Weak instruments: An overview and new
techniques

Austin Nichols

July 24, 2006

Austin Nichols



IV Methods and Formulae
IV Assumptions and Problems

Why Use IV?

Instrumental variables, often abbreviated IV, refers to an estimation
technique used to address a variety of violations (collected under
the general heading of endogeneity) of assumptions that guarantee
that standard OLS estimates will be consistent, including:

» measurement error
» simultaneity (X affects y, and y affects X)
» omitted variables

Typically, the point of IV is to allow causal inference in a
non-experimental setting.

Austin Nichols



IV Methods and Formulae
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Why Use IV?

Suppose one has a linear model of how y is related to X:
y=XB+c¢

Here y is a T x 1 vector of dependent variables, X isa T x K;
matrix of independent variables, § is a K1 x 1 vector of parameters
to estimate, and € is a T x 1 vector of errors (capturing so-called
“unexplained” variation in y). If E[X’] # 0 then the OLS
estimate of 3 is biased and inconsistent.
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How Use IV?

Using a T x K, matrix of variables Z (called the excluded
instruments or sometimes the instrumental variables or
sometimes the instruments), correlated with X but not with ¢,
one can construct an IV estimator that will be a consistent
estimator for 3:

B = (X'P.X) ' X'P,y
where P,, the projection matrix of Z, is defined to be:

P,=2(Z2'2)"17.
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Overview of IV

IV Assumptions and Problems

» Two-stage Least Squares (2SLS) is an instrumental variables estimation

technique that is formally equivalent in the linear case.
> Use OLS to regress X on Z and getA)A< =2(Z2'2)7'z2'X
» Use OLS to regress y on X to get 0.

» Ratio of Coefficients: Another approach considers a different set of two stages,
but this approach may only be used when there is one endogenous variable and
one instrument.

» Use OLS to regress y on X and get 3 = (X' X)X’y
» Use OLS to regress y on Z and get ## = (Z'Z)~1Z'y.
Divide B by 7 to get /@/v-
» The Control Function Approach: The most useful approach considers another

set of two stages.

» Use OLS to regress X on Z and get estimated errors
p=X-2(Z2'2)7'Z'X .
» Use OLS to regress y on X and ¥ to get G .
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IV Assumptions and Problems

> All of these approaches give the IV estimate of 3, and each has its
proponents for understanding the “intuition” of IV.

» For each, the reported standard errors for the second stage are
wrong (not an issue for the one-step estimator that is used in
practice).

» The advantage of the Control Function approach is that it works
even outside the linear framework we are exploring here. For
example, if the model is y = exp [X5 + €] you can still regress X on
Z to get U and then use a Poisson regression to regress y on X and
D to get 3,\/ (and then fix the standard errors). The other two
approaches to constructing the linear IV estimates are not
generalizable in the same way. See Wooldridge (2002).
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IV Assumptions and Problems

Including Exogenous Regressors

All of the preceding assumes that the matrix of regressors X is
composed entirely of potentially problematic variables (endogenous
or measured with error). In fact, the usual model specification
includes some variables that are not problematic, and some that
are. For example, X will almost always include a constant (a vector
of ones), which is neither endogenous nor measured with error. For
conceptual reasons, we usually divide the set of regressors into two
disjoint sets. We will refer to the potentially problematic regressors
as the matrix Y and the exogenous variables as the matrix X.
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IV Assumptions and Problems

The General Model for IV

The general model for IV is thus
y=YB+Xy+u

where y is the dependent variable of interest, Y is an N x T matrix of
problematic variables (or N endogenous variables), and X is a K1 X T matrix of
unproblematic variables, called the Ki included instruments. Assume we have
Z, a matrix of K, excluded instruments (sometimes called the “instrumental
variables” when the meaning is clear), where K> > N, and we can write:

Y=Z[N+Xo+V
Note in particular that X and Z are identical for all endogenous variables we
are instrumenting for. When the number N of endogenous variables is greater

than one, there will be multiple equations to estimate in the “first stage” but

we must always include the full set of exogenous variables in each equation.
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Basic Assumptions

» Order Condition: When N < K3, we say the system is
identified, and when N < K, the system is overidentified.

» Rank Condition: rank(Z'Y) = N.

» Z explains Y The regression of Y on Z produces coefficients
M # 0 (in population and sample).

» Z does not explain y
Cov(Z,u) =0

This says that Z (the set of instrumental variables) has no
effect on y (the dependent variable) except through Y (the
endogenous variables).
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Asides

» Data mining in the “first stage”

» Estimated instrumental variables

» Polynomials in an endogenous variable: See Wooldridge
(2002) on the “forbidden regression.”

