), which was explained above.
When this call returns, all operations having phase smaller or
equal than the one chosen by ¢; in Line 62 are linearized, in-
cluding the current enqueue operation of ¢;. Finally, ¢; calls
the help_finish_eng() method (Line 65), which ensures that
when ¢; returns from the call to eng (), the tail reference of
the queue does not refer a node before the one that was just en-
queued by ¢;. This is needed for correctness, as explained later in
this section.

Next, we describe the implementation of the help_eng()
method given in Lines 67-84. This method is called from help ()
for pending enqueue operations. It accepts two parameters, which
are the ID of a thread ¢, (i.e., =) who has a pending enqueue oper-
ation and the phase of the thread ¢, actually calling help_enq().
Notice that these can be the same thread (i.e., x = y) or two dif-
ferent threads. Among other things, both parameters are used to
verify that the enqueue operation of ¢, for which help_eng ()
was called is still pending.

The actual implementation of help_enqg() is a customized
version of the enq () method in [19]. It checks whether the queue
is in a state in which tail actually refers to the last node in the
underlying linked list (Lines 69-72). If so, it tries to insert the new
node just behind the last node in the list (Line 74). With respect to



61: void enq(int value) {

62:  long phase = maxPhase() + 1;

63:  state.set(TID, new
OpDesc(phase, true, true, new Node(value, TID)));

64:  help(phase);

65:  help_finish_enq();

66: }

> cf. Figure 3b

67: void help_enq(int tid, long phase) {
68:  while (isStillPending(tid, phase)) {

69: Node last = tail.get();

70: Node next = last.next.get();

71: if (last == tail.get()) {

72: if (next == null) { > enqueue can be applied

73: if (isStillPending(tid, phase)) {

74 if (last.next.compareAndSet(next, state.get(tid).node)) {
> cf. Figure 3¢

75: help_finish_enq();

76: return;

77: }

78: }

79: }else { > some enqueue is in progress

80: help_finish_enq(); > help it first, then retry

81:

82: }

83}

84: }

85: void help_finish_enq() {

86:  Node last = tail.get();

87:  Node next = last.next.get();
88: if (next !=null) {

89: int tid = next.enqTid; >read engTid of the last element

90: OpDesc curDesc = state.get(tid);

91: if (last == tail.get() && state.get(tid).node == next) {

92: OpDesc newDesc = new > cf. Figure 3d
OpDesc(state.get(tid).phase, false, true, next);

93: state.compareAndSet(tid, curDesc, newDesc);

94: tail.compareAndSet(last, next); > cf. Figure 3e

95: }

9%: }

97: }

Figure 4. enqueue operation

the scheme in Section 3.1, this is the first step of the scheme. The
new node is located using the state array and tid parameter of
help_eng () (Line 74). If succeeded, or if there is already some
node after the one pointed by tail, help_finish_eng() is
invoked (Line 75 or 80, respectively).

As its name suggests, help_finish_eng() is called to finish
the progressing enqueue operation. In the original implementa-
tion of [19], this means to update the tail reference to refer to the
newly added node. In our case, we need to update also the state of
the thread whose node was just inserted to the list in Line 74. The
entry of this thread in the state array is located by the engTid
field written in the newly added node (Line 89). After verifying that
the corresponding entry in the st ate array still refers to the newly
added node (Line 91), a new operation description record with the
pending flag turned off is created and written in Lines 92-93.
This is the second step of the scheme in Section 3.1. The verifica-
tion in Line 91 is required for correctness to avoid races between
threads running help_finish_enqg() concurrently. Afterwards,
the tail reference is updated to refer to the newly added (and the
last) node in the list (Line 94), which is the third step of the scheme.
Notice that the CAS operation in Line 93 may succeed more than
once for the same newly added node. Yet, utilizing the fact that
only one node can be dangling, our implementation ensures that

the state array remains consistent and the tail reference is up-
dated only once per each node added to the list.

Having help_finish_eng() explained, we can argue why
its invocation in Line 65 is necessary. Consider a thread ¢; trying
to apply an enqueue operation and being helped concurrently
by another thread ¢;. If ¢; executes Line 93 and gets suspended,
t; might realize that its operation is already linearized (e.g., by
checking the condition in Line 68), return to the caller of enq ()
and start another operation on a queue setting a new operation
descriptor. In such a scenario, all further enqueue operations will
be blocked (since the condition in Line 91 does not hold anymore)
until ¢; will resume and update the tail reference, breaking the
wait-free progress property.

