
iMitl
Macro-
Marketing
Limited

396 Bath Road,
Slough, Berks.

Tel: Burnham
(06286) 6301 1

Telex: 847O83

MC14s00B
INDUSTRIAL CONTROL UNIT

HANDBOOK

Authors
Vem Gregory

Brian Dellande

Principal Contributors
Ray DiSilvestro
Terry Malarkey

Phil Smith
Mike Hadley

o Copyright 1977 by Motorola Inc
All Rights Reserved

MOTOROLA Sent icond.tctor Products, nc_

PREFACE

A large number of the problems found in controlling electronic and
electromechanical devices involve decision oriented tasks. In addition,
these decisions usually result ín commands as simple as turning some-

thing on or off. Some examples are: Is the limit switch closed? Has the

timer interval ended? Turn on pump P17 when relays A, B, and C are
closed. Send 20 pulses to the triac. Turn on the TILI light. Count 60
pulses and start motor MI, and an infinity of like jobs.

There are, of course, many ways to solve these types of problems.
Originally, conceptually simple and easily maintained relays were used

extensively. However, relays are bullq, expensive, consume a great deal
of power, suffer in terms of long range reliabiliry and also from the fact
that they do not lend themselves easily to system changes.

Next came solid state logic. These devices are quite small, have

become extremely inexpensive, consume afractionof the power of arelay
and have tremendous long term reliability while remaining conceptually
simple and easily maintain^able. However, they still suffer from the fact
that, once in the system, they are not easily programmable and system

changes cannot be made quickly and inexpensively.
Computers and microcomputers may also be used, but they tend to

overcomplicate the task and often requíre highly trained personnel to
develop and maintain the system.

A simpler device, designed to operate on inputs and outputs one-at-a-
time and configured to resemble a relay system, was introduced. These

devices became known to the controls industry as Programmable Logic
Controllers (PLC).

The Motorola MC145008 Industial Control Unit (ICU) is the
monolithic embodiment of the PLC's central architecture. Some of the

features of the Motorola MCI45008 ICU are:
t 16 instructions.
t Easily programmed, uncomplicated, no fear of the unfamiliar.
t Easily learned, can be maintained by existing personnel.
t Uses external memory for versatile system design.
. Can be uniquely tailored to a user's particular requirements.
t Readily expandable to any size and complexity.
. Offers the advantages of programmability.
t B series CMOS JEDEC specífícation
t High noise immuniry.
. Low quiescent cunent.

. 3-18 volt operation.

. Static operation.
t Wide range of clockfrequencies , typical I MHz operation @ Voo

: 5V with I instructionlclock period.
. Instruction inputs-TTL compatible.
t Outpeforms microprocessors for decision oriented tasks.
t Wide range of applications, from relay ladder logic processing, to

moderate speed serial data manipulations, to the unloading of
overtaxed microprocessor based sy stems.

This handbook serves as a designand application manualfor the part.

Table of Contents

Preface

CHAPTER I - Introduction .

CHAPTER 2 - Basic Concepts

CHAPTER 3 - Basic Programming and Instruction Set

CHAPTER 4 - Hardware Svstems

CHAPTER 5 - Demonstration Svstem

CHAPrTER 6 - Timing, Signal Conditioning and VO Circuits

CHAPTER 7 - OEN and the IF-THEN Structure

CHAPTER 8 - IF-THEN-ELSE Structure

CHAPTER 9 - While Structure

CHAPTER 10 - Complete Enabling Structures

CHAPTER 11 - Traflic Intersection Controller

CHAPTER 12 - Adding Jumps, Conditional Branching and Subroutines

CHAPTER 13 - Modularizing Hardware Systems

CHAPTER 14 - Arithmetic Routines

CHAPTER 15 - Translating to ICU Code

APPENDIX A - MC145998 Addressable Latch

.i

I

9

r5

25

3l

4l

55

59

63

67

/f,

87

9l

97

101

10s

nt

CHAPTER l INTRODUCTION

The Motorola MC145008 is a single chip, one-bit static CMOS processor optimized
for decision-oriented tasks. The processor is housed in a l6-pin package and features
16-four-bit instructions. The instructions perform logical operations on data appearing on a
one-bit bidirectional data line and data in a one-bit accumulating Result Register within the
ICU. All operations are performed at the bit level.

The ICU is timed by a single phase clock signal, generated by an internal oscillator that
uses one external resistor. Alternatively, the clock signal may be controlled by an external
oscillator. In either case, the clock signal is available for synchronization with other
systems. Each of the ICU's instructions execute in a single clock period. The clock
frequency may be varied over a wide range. At a clock frequency of I MHz, some 8300,
plus, instructions, may be executed in a 60 Hz power line half cycle.

In a system, the ICU may be used in conjunction with the complete line of over 100
standard B-series CMOS logic devices. This allows tailoring a system to an application, and
allows a judicious mix of customized hardware and software to be achieved.

As an initial example, Figure I .l shows a block diagram of a minimal ICU system
with four component blocks in addition to the ICU. The blocks are:
r The ICU, or central controller of the system.
r The mernory, either permanent Read Only Memory (ROM) or temporary Random

Access Memory (RAM). Here, the steps of the program are stored, both individual
instructions and addresses of inputs and outputs.

Program Counter

It
ROM

Pl

Fh

'ogram
emory
OM & EROM

MC1 45008
tcu

Input
Sel ectors

Output
Latches

Figure 1.1 Basic ICU System

r The program counter, used to step the machine through the sequence of instructions.
r Inputs and outputs, each individually selected by the machine, from information

contained in the memory.
Note that this system can be expanded almost without bound, in terms of inputs and outputs,
so long as the memory is sufficiently wide to address the VO structure.

There are functions for which one bit machines are poorly suited. These functions are
complex calculations or parallel word data processing. When there are many calculations, a

one-bit machine is at a disadvantage. When a job is dominated by calculations or data
logging, a multi-bit processor is appropriate. When the task is decision and command
oriented, a one-bit machine is an excellent choice. The tasks that are mixed between
decisions and calculations will be decided upon by economics, the designer's familiarity
with alternatives, and how comfortable the designer is with the alternatives. Under some
circumstances, a combination of an MC6800 MPU and an MC145008 ICU may be the best
solution.

A functional diagram of the MC 14500B is shown in Figure | .2. Central to the ICU is
the Result Register, (RR), a one-bit accumulator that stores the results of Boolean manipula-
tions. These results are generated in the Logic Unit, (LU), which has as its inputs, signals
from external data and the RR. Instructions are presented to the chip on the 4 instruction
pins, (I0, ll,12,13), and are latched into the Instruction Register, (IR), on the negative-
going edge of Xl.

Figure 1.2 MCl45008 Block Diagram

2

*t@ uoo

J.-o vss

3:r.'silL,
x2 (9ÈL_J
IO

l1

T2

I3

J-1"

J].
Jl-,
tnt

@
@
-@
-o

RR

JMP

RTN

F LGO

FLGF",'ffiF

The instructions, listed in Figure | .3, are decoded in the Control Logic (CTL), sending
the appropriate logic commands to the LU. Fufher decoding is also performed in the CTL to
send a number of output flags (JMP, RTN, FLG0, FLGF) to pins 9 through 12. These are

used as external control signals and remain active for a full clock period after the negative-
going edge of Xl.

lnstruction Code M nemon ic Action

+À

#6

#8
#9

#B

o000
0001
001 0
001 1

0100
01 01

0110
01 11

1 000
1001
î 010
1011
1100
1 101
'l 110
111 1

NOPO
LD

LDC
AND

ANDC
OR
oRc

XNOR
STO

STOC
IEN

OEN
JMP
RTN
SKZ

NOPF

No change ìn registers. R + R, F LGO +J1_
Load Result Reg, Data + RR
Load Complement DàiE - RR
LogicalAND.RR. D+RR
Logical AND Compl. RR O- * nn
Losical OR.RR+D+RL
Logical OR Compl. RR + D + RR
Exclusive NOR. lf RR = D, RR <- 1

Store. RB + Data Pin, Write <- 1

Store Compl . F-R - Data Pin, Write + 1

Input Enable. D - IEN Reg.
Output Enable. D +OEN Reg.
Jump. JMP Flag + -.;1
Return. RTN Flag *J-ì-, St ;p next inst.
Skip next instruction if RR = 0
No change in Registers FìR +RR, FLGF <-J1

Figure 1.3 MC145008 Instruction Set

The timing signals are generated from an on-chip oscillator, (OSC), with the operating
frequency set via an external resistor connected between pins l3 and 14. Figure 1.4 shows
the relationship between frequency and resistor values. The resultant square wave output
appearing at pin 14 is used both within the ICU and as a general system clock. Alternatively,
the system may be externally clocked at pin 13.

r00 k

l0 kQ r00 ka 1 Mo

Rg, CL0CK FRE0UENCY RESIST0R

1M-
z
=

j

Figure 1.4 Typical Clock Frequency Versus Resastor (RCl

Two internal latches, Input Enable Register, (IEN), and Output Enable Register,
(OEN), control data transfers to and from the ICU. The IEN acts to enable the data path to
the LU when in the high state. The OEN, in the high state, enables the Write signal. It
should be noted that both of these registers are set via the Data pin.

nòl

Write

Data

tl

t2

t1

to

Vss

Voo
RR

xt
x2
JMP

RTN

F LGO

Figure 1.5 Pin Assignment

A Master Reset pin (RST), active high, is provided to clear all registers and hold the
FLAG signals within the ICU at zero. The oscillator pin (X1) is held in the high state when
RST is high. When RST goes low, the oscillator starts after a delay. In addition, the state of
RR is available at the buffered RR pin 15.

The ICU chip is housed in a 16-pin dual-in-line package, available in either plastic or
ceramic. The various temperature ranges and package types are as follows:

MCI4500BAL: Ceramic package; MIL temperature range
MCl4500BCL: Ceramic package, Commercial temperature range
MC14500BCP: Plastic package, Commercial temperature range

Pin assignments are shown in Figure 1.5.
The maximum ratings and the electrical characteristics of the ICU are shown in Figure

1.6. These characteristics conform to JEDEC B-Series specifications governing CMOS
B-Series devices which have a recommended supply voltage operating range from 5 to l5
Vdc. In electrically noisy industrial environments, supply voltages of 15 Vdc zlre recom-
mended to make best use of the excellent noise immunity characteristics of CMOS logic. In
addition to being able to work in conjunction with over 100 B-series devices, the ICU also
works with non-B-series CMOS parts. Refer to Motorola Semiconductor Data Library,
CMOS Volume 5/Series B, for further information regarding the many devices that are

compatible with the ICU.
The switching characteristics and explanatory waveforms are shown in Figures 1.7 and

1.8, respectively. All times are related to the pin 14 clock signal, Xl. At this printing, only
specifications for typical times, at Voo : 10 Vdc, were available. Refer to the MC145008
data sheet for up-to-date specifications.

1 16

215
314
413
5 '12

6 11

710
89

E LECTR ICAL CHARACTERISTICS

Characteristic Symbol

VDo
Vdc

250

UnitTvp

Output Voltage "0" Level
V;n = Vpg or 0

"1 " Level
Vin=0orVgg

voL
t0 0

Vdc

VoH
t0 10

Vdc

Input Voltage* "0" Level
RST, D, X2

(Vo = 9.0 or 1'0 Vdc)

"'1" Level
(vg = | '0 or 9'0 Vdc)

VtL

t0 4.50

Vdc

Vttt
10 5.50

Vdc

Input Voltage "0" Level
t0, t1, t2, r3

(vg = 9.0 or 1.0 Vdc)

"l" Level
(Vg = 1'0 or 9'0 Vdc)

vtL

l0 2.2

Vdc

vlH
10 J. I

Vdc

Output Drive Current Source
D, Write

(VOH = 9.5 Vdc)
(VOt = 0'5 Vdc) Sink

loH

10 -6.0

mAdc

loL 10 6.0 mAdc

Output Drive Current (AL Device)
Outputs

(VOg = 9.5 Vdc) Source

(Vg1- = 0.5 Vdc) Sink

loH

loH 10 -2.25

mAdc

mAdc

lol 10 2.25 mAdc

Output Drive Current (CL/CP Device)
Other Outputs

(VOg = 9.5 Vdc) Source

(VOL = 0.5 Vdc) Sink

lot-t

10 -2.25

mAdc

lot 10 2.25 mAdc

Input Current (RST) t.,tn 't5 150 pAdc

Input Current {AL Device} li^ 15 10.00001 rrAdc
Input Current (CL/CP Device) 15 10.00001 pAdc

Input Capacitance (DATA) Ci' 15 pF

Inpuî Capacitance (All Other Inputs)
(V;n = 0)

cin 5.0 pF

Quiescent Current (AL Device)
(Per Package)

loo 10 0.010 irAdc

Ouiescent Current (CL/CP Device)

{Per Package)
IDD 10 0.010 pAdc

'Tlow = -55oC for AL Device, -4OoC for CL/CP Device
Thisil = +125oc for AL Device, +85oc for CL/CP Device,

Noise Margin for both "'1" and "O"
level = 2.0 Vdc min @ VOO = 10 Vdc

Figure 1.6

SWITCH ING CHARACTER ISTICS

Characteristic Symbol

VDo
Vdc

All Types

UniîTvp

Propagation Delay Time
X] to RR

X1 to FLAGF, FLAGO, RTN, JMP

Xl to WRITE

X1 to DATA

RST Îo RR

RST to Xl
RST to FLAGF, FLAGO, RTN, JMP

RST to WRITE, DATA

IdR 10 110 ns

10 100

tdw 10 125 ns

ÎdD 10 120 ns

IdRRR 10 110 ns

TdRX lo 120 ns

tdR F 10 90 ns

tdRW t0 110 ns

Minimum Clock Pulse Width. X1 PWc l0 40 ns

Minimum Reset Pulse Width. RST PWR l0 50 ns

Setup Time
I nstru ct i on

DATA
rts î0 '125 ns

IDS 10 5U ns

Hold Time
Instruction

DATA
llH 10 0 ns

tDH 10 30 ns

(TA = 25oc' tr = tf = 20 ns for X and I inputs; C|. = 50 pF for JMP, X, RR,
FLAG0, FLAGF; Cg = 130 pF + 1 TTL load for DATA and WRITE.)

Figure 1.7

(CLK)

F- ton nn

NOP F

lnstructions NOPO, NOPF

RR, lEN, OEN remain unaffected

Figure 1.8 Timing Waveforms

NOP O

6

(CLK) X1

I

I r----r
-r. FJI lNoPI tltrs|<-lI tNtlg!_

fl:.,1
LO etc. IEN LD etc.

--l Ftaa
IEN Register

(| nternal)

(cLK)

Instructions LD. LDC, AND, ANDC, OR, ORC, XNOR & lEN

Valid when RST = L

Instructions STO, STOC, OEN

Valid when RST = L

Figure 1.8 Timing Waveforms (Conlinuedl

lr
O o,a

Instrucrion : LJ-/ ff \-/
STO I STO NOP OEN STOsToc I sToc sToc

OEN Begister
(lnternal)

X1
(CL K)

4 bit
I nstru ction

RTN FLAG

' Instructions ignored.

lnstructions SKZ, JMp, RTN

RR, lEN, OEN remain unaffected.

Figure 1.8 Timing Waveforms (Continuedl

CHAPTER 2 BASIC CONCEPTS

The block diagram in Figure 2. I shows an example of a small ICU-based PLC system.
The components, in addition to the ICU, are composed of standard CMOS parts, except for
the memory.

The ICU system operates on the principle of a stored program processor. A set of
commands, called instructions, reside in the memory of the ICU system. Each command
instructs the ICU system to perform one of 16 operations.

The system "fetches" a command, and the necessary information to execute the
command, from memory, then "executes" the command. After executing a command, the
next sequential command is "fetched" from memory, and the process is repeated ad
infinitum.

LD & STO Commands

A typical command might be, LOAD (abbreviated LD). This command instructs the
ICU system to read the logic level (logic I or logic 0) of an input and store this information in
the Result Register within the ICU. To use the LD command, the user programs the memory
with the LD instruction and the address of the input to be sampled. The operation of the

MCt4516B

Program
Counter

4 biî
I n stru cti on
(OP Code)

î

f
o
,

Input
Address

Input Selector
MC14512

l Bit
Data Bus

MC1 45998
or MC14099B

I Outputs

Figure 2.1 Typical Small System Organization & Data Flow

system is as follows: The system memory supplies the ICU with the LD instruction (the
instruction is fetched), and supplies the input selector with the address of the input to be
sampled. The logic level of the selected input is then transferred over the ICU's one bit data
bus to the I bit Result Register. (See Figure 2.1).

Another typical command is STORE (abbreviated STO). This command instructs the
ICU system to transfer the data contained in its 1 bit Result Register to an output latch. To
use the STO command, the user programs the memory with the STO instruction and the
address of the output latch which is to receive the data. The operation of the system is as
follows. The system memory supplies the ICU with the STO instruction and supplies the
output devices with the address of the selected output latch. The data in the ICU's Result
Register is then routed to this latch over the ICU's one bit data bus. (See Figure 2.2).

Thus, data can be brought into the system, and also sent out of the system.

Figure2.2 System Operation of STO lnstruction

10

MC14512

MC145',16 B

o
G
o

Output
Latches

Write

MCî 4599 B
or MC140998

SYSTEM COMPONENTS

Memory

The system memory (see Figure 2.3) contains the program which instructs the system
to perform its assigned tasks. This program consists of instructions to the ICU in the form of
4 bit operation codes (op-codes) and addresses. The addresses (in binary number form)
route the data to and from the ICU's l-bit bidirectional data bus to the input and output
devices.

