
Global Stack Allocation –
Register Allocation for Stack Machines

Mark Shannon
University of York

marks@cs.york.ac.uk

Chris Bailey
University of York

chrisb@cs.york.ac.uk

Abstract

Register allocation is a critical part of any compiler, yet
register allocation for stack machines has received rela-
tively little attention in the past. We present a frame-
work for the analysis of register allocation methods for
stack machines which has allowed us to analyse current
methods. We have used this framework to design the
first truly procedure-wide register allocation methods
for stack machines. We have designed two such meth-
ods, both of which outperform current techniques.

This work was funded by the AMADEUS project,
part of the DTI’s Next Wave Technologies and Markets
Program, in collaboration with MPE Ltd.

1 Introduction

To design a compiler for a stack machine most of
the conventional techniques for compiler design can be
reused, with the exception of register allocation and,
to a lesser extent, instruction scheduling. Register al-
location for stack machines is fundamentally different
from that for conventional architectures, due the ar-
rangement of the registers. In this paper we describe a
way of analysing the stack that is suitable for classifying
and designing register allocation methods for stack ma-
chines. Most compilers specifically targetted at stack
machines have been Forth compilers, where register al-
location has to be done explicitly by the programmer.
When developing a C compiler, however, it is impor-
tant that it is the compiler handles register allocation
since this is not the responsibilty of the programmer.

The first work on register allocation for stack ma-
chines was Koopman’s work[4], although he uses the
term ‘stack scheduling’, which was limited to basic
blocks, although he does discuss the possibility of a
global method to further improve this work. This work
was later to shown to be near-optimal, in terms of re-
moving memory acccesses, by Maierhofer and Ertl[6],
and was extended beyond basic block boundaries by
the second author[1]. Although this enhanced method

was able to store values on the stack across edges in the
flow graph, it has limitations and cannot be considered
truly global.

This paper assumes a stack machine for which
stack access is considerably faster than memory access,
whether real or virtual, and that register allocation is
the job of the compiler, not the programmer.

2 The stack

2.1 Views of the stack

It is possible to view the stack from a number of dif-
ferent perspectives. For example, when viewed from a
hardware perpsective the stack consists of a number of
discrete registers, a mechanism for moving values be-
tween these registers, a buffer, and some logic to con-
trol movement of data between the buffer and mem-
ory. This perspective is irrelevant to the programmer,
who sees a first-in first-out stack, of potentially infinite
depth, enhanced with a number of instructions allowing
access to a few values directly below the top of stack.
In oreder to develop register allocation methods a dif-
ferent, more structured view is required.

2.2 Stack regions

To aid analysis of the stack with regard to register al-
location, the perspective chosen divides the stack into
a number of regions. These regions are abstract, hav-
ing no direct relation to the hardware and exist solely
to assist our thinking. The boundaries between these
regions can be moved without any real operation tak-
ing place, but only at well defined points and in well
defined ways. This compiler oriented view of the stack
consists of five regions. Starting from the top, these
are:

• The evaluation region (e-stack)

• The parameter region (p-stack)

• The local region (l-stack)

• The transfer region (x-stack)

• The remainder of the stack, included for complete-
ness.

An example of stack region usage is illustrated in
figure 6

2.2.1 The evaluation region

The evaluation region, or e-stack, is the part of the
stack that is used for the evaluation of expressions. It
is defined to be empty except during the evaluation
of expressions when it will hold any intermediate sub-
expressions1. See figure 1 for an example.

Figure 1: Evaluation of expression y = a ∗ b + 4

The e-stack is not modified during register allocation.
Any compiler optimisations which would alter the e-
stack, such as common sub-expression elimination, are
presumed to have occurred before register allocation.

2.2.2 The parameter region

The parameter region, or p-stack, is used to store pa-
rameters for procedure calls. It may have values in it at
any point, both in basic blocks2 and across the bound-
aries between blocks. When a procedure is invoked all
its parameters are removed from the p-stack. The p-
stack is for outgoing parameters only; any value re-
turned by a procedure is left on the e-stack and incom-
ing parameters are placed in the x-stack at the point of
procedure entry. Although parameters are kept on the
p-stack before a procedure call, they are evaluated on

1This is by definition, any ‘expression’ that does not ful-
fil these criteria should be broken down into its constituent
parts, possibly creating temporary variables if needed. The
conditional expression in C is an example of such a com-
pound expression.