In addition, notice that both condition checks in Lines 68 and 73
are necessary for correctness. Removing the check in Line 68
(i.e., replacing this line with while (zrue) statement) will break the
progress property, as a thread may always find some enqueue op-
eration in progress and execute the call to help_finish_eng()
at Line 80 infinitely many times. Along with that, removing the
check in Line 73 will break the linearizability. This is because a
thread ¢; might pass the test in Line 68, get suspended, then re-
sume and add an element to the queue, while at the same time, this
element might have been already added to the queue by another
concurrent thread during the time ¢; was suspended.

dequeue operation

The flow of the operation is presented in Figure 5, while the code is
given in Figure 6. As in the case of enqueue, a thread ¢; starts the
dequeue operation by choosing the phase number (Line 99), up-
dating its entry in the state array (Line 100) and calling help ()
(Line 101). When the latter call returns, the current dequeue op-
eration of ¢;, as well as all operations having a phase not larger than
t;’s phase, are linearized. Then ¢; calls help_finish._deq()
(Line 102), which ensures that when ¢; returns from deq (), the
head reference does not refer to a node with a deqTid field equal
to 4. Again, this is required for correctness. Finally, ¢; examines
the reference to a node recorded in its state (Lines 103-107).
If it is null, then the operation was linearized when the queue was
empty. Otherwise, t; returns the value of the node following the
one recorded in ¢;’s state in the underlying linked list. Intuitively,
this is the value of the first real node in the queue at the instant ¢;’s
dequeue operation linearizes, and the entry in the state array
refers to the preceding sentinel at that time.

The code of help_deq(), called from help () for pend-
ing dequeue operations, is given in Lines 109-140. The pa-
rameters received by this method have the same meaning as in
help_eng (). Similarly, its implementation is intended to be a
customized version of the deq () method in [19]. Yet, although
deqg () in [19] is relatively simple, help_deq () appears to be
slightly more complicated, carefully constructed to fit the scheme
of Section 3.1.

For ease of explanation, let us assume first that the queue is
not empty. In order to help ¢; to complete the dequeue opera-
tion and remove an element from the queue, a thread ¢; running
help_deq() has to pass through four stages, illustrated in Fig-
ure 5: (1) place a reference from ¢;’s state to the first node in the
underlying list, (2) update the deqTid field of the first node in the
list with ¢, (3) update the pending field in the state of ¢; to false,
and (4) update head to refer to the next node in the underlying
list. The first two stages are handled in help_deq (), while the
last two are in the help_finish_deq () method. With respect to
the scheme described in Section 3.1, Stages (2)-(4) implement the
three steps of the scheme, while the additional Stage (1) is required
to handle correctly the case of applying dequeue on an empty
queue, as described later in this section.



tail

value: 100 value: 200 value: 300
engTid: 0 engTid: 1 engTid: 0
deqTid: -1 deqTid: -1 deqTid: -1
next: next: next:

value: 100 value: 200
enqTid: 0 enqTid: 1
deqTid: —1 deqTid: —1
next: next:

~

~
0 1 2 3 S 0 1
value: 400 N
phase 7 9 | s 8 __ phase ¥ | 7 9
head pending | ? |true| ? |false enqTid: 3 head pending ]2 |true
enqueue ? |false| ? |tue deqTid: -1 enqueue | N | false
node ? |null | 2 next:

2
5
2
2
?

value: 300 value: 100 value: 200 value: 300
enqTid: 0 enqTid: 0 enqTid: 1 enqTid: 0
deqTid: -1 tail deqTid: 1 deqTid: -1 deqTid: -1 tail
next: / next: ) next: next:
\ 0o 1 2 3 \
value: 400 value: 400
- phase 7195 [s o

false enqTid: 3 head pending N2 |true | ? |false enqTid: 3
true deqTid: -1 enqueue | N |false| ? |true deqTid: -1

next: ? next:

‘ ‘ node 2 N

state
(a) Thread 1 starts the dequeue operation and
initializes its entry in state (Line 100)

value: 100 value: 200 value: 300
enqTid: 0 enqTid: 1 enqTid: 0
deqTid: 1 deqTid: -1 deqTid: -1
ncxl ncxl next:

1 2

9 5 8
9
9
9

tail

value: 400
enqTid: 3
deqTid: -1

next:

phdsc
head pending
enqueue
node ?