ICU
The ICU is the central control unit in the system. It controls the flow of data between its

internal registers and its 1-bit bidirectional data line, performs logical operations between
data in its Result Register and data on its 1-bit bidirectional data line, and sends control
signals to the other system components to coordinate the operation of the system.

Program Counter

The program counter (PC) supplies the ICU system memory with the address of the
command to be executed. The PC counts up sequentially in binary to its highest value and
"wraps around" to zero and counts up again. This causes the sequence of commands in
memory to be repeated creating what is known as a looping program.

MC1451 6B

I nstructions

I Bit Data Bus

MC14s12

MCl 45998
or MC14099B

Figure 2.3 Basic System

ll

Input Selectors

The input selectors are used to decide which of the inputs will be used in a particular
operation, The ICU system memory supplies the input selectors with the address of the
input, then the selector demultiplexes this data onto the ICU's 1-bit bidirectional data line
for use by the ICU. Thus, one input is selected from the many inputs.

Output Selectors

The output latches are very similar to the input selectors except the data flow is
reversed. When the ICU receives a command to store its Result Register data, it transfers
this data to its I bit bidirectional data line and signals the output latch with the WRITE
control line. The output device then routes this data to the latch specified by the address
coming from memory.

The AND Instruction
Before continuing with an example, one more instruction is required - the AND

instruction. The operation of the AND instruction is as follows. TÈe system memory
supplies the ICU with the AND instruction op-code and supplies the input selectors with the
address of an input. The addressed inpui data is then àemultipleìed onto the ICU's
bidirectional data line. The information on this line is then logically "ANDed" with the data
which is residing in the Result Register. The result of this operation becomes the new
content of the Result Register. Notice that the final content of the Result Register will be a
logic I if and only if the previous content of the Result Register was a logic I and the input
data was a logic 1. The truth table is:

..ANDrt
Input

0
0
I
I

Initial Result
Register Contents

New Result
Register Contents

0
I
0
I

0
0
0
I

Example

The basic system of Figure 2.3 is well suited to solving problems presented in the form
of relay ladders or solid state logic. Figure 2.4 shows the problem LOAD : A.B in both
these forms.

Thus, when A and B are closed (or a logical l), LOAD is energized (a logical 1).
The ICU solves this problem not once and once only, but once per program loop. Thus,

if there are 1000 instructions in the program and the clock frequency is 500 KHz, the inputs
will be sampled 500 times per second (every 2 mS) and the output will be energizeà or
de-energized within 2 mS of an input changing. This is known as a looping control
structure.

t2

Line

IAB
lllr---r
I)-

Figure 2.4A Relay Ladder Rung

Figure 2.48 Solid State Equivalent of Figure 2.4A

Figwe2,4 Load =A. B

Figure 2.5 shows the ICU program required to solve this problem.

Of course, the sequence could just as readily have been: LD B; AND A; STO LOAD.

Loads the state of input A onto îhe
ICU's Result Register (RB)

Logically ANDs the staîe of inPUt B
with the data in îhe ICU Result Register
(which now contains A). The result of
th is operation becomes the new contents
of the Result Register.

Transfers the data in the B R to the
output designaîed LOAD, thus activating
or deactivating the load devìce

Performs remainder of program and
loops back

F u rther
I n stru cti ons

Figure 2.5 Example LOAD = A' B Program

l3

t4

CHAPTBR 3 BASIC PROGRAM1VtrNG
AND INSTRUCTION SET

Accumulating Result Register

The reader will note that the AND instruction introduced the concept of an accumulat-
ing Result Register. In the execution of this instruction, the ICU logically performed an
AND function on the data on its bidirectional data line with the data in its internal Result
Register. The result of this operation became the new content of the Result Register. The
point to be made here is that the Result Register always receives the result of any of the
ICU's logical instructions. The Result Register therefore accumulates the logical result of
each ICU logical instruction. This is analogous to an adding machine which always displays
the subtotal after each operation.

Complement Instruction
It is sometimes desirable to activate an output when one input is in the logic 0 state and

another input is in the logic 1 state. This situation occurs in relay controlled systems where
"normally closed" relays are used, and occurs in solid state logic systems where inverters
are present. Figure 3.1 shows an example of this situation.

The ICU instruction set is prepared for this event. Several logical "complement"
instructions invert the logic level of the data on the ICU's bidirectional data line before
operation on this data.

Figure 3.1 Examples of Complemented Signals

The LDC Instruction

An example of one of these instructions is the load complement instruction, ab-
breviated (LDC). The operation of this instruction is as follows. The ICU system memory
supplies the ICU with the LDC instruction and the input selectors with the address of the
input to be used in the operation. The input selector then demultiplexes the data of the
selected input to the ICU's bidirectional data line. The ICU complements this data and stores
the result in its one bit Result Register. The Result Register will receive a logic I if the
selected input was in the logic 0 state. Figure 3.2 shows an ICU program which solves the
problem shown in Figure 3. I , using the LDC command. The reader should be convinced of
the operation of this program before reading further.

15

f+-r'r_-O-j
LOAD R.turn

Loads the Iogical complement of the A input
into the Resulî Register.

Logically AND's the B input with the content
of the Besult Register (which contains the
complement of the A input). The result of this
operation becomes the new content of the Sesult
Register.

Transfers the Result Register daîa to the output
latch designated LOAD,

Note that the STO instruction will only transler a logic
and the B signal is logic 1.

1 signal to îhe output latch if the A signal is logic O

Figure 3.2 Using the LDC Command

The ANDC Instruction

Another example of a logical complement instruction is the "and complement"
instruction abbreviated (ANDC). The operation of the ANDC instruction is as follows. The
ICU system memory supplies the ICU with the ANDC instruction and the input selectors
with the address of a selected input. The input selector then demultiplexes this data onto the
ICU's one bit bidirectional data line. The ICU complements this data and logically AND's
this data with the data in the Result Register. The result of this operation becomes the new
contentof theResultRegister. TheResultRegisterwillreceivealogic I if theinputselected
was at logic zero and the Result Register previously contained a logic l.

With the addition of this instruction the ICU is able to attack some more complicated
"chain" calculations. Figure 3.3 shows one such example. Figure 3.4 shows an ICU
program which solves the problem depicted in Figure 3.3.

In reviewing the operation of these instructions, the reader should be convinced that
the load device will only receive a logic I signal if A : l, B : 0, C : l, and D : 0.

l6

laBcD/z-\llH?ru1
Lrne Return

Figure 3.3 Example of a Chain Calculation

Statement Operator

LD
ANDC,
AND

ANDC
STO

Operand Comments

Result Regíster <- A
Result Register <- A . B

ResultRegistereA.B.C
Result Register+A . B . C . ó
Result Register = A. B . C. ó-lOaO

#3
B

LOAD

Figure 3.4 Program to Solve the Chain Calculation of Figure 33

OR and ORC

In many cases, it is also desirable to activate an output when either input is in the logic I
state. In this event, the "or" instruction, (OR), should be used. The operation of the OR
instruction is as follows. The ICU system memory supplies the OR instruction to the ICU
and the address of the input to be used in the operation to the input selectors. The input
selector then demultiplexes the addressed data onto the ICU's bidirectional data line. The
ICU then logically OR's this data with the content of the ICU's Result Register and returns
the result of the operation to the Result Register.

The ICU also has an "or complement" instruction, abbreviated ORC, in the event
complement logic is needed. The operation of this instruction is exactly like the OR
instruction except the incoming data is complemented before the OR opèration is per-
formed. Figure 3 .5 shows some examples where the OR and ORC instructions may be uied.

Figure 3.5 Use of the OR and ORC Instructions

t7

RETURN

#1LDA
+i2 0R B

43 STO LOAD

Use of the OR instruction

RR EA
RREA+B
A+B=RR+LOAD

T1 LD A RR <-A
z2 ORC B RR-A+B
d3 STO LOAD N*A=RR+LOAD

Use of the ORC instruction

ABI
I rr rlÎ--r r---r r--î---1 r-1| ,; ;: | \--l I

f-1-- LoAD I

LINE C D

RE LAY LADDE R LOG IC SOLID STATE EOUIVALENT

In the example of using the OR instruction, the load device will receive a logic I signal
if the A or B orboth inputs are in the logic I state. In the example of the ORC instruction, the
load device receives a logic I signal if the A input is in the logic I state or the B input is in the
logic 0 state.

Use of Temporary Locations

Many of the logic structures found in the controls industry are branches of several
series relays , in parallel with another branch of series relays . Figure 3 .6 shows an example
of this structure.

Figure 3.6 Series-Parallel Combinations

When dealing with this type of problem, it is not always possible to directly "chain'' a

series of LD, LDC, AND, ANDC, OR, and ORC instructions together to correctly evaluate
the logic function required. In some cases, it may be necessary to temporarily store the
intermediate results before processing the remainder of the problem. In these cases, the
programmer must evaluate the series branches using LD, AND, and ANDC instructions as

necessary to evaluate the expression and then store the result in a temporary location. The
second series branch must then be evaluated and ORed with the data saved in the temporary
location. The result of this operation should then be used to activate or deactivate the load
device. Figure 3.7 shows a common error in programming this type of problem and Figure
3 .8 describes and the correct approach to the problem. Figure 3 . 8 shows the correct method
for solving this problem by using a temporary storage location.

rABFH
LINE C O RETUFN

#1 LD A RREA
#2 AND B RR eA. g .*trRRnP
#3 OR C RREA.B+C
#4 AND D RRE(A.8+C) D

#5 STO LOAD RR + LOAD

"*Note that the final expression incorrectly resulted in the D term being distributed
across all other terms. For example, if A, B and C are logic 1 and the D input is logic 0,
the load device would receive a logic 0; this is incorrect because the load device should
be activated when the A and B inputs are logic 1.

Figure 3.7 Example of Incorrect Programming

r8

I tl I

H|.-___--1
II tt It-

LINE U U

#1LDA
1+2 AND B

#3 STO TEMP
t4LDC
#5 AND D

#6 OR TEMP
#7 STO LOAD

RR EA
RR EA. B

RR=A.B+TEMP
RR +C
RR+C.D
RR +C. D+(TEMP=A. B) =A. B+C. D

RR-A.B+C.D+LOAD

In this program, the logical result of ANDing A and B is stored temporarily, then the logical
AND of C and D is ORed with the data previouslv stored in the temporarv location. The
correct logical signal is then transferred to the load device. This example demonstrates
the need for temporary storage locations before proceeding.

Figure 3.8 Correct Method of Solving the Problem

The XNOR Instruction
The "exclusive nor'' instruction, abbreviated (XNOR), is the final logical instruction

in the ICU's repertoire of logical instructions. The XNOR instruction can be thought of as a

"match" instruction. That is, whenever the input data is identical to the data in the Result
Register, the new content of the Result Register will be a logic I . Figure 3.9 shows the truth
table for the XNOR function and Figure 3.10 an example using the XNOR function. Note
the reduction in code that may result from the use of this instruction.

Figure 3.9 XNOR Truth Table

I npul
Data

otd
Result

R egister
Data

New
Result

R egister
Data

0

0
1

1

I

0
1

1

1

t9

A \r'-
EouALS

" -l
)-f-r*---!949-----JL---/ V-

+z
#3
#4
#
#6
#'Ì

LDA
AND B

STO TEMP
LDC A
ANDC B

OR TEMP
STO LOAD

EOUALS LDA
XNOR B

STO LOAD

Figure 3.10 Example of use of XNOR Instruction

The STOC Instruction

When transferring a signal to activate a load device, it is very useful to be able to store
the logical complement of an expression. The ICU therefore has a "store complement"
instruction, abbreviated (STOC). The STOC instruction is exactly like the store (STO)
instruction, except the logical complement of the Result Register is transferred to the output
latch. It should be pointed out that the Result Register retains its original value (i.e. the
STOC does not change the Result Register value, it merely transfers the complement of the
Result Register to the bidirectional data line for routing to the output latches). This
instruction is quite useful when dealing with negative logic or so called "low active"
devices. Figure 3. l1 shows an example usage of the STOC instruction. Figure 3. l2 shows a
problem in both the relay ladder and logic formats. Figure 3. l3 shows the problem reduced
to code.

Figure 3.11 Example of the STOC Instruction

20

#1
#2
#3
#4
#5
#6

LDA
AND 8
STO TEMP
tn ^
AND D

OR TEMP
STOC OUTPUT

RR +A
RR îA. B

A . B +TEMP
RB <-C

RR +C. D

RREC.D+A.B
A.8+C.D+OUTPUT

LIN E

Figure 3.12 Complex problem

#1 LD A RR<_A
#2 AND B RR€A.B
#3 AND C RR<-A.B.C
STO TEMP A.B.C+TEMP
#5 LD D RRED
#6 ANDC E RR -D .E.
#7 AND F RR<_D.E.F
#8 OR TEMP RR<-A.B.C+D.E.F
#9 AND G RR<-(A.B.C+D.E.F) .G
#10 ANDC H RR<-(A.B.C+D.E.F) .G,tr
#1 1 STO TEMP 1A.B.C+O.e.F) .c.Fi-TEwrp
#12 LD I RR+I
#13 ANDC J RR+I.J
#14 OR TEMP RRe(A.B.C+D.E.F) .G.ii+t.J
#1 5 STO LOAD (A.B.C+D.E.F) .G.F+l.J*rono

Figure 3.13 Complex Example problem Code

21

The Enabling Instructions, IEN and OEN

In addition to the ICU's logic instructions, the ICU provides two instructions for
controlling the program flow in a looping control structure. The reader will remember that,
in a looping control structure, each instruction is fetched from memory in sequential order.
In some instances, it may be desirable to effectively "jump" over a ccrtain section of the
ICU program or to inhibit input data from effecting the system's output.

IEN
The first of these instructions is the "input enabling" instruction, abbreviated (fEN.

The operation of the input enabling instruction is as follows. The ICU system memory
supplies the ICU with the IEN instruction and the input selectors with the address of the
selected input to be used. The input selector demultiplexes the data of the addressed input
onto the ICU's bidirectional data line. The ICU then latches the input data into its "input
enabling" register. If the input enabling register is loaded with a logic 0, all future input data
will be intelpreted as logic 0 until the IEN register is loaded with a logic 1 by another IEN
instruction. This instruction can be used in a manner similar to the way "master contacts"
are used in relay ladder logic. Figure 3 .14 shows an example usage of the IEN instruction.

Note, (statement #5), that if the IEN register was loaded with a logic 0 the Result
Register can only receive logic 0 data because only LD and AND instructions are used to

decide if the load device will be activated.

Figure 3.14 Example of Using the IEN Instruction

22

#1 LD
#2 AND
#3 AND
#4 STO
#5 IEN

#6 LD
+-7 AND
#8 STO

#9 LD
#10 AND
#1 1 STO

#12 oRC
#13 rEN

#14 LD
#15 STO

B

MC

E

X
F

Hts

htr
H

z

RETU RN

SULT REGISTEB \
SU LT R EG ISTER f

Forces a 1 into the resúlt
register, then forces a 1

into the I EN register.

Caution

Care must be taken using the IEN instruction properly; remember that when the IEN
register contains a logic 0 all input data for the ICU will be interpreted as logic 0. This can be
tricky. For example, assume the IEN register contains a logic 0. If either an LDC or an ORC
instruction is executed, the Result Register will receive a logic I regardless of the actual
state of the inputs. Additional care must be taken to reload the IEN register with a logic I
after executing the block of code to be controlled by the IEN register. In the example of
Figure 3. 14, this is done in statements l2 and 13. Statement l2 forces the Result Register to
logic 1 and statement 13 loads the IEN register from the Result Register. Notice that the
Result Register data is "pinned out" on the MCI4500B and is here assumed to be
connected to one of the inputs of the system. In most systems, this connection will be made.

OEN

The second ICU instruction for controlling the operation of programs in a looping
control structure is the "output enabling instruction," abbreviated OEN. The operation of
the OEN instruction is as follows. The ICU system memory supplies the ICU with the OEN
instruction and the input selectors with the address of a selected input. The input selectors
then demultiplexes the data of the addressed input onto the ICU's bidirectional data line.
The ICU then latches this data into its output enabling register (OEN). If a logic 0 is loaded
into the OEN register, the WRITE control signal from the ICU is inhibited. Therefore, the
output selectors cannot be instructed to receive new data and remain unchanged by STO and

Start

Task A
Send 2 pulses to

Output z

Task B
Send 1 pulse
to Output Z

See Ch.6-7
for more discussion
of Flow Charts &
use of OEN.

#1 LD
#2 AND
#3 OEN

#4 STO

#5 STOC
*6 STO

#7 STOC
#8 LDC
#9 OEN
#10 sTo
#11 STOC
#12 oRC
#13 0EN
#14 STO

A
FI

RR
z
z
z
z
RR
RR
z
z
H t-{

RR
o

RR <_A

RR+A.B
OEN eRR = A. B

I eu lse

I nuuse

gpeffi=
OEN <_ RR

I
j rAsK A

A.B

tl
I PULSE I TASK B

RREl
OEN ERR = 1

1=RR+O

Figure 3.15 Example Use of the OEN Instruction

STOC instructions. The key point is that once the OEN register is loaded with a logic 0, the
system outputs remain in their present state until the OEN register is loaded with a logic 1 by
another OEN instruction. Then and only then can the system outputs be changed by STO
and STOC instructions. Using the OEN instruction, the programmer can effectively
"jump" over a block of code by conditionally setting the OEN register to logic 0, causing
subsequent instructions to have no effect on the system outputs. The programmer can then
set the OEN register back to logic 1 so that future ICU code will operate in normal fashion.
Figure 3.15 shows an example use of the OEN instruction. In the example, the program
again assumes that the Result Register (RR) is available as a system input. Chapters 7
through 10 describe the OEN structures in greater detail.