» Specification tests: See Baum, Schaffer, and Stillman (2003).
» Stata implementations: ivreg y Xvars (Yvars=Zvars) is the
official Stata command; ivreg2 is a similar command with
many additional features, available via ssc install ivreg2,

replace.

Austin Nichols



Overview of IV
IV Methods and Formulae

Why not always use IV?

» |t's hard to find variables that meet the definitions of valid instruments:
conceptually, most variables that have an effect on endogenous variables
Y may also have a direct effect on the dependent variable y.

» The standard errors on |V estimates are likely to be larger than OLS
estimates, and much larger if the excluded instrumental variables are only
weakly correlated with the endogenous regressors.

> Bias. See also Kinal (1980) for related issue with small sample properties:
the IV estimator may have no expected value.

> Interpretation. ATE, LATE, Random Coefficients. See Wooldridge (2002)
Chapter 18.

» Weak Instruments. This set of problems is the focus of the rest of today's
material.
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Diagnostics

Testing Parameters
AR Confidence Sets
New Research

Weak Instruments

» As pointed out by Bound, Jaeger, and Baker (1993; 1995), the “cure can be
worse than the disease” when the excluded instruments are only weakly
correlated with the endogenous variables.

> |V estimates are biased in same direction as OLS, and Weak IV estimates
may not be consistent. See Chao and Swanson (2005) for a comparison of
consistency results for related estimators.

> With weak instruments, tests of significance have incorrect size, and
confidence intervals are wrong.

> Staiger and Stock (1997) formalized the definition of “weak instruments” and
most researchers seem to have concluded (incorrectly) from that work (or
hearsay) that if the F-statistic on the excluded instruments in the first stage is
greater than 10, one need worry no further about weak instruments.

» Stock and Yogo (2005) go into more detail and provide useful rules of thumb
regarding the weakness of instruments based on a statistic due to Cragg and
Donald (1993). Stock, Wright, and Yogo (2002) provide a summary of this
work.
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Weak Instruments

» Consider again the basic model
y=YB+Xy+u

Y=Z[N+Xo+V

where y is the dependent variable of interest, Y is an N x T matrix
of endogenous variables, Z is a matrix of K, excluded instruments
and X is a matrix of Kj included instruments.

» The concern is that the explanatory power of Z may be insufficient
to allow inference on (. In this case, the first-stage statistic on the
hypothesis 1 = 0 may be bounded as T — oo, and various tests do
not have correct size.
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Weak Instruments: Diagnostics

» Historically, only informal rule-of-thumb diagnostics have been
reported. These are reported by the Stata program ivreg?2
when the ffirst option is specified, and include the partial R?
and first-stage F-statistics on excluded instruments.

» The newest version of ivreg2 incorporates additional code to
compute eigenvalues of G7 before reporting other estimates.
The minimum eigenvalue should be compared to Table 1 (to
bound bias) or Table 2 (to bound size of Wald tests) in Stock
and Yogo (2005).
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Cragg-Donald statistic

» For notational compactness, let Py = W(W’'W)~'W’ and
My = | — Py for any matrix W, and let W= be the residuals from
projection on X, so W = MxW. Define Z = [XZ] to be the matrix of
all instruments (included and excluded).

» One can construct the Cragg-Donald statistic as follows:

_1(T = Ki — Ka)?

Gr = (Y'MzY) Y2y P, Y (Y M Y) p
2

where the matrix
Y P, Yt = (MxY) MxZ((MxZ) MxZ) " (MxZ) (MxY)

» The minimum eigenvalue of G7 is the statistic used for testing for weak
instruments.
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» If N =1 (there is one endogenous variable), the minimum
eigenvalue of Gt is the F-statistic in the first stage regression,
which Staiger and Stock (1997) suggest should be greater than 10.

> Looking at Table 1 in Stock and Yogo (2005), if one used three
excluded instrumental variables to instrument for a single
endogenous variable (as in the returns-to-schooling regressions
examined by Staiger and Stock), and one wanted to restrict the bias
of the IV estimator to five percent of the OLS bias, the critical
value of the first-stage F-statistic is 13.91.

> If one wanted Wald tests (of nominal size .05) of hypotheses about
0 to have size less than .1, the first-stage F-statistic should be
greater than 22.3, according to Table 2 in Stock and Yogo (2005).
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Tests and Confidence Sets Robust to Weak Instruments

» Anderson and Rubin (1949) propose a test of structural parameters
(the AR test) that turns out to be robust to weak instruments (i.e.
the test has correct size in cases where instruments are weak, and
when they are not). Kleibergen (2002) proposes a Lagrange
multiplier test, also called the score test, but this is now deprecated
since Moreira (2003) proposes a Conditional Likelihood Ratio (CLR)
test that dominates it.