Talse false
Talse true

e

state

(d) Thread 1 changes its pending flag to false
(Line 149)

state
(b) Thread 1 updates its state to refer to
the first (dummy) node in the queue (Line 131)

‘ ‘ node ?

state
(c) Thread 1 writes its tid into the deqTid field of
the first (dummy) node in the queue (Line 135)

tail

value: 100 value: 200 value: 300
enqTid: 0 enqTid: 1 enqTid: 0
deqTid: 1 deqTid: -1 deqTid: -1

next: next: next:

e \
-
P
- 0o 1 2 3
- value: 400
phase 7195 |3 -
head pending N2 |false| 2 |false enqTid: 3
enqueue N false| ? |uue deqTid: -1
node ? ) hext:

state
(e) Thread 1 fixes head (Line 150) and returns
the value (200) of the node next to the one referred
from its entry in state (Line 107)

Figure 5. The flow of the dequeue operation performed solely by Thread 1 after Thread 3 finishes its enqueue operation in Figure 3.

The dequeue operation of ¢; is linearized at the instant ¢;
(or any other concurrent thread running help_deq() with tid
parameter equal to ¢) succeeds to complete Stage (2). We say that
at that time, t; locks the sentinel referred by head. (To avoid
any confusion, we emphasize that here the lock has only a logical
meaning). Before that happens, ¢; examines the node referred from
t;’s state (Line 129). If it is different from the head of the queue
as was read in Line 111, ¢; tries to complete Stage (1) (Lines 130—
131) (otherwise, some other thread has done it before). If failed, ¢;
realizes that some other thread has updated ¢;’s state and thus,
t; resets its operation, returning to the beginning of the while loop
(Line 132). If succeeded, or if ¢;’s state already refers to the
head of the queue, ¢; tries to complete Stage (2) (Line 135). If
succeeded again, then ¢; locks the sentinel. Otherwise, some other
thread did that (maybe even for the same dequeue operation).
In any case, ¢; calls help_finish_deq() (Line 136), which
is supposed to complete the dequeue operation of the thread
that locks the sentinel. Notice the condition checks in Lines 110
and 128. Similarly to the checks in help_eng(), the check in
Line 110 is necessary to ensure the wait-freedom, while the check
in Line 128 is required for the correct linearizability.

When ¢; finds that the queue might be empty, i.e., when head
and tail refer to the same node, it checks whether there is some
enqueue operation in progress (Line 116). If so, it helps first to
complete this operation (Line 123) and returns to the beginning
of the while loop. Otherwise, t; realizes that the queue is empty,
and tries to update ¢;’s state accordingly (Lines 119-120). This is
where Stage (1), i.e., putting a reference from ¢;,’s state to the
first node in the list, is required. Otherwise, a race between two
helping threads, one looking at an empty queue and the other on a
non-empty queue, is possible.

It remains to explain the details of help_finish_deq().
This method completes the dequeue operation in progress. First,
it tries to update the pending field in the state of a thread ¢, whose
tid is written in the node referred by head (Lines 148-149). No-
tice that just like in help_finish_enqg(), the CAS operation in
Line 149 may succeed more than once for the same dequeue op-
eration in progress. Finally, head is updated (Line 150), complet-
ing the final Stage (4) of the dequeue operation in progress.

3.3 Optimizations and enhancements

One of the shortcomings of the base implementation presented in
Section 3.2 is that the number of steps executed by each thread
when there is no contention still depends on n, the total number
of threads that might perform an operation on the queue. This
dependence appears in the calculation of the phase number in the
maxPhase () method and in the help () method, where the
state array is traversed.