IntheexampleofFigure3.l5,ifAandBarebothtruestatements4throughTsendtwo
pulses to output Z and statements l0 and 1l will not influence output Z effecting a
"pseudo" branch around these instructions. If the tested condition fails, statements 4
through 7 will have no effect on the output and statements l0 and 11 will send one pulse to
output Z. Statements 12 and 13 return the OEN register to logic I so that the Q output will
receive a logic l, and future code will operate in normal fashion. Much more will be said
about the use and advantages of an OEN instruction in Chapters 7,8, and9.

Thus far, we have studied the LD, LDC, AND, ANDC, OR, ORC, XNOR, STO,
STOC, IEN, and OEN instructions. Of the remaining five instructions, two are no operation
(NOP) instructions and the other three are for optional use in larger systems which do not
have a looping control structure. These will be discussed later.

.A
L+

CHAPTER 4 HARDWARE SYSTEMS

The purpose of this chapter is to begin to acquaint systems designers with the

components which are used in a basic ICU looping control system. The system illustrated
was not specifically intended to be used in a practical design, however, it illustrates how the

components, which comprise the building blocks of an ICU system, might be used. From
this point, the system designer can delete, augment or otherwise modify the system
illustrated to his own particular needs.

Figure 4.1 is a schematic diagram of a small ICU based system. The system has a
looping control structure (i.e. the program counter is never altered by any operation ofthe
ICU.)

System Features

The scheme depicted on Figure 4.1 is a PLC-like system, designed to operate on the

principle of a looping control structure. It has 8 inputs, 8 outputs and 8 additional outputs
which can be "read" back by the ICU. These outputs can be used for temporary storage.

The system memory is capable of holding two separate ICU programs; each individual
program can be 256ICU statements long.

Program Counter

The program counter is composed of two MC145168 binary up-counters chained
together to create 8 bits of memory address. This gives the system the capability of
addressing 256 separate memory words. The counters are configured to count up on the

rising edge of the ICU clock (CLK) signal and reset to zero when the ICU is reset. Notice
that the program counter count sequence cannot be altered by any operation ofthe ICU. This
confirms that the system is configured to have a looping control structure.

Memory

The memory for this system is composed of one MCM764l 512-word by 8 bit PROM
memory. Because the program counter is only 8 bits wide, only 256 words, (half of the
memory), can be used at any one time. However, by wiring the most significant bit of the
memory's address high or low, the system designer can select between two separate
programs with only a jumper option. This might be a desirable feature if extremely fast
system changes are required. Optionally, the designer could chain another counter chip or a
single, divide-by-two of flip-flop to the program counter and use the additional memory
space for more programming statements. If less than256 program statements are needed
and fast turn around is not needed, a smaller memory may be more economical.

Figure 4, 2 shows the format of each memory word. The most significant 4 bits contain
the instruction operation code which is routed to the ICU. The 4 least significant bits are

routed to the system's input selectors and output latches to address the system's inputs,
outputs, and "readable" outputs.

Memory Options

There are, of course, many ways to configure the memory of an ICU system'

. ul"
MC1 40408
for low
cost, sl ow
sp eed
operat I o n

System
Outputs & Scratch Bits

System
lnputs

* Pull Down Fesistors on Each Input

óo pa pg P2 Pl
PE V/D
R MC145l6B- Ct

CLK
04 ()3 02 01

P4 P3 P2 Pî
u/o
Ci MC145t68- Cl
cLK R03 02 01

A8 47 46 A5A4 43 42 A1 AO

s3 ds1
MCM7641

54 CS2

080706 0504 03020!

l3 l2 l1 lO Fleset
RR

w MC145O0B

x2xiD

D I ZC BA

MC14512

x0-------x

D W C WA2A1AO
(Y2) E D

MC145998 Reset

o0-------o1

D W C WA2A
(Y1) E D

Reset MC145998

oo-------o7

Figure 4.î A Minimal ICU System

26

F-a eits->|<-c aitsl

Memorv Word

To the To Input Selectors
ICU & Outout Latches

Operation
Code

t/o
Address

{,t u
Figure 4.2 Parallel Memory Word Format

Expansion

Figure 4.3 shows a simple approach to expanding the I/O address capability of an ICU
system. In this approach, the system memory is broken into two separate sections which
share common address lines and bring their data out in parallel. The first of these memories
is an N by 4 bit "instruction memory," used to hold only ICU instructions. The MCM7643
1K by 4 bit PROM is capable of holding 1024ICU instructions and would be a good choice
for problems requiring moderate length programs. The second memory is an N word by M
bit "address memory" used to hold the address of the operand for each ICU instruction. The
MCM7641 5l2by 8 bit PROM is a good choice for this application. Two MCMTU|, 512
by 8 bit memories and one lll4C}476/3 lK by 4 bit memory would comprise an ICU system
memory capable of holding 1024 complete ICU program statements and be capable of
addressing 256 inputs and256 outputs.

Figure 4.3 An Approach to llO Address Expansion

27

I nstruction
Memory

| >lI (.)o
I

I Sf I| (o:
I

I i; I

IOX I| >'l
t-ttr-T
tltt\7
To ICU To Input Selectors

& Output Latches

MCM7641
512 x I PBOM

Using 4-Bit Wide Memories

It is also possible to "interlace" the instruction operation codes with the I/O addresses
in the same memory. In this type of structure, the CLK signal will become the least
significant address bit. When the clock signal is high, the memory supplies the ICU with an
instruction which will be latched into the ICU on the falling edge of the CLK signal. The
memory is then free to supply the VO sections of the ICU system with an address when the
clock signal is low. Figure 4.4 shows this. Thus, a4bit wide memory may contain the
instructions and addresses for 16 inputs and 16 outputs. This method is used in the
demonstration system. Note that as the clock-high and clock-low signals are still used, there
is no time penalty involved.

I n struction

Figure 4.4 Interlaced Memory

Hybrid Expansion

It is also possible to interleave with 8 bit wide memory and thus create a 12 bit wide
(4096) VO structure. See Fieure 4.5.

Latched when CLK

12 Bit l/o Address --- ---||

|;;;l
!-+ eit,r]

Figure 4.5 Interlaced 8 Bit Memory

28

InpulOutput Structure

The system shown in Figure 4.1 will be considered in more detail here. Figure 4.6
shows the complete I/O map.

Input Selectors

The input selectors used are MC 14512 8-channel data selectors. In the example system
of Figure 4.1, there is only I MCL45I2 supplying the system with 8 inputs. These inputs
occupy addresses 0 through 7 (see Figure 4.6). The input selectors multiplex the addressed
input onto the ICU's bidirectional data during the CLK low phase of each ICU machine
cycle for all instructions except the STO and STOC instructions. The number of inputs can

be expanded easily by adding additional address lines, the proper address decode, and

timing.

Output Latches

The output latches are composed of MC145998 8 bit (bidirectional data port) latches.
In the example system of Figure 4. I , the MC 145998 labeled Y 1 is used strictly as an output
latch supplying the system with 8 outputs, These outputs occupy addresses 0 through 7.
(See Figure 4.6.) The MC14599 labeled Y2 is configured as a "readable" output latch. In
this configuration the part can be thought of as an 8 bit RAM with the outputs of each

location pinned out. Because this chip has the read/write feature implemented, it occupies
space in both the input and output sections of the VO address map. The assigned addresses

are 8 through 15.
The output selectors receive the data coming from the ICU over the ICU's bidirectional

data line. The information is transmitted during the clock low phase of a machine cycle
when the ICU executes an STO or STOC instruction, provided the OEN register contains a
logic 1. The ICU signals the output latches that a STO or STOC instruction is being
executed. The addressed output latches then receive the data and retain its value until the
latch is once again addressed and changed. Again, the number and configuration of the
output latches can be expanded easily by adding additional address lines, the proper address
decode and timins.

MC14599B output latch #Y2
conf igured as read/write
here is written to

MC145998 output latch #Y1
conf igured as write only

MC145998 outpur larch #Y2
conf igured as read/write
here is read from

MC145l2 input
selector

Output Addresses
Write = 1

for STO & STOC
i nstructi ons

Input addresses
Write = 0
for LD, LDC,
AND, ANDC, OR,
ORC, XNOR, IEN
& OEN instruction

0

Figure 4.6 l/O Map

29

I/O Options

In the system shown in Figure 4. 1 , it may be more desirable to have more system inputs
and less temporary storage bits. In this event, the designer can reconfigure the Y2
MC l45998 to be a " write-only " output latch . This action would free 8 locations on the I/O
address map for 8 more inputs; another MC145l2 could be used. The system would then
have 16 inputs and 16 outputs. The designer could create temporary storage bits by tying
outputs back to inputs. The memory options description showed how memory, and there-
fore, VO, may be expanded.

Adding RAM
If the system requires a large number of inputs, outputs and temporary storage bits, it

may be more economical to put an N by I bit RAM on the data bus rather than using the
output latches and input selectors to effect temporary storage bits. See Figure 4.7.

ICU

The MCl4500B is the central control element within the system. It coordinates the
actions of all the system's components. The system of Figure 4.1 was designed to use the
looping control structure of the ICU. In this type of structure, the Result Register is usually
tied to one of the system's inputs and in this example, the Result Register is returned to input
Xo. The ICU's RESET iine is connected to a latch, which is set or reset by two momentary
contact switches, giving the system a HALI/RUN feature. Note that when the ICU is
halted, the output latches are cleared to zero.

Because the ICU is to be used in a looping control structure, the pulses created by the
JMP and RTN instructions are not required. Also, the pulses created by the NOP instruc-
tions are not used.

Notice that the ICU has NOP instructions of all I's or all 0's. This was done because the
unprogrammed states of PROM's are all 0's or all I's. Therefore, in a looping control
structure, the ICU can be allowed to sequence through these unprogrammed locations
without affecting the logical operation of the system.

Chapter 5 contains an example of an "interlaced" memory system and Chapter 12
contains an example of a hybrid (parallel/interlaced) memory system with a scratchpad
RAM.

Data Bus

Tem porary
Sto ra ge

Address
From ROM

Add ress
From FOM

Addr ess
From ROM

Temporary
Storage

Figure 4.7 Adding RAM to a System

30

CHAPTER 5 DEMONSTRATION SYSTEM

General Description and Capability

This chapter describes a I 6 input and l6 output PLC (Programmable Logic Controller)
demonstration system featuring the Motorola MCl45008 Industrial Control Unit as the
main control element within the system. The system is primarily designed to be used as an
educational tool to illustrate the simplicity and power of the Motorola MC145008 ICU. The
system illustrates the power of the "looping control structure" found in PLC systems.
Therefore, the jumping, conditional branching and subroutine capabilities available in the
ICU are not implemented in the system. (However, the programmer will discover that those
conventional program control techniques are not necessary, even when writing programs to
solve complex control problems.) The unit may also be used as a model for a small system
implementation.

The system has 16 inputs and 16 outputs, each numbered from 0 to 15, and a RAM
capable of holding 128 ICU program statements . The user is able to examine or change the
contents of any location in memory, and has the option of running or single-stepping
programs. Alternatively, programmed PROM may be installed in the socket available, and
the system run from the PROM. In addition, the demonstration unit displays on LED's, the
content of the program counter, the 4 memory data lines, the content of the ICU's Result
Register and the current phase of each machine cycle when loading and single-stepping
programs. These features provide an easy means to understand the operation of the ICU
system and to verify and trouble-shoot ICU programs.

Figure 5. I shows the basic block diagram of the demonstration system. A schematic of
the system is shown in Figure 5.7.

Memory

To reduce cost, a 4-bit wide memory rather than an 8-bit wide memory has been used.
This means that the demonstration system is configured with "interlaced" memory such
that alternate locations in the memory contain the instruction and its corresponding operand
address. During the clock-high phase of a machine cycle, the memory supplies the ICU with
an instruction which is latched into the ICU when the clock signal falls. The address of the
operand is found in the next memory location and is supplied to the I/O circuitry during the
clock-low phase of the machine cycle. This address is used in the execution phase of the
ICU instruction . Therefore, the CLK signal is used as the least significant bit of the memory
address. The 256 X 4 bit RAM installed in the demonstration unit will hold 128 complete
8-bit ICU program statements. Most statements will result in a 4-bit op-code and a 4-bit
operand address being loaded into memory. Note that not all ICU instructions require a
corresponding VO address. In these cases, the I/O address location in memory may be left
unprogrammed.

In Figure 5.2 the progression from a normal Instruction-Operand in parallel, to
Instruction-Operand in series, and to actual RAM Operation code is shown. Note that there
is no difference in program time between the two structures, since both clock phases are

used in each case.

3l

Program
Cou nter

NOPF X1

ICU Write
RR

D

Output Latches

CLK Low

lAll"l
t/o

Address
Light

OP-Code
Light+5V

Figure 5,1 Demonstration System Block Diagram

32

I nstruction Operand Mnemonic Code OP Code in RAM

LD

AND

SKZ

STO

Input # 2

Input # 1

(N/A)

Output 4

LD
#2

AND

SKZ
Don't Care

STO

0001
0010

001 1

0001
'I 110

XXXX

1 000
0'l 11

Figure 5.2 Interlaced Memory Structure of Demonstration System

Program Counter

The program counter supplies the memory of the ICU system with its most significant
address bits. The least significant address bit is supplied by the clock (CLK) signal, as

explained above. The program counter normally increments on the rising edge of each clock
pulse, sequencing the ICU through the programmed instructions in memory. In a non-
jumping, non-branching system, the count sequence of the program counter is not altered by
the ICU program statements. Therefore, the control program statements are executed in
order, until the program counter "wraps around," and the sequence is repeated. This is
known as a "looping control structure."

The program counter can be thought of as a statement counter; for each unique count,
the clock signal will be high and low, causing the memory to supply the ICU system with an
instruction and its operand address. This constitutes I machine cycle and the completion of
1 ICU instruction.

In the demonstration system, the NOPF instruction (which causes the FLAGF output to
pulse for one clock cycle, when the NOPF instruction is encountered) is used to by-pass
unprogrammed memory space, to avoid tediously coding to NOPO's and stepping through
unused locations. This is done by using the FLAGF output from Pin 9 to preset the program
counter to the setting of the program counter switches . Figure 5 .3 is an illustration of this,
with the program counter toggle switches to zero.

/LD
Ò* AND
g AND

loR
\ STO

\ NoPF
\./

INPUT # î
INPUT # 2
INPUT # 3
INPUT # 4
OUTPUT # 1

Causes the program counter
to be pfeset to zero

Unprogrammed Locations
In Memory

Assume the program starts at location zero in memory and the
program counter toggle switches are set to zero.

Figure 5.3

33

ICU and InputlOutput System

The MCl45008 operates synchronously with a single phase clock which divides the
ICU machine cycle into two phases. The first phase (CLK HIGH) is the "fetch" phasg -the ICU fetches an instruction from the memory. When the clock signal falls from the high
level, the instruction is latched into the ICU's instruction register. Then, during the second
phase, (CLK LOW), the instruction is executed.

There are three types of I/ O related instructions-logical, input, and output. During the
execution phase of input or logical instructions the operand of the instruction is demulti-
plexed onto the ICU's data bus by the input data selectors. The memory supplies the input
selectors with the address of the bit to be used in the operation. During the execution phase
of an output instruction, the ICU puts the data in its Result Register (or its complement) on
its data bus and raises the (WRITE) control line. The data bit is then multiplexed to an output
line where it is latched on the rising edge of the clock signal. The memory supplies the
address of the output latch, to which, the data is to be routed.

Display Lights

The Program Counter lights show, in binary, the current count of the program counter.
These lights can be used to determine which ICU statement is currently being executed
when single stepping, and are also useful in keeping track of ICU statements when loading
program.

The memory data lights show the content of the memory location currently addressed
by the program counter and the clock signal. After data has been loaded into memory, it is
displayed by the memory data lights. The lights are also useful in verifying programs
entered in memory. This can be done by resetting the ICU, then single stepping through the
memory locations with the single step push-button and observing the memory data lights.

The OP-CODE and VO ADDRESS lights actually reflect the state of the clock (CLK)
signal. The OP-CODE light indicates that the clock is high and the VO ADDRESS light
indicates that the clock is low. These lights are very useful when loading programs into
memory. The lights indicate to the user whether the operation code of an instruction or the
operand address should be entered. The lights also indicate the state of the system, (Fetch or
Execute), when single stepping programs.

The Result Register light indicates the content of the Result Register. This is useful in
understanding the operation of the ICU logical instructions in the single-step mode.

Functional Switches

RAM/PROM selects which memory, the RAM or the PROM, will be enabled for use
by the ICU.

RUN/SINGLE STEP selects which mode the ICU will operate in when the ICU's
RESET line is pulled to logic zero.

DATA switches set the data, eitherinstruction op-code orVO address, to be loaded into
the memory.

PROGRAM COUNTER switches set the mernory location to which the data is sent.
LOAD loads the data selected by tire data switches into the RAM location indicated by

the program counter display lights and the op-code, I/O address lights. After loading data
into RAM, the data entered will be displayed by the data display lights.

SINGLE STEP advances the ICU's clock (CLK) one half cycle per depression. (i.e.
the single step push button toggles the clock signal.) The present state of the CLK signal is
indicated by the op-code and VO address lights. (op-code light --- CLK : l, I/O address
light+CLK:0.)