2A basic block is a piece of code which has one entry
point, at the beginning, and one exit point, at the end. That
is, it is a sequence of instructions that must be executed, in
order, from start to finish.

the e-stack, like any other expression. Only when eval-
uation of the parameter is completed is it moved to the
p-stack. This is illustrated in figure 2. Note that this
movement may be entirely abstract; no actual opera-
tion need occur. The p-stack is, like the e-stack, fixed
during register allocation.

Figure 2: Evaluation of expression f(x+y)

The e-stack and p-stack are the parts of the stack
that would be used by a compiler that did no stack
allocation. Indeed the stack use of the JVM[5] code
produced by most Java[2] compilers corresponds to the
e-stack and p-stack.

2.2.3 The local region

The local region, or l-stack, is the region directly below
the p-stack. The l-stack is used for register allocation.
It is always empty at the beginning and end of any basic
block, but may contain values between expressions. In
the earlier example, no mention was made of where
either a or b came from or where y is stored. They could
be stored in memory but it is better to keep values in
machine registers whenever possible. So let us assume
that in the earlier example, y = a * b + 4, a and b

are stored in the l-stack, as shown in figure 3. To move
a and b from the l-stack to the e-stack, we can copy
them, thus retaining the value on the l-stack, or move
them to the e-stack from the l-stack. In this example, b
might be stored at the top of the l-stack, with a directly
below it; to move them to the e-stack requires no actual
move instruction, merely moving the logically boundary
between the e-stack and l-stack. Likewise storing the
result, y, into the l-stack is a virtual operation.

2.2.4 The transfer region

The transfer region or x-stack is used to store values
both during basic blocks and on edges in the flow graph.
The x-stack need only be empty at procedure exit. It
holds the incoming parameters at procedure entry. Val-
ues may only be moved between the x-stack and l-stack
at the beginning or end of basic blocks, and they must
moved en bloc and retain their order. Values cannot

Figure 3: Using the l-stack when evaluating
y = a ∗ b + 4

be moved directly between the x-stack and the e-stack,
they must go through the l-stack. Since all ‘movement’
between the l-stack and x-stack is virtual it might seem
that they are the same, but the distinction between the
two is useful; the x-stack must be determined globally,
while the l-stack can be determined locally. This sep-
aration allows a clear distinction between the different
phases of allocation and simplifies the analysis.

2.2.5 The rest of the stack

The remainder of the stack or sub-stack, consists of the
e-stack, p-stack, l-stack and x-stack of enclosing proce-
dures. It is out-of-bounds for the current procedure.

2.3 Using the regions to do register
allocation

Register allocation for stack machines is complicated
by the moveable nature of the stack. A value may be
stored in one register, yet be in a different one when it
is retrieved. This complication can be sidestepped by
regarding the boundary between the p- and l-stacks as
the fixed point of the stack. Values stored in the l-stack
do not move relative to this boundary. The ability of
the hardware to reach a point in the l-stack depends
on the height of the combined e- and p-stacks above
it, but that height is fixed during register allocation,
meaning it needs to be calculated only once at the start
of register allocation.

2.3.1 The e-stack

The e-stack is unchanged during optimisations. Op-
timisation changes whether values are moved to the e-
stack by reading from memory or by lifting from a lower
stack region, but the e-stack itself is unchanged.

2.3.2 The p-stack

For a number of register allocation operations, there is
no distinction between the e-stack and p-stack and they

can be treated as one region, although the distinction
can be useful. For certain optimisations, which are lo-
calised and whose scopes do not cross procedure calls,
the p-stack and l-stack can merged increasing the usable
part of the stack. For the register allocations method
discussed later, which are global in scope and can cross
procedure calls, the p-stack is treated essentially the
same as the e-stack.

2.3.3 The l-stack

The l-stack is the most important region for localised
register allocation. All intra-block optimisations oper-
ate on this region. Code is improved by retaining vari-
ables in the l-stack rather than storing them in memory.
Variables must be fetched to the l-stack at the begin-
ning of each basic block and, if they have been altered,
restored before the end of the block, since by definition,
the l-stack must be empty at the beginning and end of
blocks.