It is possible, however, to resolve this drawback by changing the
implementation in the following way. First, in order to calculate the
phase number, a queue might have an internal maxPh field, which
would be read by each thread initiating an operation on the queue
and increased by an atomic operation, such as CAS or Fetch-and-
Add®. Second, a thread may traverse only a chunk of the state
array in a cyclic manner in the help () method. That is, in the
first invocation of help (), it would traverse indexes O through
k — 1 mod n (in addition to its own index) for some 1 < k£ < n, in
the second invocation — indexes k mod n through 2k — 1 mod n,
and so on. Notice that this modification will preserve wait-freedom
since a thread ¢; may delay a particular operation of another thread
t; only a limited number of times, after which ¢; will help to
complete ¢;’s operation. Alternatively, each thread might traverse
arandom chunk of the array, achieving probabilistic wait-freedom.
In any case, the running time of contention-free executions will be
improved. In case of contention, however, when all n threads try
to execute an operation on the queue concurrently, the operations
may essentially take a number of steps dependent on n. Yet another
option is to apply techniques of [2] to have the time complexity
of the algorithm to depend on the number of threads concurrently
accessing the queue rather than n.

In addition, our base implementation can be enhanced in several
ways. First, notice that any update of state is preceded with an
allocation of a new operation descriptor. These allocations might
be wasteful (both from performance and memory consumptions
aspects) if the following CAS operation fails while trying to update

3 Notice that in the case of a CAS-based phase counter, a thread does not
need to check the result of the CAS. A failure of its CAS operation would
simply imply that another thread has chosen the same phase number.



98: int deq() throws EmptyException {

99:  long phase = maxPhase() + 1; > cf. Figure 5a
100:  state.set(TID, new OpDesc(phase, true, false, null));

101:  help(phase);

102:  help_finish_deq();

103:  Node node = state.get(TID).node;

104:  if (node == null) {

105: throw new EmptyException();
106:  }

107:  return node.next.get().value;
108: }

109: void help_deq(int tid, long phase) {
110:  while (isStillPending(tid, phase)) {

111: Node first = head.get();
112: Node last = tail.get();
113: Node next = first.next.get();
114: if (first == head.get()) {
115: if (first == last) { > queue might be empty
116: if (next == null) { > queue is empty
117: OpDesc curDesc = state.get(tid);
118: if (last == tail.get() && isStillPending(tid, phase)) {
119: OpDesc newDesc = new
OpDesc(state.get(tid).phase, false, false, null);
120: state.compareAndSet(tid, curDesc, newDesc);
121: }
122: }else { > some enqueue is in progress
123: help_finish_enq(); > help it first, then retry
124: }
125: }else { > queue is not empty
126: OpDesc curDesc = state.get(tid);
127: Node node = curDesc.node;
128: if (lisStillPending(tid, phase)) break;
129: if (first == head.get() && node != first) {
130: OpDesc newDesc = new > cf. Figure 5b
OpDesc(state.get(tid).phase, true, false, first);
131: if (!state.compareAndSet(tid, curDesc, newDesc)) {
132: continue;
133: }
134: }
135: first.deqTid.compareAndSet(-1, tid); > cf. Figure 5¢
136: help_finish_deq();
137: }
138: }
139:
140: }

141: void help_finish_deq() {

142:  Node first = head.get();
143:  Node next = first.next.get();
144:  int tid = first.deqTid.get();
145:  if (tid 1=-1) {

> read deqTid of the first element

146: OpDesc curDesc = state.get(tid);
147: if (first == head.get() && next !=null) {
148: OpDesc newDesc = new > cf. Figure 5d

OpDesc(state.get(tid).phase, false, false,
state.get(tid).node);

149: state.compareAndSet(tid, curDesc, newDesc);

150: head.compareAndSet(first, next); > cf. Figure 5e
151: }

152:  }

153: }

Figure 6. dequeue operation

the state array (e.g., CAS in Lines 93 or 120). This issue can be
easily solved by caching allocated descriptors used in unsuccessful
CASes and reusing them when a new descriptor is required.
Second, when a thread finishes an operation on a queue, its op-
eration descriptor remains to refer a node in the underlying linked
list (unless it was a dequeue operation from an empty queue).

This node might be considered later by the garbage collector as a
live object, even though it might have been removed from the queue
a long time ago. This issue can be solved by setting a dummy op-
eration descriptor record into the state of the thread just before it
exits the deqg () and enqg () methods. This dummy record should
have a null reference in its node field.