34

LOAD PC enters the data selected by the program counter switches, into the program
counter. After loading the program counter, the value loaded will be displayed by the PC
display lights.

RUN latches the ICU's RESET line to logic zero. The ICU will then sequence through
the program in memory or the program may be "single stepped" using the single step push
button.

HALT/RESET latches the ICU's RESET line high, resetting the ICU. In addition, the
system's output latches and program counter are cleared to zero.

Example Problem

The following example shows a typical problem that the ICU may be used to solve.
The example illustrates how a problem is reduced to code, and how, using the demonstration
system, the code is entered into memory, verified, and executed. The example problem
illustrates how an ICU program solves a typical relay ladder logic network, shown in Figure
5 .4 . In this problem the load device is to be activated if relay A and relay B are closed or if
relay C is closed. For the purpose of illustration relays A, B, and C will be represented by
switches and the load device activation will be indicated by an LED.

For this problem the following assignments are made:
INPUT # 6 IS TIED TO LOGIC 1 SV/ITCH # 6IS ALWAYS HIGH
INPUT# I REPRESENTSRELAYA SWITCH# I
INPUT#2 REPRESENTSRELAYB SWITCH#2
INPUT#3 REPRESENTSRELAYC SWITCH#3
OUTPUT # 1 REPRESENTS THELOAD DEVICE LED # I

LIN E RETU RN

Figure 5.4

Figure 5.5 shows an ICU program which will implement this function and the code to be
loaded into memory. The "A" portion of Figure 5.5 shows the ICU interpretation, the "B"
portion shows the programming steps.

CAUTION: Note that input zero (0000) is reserved for the Result Register. Therefore,
input zero must not be used; if violated, improper system operation will result.

Explanation of Program

Statement# I loadsthelENregisterwithalogic 1. If thelENregistercontaineda
logic 0, all future input data for the logical instructions would be interpreted as logic 0.

Statement # 2 loads the OEN register with a logic I to enable the output instructions. If
the OEN register contained a logic 0, the WRITE strobe from the ICU would be inhibited
and the output latches could not be signalled to activate the load.

35

A: ICU Intepretation

B: Programming Steps

*Don't Care

I nstruction Operand Notes
START

END

1

J

4
5

b
1

IEN
OEN

LD
AND
OR
sTo

NOPF

LOGTC 1

LOGrC 1

A
B

LOAD

Enable the input register
Enable the output register
Load the state of switch A into the Result Register
Logically "AND" switches A and B

Logically "OR" A . B with switch C
Transfer the result to the load to activate/deactivate it
Causes the program to repeat this sequence

Program
Counter

Clock
State

Op-Code
l/O Address
Hex 4-Bits Binary Notes

PC=0

PC= 1

PC=2

PC=3

PC=4

PC=5

PC=6

1
cLK Hish

I CLK Low

I cLK Hioh
I CLK Low

{ cLK Hish
(CLK Low

1 CLK Hish
I CLK Low

1
cLK Hish

t CLK Low

1
cLK Hish

(CLK Low

l CLK High
I CLK Low

A
0
ó
o
1

2
q

I
0
F

101 0

01 10
101 1

01 10
0001
0001
001 1

001 0
0î 0î
001 1

1 000
0001
1111

XXXX

IEN Instruction
Address of Logic 1 i.e. Input # 6
OEN Instruction
Address of Logic 1 i.e. Input # 6
LD Instruction
Address of A i.e. Input # 1

AND lnstruction
Address of B i.e. Input # 2
OR Instruction
Address of C i.e. lnput # 3
STO Instruction
Address of Load i.e. Output # 1

NOP Instruction
No Address needed

Figure 5.5 Solution to Typical Problem

Statement # 3 loads the Result Register with the state of switch A.
Statement # 4logically AND's the state of switch B with the contents of the Result

Register; this result is then returned to the Result Register. The Result Register will now
contain a logic I if and only if switches A and B were both high.

Statement # 5 logically OR's the state of switch C with the content of the Result
Register; this result is then returned to the Result Register. The Result Register will now
contain a logic 1 if and only if switches A and B were high or switch C was high.

36

Statement # 6 stores the content of the Result Register in the output latch. If the Result
Register contained a logic l, the output latch would receive a logic 1 to activate the load,
The STO instruction does not alter the content of the Result Register.

Statement # 7 creates a pulse on pin # 9 of the ICU chip. This signal is used to preset
the program counter to the beginning of the program. The entire sequence is then repeated.

The following is a detailed procedure for entering, verifying, single stepping and
running the example program.

1. Entering the program to RAM.
A. Set the RAM/ROM and RUNiSINGLE STEP switches to RAM and SINGLE

STEP RESPECTIVELY.
Set all the PC switches to zeîo.
Press the HALI/RESET push button. This resets the PC to zero, resets the ICU,
the output latches and sets the CLK signal high. The OP-CODE light will
indicate that the CLK signal is high and an instruction should be loaded into
memory.
Set the data switches to hex A (OP-CODE of the first instruction), binary 1010
and press the LOAD push button. The l0l0 pattern will be displayed by the data
lights.
Press the SINGLE STEP push button once. This toggles the CLK. The VO
address lights will indicate that the CLK is low and an VO address should be
loaded into memory.
Set the data switches to hex 6 (ADDRESS of switch six), binary 0110 and press
the LOAD push button.
Press the SINGLE STEP push button once. Note the PC has incremented and the
CLK is high indicating the next complete statement should be entered.
Set the data switch to the bit pattern of the next piece of data to be entered -101I in this case.
Press the LOAD push button.
Press the SINGLE STEP push button once.
REPEAT STEPS H, I, J UNTIL THE ENTIRE PROGRAM HAS BEEN
ENTERED.
NOTE: The NOPF instruction does not require rhat an VO address be entered in
memory. The I/O address location in memory for this instruction may be left
unprogrammed.

M. Press the HALjI/RESET push button.
STOP

2. Verifying the program entered in RAM.
A. Press the HALI/RESET push button. The PC will be reset to zero, the CLK will

be high and the first piece of data entered, (1010), will be displayed by the data
lights.

B. Press the SINGLE STEP push button once. The second piece of data entered,
(0 1 l0) , will be displayed by the data lights . The entire program may be verified
by sequencing through memory with the single step feature, while observing the
data display lights. The PC lights and the OP-CODE and VO address light will
aid in keeping track of particular ICU statements.

C. Press the HALI/RESET push button.
STOP

B.
C.

D.

E.

F.

H.

G.

I.
J.

K.

L.

JI

3. Single stepping the program.
Set switch # 6 and switch # 3 high. Setting these switches high will cause light # I to
activate on the (CLK LOW) phase of the 6th (STO) instruction.
A. Press the HAUI/RESET push button.
B. Press the RUN push button.

The processor may now be sequenced through the program entered in memory
by using the single step feature. Each depression of the SINGLE STEP push
button advances the CLK l12 cycle. The display lights will aid in understanding
the operation of the system as it is single stepped.

C. Press the HALI/RESET push button.
STOP

4. Running the program.
A. Press the HAIjI/RESET push button.
B. Set the RUN/SINGLE STEP switch to RUN.
C. Press the RUN push button.

Switch # 6 should be set high. This enables the IEN and OEN registers. The reader
will now note that light # I is activated when switches I and 2 are both high or when switch
3 is high. The processor may be halted by pushing the HALURESET push button. The
following Figure 5.6 is a program the reader may implement as an exercise. (The ANDC
and ORC instruction will be useful). Figure 5.7 is the schematic of the system, with the
major areas partitioned and labeled.

LI NE FìETUBN

Figure 5,6 Reader's Problem

38

.9
6
Eo

at

':
l

.9
o

o
o
f

f\
|ft
o

.9

d

39

nnnnnnnooooooó
A7 46 A5 A4 A3 A2 A1

no
AO

Load
Program
Counter

CCOCCCCC
A7 46 A5 A4 A3 A2 A1 AO

ccoo&&&6 sgl

o
Step

Load

t9
Data

Instructions &
l/O Addresses

Figure 5.8 ICU Demonstration Uniî Panel

ccocoocó."òooooooo
In pu ts

&&&&0&&&&&6&&&&e

Figure 5.9 l/O Simulator

40

CHAPTBR 6 TIMING, SIGNAL
CONDITIONING, AND VO CIRCUITS

The ICU can make use of a variety of circuits to do timing information gathering and
distribution of information. This chapter is an assortment of such circuits.

Timing

Nearly all control tasks have a timing function. An important feature of the MC 145008
system is the ease with which any number of timers and timing functions can be incorpo-
rated into a system.

In afl ICU system, timing can be implemented with either software or hardware.
Software timing requires the use of Incrementation or Decrementation routines, which are
described in Chapter 14. Hardware timers can be quite simple; a variety of them will be
described. They all tend to have one thing in common - an output is used to start a time
interval, and an input to the ICU system is used to monitor the timer output so that the ICU
will "know" when the interval has ended. A typical timer is shown in Figure 6.1.

Resî of ICU Svstem

Figure 6.1 A Typical Hardware Timer

No mention has been made of the kind of timer used since a variety of choices are
available: motor timers, clocks, timer delay relays, and both analog and digital timers. The
following examples are in order of increasing complexity.

The code required to control and use the analog timer in Figure 6.2 is short and simple.

Rest of ICU System

Time = FlC sec.

Figure 6.2 CMOS Monostable Timer

4l

Assume that the time interval is to start whenever "A" and "B" are both hish and the timer
is quiescent. Only four instructions are required.

LD A LOADS THE A SIGNAL
AND B AND B WITH A
ANDC INPUT AND WITH INPUT, THE TIMER'S OUTPUT,

TO VERIFY THAT TIMER IS NOT RUNNING.

STO OUTPUT OUTPUT SIGNAL TO START THE TIMER

On the next pass through the program, the input signal will be at the I level and a 0 will
be stored at the output, which ends the timer's startpulse. Also notice that, although A . B is
a simplistic starting condition, in actual practice, the condition for starting the timer might
be very complex.

In industrial applications, simple timers are often inadequate for the acfual task.
Typically, one needs control time delays as well as interval timing. In Figure 6.3, a few of
the commonly-used delay functions are depicted and have the following relationships:

Turn On Delay

Turn on U, X seconds after A goes high.

Turn Off Delay

Turn off V, Y seconds after B goes low.,

Delay On - Delay Off
Turn on W, X seconds after C rises.
Turn off W, Z seconds after C falls.

The coding for the functions is as follows:

Turn-On Delay Turn-Off Delay
XStart-A.U.TX YStart-V.V.TY
StoreU = TX.U VStore: V.TY

assume IEN : OEN : I

LDA
ANDC U
ANDC TX
STO X START
LD TX
ANDC U
OEN R
STO U
XNOR R
OEN R

LDV
AND B
ANDC TY
STO Y START
LD TY
AND V
OEN R
STO V
XNOR R
OEN R

Delay-On/Delay-Off

This function simply chains the Turn-On Delay and Turn-Off Delay codes into a single
routine.

42

Rest of ICU Svstem

f-z sec----->l

Y Start

Figure 6.3 Complex Timing Waveforms

Digital Timing

A simple and straight forward method of digital timing is shown in Figure 6.4 . A single
four bit CMOS up/down counter is used, although any number of these devices may be

cascaded to form counters for very long time intervals. The counter shown is used in the

count down mode. At rest, the counter's reset line is held high. When a time interval is to be

started, the reset signal is removed and a pulse is put on the counter's parallel enable pin,
(PE) , which loads the counter with the time set by the digital switches. From this point on,
the circuit works like an analog timer, with its output taken from the C0 pin. This pin will go

to the hieh state durins the timed interval and fall when the interval terminates. The ICU

+J

Rest of ICU Svsrem

MC145't2

/O PE

ic
P1 P2 P3 P4

MC 14510
MC14516

Figure 6.4 Simple Digital Timer

monitors the C0 signal and reapplies the reset signal when the interval has ended. A possible
code sequence for this set of tasks is listed below.

Assume that a Flag "T" is set to I by previous code execution whenever the digital
timer is required to operate. The timer will be started whenever the timer is at reset ("END": 0) and T : 1. T will be set to 0 when the interval starts to insure that two intervals do not
overlap.

START LD T TEST START FLAG
ANDC END TEST TIMER RESET
OEN RR ENABLE OUTPUTS
STOC RESET REMOVE TIMER RESET
STO LOAD START LOAD PULSE
STOC LOAD REMOVE LOAD PULSE
STOC T CLEAR T
ORC RR RR GETS I (RR + RR : l)

FIN OEN RR ENABLE OUTPUTS

Assume that the time interval should be started if A . B : I . The result will be used as
Output Enable to control the start of the timing sequence.

LD A LOAD A
AND B RESUU| IS NOW A . B
OEN R OUTPUTENABLEDIFA'B:1
STOC RT REMOVE COUNTERS RESET
STO PE PULL PE HIGH
STOC PE RESTORE PE LOW

With the timer operating, the end of the interval is detected by finding C0 signal low.
The OEN should be restored for use by other routines. As follows, XNOR R will force a 1

into the Result Register, which is then used to load OEN.

XNOR
OEN

RR
RR

FORCERR: I
OEN:1

Multiple Interval Timing
It is frequently necessary to time a number of different intervals in a controller, with no

two intervals running simultaneously. This means that a number of different sources can be
used to load a digital timer, as shown in Figure 6. 5 . The switches shown are coded switches .

The isolation diodes are required in order to "OR" the switch outputs into the data inputs.

Flest of ICU Svsîem

Figure 6.5 Multiple Interval Timer

Control By Time-Of-Day

Many users want to control loads by time-of-day and/or day-of-week. An example is a
retail store which is open two nights a week and wants to control lighting, heating, air
conditioning and a security system in conformity with the store's schedule. The store has a
"morning routine" which turns on air conditioning, lights and removes the security system
at the proper times. The "morning routine" does not operate on Sunday when the store will
be closed.

Such applications require a clock system which has a coded output that will be read by
an ICU routine. When the ICU determines that clock time matches a key stored in the ICU's
memory, a single pass will be made through a routine which sets or clears output bits as
programmed. At the end of the single pass, a flag is set, thereby telling the ICU that the task
is completed. This flag will be cleared as part of the "housekeeping" when a subsequent
routine is started. The flag condition is part of the key for starting the routine.

The whole concept for a time-of-day control is one of enabling a block of code when
certain conditions have been met. An example of such a routine is shown in Figure 6.6.

45

(lEN = oEN

Start

Key=91.K2'...'KN;
code for time of day.

F LAG bit indicates this
routine started

Old F LAG indicates other
routines started

Start LD K1
ANO K2

I

ú_-----l
I Instructions for I

! this Boutine or I
I -. I
| | lme rerloo i

T-----J
i

AND KN
ANOC FLAG
OEN RB
STO FLAG
STOC OLD FLAG

I nstructions for
this routine

ORC RR
End OEN RR

FLAG = O

FLAG +1
OId FLAG EO
OEN î F LAG

oEN <- 1

Figure 6.6 Time-of-Day Routine

McMOS RELIABILITY AND DEVICE
HANDLING PROCEDURES

Confident use of a family of components requires assurance of the reliability of a

component under norrnal operating conditions and the ability of the device to survive
abnormal conditions that may occur. CMOS, and specifically Motorola McMOS, has
achieved the high confidence level for equipment usage that has been enjoyed by many
other semiconductor products.

RELIABILITY
Figure 6.7 shows the composite failure rate of commercial ceramic and plastic

packaged McMOS integrated circuits as a function of temperature. Note that CMOS
devices dissipate little power and work nominally close to ambient temperature. This
feature adds to CMOS reliability. The data shown represent over 40 million equivalent
device hours and give failure tates to the factory set of test limits. This standard of failure is

more severe than a catastrophic failure rate.

46

o.1T

a
ct
l

xo
U>
F^

U-
-F)
=

0.o r

0.00 1

0.0000 1 ,

130 120 110 100 90 80 70 60 50 40

TEMPERATUFE OC

This device contains circuitry to protect the inputs against damage due to high static volt-
ages or electric fields; however, it is advised thaî normal precautions be taken to avoid
application of any voltage higher than maximum rated voltages to this high impedance
circuit. For proper operation it is recommended that V;n and Veul be constrained to the
range V5g ((V;n or V6ur)< VDD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V55 or
voo).

o.o075%,,1000 HOURS

o,ooo2z%i1000 Hou BS

o.000011%/1000 HoURS

Figure 6.7 - Failure Rate of
Commercial McMOS Integrated Circuits
(Ceramic and Plastic Packaged Devices)

HANDLING PRECAUTIONS

All McMOS devices have diode input protection against adverse electrical environ-
ments such as static discharse. The followins statement is included on each data sheet:

Unfortunately, there can be severe electrical environments during the process of
handling. For example, static voltages generated by a person walking across a common
waxed floor have been measured in the 4 to 15 kV range (depending on humidity, surface

conditions, etc.). These static voltages are potentially disastrous when discharged into a

CMOS input considering the energy stored in the capacity 1 -3gg pF) of the human body at

these voltage levels.

47

Present McMOS gate protection structures can generally protect against overvoltages.
This is usually sufficient except in the severe cases. Following are some suggested handling
procedures for McMOS devices, many of which apply to most semiconductor devices.

l. All MOS devices should be stored or transported in materials that are somewhat
conductive. MOS devices must not be inserted into conventional plastic
"snow" or plastic trays.

