

TASCA 12

www.superheavies.de c.e.duellmann@gsi.de

Search for element 119

Christoph E. Düllmann for the TASCA E119 collaboration

PRISMA Cluster of Excellence & Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz SHE Chemistry, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt SHE Chemistry, Helmholtz Institute Mainz

> 11th Workshop on Recoil Separator for Superheavy Element Chemistry GSI Darmstadt, Germany, September 14, 2012

Superheavy Elements – Current Status

Superheavy Elements – Current Status

Making elements 119 and 120

E119

E120

Z _{Beam}	Beam	Target	Asymmetry	E*@B _{Bass}		
21	⁴⁵ Sc	²⁴⁹ Cf		41.7		
22	⁵⁰ Ti	²⁴⁹ Bk		32.4		
23	⁵¹ V	²⁴⁸ Cm		36.8		
24	⁵⁴ Cr	²⁴³ Am		31.5		
25	⁵⁵ Mn	²⁴⁴ Pu	1 🔽 🗆	37.7		
26	⁵⁸ Fe	²³⁷ Np	1 🔰 🗍	29.9		
27	⁵⁹ Co	²³⁸ U		36.7		
Z _{Beam}	Beam	Target	Asymmetry	E*@B _{Bass}		
Z _{Beam}	Beam ⁵⁰ Ti	Target ²⁴⁹ Cf	Asymmetry	E*@B _{Bass} 31.7		
Z _{Beam} 22 23	Beam ⁵⁰ Ti ⁵¹ V	Target ²⁴⁹ Cf ²⁴⁹ Bk	Asymmetry	E*@B _{Bass} 31.7 35.9		
Z _{Beam} 22 23 24	Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr	Target 249Cf 249Bk 248Cm	Asymmetry	E*@B _{Bass} 31.7 35.9 33.0		
Z _{Beam} 22 23 24 25	Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr ⁵⁵ Mn	Target 249Cf 249Bk 248Cm 243Am	Asymmetry	E*@B _{Bass} 31.7 35.9 33.0 34.5		
Z _{Beam} 22 23 24 25 26	Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr ⁵⁵ Mn ⁵⁸ Fe	Target 249Cf 249Bk 248Cm 243Am 244Pu	Asymmetry	E*@B _{Bass} 31.7 35.9 33.0 34.5 33.9		
Z _{Beam} 22 23 24 25 26 27	Beam 50Ti 51V 54Cr 55Mn 58Fe 59Co	Target 249Cf 249Bk 248Cm 243Am 244Pu 237Np	Asymmetry	E*@B _{Bass} 31.7 35.9 33.0 34.5 33.9 32.9		

Ch.E. Düllmann – TASCA 12 Workshop – GSI Darmstadt, Germany – September 14, 2012

Cross sections: current predictions from theory

TransActinide Separator and Chemistry Apparatus (TASCA)

A new <u>ANalog/DIgital (ANDI)</u> DAQ system for µs-isotopes

Dead-time free! Lifetimes down to about 100 ns can be measured

Measuring microsecond activities produced with a ⁵⁰Ti beam:

$^{50}\text{Ti} + ^{176}\text{Yb} \rightarrow ^{226}\text{U}^*$

	4n	Compound nucleus								
U	U 218	U 219			U 222	U 223	U 224	U 225	U 226	
00	<mark>0.56m</mark> 0.51m	<mark>80 μs</mark>			1 μs	n30		i9 ms	281 ms	
92	<mark>α 10.678</mark> α 8.612	α 9.77			α	pon	α 8.47	α 7.86; 7.83;	α 7.56; 7.37;	
Pa 214 Pa 215 Pa 216	Pa 217	Pa 218	Pa 219	Pa 220	Fa 221	Pa 222	Pa 223	P _4	Pa 225	
17 ms 14 ms 200 ms	1.5 ms 3.4 ms	<mark>113</mark> μs	53 ns	0.78μs	5.9 μs	4.3 ms	4 .5	0.95 s	1.8 s	
<u>α 8.12</u> <u>α 8.09</u> <u>α 7.87; 7.81</u>	α 10.16; 9.55 α 8.33	α 9.61; 9.54; γ	α 9.90	α 9.65	α 9.08; g	α 8.21; 8.54	. <mark>8.01; 8.20</mark>	α 7.555; 7.460	α 7.25; 7.20	
Th 213 Th 214 Th 215	Th 216	Th 217	Th 218	Th 219	Th 220	<u> </u>	Th 222	Th 223	Th 224	
^{1.7 μs} 0.14 s ^{1.24 μs} 80 ms 1.2 s).18 ms <mark>-28 ms</mark>	247 μs	0.1 μs	<mark>1.05</mark> μs	0.7 μs	1.68 ms	2.2 ms	0.66 s	1.04 s	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lγ <mark>α 7.92;</mark> α 9.91 <mark>7.30; γ</mark>	α 9.27; 8.73;	α 9.67	α 9.34	α 8.79	α 8.15; 8.47	α 7.98; 7.60	α 7.324; 7.285 γ 177;152;114	α 7.17; 7.00; γ 177; e [.]	
Ac 212 Ac 213 Ac 214	Ac 215	Ac 216	Ac 217	Ac 218	Ac 219	Ac 220	Ac 221	Ac 222	Ac 223	
880 ms 731 ms 8.2 s	0.17 s	443 <u>на</u> 440 µs	0.18 <mark>28 m</mark>	1.1 μs	<mark>11.8 μs</mark>	26 ms	52 ms	63 s 5.0 s	2.10 m	
α 7.37 α 7.36 α 7.21; 7.08	γ α 7.60; 7 2; γ	α 9.11 γ α 9.05	lγ 660 α 10.54 <mark>α 9.6</mark>	α 9.205	.8.664	α 7.85; γ	α 7.65, 7.44	α.6.81 <mark>α.7.01</mark> Ιγ?;∈ g	α 6.647; 6.662 ∈;γ(99, 191)	
Ra 211 Ra 212 Ra 213	Ra 214	Ra 215	Ra 216	Ra 217	Ra 218	Ra 219	Ra 220	Ra 221	Ra 222	
4.0 μs 13 s 10.5 13.0 2.1 ms 164.4	67 μs <mark>2.46 s</mark>	7.6 µs <mark>1.6 ms</mark>	0.1 9μs	1.6 μs	25.6 μs	10 ms	18 ms	28 s	38 s	
α 6.911; α 6.90; γ 6.27; γ α 8.08 ε? Ιγ ε? Ιγ ε? Ιγ ε; γ	α 7.14; 6.51 Ιγ ∈?;γ	γ αβ	α 9.35	α 8.99	α 8.39; g	α 7.679; 7.989 γ 316, 214	α 7.45; 7.39	α 6.613; 6.761 γ 149; C-14	α 6.559; 6.237 γ 324; C-14	
N=126 J. Khuyagbaatar, 2012										
		·						-		

-

GSI Darmstadt, Germany

September 14, 2012

-

TASCA 12 Workshop

Ch.E. Düllmann

—

With digital part of the data: access to μ s-isotopes

Conclusion

Search for element 119 with ⁵⁰Ti + ²⁴⁹Bk ongoing at *TASCA*

Experiment running smoothly, good beams, good target

 \Rightarrow Good sensitivity

Will continue into November 2012