Third, our base implementation lacks validation checks that
might be applied before executing (costly) CAS operations. For
example, we might check whether the pending flag is already
switched off before applying CAS in Lines 93 or 149. Although
such checks might be helpful in performance tuning [14], they
would definitely complicate the presentation of our algorithm. As
stated before, we preferred simple presentation of principal ideas
over optimality where possible, leaving (minor) performance tun-
ing optimizations for future work.

In the base version of our algorithm, we assume threads to have
unique IDs in a range between 0 and some known constant bound.
However, the same thread can use different IDs in subsequent
operations on the queue as long as they do not collide with IDs
of other threads concurrently accessing the queue. As a result,
the assumption above can be relaxed: To support applications in
which threads are created and deleted dynamically and may have
arbitrary IDs, threads can get and release (virtual) IDs from a
small name space through one of the known long-lived wait-free
renaming algorithms (e.g., [1, 6]). Also, our algorithm employs a
phase counter, which theoretically may wrap and harm the wait-
free progress property of our implementation. Since this counter is
implemented as a 64-bit integer, this possibility is impractical.

3.4 Memory management and ABA issues

The algorithm presented in Section 3.2 relies on the existence of
a garbage collector (GC) responsible for memory management,
and in particular, for dynamic reclamation of objects not in use.
Since a wait-free GC is not known to exist, the presentation of
our algorithm would not be complete without discussing how the
algorithm can manage its memory in a wait-free manner.

Also, another important benefit of GC is the elimination of all
occurrences of the ABA problem [11] that originate from early
reclamation of objects. The ABA problem denotes the situation
where a thread may incorrectly succeed in applying a CAS oper-
ation even though the contents of the shared memory have changed
between the instant it read the old value from the memory and the
instant it applied the CAS with a new value. Such a situation may
occur if a thread was suspended between the two instants, while
many insertions and deletions executed on the queue in the interim
period brought the contents of the location read by the thread into
the identical state. In garbage-collected languages, such as Java, the
problem does not exist, since an object referenced by some thread
cannot be reallocated for any other use.

In order to adapt our algorithm for runtime environments in
which GC is not implemented, we propose to use the Hazard
Pointers [18] technique. The technique is based on associating
hazard pointers with each thread. These pointers are single-writer
multi-reader registers used by threads to mark (point on) objects
that they may access later. When an object is removed from the
data structure (in our case, by dequeue operation), the special
RetireNode method is called, which recycles the object only if
there are no hazard pointers pointing on it.

The integration of the Hazard Pointers technique into our algo-
rithm requires a small modification of the latter. Specifically, we
need to add a field into the operation descriptor records to hold a
value removed from the queue (and not just a reference to the sen-
tinel through which this value can be located). This is in order to
be able to call RetireNode right at the end of help_deqg(),
even though the thread that actually invoked the corresponding



dequeue operation might retrieve the value removed from the
queue (e.g., execute Line 107) much later. Since our algorithm has
a structure very similar to that of [19], further integration of the
Hazard Pointers technique with our algorithm is very similar to the
example in [18]. The exact details are out of scope of this short
paper. We also notice that the same technique helps to prevent the
ABA problem described above, and, since this technique is wait-
free [18], our integrated solution remains wait-free.

4. Performance

We evaluated the performance of our wait-free queue comparing
it to the lock-free queue by Michael and Scott [19], known as the
most efficient lock-free dynamically allocated queue algorithm in
the literature [11, 14, 24]. For the lock-free queue, we used the Java
implementation exactly as it appears in [11]. We run our tests using
three different system configurations: the first one consisted of an
Intel blade server featuring two 2.5GHz quadcore Xeon E5420
processors operating under CentOS 5.5 Server Edition system, the
second one is the same machine operating under Ubuntu 8.10
Server Edition system, while the third configuration consisted of
a machine featuring two 1.6GHz quadcore Xeon E5310 processors
operating under RedHat Enterprise 5.3 Linux Server. All machines
were installed with 16GB RAM and were able to run concurrently 8
threads. All tests were run in Sun’s Java SE Runtime version 1.6.0
update 22, using the HotSpot 64-Bit Server VM, with —Xmx10G
-Xms10G flags.