2.3.4 The x-stack

The x-stack allows code to be improved across basic
block boundaries. The division between the l-stack and
x-stack is entirely notional; no actual instructions are
inserted to move values from one to the other. Instead
the upper portion, or all, of the x-stack forms the l-
stack at the beginning of a basic block. Conversely, the
l-stack forms the upper portion, or all, of the x-stack at
the end of the basic block. Since the e-stack and l-stack
are both empty between basic blocks, the p-stack and
x-stack represent the complete stack which is legally ac-
cessible to the current procedure at those points. This
makes the x-stack the critical part of the stack with re-
gards to global register allocation. Code improvements
using the x-stack can eliminate local memory accesses
entirely by retaining variables on the stack for their en-
tire lifetime.

2.4 How the logical stack regions re-
late to the real stack

The logical stack regions can be of arbitrary depth re-
gardless of the hardware constraints of the real stack.
However, the usability of the l-stack and x-stack de-
pends on the capabilities of the hardware. Our real
stack-machine, the UFO, has a number of stack manip-
ulation instructions which allow it to access values up
to a fixed depth of four below the top of the stack. How-
ever, as the e-stack and p-stack vary in depth, the pos-
sible reach into the l-stack also varies. Variables that lie
below that depth are unreachable at that point, but, as
they may have been reachable earlier and become reach-
able later, they can still be useful. We assume that the

hardware allows uniform access to a fixed number of
registers, so if we can copy from the nthregister we can
also store to it and rotate through it.

2.5 Edge-sets

The second part of the analytical framework relates to
flow-control. In order that programs behave in a sen-
sible way, the stack must be in some predictable and
fixed3 state when program flow moves from one block
to another. This means for all the successor edges of
any given block, the state of the x-stack must be identi-
cal. Likewise, it means that for all the predecessor edges
for any given block, the state of the x-stack must be the
same. The set of edges for which the stack must con-
tain the same variables is called an edge-set. An edge
belongs to exactly one edge-set and if two edges share
either a predecessor or successor node (block) they must
be in the same edge-set. The state of the x-stack is the
same for every edge in an edge-set. Edse-sets are de-
fined as follows:

For any edge e and edge-set S1: if e ∈ S1 then for all
other edge-sets S2 6= S1, e 6∈ S2.

For any two edges, e1 ∈ S1, e2 ∈ S2: if
predecessor(e1) = predecessor(e2) ∨ successor(e1) =
successor(e2) then S1 = S2.

3 An example

In order to illuminate the process of using the stack
regions to perform register allocation we will use an
example. The program code in figure 4 is a simple
iterative procedure which returns n factorial for any
value of n greater than 0, otherwise it returns 1. The
C source code is on the left, along side it is the output
from the compiler without any register allocation.

Before register allocation can be done the edge-sets
are found; see figure 5. The first part of the stack to be
determined is the x-stack. Firstly consider the edge-set
{a, b}; both the variables n and f are live on this edge
set. Presuming that the hardware can manage this, it
makes sense to leave both variables in the x-stack. The
same considerations apply for {c, d}, so again both n

and f are retained in the x-stack. The order of vari-
ables, whether n goes above f, or vice versa, also has to
be decided. In this example we choose to place n above
f, since n is the most used variable, although in this
case it does not make a lot of difference.

Once the x-stack has been determined, the l-stack
should be generated in a way that minimises memory
accesses. This is done by holding those variables which

3A fixed x-stack means that the variables held in it are
the same, regardless of the flow up to that point, the values
those variables hold may vary.

Figure 4: C Factorial Function

C source Assembly

int f a c t (int n)
{

int f = 1 ;
while (n > 0) {

f = f ∗ n ;
n = n − 1 ;

}
return f ;

}

! l o c n
l i t 1
! l o c f
jump L3
L2 :
@loc f
@loc n
mul
! l o c f
@loc n
l i t 1
sub
! l o c n
L3 :
@loc n
l i t 0
brgt L2
@loc f
e x i t

are required by the e-stack in the l-stack, whilst match-
ing the l-stack to the x-stack at the ends of the blocks.
Firstly n, as the most used variable, is placed in the
l-stack. It is required on the l-stack thoughout, except
during the evaluation of n = n+1, when it is removed,
so that the old value of n is not kept. Secondly f is allo-
cated in the l-stack, directly under n. In the final block
the value of n is superfluous and has to be dropped.