2. All MOS devices should be placed on a grounded bench surface and operators
should ground themselves prior to handling devices, since a worker can be
statically charged with respect to the bench surface.

3. Nylon clothing should not be worn while handling MOS circuits.
4. Do not insert or remove MOS devices from test sockets with power applied.

Check all power supplies to be used for testing MOS devices to be certain there
are no voltage transients present.

5. When lead straightening or hand soldering is necessary, provide ground straps
for the apparatus used.

6. Do not exceed the maximum electrical voltage ratings specified by the data
sheet.

7 . Double check test equipment setup for proper polarity of votlage before conduct-
ing parametric or functional testing,

8. Cold chambers using COz for cooling should be equipped with baffles, and
devices must be contained on or in conductive material.

9. All unused device inputs should be connected to Voo or Vss.

When external connections to a PC board address only an input to a CMOS integrated
circuit, it is recommended that a resistance 10 kf) or greater be used in series with the input.
This resistor will limit accidental damage if the PC board is removed and wiped across
plastic, nylon carpet or inserted into statically charged plastic "snow".

The input protection circuit, while adding some delay time, provides protection by
clamping positive and negative potentials to Von and Vss, respectively. Figure 6.8 shows
the internal circuitry for the diode-resistor protection.

The input protection circuit consists of a series isolation resistor Rs, whose typical
value is 1.5 kO, and diodes Dl and D2, which clamp the input voltages between the power
supply pins Voo and Vss. Diode D3 is a distributed structure resulting from the diffusion
fabrication of Rs.

I

I

-t
I
IJ

All present Motorola integrated circuits have the above diode
protection with the exception of the MC14049 and MCl4050.

Figure 6.8 - Schematic Diagram, Diode-Resistor Input Protection

48

Isolating Inputs
Many applications require electrical isolation between a signal source and the control

logic. There are four usual ways of doing so: Optical isolators, transformer and capacitive
coupling and relay contacts. The relay contacts are simply used as a switch closure to the
logic supply or to ground. The other schemes require more discussion.

Optical Isolated Inputs

Figure 6.9 shows two typical examples of opto isolation.

lsolato rr------t

L-------J

G rou nd

Figure 6.9 Optically lsolated Inputs

Transformer Coupled Inputs

Transformer coupling is used, most often, for detecting the phase or amplitude of a
power line derived signal. Figure 6.10 shows a voltage level-sensing scheme. Figure 6.11
has a connection for detecting the phase of an AC signal.

vDo

Bradge
R ecti fier

Figure 6.10 Amplitude Detection of AC Signal

49

Figure 6.1 1 Phase Detection of AC Signals

Capacitively Coupled AC Signals

For convenience or economy, a designer can sometimes replace a transformer with a
capacitor. Figure 6.12 shows the way this might be done. The capacitive divider technique
might be preferred for true ratioing of voltages up to the zener value.

Figure 6.12 Capacitive Input Schemes

Voo

ac sie >-J

V2 (V99

Note: The diode also
give open input protection

Zener Clamped Capacitive lnpuî

acsig-

o.o#
I

Capacitive Divider Input

VDD

50

Sampling Inputs

It is possible that a signal might change status during a loop of a program. If an initial
sample of a signal and a later sample of the same signal were of different values, some
undesired result might be obtained. The simple avoidance of this problem is to sample all
the variables at the beginning of a program and to store them in temporary stores. Whenever
the values are needed later in the program, the temporary store contents should be used in
lieu of the input signal. The rule is:

Only sample an input signal once in any program.

OUTPUT CONDITIONING
High Current

Figure 6 . 13 shows an interface between a low impedance load and an MC 145998 ICU
output device. The MC1413 interface ports will drive 300 mA loads when saturated, with
Vcc up to 50V. Inrush currents of 600 mA may be handled by the MC 141 3 , which allows
incandescent lan-rp loads of 300 mA to be driven without derating for inrush. The internal
diodes are useful for damping inductive load switching transients.

MC 14 599 B

a7 00 a1 a2 03 04 05 06
I 11

7

12

o

13 14

4

15 16

2

'17

1

MC1413

9

8

îo 't'l 't2 13 14 to

o0 o1 o2 o5

Figure 6.'13 High Current Output Buffers

Relay Driving

A typical interface to a machine must often be made using electromechanical relay
contacts for loading switching. This occurs because the original wiring of the machine was

designed before electronic control was contemplated. As shown on Figure 6.14, the
MC1413 can also serve as a relay coil driver.

51

Signal
from
tcu

System

Load
Relay--- "i:ili;.";l'

MC t413

Figure 6.14 Driving Relays

LED Driving

Driving LED's or opto-couplers is much like driving a relay load, except that an
external current limiting resistor is used to control the current through the LED, coupler or
solid-state-switch. See Figure 6.15. High-efficiency LEDs can be driven directly from
CMOS circuits.

Driving Thyristors (SCRs & Triacs)

There are many different means for driving thyristors. One of the simplest and most
reliable will be shown here. The method uses pulse transformers and is called the "picket
fence" technique. The name is due to the scope trace of a pulse transformer's secondary
voltage when the primary is pulsed many times each millisecond.

Given an adequate supply voltage and a resistive load, a triac or SCR will usually turn
on when driven by a single gate pulse. However, combinations of low voltage and reactive
loads can keep a device from reaching the on (latched), state. The picket fence approach is
to supply a train of gate pulses so that the SCR or triac will latch on during the first pulse time
when sustaining conditions are met. This allows the devices to turn on as close to zero
crossings of load voltage as possible. Additionally, the technique is quite economical.

There are three key parameters to satisfy: Minimum pulse width, maximum pulse
width and gate current requirements. Additionally, a check of the insulation specifications
of pulse transformers is in order.

Signal
from

Svstem

P ins
10-16

* -{#a
LE D, Switch
or Coupler

1/7
MC1413;

Figure 6.15 Driving LED Loads

52

Minimum pulse width and thyristor gate current numbers are obtained from device
data sheets. After defining minimum pulse width, a rule-of-thumb is to exceed the
minimum, say by a factor of two. The maximum pulse width requirement is dependent upon
the volt-second-product (VSP) of the transformer. The importance of VSP is to insure that
the pulse transformer will not saturate, the driver will not burn up, and a current limiting
resistor need not be used.

The maximum pulse width as a function of supply voltage is:

PWvnx : ySP seconds
V supply

An ICU system that has a clock period of four times PWunx can pulse a triac driver by
storing a "l" in the driver and removing it three clock periods later:

(RR : 1, OEN : 1)

TRIAC
DON'T CARE
DON'T CARE
TRIAC

This code would need to be repeated many times; to conserve memory space, a
subroutine could be called over and over, to make a picket fence gate drive effective. As
shown on Figure 6.1, the output of a pulse oscillator is "ANDed" with the ICU output.

Figure 6.16 Picket Fence Triac Firing

STO
NOP
NOP
STOC

To other
Gates

Typical
of Eight

rLN
Store "î "
in Ou tput

to be
Driven

R1 .C
B2.C = Pulse Space

Pulse Oscillator

rook T R2

53

Adding Hysteresis to Inputs by Using Outputs

A simple, but useful, trick in an ICU system is to add hysteresis to an input signal,
under program control. In Figure 6,17, the input pin on an MC145l2 device can be an input
and an output signal. The ICU reads the input signal, stores the result in the output (positive
feedback) and then reads the input again.

LD
STO
LD

INPUT
OUTPUT
INPUT

Gang Transfer of Outputs

While looping through a program, the ICU addresses each output bit in a sequential
manner. If a particular controller configuration requires that all output bits be available
simultaneously, then the output values can be stored in additional latches or flip-flops. A
simple routine can be added to the program to strobe the ICU outputs into the latches. The
latch outputs are then available to the rest of the system. The strobe, or pulse-generating
routine is:

START

STOP

ORC
STO
STOC

RR
PULSE
PULSE

FORCE RR TO 1

PULSE GOES HIGH
PULSE GOES LOW

End of Program

Often, one wants to return to the top of the program immediately after completing the
last written instruction. Usually, there is a pulse output on the MCl45008 device that is not
being used in the system. For example, if FLAG 0 is not being used elsewhere in the system,
then it can simply be OR'd with the program counter's reset signal.

In other words, the PC will jump to 0 whenever a FLAG 0 instruction (NOP 0) is
executed, The NOP commands do not need an address (operand); hence, the ROM's
operand field can be AND'ed with NOP's (FLAG pulses) to generate user defined functions.

MC14512
Input Device

M Cl 4599 B
Output Device

Figure 6.17 Adding Input Signal Hysteresis

54

CHAPTER 7 OEN AND
THE IF.THEN STRUCTURE

The OEN Instruction
The Output Enable (OEN) instruction is the most unusual and powerful instruction in

the MC145008. This is the instruction that makes the looping, (as opposed to jumping),
program flow powerful and practical.

All the concepts required to exploit the OEN's power are shown in Figure 7.1 . The four
important ideas are:

1. If the OEN register holds a 1, the ICU can write to output or memory devices. If
OEN holds a 0, the WRITE pulse cannot be generated and no output device or
memory content will change. OEN thus controls whether or not the ICU system
is "working" at any moment.

2. Any input signal can be directly loaded into the OEN register. An input can be
wired to the supply or ground to give an addressable I or 0. The Result Register
output can also be used as an input signal.

3. The physical connection allowing the Result Register to be addressed as an input
is so useful it should always be utilized.

4. A block of instructions can be used that calculates whether or not a subsequent
block of code is to be executed. As this result resides in the Result Register, the
Output Enable Register should be loaded with OEN RR.

IF-THEN (OEN Step 1)

In this section, the Output Enable instruction (OEN) will be used to simplify the logic
controlling the program's execution. The title IF-THEN implies exactly what we want to do.
If a condition is satisfied THEN a block of code will be enabled. If not, the code should be
disabled (ignored) so it cannot change the state of any output or internally stored bits.

For example, if overtemperature switch OTS is closed (: 1), sound horn H, turn off
oven power OP, and turn on oven temperature light OTL. The ICU routine is as follows:

LD OTS LOAD SWITCH STATE
OEN RR ENABLE OUTPUTS IF I

IN RESUUT REGISTER
STO H TURN ON HORN
STOC OP TURN OFF POWER
STO OTL TURN ON LIGHT
ORC RR FORCE RR TO 1 (RR * RR : 1)

OEN RR ENABLE OUTPUTS

The first two statements disabled the outputs if the overtemperature switch was not
closed. Two statements are used, one to load the state of OTS into the Result Register, the
other to enable the output or WRITE signal.

This is an example of a conditional program. The program can affect outputs only
when the OEN registerhas a stored l. Otherwise, nothing is changed by the ICU's execution
of the seven instructions . The same number of clock cycles are used in either case. This is an

1 START
z

J

^I

5

6
7 END

))

Write pulse output when
store or sÎore complemenl
instruction is used AN D
outpul enabled (OEN - 1)

Flow of
Looping
Program

Block of
Enabling Instructions

Enabled
Block of
Instructions

Block of
Enabling Instructions

Enabled Block
of Instructions

---_-V-
Any Input in
Loads Ou tpuî

Fnabling Register
with lnstruction

oEN l1

OEN
I n stru ctr on

When this Connectioo
Éxists, Result Register
Loads Output Enabling

Register wÌth Instructions
OEN RR

Result
R eg ister

Inpul
Selection

Figure 7.f Output Enable Concepts

example of an IF-THEN block of code. The last two statements re-enable OEN for use by
other blocks or sections of code. Figure 7.2 shows a flow chart representation of this
IF-THEN block. The instructions that are executed in each block are written beside the
blocks.

It is important to notice that when the IF test fails, nothing happens. This distinguishes
IF-THEN blocks from other code or the flow chart structures we will examine in other
chapters.

To Review: IF-THEN code blocks ask aquestion. If the question is answered yes (OEN
: 1), the code following the question is enabled and the programs section is enabled.

Orherwise, the code following is not workable because the WRITE pulse is not produced by

the ICU when OEN : 0.

56

H+1
OTL31
TT U

1. LD
2. OEN

OTS (RR EOTS)
RR (OEN <- RR)

H (H+RR)
OTL (OTL EJlR)
FP (FR E RR)

RR (RR E1)
RR (OEN <_ RR)

4.
5.

6.

sTo
STO
sToc

OEN

Figure 7 .2 An lf -Then Program Block

There is no restriction on the structure of the block of code or instructions enabled by
the IF question in an IF-THEN structure. The block can contain other IF-THEN structures,
as shown in Figure 7 . 3 , or any of the other two program structures to be described in the next
two chapters.

Figure 7.3 The Instruction Block May Be Complex

Start

_________l

lnstructions

I n stru cti ons

Start

Block of
lnstructions

57

58

CHAPTER 8 THE IF.THEN-ELSE
STRUCTURE (OEN STEP 2)

In the IF-THEN arrangement of Chapter 7, we saw that an action could be taken if a
condition was satisfied. For example, if the limit switch is closed, turn off the motor.There
is no statement about what is to happen if the switch is not closed. The IF-THEN-ELSE has
the alternate action instructions not provided for in the IF-THEN structure.

The IF-THEN-ELSE structure is shown in Figure 8.1. A question is asked, if the
answer is "no," block B's instructions are enabled and executed. We can see now that if
block B contains no instructions, we once again have the simple IF-THEN structure. Once
again, the output enable OEN is used. The "A" block is enabled by loading the OEN
registerfromtheResultRegister(assumingRR:1).ToenableB,thecomplementofRRis
stored, to be recalled later to either enable or not enable B. Thus the IF-THEN-ELSE
sequence is as follows:

l. Resolve the enabling condition.
2. Store the complement of the result in some temporary location ("TEMP").
3. Load the Output Enable Register OEN from the Result Register RR.
4. Do the A Block.
5. Load the Output Enable Register from "TEMP."
6. Do the B Block.
7 . Restore the OEN's condition to enable (OEN : 1) to allow subsequent code to be

enabled.

Start

Block A
of lnstructions

Block B
of lnstrucîions

Figure 8.1 I F-THEN-ELSE

59

An example follows:
A simple IF-THEN-ELSE usage is to "turn on" a load if a condition exists, and to

"turn off" the load otherwise. Such a function can be directly done, without the IF-
THEN-ELSE structure. However, it is the enabling logic that is to be illustrated, not the

control function.
The example is illustrated in Figure 8 .2. The motor M is to run if the A and B contacts

arebothclosed.Otherwise,themotorisnottorun.If A'B: l,thenM: l,elseM:0.To
start the routine, assume IEN : 1 (input enabled).

START IA. LD A RR <_ A
lB. ANDC B RR .- A ' B-
2. STOC TEMP TEMP:A'B:A+B

NOTICE: THE RESUUT REGISTER STILL CONTAINS THE ENABLE CONDI-
TION AND ITS COMPLEMENT ENABLE IS IN "TEMP"

3. OEN RR ENABLE "RI-JN'' CODE
4. STO M THE MOTOR RUNS
5. OEN TEMP OEN <.- TEMP
6. STO M THE MOTOR STOPS
71^. ORC RR RR<-RR+RR:l
7B. OEN RR OEN <_ I

In this example, the executable blocks consisted of single store instructions, which
took advantage of the fact that the Result Register RR contained a I in the first "block" if
the motor was to run, and a 0 in the second "block" if the motor was to stop.

LD A RR<_A
ANDC B RR<_A.E'
STO M M<--A.B

AC Line AC Returni
Figure 8.2 Function for lF-THEN-ELSE

60

It would have been six instructions briefer, but our example would be lost. The extra
statements will allow us to write very complex programs in a straight forward and organized
fashion. Notice, in Figure 8,3, that a "block" of instructions in our IF-THEN-ELSE
structure could contain other IF-THEN or IF-THEN-ELSE structures. In that case, we
would say the structures were "nested".

Start

lF-TH EN-E LSE Ouestion

lF Block is an lF-THEN

Nested I F-TH EN Ouestion

X Block of lnstructions

L--------

r<-
I
I

I

ELSE Block is a
,,NEStEd " I F -TH EN.E LSE

Nested I F-TH EN-E LSE Ouesrion

Y Instruction Block

Z Instruction Block

Figure 8.3 lF-THEN-ELSE With Nested Structures

61

62

CHAPTER 9 THE WHILE STRUCTURE

The WHILE structure is the last of three program structures required to write programs
powerful enough to handle problems of any complexity. The WHILE structure allocates the
entire power of the machine to a single section of the problem w hile some condition exists .

The WHILE structure is flow charted as shown in Figure 9.1.
In this chart, we see that after leaving the Executable Block, the program returns to the

while condition test. Each machine or computer can have its own unique way to return the
program to the test question. In general, these are two ways of doing so: After leaving the
executable block, reset the program counter to the entry of the while test question, or,
disable the execution of the other blocks of code and let the program counter step through
the non-executable instructions until the program loops back to this while test.

The first method, jumping the program counter back, is the most common, fastest and
most costly. It will be discussed at the end of this chapter. The second method is less
expensive, in that hardware to jump the program counter is not required. It does require a
clear understanding of programming requirements and hence, will now be discussed in
detail.

Figure 9,1 Th€ WHILE Structure

63

Tesî for the While condition.

ll the While condition is
satisfied, the execuîable block
is used and the program
goes back to the While
Condition Test.

lf the while Test fails,
the other code in the
program is used.

Loop back to top ol program,
which will lead back to the
While Condition Test.