In addition to the base version detailed in Section 3.2, we have
also evaluated two optimizations mentioned in Section 3.3:

1. In each operation on the queue, a thread ¢; tries to help only one
thread, choosing the candidates in a cyclic order of the entries in
the state array. As in the base version, the helping is actually
done only if the candidate has a pending operation with a phase
smaller or equal than ¢;’s.

2. The phase number is calculated using an atomic integer, i.e.,
each thread gets the value of that integer plus one and tries
to increment it atomically using CAS, instead of traversing the
state array in maxPhase ().

As mentioned in Section 3.3, these two modifications pre-
serve wait-freedom. Following the methodology of Michael and
Scott [19] and of Ladan-Mozes and Shavit [14], we evaluated the
performance of the queue algorithms with the following two bench-
marks:

e enqueue-dequeue pairs: the queue is initially empty, and at
each iteration, each thread iteratively performs an enqueue op-
eration followed by a dequeue operation.

® 50% enqueues: the queue is initialized with 1000 elements,
and at each iteration, each thread decides uniformly at random
and independently of other threads which operation it is going
to execute on the queue, with equal odds for enqueue and
dequeue.

We measured the completion time of each of the algorithms as
a function of the number of concurrent threads. For this purpose,
we varied the number of threads between 1 and 16 (i.e., up to twice
the number of available cores). Each thread performed 1, 000, 000
iterations. Thus, in the first benchmark, given the number of threads
k, the number of operations is 2000000- &, divided equally between
enqueue and dequeue. In the second benchmark, the number of
operations is 1000000 - k£, with a random pattern of roughly 50% of
enqueues and 50% of dequeues. Each data point presented in
our graphs is the average of ten experiments run with the same set
of parameters. The standard deviation of the results was negligible,
and thus not shown for better readability.

The results for the first benchmark for each of the three sys-
tem configurations we worked with are presented in Figure 7. The
results reveal that the relative performance of the concurrent algo-
rithms under test is intimately related to the system configuration.
While in the RedHat and Ubuntu-operated machines, the lock-free
algorithm is an unshakable winner, in the CentOS-operated ma-
chine its superiority ends when the number of threads approaches
the number of available cores. After that point, the performance
of the lock-free algorithm in the CentOS-operated machine falls
behind the optimized wait-free version, even though our wait-free
algorithms are expected for longer time needed for the bookkeep-
ing of the state and trying to help slower threads. It is also worth
noting that the relative performance of the concurrent algorithms in
the other two system configurations is not identical. While on the
RedHat-operated machine, the ratio of the optimized wait-free al-
gorithm to the lock-free algorithm remains around 3, in the Ubuntu-
operated machine this ratio continuously decreases with the num-
ber of threads, approaching 2.

Figure 8 presents results for the second benchmark for each of
the three system configurations. The total completion time for all
algorithms exhibits the similar behavior as in the first benchmark,
but is roughly 2 times smaller. This is because this benchmark has
only a half of the total number of operations of the first benchmark.
The relative performance of the lock-free and wait-free algorithms
is also similar. Interestingly, the CentOS-operated machine consis-
tently exhibits better performance for the optimized wait-free algo-
rithm when the number of threads increases.

When comparing the performance of the base wait-free algo-
rithm with its optimized version, one can see that the latter behaves
better as the number of threads increases (Figures 7 and 8). As dis-
cussed in Section 3.3, this happens since the optimized version does
not have to traverse the state array, which increases in size with
the increase in the number of threads. To evaluate which of the two
optimizations has greater impact on the performance improvement,
we implemented each of them separately and compared the perfor-
mance of all four variations of our wait-free algorithm: the base
(non-optimized) version, two versions with one of the optimiza-
tions each, and the version featuring both optimizations. Due to
lack of space, we present only results for the enqueue-dequeue
benchmark and only for the CentOS and RedHat-based configura-
tions (Figure 9). We note that the relative performance in the other
benchmark and in the third system configuration is the same.

As Figure 9 suggests, the performance gain is achieved mainly
due to the first optimization, i.e., the modified helping mechanism
in which a thread helps to at most one other thread when applying
an operation on the queue. This is because this optimization reduces
the possibility for scenarios in which all threads try to help the
same (or a few) thread(s), wasting the total processing time. The
impact of the second optimization (the maintenance of the phase
number with CAS rather than by traversing state) is minor, yet
it increases with the number of threads.