» Andrews, Moreira, and Stock (2006) and Mikusheva and Poi (2006)
provide useful overviews of these alternatives.

» In theory, either the AR test or the CLR test can be inverted to
produce a confidence region for the parameter (3, but the AR test is
much easier to work with.
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AR Confidence Sets

Following Anderson and Rubin (1949), the simultaneous regression framework
y=YpB+Xy+u

Y=ZN+Xé+V
can be rewritten (by subtracting Y 3o from both sides) as:

y—=YBo=2Z0+Xn+e

and all the assumptions of the linear regression framework are satisfied.
Assuming 1 # 0, a test of § = 0 is equivalent to a test of § = (o in this
context, and seems to have correct size even in the presence of weak
instruments. It's also easy to make the test (and by extension the confidence
region that is dual to the test) robust to heteroskedasticity etc. by simply
adding the appropriate option to your AR regression:

. reg ylessybeta $zvars $xvars, robust

. testparm $zvars
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AR Confidence Sets, cont.

We can construct an Anderson-Rubin (AR) confidence region for 3
as an N-dimensional set of values of 3y for which we cannot reject
6 = 0. As discussed by Dufour and Taamouti (1999), this type of
confidence region is robust to the presence of weak instruments and
the accidental exclusion of relevant instruments, and allows valid
inference about 3. AR tests seem to have correct size under a wide
variety of violations of the standard assumptions of IV regression.
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AR Confidence Sets, cont.

The AR confidence region has the unfortunate property that it
need be neither bounded nor connected. In addition, constructing
the region with any degree of accuracy is computationally
intensive, and visual representation of the region can be quite
cumbersome, whenever there is more than one endogenous
variable. The AR confidence region may also be empty, or may not
include the point estimate, in which cases the researcher may
conclude that the model is not supported by the data. If the region
is unbounded, the instrumental variables are simply too weak to
conclude much about §.
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AR Confidence Sets, cont.

» Assuming one has constructed the AR confidence region, any single
hypothesis about (3 could be tested by comparing the hypothesized values
of 3 to the region, and if the entire range of hypothesized values lay
outside the confidence region, the hypothesis would be rejected.

» For example, if the AR confidence region for coefficients Syrsep and Siq
in an earnings equation were a disk in R> whose boundary is given by the
equation (Byrsep — 8)? + (Biq — 90)? = 100, then the hypothesis that
both coefficients are zero can be rejected, since the set does not include
the origin. The hypothesis that Syrsep = 0 would not be rejected,
however, since the set overlaps the axis where Syrsep = 0 (the Biq axis in
this example).

» Non-spherical confidence regions are more interesting, and suggest the
limitations of a projection-based method for constructing confidence
intervals variable by variable.
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AR Confidence Sets, cont.
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AR Confidence Sets, cont.

> If you have two endogenous variables, and you want to construct an
AR confidence region over a space of 100 values for each, this
entails running 10,000 regressions and running 10,000 Wald tests,
following the strategy outlined above. Even this is a coarse grid for
graphing the confidence region. Indeed, a grid search will often not
contain the confidence region, since the confidence region could be
unbounded.

» But setting the test statistic equal to the critical value produces a
quadric surface in Gy, and it is possible to graph “slices” or level
curves of the surface, even for 3 or 4 (or more) dimensions, using
Stata's graph programs.
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The CLR Test Now Available

» Moreira (2001) gives criteria for evaluating tests in the
presence of weak instruments. Moreira (2003) proposes the
Conditional Likelihood Ratio (CLR) test which Andrews,
Moreira, and Stock (2006) show outperforms the AR test in
power simulations. See also Andrews, Moreira, and Stock
(2004) and online supplements.

» Using some mathematical shortcuts proposed by Mikusheva
(2005), Mikusheva and Poi (2006) provide Stata code (type
net from http://www.stata.com/users/bpoi/ and net
install condivreg in Stata) to conduct both the CLR and AR
tests, and to construct the corresponding confidence sets in
the common case of a single endogenous regressor.

Austin Nichols



Overview
Diagnostics

Testing Parameters
AR Confidence Sets

Summary

» When using 1V, always check for weak instruments using ivreg2.

» If you determine that only one right-hand-side variable is
endogenous, use the CLR test implemented in condivreg.

» For models including more than one endogenous regressor, AR tests
and confidence regions are currently the only alternative.

» For two endogenous variables, the ellip user-written command can
graph the relevant level curve if the confidence region is
well-behaved.

» Still plenty of work to be done here, at many levels.
Three-dimensional graphics would be helpful, but an appropriate set
of graphs is eminently possible for any AR confidence region. The
main problem is determining appropriate ranges without a lot of
trial and error (esp. given that the region may be unbounded).
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