The original and final stack profiles are shown in fig-
ure 6. Note the large number of stack manipulations,
such as rrot2 which is equivalent to swap, and rrot1,
which does nothing at all. These virtual stack manip-
ulations serve to mark the ‘movement’ of variables be-
tween the e-stack and l-stack. The final assembly stack
code, with redundant operations removed, is shown in
figure 7 on the right. Not only is the new code shorter
than the original, but the number of memory accesses
has been reduced to zero. Although much of the op-
timisation occurs in the l-stack, the x-stack is vital,
since without it variables would have to be stored to
memory in each block. Register allocation using only
the l-stack can be seen in the centre column of figure
7. This would suggest that the selection of the x-stack
is an important factor in register allocation. Although
this is a very simple example, the underlying principles
can be applied to much larger programs.

Figure 5: Determining the edge-sets

The edges a
and b share a
common child,
so form one
edge set. The
edges c and d
share a common
parent and form
another edge
set. So, the two
edge-sets are
{a, b} and {c, d}

4 Analysis of Existing Algo-
rithms

To demonstrate the value of the framework for anal-
ysis we will look at Koopman’s and Bailey’s methods
for ‘stack-scheduling’, and show that the algorithm can
be described more clearly and concisely with reference
to our framework. The improvements to Koopman’s
method by Maierhofer and Ertl are not covered, mainly
for space reasons, as they add relatively little to Koop-
man’s work in terms of performance.

4.1 Koopman’s algorithm

Koopman’s algorithm, as described in his paper, was
implemented as a post processor to the textual output
of gcc[7] after partial optimisation. We have imple-
mented it within lcc[3], where it acts directly on the
intermediate form.

The algorithm is quite straightforward, as follows:

1. Clean up the output using simple peephole optimi-
sation, replacing sequences of stack manipulations
with shorter ones if possible.

2. Locate define–use and use–use pairs of local vari-
ables and list them in order of their proximity.
That is, in ascending order of the number of in-
structions separating the pair.

3. For each pair:

(a) Copy the variable at the point of definition
or first use to the bottom of the stack.

Figure 6: Stack profile
Before optimisation After optimisation

.text

param n n

rot1 n

!loc n

lit 1 1

!loc f

jump L3

L2:

@loc f f

@loc n nf

mul f*n

!loc f

@loc n n

lit 1 1n

sub n−1

!loc n

L3:

@loc n n

lit 0 0n

brgt L2

@loc f f

exit f

e-stack

l-stack

x-stack

.text

param n n

rot1 n

rrot1 n

lit 1 1n

rrot2 nf

jump L3 nf

L2: nf

rot2 fn

copy2 nfn

mul f*nn

rrot2 nf

rot1 nf

lit 1 1nf

sub n−1f

rrot1 nf

L3: nf

copy1 nnf

lit 0 0nnf

brgt L2 nf

rot1 nf

drop f

rot1 f

exit f

(b) Replace the second instruction with an in-
struction to rotate the value to the top of
the stack.

4. Remove any dead stores.

5. Reapply the peephole optimisation.

4.1.1 Koopman’s algorithm in terms of the
framework

In Koopman’s algorithm, when he refers to the bottom
of the stack, he is referring to the portion of the stack
used by the function being optimised. Since no inter-
block allocation is done, thus the x-stack is empty, the
bottom of the stack is clearly the bottom of the l-stack.
Therefore step 3 above become:

(a) Copy the variable at the point of definition
or first use to the bottom of the l-stack.

(b) Replace the second instruction with an in-
struction to rotate the value from the bottom
of the l-stack to the top of the stack.

Figure 7: Assembly listings

No register
allocation

Local
register
allocation

Global
register
allocation

! l o c n
l i t 1
! l o c f
jump L3
L2 :
@loc f
@loc n
mul
! l o c f
@loc n
l i t 1
sub
! l o c n
L3 :
@loc n
l i t 0
brgt L2
@loc f
e x i t

! l o c n
l i t 1
! l o c f
jump L3
L2 :
@loc f
@loc n
tuck2
mul
! l o c f
l i t 1
sub
! l o c n
L3 :
@loc n
l i t 0
brgt L2
@loc f
e x i t

l i t 1
swap
jump L3
L2 :
tuck2
mul
swap
l i t 1
sub
L3 :
copy1
l i t 0
brgt L2
drop
e x i t

4.2 Bailey’s ‘inter-boundary’ algo-
rithm

Bailey’s ‘inter-boundary’ algorithm was the first at-
tempt to utilise the stack across basic block boundaries.
This is done by determining edge-sets; although in the
paper the algorithm is defined in terms of blocks rather
than edges. Then the x-stack, termed ‘sub stack in-
heritance context’, is determined for the edge-set. In
outline the algorithm runs as follows:

1. Find co-parents and co-children for a block (deter-
mine the edge-set).

2. Create an empty ‘sub stack inheritance context’.

3. For each variable in a child block, starting with
the first to occur:

• If that variable is present in all co-parents
and co-children, then:

– Test to see if it can be added to the base
of the x-stack. This test is done for each
co-parent and co-child to see whether
the variable would be reachable at the
closest point of use in that block.