In addition to the total running time, we compared the space
overhead of the algorithms, that is the amount of heap memory
occupied by queues and by threads operating on them. For this
purpose, we used the ——verbocegc flag of Java, which forces
Java to print statistics produced by its GC. These statistics include
information on the size of live objects in the heap. We run the
enqueue-dequeue benchmark with 8 threads, while one of the
threads periodically invoked GC. To calculate the space overhead,
we took the average of these samples (nine samples for each run).
We varied the initial size of the queue between 1 and 10, 000, 000
elements, in multiples of 10. To produce a data point, we run ten
experiments with the same set of parameters and took the average.

Figure 10 shows the space overhead of the base and optimized
versions of wait-free algorithms relatively to the lock-free one. The
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shown results were produced on the RedHat-operated machine,
while the results for the other two machines are similar. It follows
that for small queues, the size of live objects maintained by wait-
free algorithms is comparable to that of the lock-free implementa-
tion. This is because in these cases, the heap is dominated by ob-
jects, which are not part of queues. When the queue size increases,
the ratio of sizes of maintained live objects reaches 1.5, meaning
that our wait-free algorithms incur roughly 50% more space over-
head over the lock-free one. This is because each node in the wait-
free queue needs additional space for deqTid and engTid fields.

5. Correctness

Due to lack of space, we provide only a sketch of a proof that
our algorithm implements a concurrent wait-free queue. We start
by describing the computational model assumed by our algorithm.
Next, we briefly describe the proof of linearizability and wait-
freedom property of our algorithm. In the process, we explain the

in the enqueue-dequeue benchmark.

semantics of our queue and define the linearization points for its
enqueue and dequeue operations.

5.1 Model

Our model of multithreaded concurrent system follows the lineariz-
ability model of [12] and assumes an asynchronous shared memory
system, where programs are executed by n deterministic threads,
which communicate by executing atomic operations on shared vari-
ables from some predefined, finite set. Threads are run on proces-
sors, and the decision of which thread will run on which processor
is performed solely by a scheduler. It is very likely that the number
of available processes is much smaller than n, and execution of any
thread may be paused at any time and for arbitrary long due to page
fault, cache miss, expired time quantum, etc. We assume that each
thread has an ID, denoted as tid, which is a value between 0 and
n — 1. In Section 3.3 we discuss how to relax this assumption. In
addition, we assume each thread can access its tid and n.
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When scheduled to run, a thread performs a sequence of com-
putational steps. Each step may be either a local computation or an
invocation of at most one atomic operation on a shared variable.
We assume that our shared memory supports atomic reads, writes
and compare-and-swap operations. The latter, abbreviated as CAS,
is defined as follows: CAS(v, exp, new) changes the value of the
shared variable v to new if and only if its value just before CAS is
applied is equal to exp. In this case, CAS returns frue and we say
it was successful. Otherwise, the value of v is not changed, CAS
returns false and we say it was unsuccessful.

A configuration of the system is a vector of a finite size that
stores the states of n threads and the values of all shared variables.
The state of a thread includes the values of thread’s local variables,
registers and the program counter. A (finite or infinite) sequence of
steps, starting from an initial configuration, forms an execution. In
the initial configuration, all shared variables have predefined initial
values and all threads are in their initial states.

A concurrent queue is a data structure whose operations are
linearizable [12] to those of a sequential queue. A sequential queue
is a data structure that supports two operations: enqueue and
dequeue. The first one accepts an element as an argument and
inserts it into the queue. The second one does not accept arguments,
removes and returns the oldest value from the queue. In the case of
an empty queue, dequeue returns a special value (or throws an
exception) and the queue remains unchanged.

5.2 Linearizability

We refer to a dequeue operation that returns a value as successful.
If a dequeue operation ends by throwing an exception, we refer
to it as unsuccessful. The enqueue operation is always successful.
In the following, we define the linearization points for each of the
queue operations. Notice that the source lines mentioned in the
definition below can be executed either by the thread ¢; that invoked
the corresponding operation or by another concurrent thread ¢; that
tries to help ¢; by running either help_eng () or help_deq()

method with the tid parameter set to i.