Let's call the two ways of implementing the WHILE structure the Jump-Back-While
and the Loop-Around-While. Both accomplish the purpose that only one block of code is
executable during the time the while condition is satisfied. The Loop-Around-While then
puts a condition on the rest of the program: NO code outside the WHILE structure can be
executable if the WHILE is enabled. The means of doing this is provided by the OEN
instruction which can let the program counter step through instructions without affecting
any outputs or memory. This means that the programming problem is one of using OEN to
disable other code if a WHILE block is active.

A way of doing this is to count the number of WHILES in a flow chart and assign a
unique number to each one. A number called STATE is maintained in memory or temporary
storage locations. A while block is enabled only when the blocks' number agrees with
STATE. STATE can only be changed by the instructions in the enabled block, or by
conditions external to the program, such as timers or other input signals. The Traffic
Control application in Chapter 1l is a good example of time being a factor in STATE.

When the Loop-Around-While is used, each while structure's test for enabling the
following code tests STATE as part of the while test. This is the same as implementing the
WHILE as on IF-THEN-ELSE. "IF the WHILE test condition is satisfied, enable the while
block, ELSE enable another block of code. Chapter 10 treats this possibility in detail.

The Jump-Back-While uses two jumps to build the While structure. The first jump is a
conditonal jump that can move the program counter past the while block if the while test
fails. It is at the bottom of the While question block. The second jump is written at the
bottom of the executable block and jumps the program counter back to the While question.
This jump is not conditional. See Figure 9.2.

An example of a program with a Jump-Back-While is listed next. With this program
we want to run a pump until a tank is full. During the pumping time, we want no other action
to take place. A flag switch, FS, will close, (FS : l), when the tank is full.

I
2
3

4
5

6

START LD
SKZ
JMP
STO
JMP

NEXT STOC

FS

NEXT
PUMP
START
PUMP
NEXT INSTRUCTION

LOAD FLOAT SW SIGNAL
SKIP NEXT INST IF FS : O.

JUMP TO NEXT
TURN ON PUMP
JUMP BACK TO START
TURN OFF PUMP

Instruction I loads the FS signal into the ICU Result Register. If the switch is open,
instruction 2 will cause instruction 3 to be ignored. Instructions 1-3 comprise the While
question. The executable block is instructions 4 and 5, which drives the pump and jumps the
program counter back to instruction 1. Instruction 6 turns off the pump when the while
condition fails. After instruction 6, the program counter steps through the balance of the
program. The Jump-Back-While is easy to write. Aside from cost, it has a very important
limitation: Only one block - the While block - can be executed if the While condition is
satisfied,

The Loop-Around-While has two important advantages. First, jumping hardware is not
required. Second- and unique to this structure -two or more completely independent
programs can run simultaneously in a single ICU system. The cost is slower speed of
execution and a more complex set of block enabling conditions.

&

From Previous Block

To Next Block

Conditional
JUMP

Unconditional
JumP

Figure 9.2 Jump - Back - While Structure

65

66

CHAPTER 10 COMPLETE ENABLING
STRUCTURES

We have seen three important program structures: IF-THEN, IF-THEN-ELSE and
WHILE. It is possible to write any program of interest using these three structures . To do so ,

we must realíze that any of these three structures may be used at anyplace within a block of
executable instructions. This will lead to nesting, Often, to keep complex programs under
control. one will want to draw flow charts.

The flow charts will be most useful if they are conceived as modules that are linked
together. Each module has one starting point and one ending point. They are linked by
joining the end of one module to the start of another. Thus, the modules will link into one
long chain. When the program finishes with the last module, it simply goes back and starts
the first module again.

The flow chart should follow a single vertical line. This makes it convenient and easy
to add or remove modules when developing programs. This concept is shown in Figure
10.l. For convenience. the flow chart can be drawn as a column which is continued in an
adjoining column. This conforms with realistic paper dimensions, as shown in Figure 10.2.

+- Program C6unter = O

Program Counter Resets ----->

+-- Program COunter at End

IF.THEN

IF-THEN-
EL5È

Figure 10.1 A Master Flow Chart Showing Looping and Structured Blocks

67

Ì-".

IF .T H E N,È LSÉ

l""'"
I

I

Y

t_:,

IF,TH E N
ELSE

Ì..'.

Ì,.."

Ì,.".,,

Figure 1O.2 A Structured Looping Program

68

Structured flow charting and programming is a technique for organizing solutions to
problems or algorithms. This approach can be used with any programming language or
hardware set. Hence, control programs which are structured are convertible between, say, a
large Fortran program to the MCI4500B, in either direction.

In the MC145008, one wants to examine the structure to see if WHILES are present. If
WHILES are present, then no other statements are to be executed until the program exits
WHILE block. This may be accomplished in two ways: by using the JUMP instruction from
Chapter 12 , or by disabling all other code during the time a WHILE block is active. If there
are only a few WHILES in the program, then it is easy to "FLAG" each WHILE and enable
blocks only if no WHILES are active. Otherwise, the state counter technique from the last
chapter is recommended. An example of the V/HILE test will be shown next, and the "state
enable" technique will be shown in the Traffic Controller of Chapter 11.

Example

Shuttle Motor Problem

A motor driven carrier, on a weaving machine, shuttles between a left and a right hand
stop each of which have limit switches. When a limit switch closes, the drive motor stops.
After a T second pause, the motor runs in the opposite direction until the other limit switch
closes, whereupon the cycle repeats.

The various signals have the following designations and characteristics:

LLS
RLS
TO
TI
MR
ML

LEFT LIMIT SWITCH
RIGHT LIMIT SWITCH
TIMER OUTPUT
TIMER INPUT
MOTOR RIGHT
MOTOR LEF-T

O : SWITCH CLOSED
O : SWITCH CLOSED
I : TIMING
1 : START INTERVAL
1 : RUN TO RIGHT
I : RUN TO LEFI

The Task

Document an ICU control system for the shuttle motor.

Solution

We notice that the motor direction is controlled by the last limit switch that closed. So a
one bit location called LAST will be used to "remember" the last limit switch closed.
Arbitrarily, we will say that LAST : 1 when the last switch closed was the left limit switch
LLS.

The I/O and timer connections to the ICU system are shown in Figure 10.3, and Figure
10.4 shows a structured flow chart for the shuttle motor's control. The flow chart uses all
three of the structures we have examined. Both the THEN and the ELSE branches of the

IF-THEN-ELSE port contain nested IF-THEN structures. So the problem is a good example
of what one is likely to have to do in conditionally enabling different blocks of code.

69

MC145OOB ICU Svstem

MCl45 t 2

\-___Y--l
Other

Outputs ML

Figure 10.3 Shuttle Motor Signal Connections

In writing code for a flow chart, one often has best results by starting on the innermost
structure. So let's look at the instructions for the IF-THEN, which looks for the right limit
switch closure.

IF RIGHT LIMIT SW CLOSED
THEN LAST GETS O

TIMER START GETS PULSED
START LDC RLS RR <-..RLS

STOC LAST LAST <-- RLS
STO TI TIMER PULSE ON
ANDC RR CLEAR RR TO ZERO

END STO TI TIMER PULSE OFF

This is direct execution. If the same structure were to be coded using Output Enable
instructions it would like like:

START LDC RLS RR <- RLS
OEN RR OEN ENABLE BY RR : I
STOC LAST CHANGE LAST
STO TI PULSE TIMER ON
STOC TI END TIMER PULSE
ORC RR FORCE RR TO 1

END OEN RR RESTORE OEN

This block of code is probably ENABLED by using the OEN instruction ahead, so we
do not want to use OEN within the block. The direct method is preferred.

Howeveg other ways of writing code for this block are possible, for example, using the
Skip If Zero instruction.

START LDC RLS Pft <-- RLS
SKZ SKIP NEXT IF ZERO
STOC LAST LAST <_ O

SKZ SKIP NEXT IF ZERO
STO TI TIMER PULSED ON
ANDC RR RR FORCE TO ZERO

END STO TI TIMER PULSED OFF

70

IF -TH E N-E LSE

lf LAST = 1

THEN
Motor Buns Right

Looks for Right
Limit sw. Closure

E LSE
Motor Runs Left
Limit sw. Closure

I
I

I wH rLE

I While Timer is

f Non-Zero the

I
ruotor is Stopped

)

)
t"-, Runs Fìisht

Motor Runs Left

IF.THEN
lF LT LlM. SW. Closed
lrcN LAST = 1

Start Timer

I
(

I
L

1

)

LAST = 0
Start Timel

Figure î0.4 Structured Flow Chart for Shuttle Motor Control

7l

Many ways of writing short blocks of code are possible. Again, direct methods are
preferable.

Now, let's look at code for the IF-THEN-ELSE block that controls the motor's run
direction. OEN is I and the block is enabled when we start.

OEN: I
IF-THEN-ELSE
IF LAST : 1

THEN MOTOR RUNS RIGHT
IFRLS: O

THEN LAST O, TIMER STARTS
ELSE MOTOR RUNS LEFT

IFLLS: O

THEN LAST : I. TIMER STARTS

Noting on the flow chart that the IF-THEN-ELSE structure is active whenever TO : 0.
we can combine TO into the branchins decision of this structure.

START LDC TO LOAD TO
AND LAST RR: LAST .TO
OEN RR OEN +- LAST ' TO
STO MR RUN RIGHT ON
STOC ML RUN LEFT OFF

INNER IF.THEN BLOCK FROM BEFORE FOR MTR RT

LDC TO LOAD TO
ANDC LAST RR: t-nSf fO
OEN RR OEN <_ I-EST T6
STOC MR RUN RIGHT OFF
STO ML RUN LEFT ON

.

INNER IF-THEN BLOCK FROM BEFORE FOR MTR LF'T

We have now "collapsed" the code and flow chart to the simplerform shown in Figure
10.5. One of the points of this section is that the "work" is not in writing code, but in
understanding, organizing and documenting a problem and a solution procedure or al-
gorithm. When a problem and its solution are well understood, flow charting and documen-
tation are often expedited by the immediate writing of code.

72

MFì = 1

ML = O

LAST = O

Starî Timer

MFI -O

LASI = O

Start Timer

OEN TO
LDC TO
STO MR
STO ML

LDC TO
AND LAST
OEN RFì

STO MR
STOC ML

LDC RLS
STOC LAST
STO TI
ANDC RR
STO TI

LDC TO
ANDC LAST
OEN RR

STOC MR
ST ML

LDC LLS
STOC LAST
STOC TI
ANDC RR
STO TI

Figure 10.5 Final Structured Flow Chart and Motor Control Code

1A

CHAPTER 11 TRAFFIC INTERSECTION
CONTROLLBR

In this chapter, many of the concepts previously examined are consolidated in an
example of a traffic intersection controller. The controller is developed around the 16
input/16 output demonstration system that was described in Chapter 5. This example
illustrates the power of the ICU's instruction set and exemplifies the new concept of
branching code that is fetched and executed entirely sequentially, thus, eliminating the need
for conventional branching or jumping by modifying the contents of program counter.

State Diagram of the Controller
One of the many ways to visualize a problem or task is by means of a state diagram.

This method presents the maximum information, regarding the task, in very compact form.
Figures 11.1 and 11.2 depict the controller states in simplified and complete diagrams,
respectively.

Figure 11.1 Traffic Controller - Simplified State Diagram

/;)

til

\'"""*,/ ./
-

-\,',/ -az'/G' \ ,/
Ar' ,r/\,",[Y ,(' \

r1o | /"'

r "Smart" Mode Onlv

\

t)

As shown in the figures, the traffic controller has 8 separate states . The conditions for
leaving a state and advancing to another are shown as labels for the lines connecting each
state pair on Figure I 1.2. Priority is assigned in the following manner: if there are several
paths that can be taken upon leaving a state the controller will advance to the nearest
neighboring state, following a clockwise path around the outside of the state diagram circle.
For example, if the controller were in State 0 and in its "smart" mode, (to be described
later), and if there are "North-South" and "East-West" traffic requests, but no left turn
request, the controller would advance directly to State 3, skipping States I and2.

Features of the Intersection Controller
The intersection to be controlled consists of a major highway (North-South) and a

minor cross street (East-West). The N-S highway has left-turn arrows operating simultane-
ously. The controller can operate in either of two modes: sequenced (dumb) and responsive
(smart). The mode of operation is selected by a switch on the demonstration unit.

In the sequenced mode, the controller "steps" through each state (clockwise path around
the state diagrams). In this mode, the sequence is repeated endlessly, without regard to
traffic build-up.

In the responsive mode, the controller will "rest" with the N-S green light on and
"answer" requests for left turns and E-W traffic. After servicing these requests, the
controller returns to the N-S green state. If many requests are made simultaneously, the
controller selects which request has priority. Each request will be serviced once in each
cycle. This is done so that no request will be denied because of a large amount of traffic in a
high priority direction.

The controller also has various time delays, (N-S Green time, etc.) that are programm-
able by switches. Other features are a hard-wired constraint that if N-S green is off and N-S
yellow is off, N-S red must be on. A similar condition exists in the east-west directions;
also, a hard-wired "flash all reds" function when the ICU is in the reset mode.

Intersection Controller Flow Chart
The state diagram is a universal, generalized representation of the task. The flow chart

is a more specific representation that allows design tradeoffs between system hardware and
software to be resolved. Figure I I . 3 is the complete flow chart for the implementation of the
controller. Table I 1.I lists and describes the inpuloutput function and the mnemonic terms
assigned to the controller system.

The resultant program for the controller consists of eleven IF-THEN structures. Each
IF-THEN structure implements one of the arrows and states shown on Figures ll.l & 11.2.
In any of the structures, the IF part tests to see if the conditions exist for entering a new state.
The THEN parts change Flag bits to indicate which new state the controller has entered.
Next, the THEN parts execute the time and output-state code that corresponds to the new
state.

The Flag bits 82, 81 and B0 signify which state the controller is occupying. For
instance, if B2, B 1 and B0 equal binary 0, I and 1, respectively, the controller is in State 3
(0llz). During start-up, or after a reset, the conroller proceeds from State 0.

Intersection Controller Software

Table ll.2 is the controller software. based on the flow chart of Fieure 11,3.

76

TMZ

I ---=-
vetlrow Time eluora-\

State O

Bed in All
Directions

statez \ / s'
ast west \ /t"t qo
tow trsr't I / -f* ,f::// É\.":.""i".

/ l"-. rjJ/ t:- ì:":ir
(.s'--r-

-t":;t",/
A\'":"*7

\o.7 ,.

Yellow Lighl

State 7
E ast-West N orth-South

Left Turn
Arrows On

Ì\;$1
Ir*J

Staîe 6
E ast-West

Green Lighî

State 2
Red in All
Oirections

State 5
Red in All
Di recti ons

State 3
North'South
Green Light

On

State 4
North-Sou th
Yellow Light

On

r-ilii
I

Red Overlap
Time E lapsed

West Request

Requ esî

E lapged

(d)

) ot I

o9l Izr\n
r "9\

z^2 Ot
a'î-o
.t/n

1,.,

îil-z tM-oo + LR + EwB)| | tl
llll
lllEast
I I Lert Turn
I Sequence Mode

North Souîh Green Time

S''*. ""-
/ t-"ir'r (

? zv.e

{ \"\
, \É Rt^í
\ \9-:-' i\\ù)- 90

\f,;'\l'^ .- t

\ E-i'

".\È-

tMz
| 'n'

Yellow Time Élapsed

TMZ

f-l
East West Green

Time Elapsed

tl-
I East-West
I Request

Sequ ence Mode
Red Overlap Time Etapsed

Figure 11.2 Complete State Diagram with Conditional Linkages

System Powers up in
State OOO (SO)

SO.TMZ.(MOD+LR)

Change flag bits from S0 to S1
(O, O, O) + (O, O, 1); Mulliplex
ìn lelt turn time from thumb.
wheel switches, pulse parallel
enable of timer chip, îurn left
IU rn arfow on.

SO. TMZ. MOD. LR. (EWR + NSF)

Change flag bits from SO to S3
(O, O, O) + (O. 1, 1); Multiplex
in the North-South green îime
from the thumbwhee, switches,
pulse parallel enable of timer
chip, turn North-South gleen on

. IMZ. EWF . LR. NSF .MOO

Change flag biîs from SO lo 56
(0, O, 0) + (1, 1, O); Multiplex
in the East West green time from
the thumbwheel switches, pulse
parallel enable of timer chip,
turn East'West green on.

Change flag bits from S l to 52
(O. O, 1) ? (O, r, O); Turn left
îurn arrow oft; Multiplex in the
red overlap time from the thumb
wheel switches, pulse îhe parallel
enable of the timer chip.

Change flag bits from S2 îo 53
(0, 1,0) +(0. 1, 1); Mulîiplex
in the North South green time
from the thumbwheel switches,
pulse the parallel enable of the
timer chip, turn the North South
green lighî on.

ss.îfr2.(Mbó+LRîEWRI

Change the flag bits lrom 53 to 54
(O, 1, 1) + (1, O, O); Turn the Norrh.
South yellow on, and the North
South green ofl; Mulriplex in the
yellow time frgm the thumbwheel
switches, pulse the parallel enable
of the timer chip.

Fígure î 1.3 Flow Chart

78

Change flag bits from 54 to 55
(1, O, O) + (1, 0, 1); Turo the
North South yellow off, Multi-
plex in the red overlap time
from the thumbwheel switches.
pu lse the parallel enable of the
timer chio.

55.TMZ.(MOD+EWR)

Change flag bits from S5 to 56
(1,0, 1) > (1, 1, o)i Turn East-
West green I ight on; Mu lt;plex
in the Éast West green time
from the thumbwheel switches,
pulse the parallel enable of the
timer chip.