Bailey’s algorithm is designed to be used as a comple-
ment to an intra-block optimiser, such as Koopman’s.
It moves variables onto the stack across edges in the
flow graph, by pushing the variables onto the stack im-
mediately before the edge and popping them off the
stack immediately after the edge. Without an intra-
block optimiser this would actually cause a significant
performance drop.

4.2.1 Bailey’s algorithm in terms of the
framework

1. Determine edge-sets

2. For each edge-set:

(a) Create an empty x-stack state for that edge-
set.

(b) Determine the intersection of the sets of live
variables for each edge in the edge-set.

(c) Choose an arbitrary neighbouring block, pre-
sumably the first to occur in the source code.

(d) For each variable in the intersection set, in
increasing order of the distance of usage from
the edge in question:

• Test to see if it can be added to the x-
stack, and if it can be, do so.

Although Bailey’s algorithm is an inter-block algo-
rithm, it is not genuinely global, as it makes fairly lim-
ited use of the x-stack. No values are left in the x-stack
during blocks. No attempt is made to integrate the
allocation within the x-stack to allocation within the
l-stack. In terms of performance, the main failing of
Bailey’s algorithm is that it cannot handle variables
which are live on some but not all edges of an edge-set.

5 A Global register allocator

The next step forward in register allocation for stack
machines, is to try to do it globally, in a procedure
wide fashion. Once full data-flow information, includ-
ing edge-sets, has been found, the next step is to deter-
mine the x-stack on each edge-set. Our first approach
was to modify Bailey’s algorithm to use various combi-
nations of unions and intersections of liveness and uses.

However, this revealed some important limitations in
the localised push-on, pop-off approach, which are:

• Excessive spilling

There is no attempt to make the x-stack similar
across blocks, so variables may have to be saved
at the start of a block, and other variables loaded
at the end of a block.

• Excessive reordering

Even when the x-stack state at the start and end
of a block contain similar or the same variables,
the order may be different and thus require extra
instructions.

• No ability to use the x-stack across blocks

The requirement for the entire x-stack to be trans-
fered to the l-stack means that the size of the x-
stack is limited. Variables cannot be stored deeper
in the stack when they are not required.

5.1 A global approach

The problems to be solved are:

5.1.1 Determination of x-stack member
sets

Although none of the modified versions of Bailey’s al-
gorithm produced better code than the original, some
versions did seem to make promising selections of x-
stack members. We decided to determine the x-stack
set by starting with a large set of variables and reducing
it towards an optimum.

5.1.2 Ordering of the variables within the
x-stack

If variables are to be kept on the x-stack during blocks
then the order of the lower parts of the x-stack is im-
portant. Since the ordering of variables on the x-stack
cannot be changed, without moving variables to the l-
stack, the order of the lower parts of the x-stack must
match across blocks. The simple but effective approach
taken was to choose a globally fixed ordering. This also
solves the problem of excessive reordering of variables.

5.1.3 Handling the l-stacks to work with
the x-stack

Since allocation of the l-stack depends on the x-stack
at both beginning and end of the block. It is necessary
to determine the x-stack first. However, in order to
allocate x-stack that do not impede l-stack allocation,
the l-stack, must be at least partially determined before
the x-stack.

5.2 Outline Algorithm

The algorithm chosen runs, in outline, as follows:

1. Determine edge-sets

2. Determine ordering of variables.

3. For each edge-set:

Determine x-stack using heuristic

4. For each basic block:

Do local allocation, ensuring l-stacks match
x-stack.

5.3 Determining x-stack

There are two challenges when determining the x-stack.
One is correctness, that is, the x-stack must allow regis-
ter allocation in the l-stacks to be both consistent with
the x-stack and legal. The other challenge is the qual-
ity of the generated code. For example making all the
x-stack empty is guaranteed to be correct, but not to
give good code. Both the x-stack finding methods work
by first using heuristics to find an x-stack which should
give good code, then correcting the x-stack, if necessary.
The algorithm for ensuring correctness is the same, re-
gardless of heuristic used.