DEFINITION 1. The linearization points for each of the queue op-
erations are as follows:

e Enqueue operation is linearized at the successful CAS in
Line 74.

® Successful dequeue operation is linearized at the successful
CAS in Line 135.

e Unsuccessful dequeue operation is linearized in Line 112.

To prove the correctness of the linearization points defined
above, we recall that our queue is based on a singly-linked list,
represented by head and tail references, where the node refer-
enced by head is called dummy. We define the state of the queue
as a sequence of values of nodes in the list, starting from the node
referenced by the next reference of the dummy node. (If such a
node does not exist, that is the next reference of the dummy node
is null, we say that the queue is empty).

In the full proof, we need to show that new nodes are always in-
serted at the end of the list (that is, after the last node reachable from
head in the list), while the insertion order is consistent with the
linearization order of enqueue operations. In addition, we need
to show that nodes are always removed from the beginning of the
list, while the order of removals is consistent with the linearization
order of dequeue operations. This can be done in a way similar
to [19] by careful inspection of the source lines that change the
structure of the list .

In the second part of the proof, we need to show that each
operation is linearized exactly once. In contrast to most lock-free
implementations, including [19], in our case this statement is not
trivial due to the concurrent assistance employed by our algorithm.
Two central Lemmas in this part are stated below (their proof is
omitted).

LEMMA 1. In any execution and for any enqueue operation with
value v; invoked by thread t;, the following steps occur in the stated
order, and each of them occurs exactly once:

1. A node with value v; is appended at the end of the linked list
(Line 74).

2. The pending flag in the state of t; is switched from true to
false (Line 93).

3. Tail is updated to refer the node with value v; (Line 94).

LEMMA 2. In any execution and for any successful dequeue
operation invoked by thread t;, the following steps occur in the
stated order, and each of them occurs exactly once:

1. The deqTid field of a node referenced by head is updated
with j (Line 135).

2. The pending flag in the state of t; is switched from true to
false (Line 149).

3. Head is updated to refer a node next to the one that has j in its
deqTid field (Line 150).

Notice that the steps in Lemmas 1 and 2 correspond to the steps
in the scheme presented in Section 3.1



5.3 Wait-freedom

To prove wait-freedom property, we have to show that every call
to either enqueue or dequeue returns in a bounded number
of steps. In our implementation, both eng () and deq () call
help (), which iterates a finite number of times (equal to the size
of the state array), invoking help_eng() or help._deq()
at most once in each iteration. Thus, in order to prove wait-
freedom, we need to show that any invocation of help_eng ()
or help_deq () returns after a bounded number of steps.

We prove first that our implementation is lock-free. For this pur-
pose, we need to show that every time a thread ¢; executes an iter-
ation of the while loop in either help_eng () or help_deq(),
some thread ¢; makes progress. That is, either one of the steps of
Lemmas 1 or 2 occurs, or t; finds the queue empty and executes
a successful CAS in Line 120. This claim can be relatively easily
concluded from the code.

To complete the proof of wait-freedom, we need to show that the
number of operations that may linearize before any given operation
is bounded. This follows directly from the way threads choose
phase numbers, which is similar to the doorway mechanism in
the Bakery algorithm [15]. This mechanism ensures that a thread
t; starting an enq () or a deq () method after ¢; has chosen its
phase number, will not finish the method before t;’s operation
is linearized. Thus, after a bounded number of steps, a thread
executing help_enqg () or help_deq () will compete only with
threads running the same method and helping the same operation.

6. Conclusions

FIFO queue is a fundamental data structure, found in many soft-
ware system. Until now, no practical wait-free implementation of
the queue was known. In this paper, we have shown the first such
implementation that enables an arbitrary number of concurrent en-
queuers and dequeuers. The significance of wait-freedom is in its
ability to ensure a bounded execution time for each operation.

We have conducted performance evaluation of our implementa-
tion comparing it with a highly efficient lock-free algorithm [19].
The results reveal that the actual performance impact of wait-
freedom is tightly coupled with the actual system configuration.
In particular, we show that although our design requires more op-
erations to provide the wait-free progress guarantee, it can beat the
lock-free algorithm in certain system configurations and keep com-
parable performance ratios in others.
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