55. TMZ . MOD . LR . EWR

Change the flag bits from S5 to S1
(1, 0, 1) t (O, 0, 1); furn left turn
arrow on; Multiolex in the left turn
time from the thumbwheel switches,
pulse the parallel enable of the timer
ch io.

Change flag bits from 56 to S7
(1,1,0) +(1,1, 1); Turn East
West yellow on. turn East-West
green off; Multiplex in the yellow
time from the thumbwheel sitches,
pulse the parallel enable of the timer
ch ip.

Change the flag bits from S7 to SO
(1, 1, 1) + (0, 0. O); Turn Easî'West
yellow off; Multiplex in the red over
lap time from the thumbwheel
switches, pulse the parallel enable
of the timer chio.

Figure î 1.3 Flow Chart (continuedl

79

ALL SIGNALS ARE HIGH ACTIVE UNLESS OTHERWISE SPECIFIED

ICU Outputs

Table 11.1 lntersection Controller Input/Output Listing

Table 11.2 Intersecîion Controller Program

ICU Inputs

Input # Name Function

0

3

I

2

4

o
7
R

RR

LR
MOD

TMZ

NSR
EWR

The pinned out Result Register is connected to this inputsothe lCUcan condi-
tionally load the IEN and OEN register, and manipulate the result register
content.
Signal indicating that a requesî for a left turn has been made.
Selects the mode of operation the intersection will function in MOD = l smart;
MOD = 0 seouence.
This is the (low active) carry out of the timer chip, the monitoring of this
input determines when time has elapsed.
Inputs 4. 5, and 6 are tied to outputs 8, 9, and 10 respectively. The software
uses these three bits as flags to determine which block of code will be "active"
as the ICU sequences through the instructions in memory.
Signal indicates that a request for the North-South green light has beén made.
Signal indicates that a request for the East-West green light has been made.

Output # Name Function

0
1

2

J
4
5
6
7

8

11

12
13

Left TMR
PE

ARROW
NSGRNTMR

NSG

EWGRNTMR
EWG
EWY

NSY
YTMR

REDSFTMR

Multiplexes the left turn time to the inputs of the down counter.
Parallel enable of the down counter.
Left turn arrow light.
Multiplexes the North-South green time to the inputs of the down counter.
North-South green light.
Mulîiplexes the East-West green îime to the input of the down counter.
East-West green light.
East-West yel low light.
Outputs 8, 9, and 10 are îíed to inputs 4, 5, and 6 respectively. The software
uses these three bits as flags to determine which block of code will be active as

the ICU sequences through the instruction in memory.
North-South yellow light.
Multiplexes the yellow time îo the inputs of the down counter.
Multiplexes the red overlap time to the inputs of the down counrer.

Memory
Location

Op
Code

UO
Address

Mnemonic
Op Code

Symbolic
Address Commenl

00
01

7

A
0
0

XNOR
IEN

RR
RR

Force RR to 1

Enable input

lF-THEN BLOCK (a)

02
UJ

04
05
06
o7
08
09
OA
OB
oc
OD
OE

1

t)
4
4
4
4

I
I
Èt

q

I
I

1

z
4
c

t)

U

ó
0

1

0
z

LD
oRc

ANDC
ANDC
ANDC
ANDC
OEN
STO

sro
sTo

STOC
sToc
STO

LR
MOD

BO

B1

B2
îMZ
RR
BO

LEFTMR
PE

PE

LEFTMR
ARROW

Load LR
OR with MOD
AND With BO

AND With 81

AND with 82
AND with TMZ (Low Active)
EnableifR=1
Change State to S1

Enable Left Time SW
Pulse Timer Load
Pulse Off
Disable Left Time SW

Turn On Left Arrow

80

IF"THEN BLOCK (b)

lF'THEN BLOCK (c)

IF.THEN BLOCK (d)

Memory
Location

Op
Code

vo
Address

Mnemonic
Op Code

Symbolic
Address Comment

OF
10
11

tz
13

14

15
to
17

18

19

1B
1î

1D
Itr

'I

b
4

4
4
4
4
B

8
ò

I
8
q

I
8

1

I
1

J

4

o

0
I

?

1

1

3

4

LD
oRc

ANDC
AND

ANDC
ANDC
ANDC
ANDC
OEN
sTo
STO
STO
STO

sToc
STOC
òtu

NSR
EWR

LR
MOD
TMZ

BO
al

ól

RR
BO

B1

NSGRNTMR
PE

PE

NSGRNTMR
NSG

Code in this Block follows Com-
ments ìn Block (a)

Memory
Location

Op
Code

vo
Address

Mnemonic
Op Code

Symbolic
Address Comment

1F

20
21

22
11

zo
27
zó
2V

2A
28
2C

2D
2E

2

4
4

4
4
4

8
ò

I
ó

8

6

6
z

8
1

0
9
A
5

1

1

o

ANDC
ANDC
AND
AND

ANDC
ANDC
ANDC
OEN
sTo
cTn

sTo
STO

STOC
sToc
STO

BO

éz
MOD
EWR
LR

NSR
îfrz
RR
81
B2

EWGRNTMR
PE

PE

EWGRNTMR
EWG

Logic Flow is same as Block (a)

Memory
Location

Op
Code

vo
Address

Mnemonic
Op Code

Symbolic
Address Comment

zr
30
31
1a

J4
Jf,
36

?a

?o

'I

4

4
I
I

9

B

ó
q

9

E

J

0
8
9
t
n

1

1

LD
ANDC
ANDC
AN DC

OEN
STOC

STO
STOC
òt\J
sTo

5 | \J\-
STOC

BO

ól

B2
fMz
RR

BO

B,I

ARROW
REDSFTMR

PE

TE

R EDSFTMR

See Block (a) f or Comments

8l

IF.THEN ELOCK {e)

IF.THEN BLOCK (f)

lF-THEN BLOCK (sI

38
3C
?n
Jtr

40

qJ

44
45

2

A

ó

8

Ò

8

v
8

À

5

3

0

Ò

'I

,l

3

^

LDC
AND

AN DC

AN DC

OEN
sro
STO
STO
sroc
STOC
JIU

BO

B1

TMZ
RR

BO

NSGR NTÍVIR

PE

PE

NSGR NTMF
NSG

Form Same as Block (a)

Memory
Locataon

Op
Code

t/o
Address

Mnemonic
Op Code

Symbolic
Address Comment

46

qó

49

4B
Àa

4D
4E
4F
EN

51

at

54
55

1

tr

o

J
À

B

I

8

ó

I
ó

8

Y

9

I
a

?

4
q

o

U

ó
v
A

A

1

1

LD

OR
oRc

AN DC

AND
AND

ANDC
OEN

J IUL
sToc
sTo
STO

STOC
STO
STO

STOC
STOC

EWR

LR
IVIOD

TMZ
BO

B1

RR
BO

B2
NSY
NSG

YTMR
IE

PE

YTMR

See Block {a}

Memory
Location

Op
Code

vo
Address

Mnemonic
Op Code

Symbolic
Address Comment

58

5A

5D
5E

5F

60
61

4

4
B

8

9

I
8

9
I

4

o

0

6

D

1

1

n

LDC
ANDC
AND
ANDC
OEN
5ru

sfoc
sTo
sTo

sToc
sToc

BO

bl

óz
irv'Z
RR
BO

NSY
R EDSFTMR

PE

rtr
R EDSFTMR

Same Structure as Block (a)

82

IF-THEN BLOCK (h)

IF.THEN BLOCK (i}

IF.THEN BLOCK (i}

62
OJ

64
oc
oo
ól
oó
69
t)A
oó

OU

6E
6F

1

A

J

3

B

I
I
ó

8

Ò

Y

I

2

5

o

0
8

9
6

5

1

1

5

LD
oRc

AN DC

AND
AN DC

AND
OEN

STOC
STO
sTo
STO
STO

STOC
STOC

EWR

NIO D

TMZ
BO

B1

B2
RR
BO

B1

EWG

EWG R NTI\,1R

PE

PE

EWGRNTMR

Structure or Block (a) Repeated

Memory
Location

Op
Code

vo
Address

Mnemonic
Op Code

Symbolic
Address Commenl

70
71

72
f2

74
75
76
77
7a
79
7A
7B

tc
7D

1

4
?

4
?

B

9

Ò

8

ó

v
9

5

o
?

1

Ò

U

A

1

1

0

LD
AN DC

AND
AN DC

AND
AND

AN DC

OEN
sToc
STO
STO
sTo

STOC
STOC

BO

B1

óz
îMZ
MOD

LR
EWR

RR
B2

ARROW
LE FTTM R

PE

PE

LEFTTfVIR

Structure repeats again .

7E

7F

80
81

óz
83
84
85
86

B7

88
89

3

4
B

ó

ó

9

I
9

4
6

6
?

0

I
7

o
e

1

1

C

LDC
AND
AND

ANDC
OEN
STO
STO

STOC
STO

STO
STOC
STOC

BO

Bl
ót

TfVIZ

RR
BO

EWY
EWG

YTMR
PE

PE

YTMR

And again .

83

Memory
Location

Op
Code

UO
Address

Mnemonic
Op Code

Symbolic
Address Comment

8A
òtr
8C
8D
8E
8F
90
91

YZ
o?

94
95

97

97

FF

91

FF

1

4
B

I
o

I
q

ó
8
9
9
F

F

'
F

o

0

4

6

0
8

I

1

D

X

X

X
X

X

LD
AND
AND

ANDC
OEN

STOC
STOC
sToc
STOC
STO
STO

sToc
STOC
NOPF

NOPF

NOPF
NOPO

NOPO

óU

B1

óz
TMZ
RR
BO

B1

ót
EWY

R EDSFTMR
PE

rtr
R EDSFTMR
No Address

Start Last Block

End Last Block & Prog.
Flag F can be used to reset program
counter after last instruction if Flag
F resets PC

or
the balance of ROM will contain
NOP's when the rest of the loca-
tions are unprogrammed and the
program will automatically loop
around to the first instruction.

IF.THEN BLOCK (K)

INTERSECTION CONTROLLER HARDWARE

Display Board

The traffic intersection display board is controlled by the ICU and the control program
located in the demonstration board ROM. Two 16-wire cables interface the display board to
the ICU system inputs and outputs. The display uses a separate power supply. The display
board has a "hard wired" flash feature where the red lights flash in both directions when the
ICU is in the reset state. The display board has three request buttons which are used to
simulate traffic conditions. When the request button has been pushed, the request is latched
and displayed by an LED. The request light will go off after the request has been serviced
(i.e. that particular direction gets a green ligh|.

Timing

There are five different time intervals in the traffic controller, each settable by a
thumbwheel switch. The intervals are: N-S Green Time, E-W Green Time, N-S Left Turn
Time, Common Yellow Time and Red Overlap Time. The Red Overlap or Red Safety
interval allows the last car traveling on Yellow to clear the intersection before the next
direction starts a Green interval. During red overlap or clearance time, all red lights are on.

When a state is entered, a common counter is loaded with the state of the proper
thumbwheel switch. The thumbwheel switches are connected by diodes to a common four
wire bus used to load a down counter. When a particular time is to be used, an ICU output is
sent high to drive the common line of one of the switches. The counter's load pin is then
pulsed by another ICU system output, and the switch's common line is retumed to a low
state. (See the section on timers, Chapter 6). The switches and the counteritimer are on the
Display Board shown in Figure 11.4.

84

o

o
o

sr

tt

3!

É r69o

'; ooòd

^.9 rF

È i E -.- -óe::px pe;: lPlBx3r --
-6 6

CC- :3 ;
2 1z z f,

5 9tÈ E s IB EEs *;; n ifllfi

l !B
u >--

;"; 5'
óàó

ti.

)3

É

z
É
o
3

E

ts
z
o

:
o

o of È N N

85

86

CHAPTBR 12 ADDING JUMPS, CONDITIONAL
BRANCHES, AND SUBROUTINES

In some control applications, it may be advantageous to have a control structure like
that of a conventional pròcessor, rather than a looping control structure. Jumping can reduce

execution time and reàuce software complexity. Having the capability to call subroutines

also helps to modularize the software. It should be pointed out that subroutines can be

impleménted in a looping control structure; however, the overhead required (additional

prócessing steps) may be disadvantageous in some cases. An ICU system can be_.readily

àesigned to incorporate a jumping, conditional branching and subroutine capability.

The ICU has three p.ògram cóntrol instructions which are intended for the purpose of
adding jumping, conditi-onal jumping and subroutine capabilities to an ICU system. These

instruótionJcause the ICU to take the appropriate action and provide the necessary control

signals to external logic circuits that actually perform the address modifications'

Program Control Instructions

JUMB (Mnemonic: JMP). The JMP instruction generates a one clock period pulse on the

iVtf pin of tne ICU, beginning on the falling edge of the CLK signal. This pulse can be used

to gate the jump address into the program counter'

SKIP IF RR = 0, (Mnemonic: SKZ) . If the Result Register contains a logic 0 at the time the

SKZ instruction is executed, the next instruction is ignored by the ICU. (i.e. no action is

taken.)
Together the JMP and SKZ instructions give the ICU a conditional branch capability.

See Figure 12. l.
To add subroutines to the ICU, a Last In, First Out Memory (LIFO "stack") is

required. If the subroutine feature is required, the most economical method of implement-
ing this feature is to have a LIFO stack in which the top location of the stack is a

paiallel-loadable counter, where the outputs of the top location (counter) are available as

àddress lines. Figure 12.2 diagrarrrs this situation. There are a number of excellent LSI
CMOS parts available which exactly implement the function shown in Figure 12.2.

Thè ICU does not have a JSR (ump to subroutine) instruction; however, both of the

NOP instructions create control signal pulses and either could be used as a JSR instruction'
This pulse can be used to signal the program stack to perform the "push" (store binary

states) operation while the address of the subroutine is parallel-loaded into the top location

of the stack.

LD BIT I I-OC BIT

SKZ I SKZ
JMP BITSET I JMP BITSET

.t
I

coDE FOR BRANCH lF I coDE FOR BRANCH lF

BrT ls sEr I Blr = 0

Figure 12.1 Conditional Branching

87

Paral I el

Loadable

M em ory
Address

Control
Signals
From
lcu

Jump tO
Subroutine Program Stack

(LtFO)

RTN

Top Location
in Stack is a

Cou nter

Parallel Load

Push

Pop

Figure 12.2 Block Diagram of Subroutine Structure

The ICU does provide a return (RTN) instruction. The RTN instruction creates a one
clock period pulse on the RTN pin of the ICU. This pulse can be used to signal the program
stack to pedorm the "pop" (return binary states) operation. After executing an RTN", th.
next instruction is ignored by the ICU. This is done because popping the stà'ck returné the
address of the JSR instruction to the top location in the stacl. ji ttris instruction was nor
skipped, the machine would be trapped in an infinite loop.

Figure l2'3 shows a schematic diagram of an ICU system with a parallel/interlaced
memory structure, scratchpad RAM and a program stack. The system was designed to
address 7 blocks of VO ports, with each VO

-bloók
containing 256 inputs and 256 Jutputr,

thereby prwiding a total of 1792 inputs and 1792 outputs. This ryst"- has 1024 by I bit
scratchpad locations, a program stack which is 12 bits wide by 16 locations deep and the
capability of holding 4096 ICU statemenrs.

88

:: i
Ei:i
Fa ; -
i:5i
E E 9€

292'z
i59 rZo.:
;55 3
.i5; à

i:
:$

ó:t3
;r!i

3!3

È!:
E::

È:!

E: .o

; q3

3!:
reÈ

!l
!rgl
al
:ot!r;l3__-J

;-1tlli

?rti€{:?ìr

;t I

3r s4

.É

ltI
oo
o
Et
o
lt
3
tt,

.:

'Eo
o
x
oo
l
9
q
N
o
2
.9tl

89

90

CHAPTER 13 MODULARIZING
HARDWARE SYSTEMS

MC145008 ICU systems can be built in a variety of sizes, all of which depend upon
specific applications. Many users will want to configure "standard" systems that can be
used for a span of applications or end products. Others may want to expand a starter system
into a large system. Concepts which highlight opportunities for economy and system
partitioning are the subject of this chapter.

Stand-Alone Single-Card Systems

An ICU system, described earlier, had 16 I/O lines; 8 Inputs and 8 Outputs. Without
changing any logic, one more input and another output device can be added, making a small
system with 32 VO lines.

The minimal system had 4 VO address bits in memory. As the WRITE signal was used
to differentiate between Input and Output, the 4 address bits can code2a : 16 inputs and 16

outputs. Increasing I/O past 32 lines, requires more memory bits for addressing. As
memories are made in width multiples of 4 bits, the next practical number of address bits
will be 8, which will handle 256 inputs and256 outputs. This is more than adequate for the
majority of applications. The next four bit increment of memory width takes us to 12 address
bits, enough to code 4096 each of input and output. Let us now examine systems that have 4,
8 and 12 bits of VO addressing.

The previously described ICU system used a 4 bit VO address from a four bit wide
memory. The memory words alternated Operator/Operand/Operator/Operand | . . . or
Instruction/Address/Instruction/Address/. . ., which is of course, the same thing. The
reason for this interleaving is to put a small program into the smallest ROM, 256X 4 bits,
The MC145008 was conceived to work with either an interleaved structure of Op-codes and
Addresses or to have both appear on a single word of memory. The interleaved technique
uses the Pin 14 clock as the least significant bit of ROM address, where as the single wider
word uses the LSB of the program counter as the lowest ROM address bit.