For the x-stack to be correct, two things need to be
ensured:

1. Reachability

Ensure all variables in the x-stack that are defined
or used in successor or predecessor blocks, are ac-
cessible at this point.

2. Cross block matching

Ensure that all unreachable variables in the x-
stack on one edge do not differ from those in the
x-stack on an other edge adjoining the same block.

5.3.1 Ordering of variables.

As stated earlier, a globally fixed ordering of variables is
used. This is done by placing variables with higher ‘es-
timated dynamic reference count’ nearer the top of the
stack. In our implementation, which is part of a port
of lcc[3], the ‘estimated dynamic reference count’ is the
number of static references to a variable, multiplying
those in loops by 10 and dividing those in branches by
the number of branches that could be taken. An al-
ternative ordering could be based around ‘density’ of
use, which would take into account the lifetime of vari-
ables. Profiling would provide the best estimate, but is
impractical.

5.3.2 Heuristics

We use two different heuristics to demonstrate the util-
ity of the framework. The first is simple and fast,
whereas the second is more complex, and consequently
slower.

5.3.3 Global 1

The first simpler heuristic is simply to take the union
of live values. Its main flaw is that it selects variables
for the x-stack, that cannot be allocated to the l-stack,
and have to be spilled to memory.

5.3.4 Global 2

This heuristic was developed to improve on ‘Global 1’.
It considers the ideal l-stack for each block and then at-
tempts to match x-stack as closely to that as possible.
Given that the ordering of variables is pre-determined,
the x-stack can be treated as a set. In order to find
this set, we determine a set of variables which would be
counter productive to allocate to the l-stacks. The x-
stack is then chosen as the union of live values less this
set of rejected values. The set of ‘rejects’ is found by do-
ing ‘mock’ allocation to the l-stack, to see which values
can be allocated, then propagating the values to neigh-
bouring blocks in order to reduce local variation in the
x-stack. Overall this algorithm out performs ‘Global 1’,
but can produce worse code for a few programs.

6 Results

The graph in figure 8 shows the simulated performance
of the various register allocation methods, for a simple
processor where memory accesses take three cycles and
other operations take one cycle. The ‘overall’ result is
the geometric mean of the other results. Although the
results are for simple benchmarks on a simulated stack
machine, we believe that the differences between the
previous algorithms and the new ones are large enough
to be significant.

Figure 8: Relative performance

1

1,5

2

2,5

3

bs
or

t

im
ag

e

m
at

m
ul

fib
fa

ct lif
e

qu
ic
k

qu
ee

ns

to
w
er

s

bi
tc
nt

s

dh
ry

st
on

e
w
f1

ya
cc

O
ve

ra
ll

koopman

bailey

global1

global2

7 Conclusion

As can be seen the global register allocation methods
are generally better than the previous methods, but
there is room for improvement. The framework laid out
in this paper, enables us to analyse the two approaches,
to see what those improvements could be, and can be
used to find even better algorithms. Work is currently
underway to find an allocator that performs at least as
well as the two global allocators in all circumstances.

References

[1] C. Bailey. Inter-boundary scheduling of stack
operands: A preliminary study. Procedings of Eu-
roForth 2000, pages 3–11, 2000.

[2] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification, Second Edition. Addi-
son Wesley, 2000.

[3] D. R. Hanson and C. W. Fraser. A Retargetable
C Compiler: Design and Implementation. Addison
Wesley, 1995.

[4] P. Koopman, Jr. A preliminary exploration of opti-
mized stack code generation. Journal of Forth Ap-
plication and Research, 6(3):241–251, 1994.

[5] T. Lindholm and F. Yellin. The Java Virtual Ma-
chine Specification. Addison-Wesley, 1996.

[6] M. Maierhofer and M. A. Ertl. Local stack alloca-
tion. In CC ’98: Proceedings of the 7th Interna-
tional Conference on Compiler Construction, pages
189–203, London, UK, 1998. Springer-Verlag.

[7] R. M. Stallman. Using and Porting the GNU Com-
piler Collection, For GCC Version 2.95. Free Soft-
ware Foundation, Inc., pub-FSF:adr, 1999.