Useful ROM organizations are shown in Figure 13.1. The configurations shown are
not exhaustive, but represent the most popular choices. A ROM configuration, once
chosen, is not readily changed. The choice is based upon the number of VO signals plus
storage bits that will require addressing.

System Partitioning

With 8 address bits plus WRITE, one quickly suspects that it is difficult to place a
whole system on a single board. The next question is how should the system be partitioned
between circuit boards? It seems advantageous to partition the system in two ways: by
generic types of VO devices, e.g. Triacs, Darlingtons, etc; or by "Feature Cards"; cards
which can contain a small ROM and the VO devices necessary to support a small optional
function, such as pedestrian walk signals in a traffic controller. These possibilities will be
discussed in turn.

9l

Faeits-_| t-a eits--r,!-- I Bits--l

Even Op Code

l/O Address

Op Code

l/O Address

Even

odd

Even

odd

Minimal System
BOM for 321lO

B 8 Bit l/O Address
for 512 l/O

IF-s Bits-__+l
Op Code 4 Address Bitr

8 Address Bits

Op Code 4 Address

B Address Bits

These four bits represent the
four most significant bits of
l/O Address and musî be
latched when X1 falls,

Op Code
To 145008

'l 2 Blts for
l/O Addressing

Op Code l/O Address

Op Code l/O Address

Op Code l/O Address

Op Code l/O Address

BOM
NxSBits

Figure 13.1 ROM Organizations for MCI4S0OB System

92

I/O Cards by Circuit Type

Some of the different type devices one will use in different applications are input
isolators, output opto isolators, Darlington and saturated switch drivers, LED drivers and
SCR's or Triacs. Circuits for these different device types are described in the Interface
Circuits section in Chapter 6. Here, we are concerned with enabling cards in an efficient
manner.

Figure 13.2 shows a scheme for decoding board/chip enables for a system with 8 VO
address bits. The drawing shows all the lines, except Data, that need.be bussed to VO boards
in a system. A Board Enable signal, BE, activates a group of 16 inputs or outputs. As is used
to split the block into groups of 8, or to the device level. The Ao to Az lines are used by all
VO devices to identify I of 8 bits. An Input Board for such a system is shown on Figure 1 3 . 3
and an Output Board is on Figure 13.4.

To make such a system practical, one wants a means of interfacing the CMOS bus to
the "real world." Figure 13.5 shows the normal card edge split to accept two edge
connectors. The system signals travel on a mother board to the small board-mounted edge
connector on the left. The second edge connector is connected to a wire bundle tied to the
system's connection to the outside world, such as a barrier strip. The signal conditioning
could be any or all of the methods described in Chapter 6.

The LED status bit indicators are not detailed, as their design is common and
straightforward. The convenience of the bit indicators , their low cost and the common usage
of their feature suggest they should be considered for any modular system design.

l/O/RAM Address from ROM

4g 4z 4t
Master
Reset

BEtr

'I of I Selected
Active High

1of 2
Coded
Einary

\.,
1 of 8 WRIIE
Coded and
Einary wivn'ÎrE

MR
1 of I Selected

Active High

Each Line Usable to
Enable Blocks of 16 l/O's Selects 1 of 16 Select t/O

MC1402AB

DCBA

MC1 40288
a7 Q9

Figure 13.2 l/O Card Enables for 8 Bit Address

93

Signal Conditioning for 16 Inpuî Signals
(See Chapter 6)

xo--------x7
MC1451 2 tn

ABCZDisable

xo-- --x7
MC14512 tH

ABC Z Disable

1/3 MC140238

Figure 13.3 A 16 lnput Board

Signal Conditioning for 16 Input Signals
(See Chapter 6)

o0- - --o7
wD MC145998

R

AO A1 A2 DAtA W CE

oo-- --o7MC1 45998wrf B

AO A1 A2 DAtA W CE

AO Al A2

Figure 13.4 A î6 Output Board

LED Bit Status Indicaîors

Signal Conditioning

____Y-----_/
Connector for

l/O Signals

Bus System Motherboard

Figure 13.5 Possible Mechanical l/O Card Arrangement

Feature Cards

The MC14500B ICU was defined in such a way that ROM could be disabled, (or not
present), in a system and the ''missing instructions" would be interpreted as NOP's (code 0

or F). This assumes the instruction lines do not "float," but are tied to *V or ground

through high value (> 100k) resistors. This provides for another way to modularize an ICU
system. ROM can be placed on a card together with the lO devices required to perform a

function. The ROM is addressed from the central program counter and enabled by an enable

decoder.

If the "feature card" is installed in the system, the feature card's ROM is enabled
during some interval of the program count and the ROM controls the system. All other

ROM's in the system are, of course, disabled at this time. If the feature card is missing from
the system, the program counter increments through the states assigned to the feature's

program, but recèiving no instructions, the ICU does "NOP's" until some ROM that is in

the syste- furnishes the ICU with instruction codes. The only restriction to the use of a

featuie card is that of "Jumping" the program counter off the feature ROM's enabled block.

Users who write such a juÀping command must therefore exactly understand the implica-

tions of their code.

95

96

CHAPTER 14 ARITHMETIC ROUTINES

Occasionally, in a decision oriented controller, some arithmetic may be required for
timing, parts counting or part of the enabling routine for some control functions. A nucleus
of arithmetic coding follows. Programs which do large amounts of arithmetic can be
assembled by building with the listed routines.

Binary Addition
Binary addition is an operation involving five bits: two bits to be added or operands,

carry-in and carry-out bits and a sum bit. About 12 operations are required to do a one bit
add. Addition, as well as other more complex functions, can be sent to a companion
microprocessor or calculator. For example, if addition were the only arithmetic function,
relegating the task to a CMOS adder might be appropriate. If the percentage of processing
time required for addition is small, it is generally more economical to do the task completely
with the ICU system. This is an instance of effective usage of the ICU's sub routine
capabilities.

The code for single bit add with carry follows.

Cout

Sum
A

+B Cin

LD Cin
XNOR B
XNOR A
STO SUM

LDB
OR Cin
AND A
IEN B
OR Ci
STO CARRYout

ORC RR
IEN RR

ONE BIT ADD WITH CARRY

Cout
I
Il^/+B

L Sum
<- ci

GENERATING THE SUM
s: A@(B@C)
= A @ (Brcte)
SIMILAR TO GENERATING PARITY

Co:A'B+A'Ci+B'Cin
= A'(B + Cin) + B'Cin
RR <- A'(B + Cin)
ACTUALLY PERFORMS B. Cin

RR: A'(B + Cin) +B'Cin-+ Co

RESTORES THE IEN MASK

97

Incrementation

Adding I to a stored number, or incrementing by 1, is perhaps the simplest and most
common arithmetic function. It is used in parts counting, measuring frequency, etc.

In the code below we operate upon a single bit position at a time. Forìhe Nth sum bit
the variables' name is Sn. The carry in for the Nth Sn bit is denoted Cn. The carry out for the
next bit position is denoted (n+ 1). Notice that incrementing is analogous to forcing the
initial carry in to I and adding zero to the number to be incremented. When the routine,
starts, Carry is set to 1 if the incrementation is to start. Otherwise, the initial value for Carrv
is 0.

An:0
*Bn <-- * Cn\ Sn

Sn
Cn* I

= Bn@Cn
: (Bn @ Cn).Bn
LD Bn
XNOR Cn
STOC Sn
AND Bn
STO Cn*l

The routine is repeated N times for an N bit incrementation.

Counting Rising Edges

-
As a matter of practicality, counting rising signal edges is a simple and straightforward

method of incrementins a sum.

98

OLD (STORED) NEW

The code is:
START LD

END

XNOR
OR
STOC
LD
STO

NEW
OLD
OLD
CARRY
NEW
OLD

NEW
TEMP
OLD
CARRY
TEMP
OLD

Notice that NEW is sampled twice. To avoid this, use a Temp Store, e.g.

COMPARE OLD/NEW; I IF EQUAL
1 IF OLD WAS HIGH
CARRY ZERO IF NO RISING EDGE

PUT NEW IN OLD FOR NEXT TEST

CARRY GETS RESUIjT
AVOIDS 2nd SAMPLING

REPEAT FOR EACH BIT POSITION

START LD
STO
ANDC
STO
LD

END STO

Magnitude Comparison

The Algorithm: Magnitude comparison compares two binary numbers to see which is
greatest or if they are equal. Only three results are possible.

To compare two binary words, it is convenient to start with the most significant bits. In
each bit position a comparison is made to see if the bits are identical . If they are, continue to
the next bit position. If the bits are different, set EQUAL to 0 and set a flag indicating that
the word with the 1 is greatest.

Three variables or flags are used, AGTR, BGTR and EQU. These correspond to A
Greatest, B Greatest, and Equal. Initially set AGTR : 0, BGTR : 0 and EQ : l.

Assume IEN : OEN : I

START FORCE RR TO I
INIT EQ
INIT AGTR
INIT BGTR

ORC RR
STO EQ
STOC AGTR
STOC BGTR

NTH BIT OEN EQ ENABLE IF EQ : 1

LD AN LOAD NTH A BIT

l'+3. 3à fi3#nfl'u.fiodTo" ""
OR AN BGTR : EQ + AN
STOC BGTR STORE NEW BGTR
LD EQ LOAD EQ
OR BN AGTR: EQ + AN

END NTH BIT STOC AGTR STORE NEV/ AGTR
N-I ST BIT OEN EQ ENABLE IF EQ I

OLD (STORED)

99

ICU System

Inputs Outputs

il
BOM

Figure 14.1 ROM for 1-Bit Add

Look-Up Tables

The processor overhead "expense" of a 1 bit add shows the need for a better
implementation. One answer is a LOOK-UP TABLE as shown on Table 14.1. The
operands and operator in an arithmetic expression are used as the address to a ROM. The
ROM supplies the answer to the input pins in an ICU system.

As an example, a" 1 bit ADD with Carry" will be examined. There are three operands

- A, B and Carry-In; the operator is Add; the results are Carry-Out and Sum.
The ROM organization is summarized in Table 14.1. The binary addition of three

single-bit operands can only result in 23=8 possible outcomes. The sum and carry outputs
of the ROM are simply the known results of any possible combination. The operator, ADD
"vectors" (points) the ICU to the addition look-up table in system memory. The Look-Up
ROM needs, at the most, 16 bits! The Look-Up Table idea can be extended to nearly any
type function. Look-Up Tables for sine values, as an example, have long been standard
semiconductor parts.

Table 14.1 îhe ROM Look-up Table
ADDRESS DATA

Operator
(Add)

Operand
{A}

Operand
{B}

Operand
(ctl

Fl esult
(Sum)

Result
(co)

1

1

I
1

I

1

1

n

0
0
0
1

1

I

1

0
1

I
0
0
1

1

o
1

0
1

0
1

0

0
1

1

0
1

0
U

1

0
0
0
1

0
t

1

ROM Address \ ROM Content -/
Note that Operator (Addl = 0 could easily "vector" the ROM to a Subtract Table

r00

CHAPTER 15 TRANSLATING
ICU CODE

Repacing combinatorial logic with an ICU system is very simple and straightforward.
All that is involved is the writing of the short codes which describe the logic devices. Logic
functions and their associated codes are depicted in the following diagrams.

AND
LD
AND
STO

N
z

Load A
And each Input in turn
Store in Z

NANO
LD
ANO
STOC

A
N
z

Load A
And each Input in turn
Store complement in Z

OF
LO
OB
òtu

A
N
z

Load A
Or each Input in turn
Store in Z

NOFì
LD
OF
STOC

N
z

Load A
Or each Input in turn
Store comp. in Z

XOR
LD
XNOR
sToc

A

z

Load A
Comparè to B
Store comp. in Z

LO
XNOB
STO

A
ó
z

Load A
XNOB B
Store in Z

XNOR

t0r

INVERTEB
LD
sToc

A Load A
Ai Store in A1

Notice: This code is never reouired
as the ICU can load and store complemènts.

D FLIP FLOP To clock on rising edges, clock is stored in
old CLK to compare with current CLK.

Start LD
sTo
LD
sTo
ANDC
OEN

ET

oRc
OEN

OLD CLK
TEMP
CLK
OLD CLK
TEMP
RR
h

o
FIR
RR

RR = CLK 'OLD CLK
ENABLE STOBE

RESTORE OEN
IF NO O CHANGE

SB FLIP FLOP

LD
AN OC
STO

S
R
o

LOAD S
ANO WITH R

o=

LDD
AND ST
STO TEMP
LDA
ANDC ST
OR TEMPsTo o

D.ST+O.;;

LOAO D
AND WITH STFIOBE
STOBE IN TEMP
LOAD O
AND WITH STROBE
OR WITH TEMP
STOBE IN O

JK FLIP FLOP Qn+1=On'K+on.J,
CLOCK ON RISING EDGES, CLOCK STORED IN OLD CLK,

Start LD
sTo
LD
STO
ANOC
OEN
LD
ANOC
ùt9
LDC
AND
OR
sTo
o Frc
OEN

OLD CLK
TEMP
CLK
OLD CLK
TEMP
H

K
TEMP

TEMP

R
R

MOVE OLO CLK
TO TEMP.
FIND RISING
EDGE.
ENABLE OUTPUT
IF EDGE FOUND.
AND O WITH
K COMP.
STOBE IN TEMP.
AND O COMP.
WITH J.
OFì WITH O. K
STORE NEW O.
RE ENABLE
OUTPUTS.

o=S.B

SINGLE LATCH

r02

Reducing Boolean Equations to ICU Code

The following procedure is a straightforward way of writing ICU Code for evaluating
Boolean expressions. One temporary storage location, "TEMP", is used. It is generally
possible to avoid the use of "TEMP", however, the code will not be as easy to read.

Procedure:

1. Reduce the Boolean expression. The result will be a "Sum of Products" form
(e.9., A' B + C' D . E +''' + X . Y' Z)ora productof sumsform(e.g., (A + B)' (C +
D+E) (X+Y+Z).

2. Use the Sum of Products Procedure or Product of Sums Procedure, both below.

Sum of Products Procedure

A. Factor common terms from the Sum of Products Expression, giving an Expres-
sion in the form

J. K. L(A. B' C+D. E+ ... +X . Y . Z).
The distributed term (J ' K ' L) which was factored from the Sum of Products
form will be used as an "INPUT ENABLE TERM". That is, if the INPUT
ENABLE TERM is not I or true, then everything following will be evaluated as

0 or FALSE.

B. Evaluate the INPUT ENABLE TERM and store in INPUT ENABLE.
START ORC RR SETRRTO I

IEN RR ENABLE INPUT
LD J LOAD lst ELEMENT

1*o K AND WrTH NEXr

AND L AND WITH LAST
END IEN RR STORE RESULT in IEN

C. Reduce the first INNER TERM and store in "TEMP".
START LD A RRGETS A

AND B AND WITH B
AND C AND WITH C

END STO TEMP STORE IN TEMP

D. Reduce the next INNER TERM and/or with TEMR store result in TEMP.
START LD D RRGETS D

AND E AND WITH E
OR TEMP

END STO TEMP
TEMPnowhasA' BC' + DE, providinglEN : l. If IEN : 0, TEMP : 0.

E. Repeat D. for all the remaining inner terms.

F. The Sum of Products value is now in the Result Register and stored in TEMP. To
unconditionally enable the ICU for other routines, restore IEN and OEN to the
1's state.
START ORC RR RRGETS I

IEN RR IEN GETS 1

END OEN RR OEN GETS I

103

Product of Sums Procedure

A. Factor common terms from the Produce of Sums form, giving an expression in
the form

(J + K+ L)(A+ B + C) . (D+ E) (X +Y + Z).

B. The distributed term which was factored out will be used as an "INPUT
ENABLE TERM''.
START LD J RR GETS J

OR K OR WITH K
OR L OR WITH L

END IEN RR IEN GETS RR

C. Reduce the first INNER TERM and store in "TEMP".
START LD A RR GETS A

OR B OR WITH B
OR C OR WITH C

END STO TEMP STORE IN TEMP

D. Reduce the next INNER TERM, and with TEMP, store result in TEMP.
START bR 3 ààff,ÌTi?

AND TEMP
END STO TEMP

E. Repeat D. for each of the other INNER TERMS.

F. The evaluated product of sums is in RR and stored in TEMP. The following
routine will completely enable the ICU for other uses.
START ORC RR RRGETS I

IEN RR IEN : 1

END OEN RR OEN : I

104

APPENDIX A. THE MCT4599B 8.BIT ADDRESSABLE LATCH

The MC145998 is an 8 bit addressable latch capable of reading Features

previously stored data. The device has a chip enable input for * Parallel Buffered Output

easy address expansion, buffered outputs, and a master reset * Bidirectional Addressable Input/Output

pin for system clears. * Master Reset
* WRITE/READ Control
* Write Disable
* ChiP Enable
* B Series CMOS

I
Latc h es

f
ID

l

f

x
o
.9
=f

a7
o6

o5

O4

o3
o2
o1

Ag

MC145998 Block Diagram

105

MC145998 Truth Table

I nputs lnternal States & Data

R CE WD W

Addressed

Latch

Other

Latches

Data

Pin

1 X X X z
o X X NC NC z

U I X NC NC Op
(Output)

o 1 NC z
o o Data NC Input

X = Don't Care

NC = No Change

Z = Open Circuit
Qp = State of Addressed Cell

a7
Reseî

Data

Write Disable

AO

A1

(MSB) A2

Chip Enable

vss

VDo
o6
o5

o4
o3

o1

a0
WR ITE/READ

1 18

2 'tt
3 16

415
514
6 13

712
8 'l 1

9 10

MC145998

106

