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INTRODUCTION
A large drop in Phanerozoic seawater 87Sr/86Sr, 

from ~0.7090 to ~0.7078, has long been docu-
mented for the Ordovician (e.g., Burke et al., 
1982; Qing et al., 1998). The magnitude of this 
change is comparable to the rise in 87Sr/86Sr over 
the past ~35 m.y. of the Cenozoic (Fig. DR1 in 
the GSA Data Repository1). Shields et al. (2003) 
compiled new Ordovician 87Sr/86Sr data from 
biostratigraphically constrained successions and 
showed that most of this drop was concentrated 
in an ~3–6 m.y. time interval spanning the Mid-
dle-Late Ordovician boundary (late Darriwil-
ian–early Sandbian), making it the most rapid 
change of this magnitude in the Phanerozoic.

The cause of the Ordovician 87Sr/86Sr drop 
may have implications for carbon cycling and 
global climate. Berner (2006) used the marine 
87Sr/86Sr record as a proxy for the proportion of 
the global silicate weathering fl ux that is due to 
volcanic rock weathering. Basaltic weathering 
may account for ~35% of total silicate weath-
ering today (Dessert et al., 2003) and provides 
relatively nonradiogenic Sr to the global oceans. 
Because basaltic rocks are rich in Ca and Mg sili-
cate minerals that weather rapidly and consume 
pCO

2
, incorporation of Ordovician 87Sr/86Sr as a 

proxy for volcanic weathering in the global car-
bon cycle model GEOCARBSULF signifi cantly 
reduces atmospheric pCO

2
 (Berner, 2006). Thus, 

the Ordovician 87Sr/86Sr record may play a critical 
role in reconciling how glaciation was initiated in 
a greenhouse climate (e.g., Kump et al., 1999).

However, when the Ordovician 87Sr/86Sr 
curve is compared with δ18O conodont-based 
estimates of sea-surface temperatures (Trotter 
et al., 2008), a straightforward cause-and-effect 
relationship between volcanic weathering and 
climate is not observed. Trotter et al. (2008) 
showed substantial cooling from the Early 
through Middle Ordovician during a time of 
negligible changes in 87Sr/86Sr, but then constant 
temperatures associated with the sharp drop 
in Sr that begins in the late Darriwilian. Cool-
ing resumed ~10 Ma later, long after 87Sr/86Sr 
reached a lower steady state. Use of the Ordovi-
cian carbonate δ13C curve (Saltzman, 2005) as a 
proxy for organic carbon burial does not help to 
resolve these climate paradoxes.

Here we present a new 87Sr/86Sr curve from a 
biostratigraphically signifi cant Ordovician ref-
erence section in central Nevada that was pre-
viously analyzed for δ13C. We use a numerical 
model to show that a close balance between CO

2
 

consumption from weathering and volcanic out-
gassing could have been maintained for ~10 Ma, 
consistent with the paleotemperature curve of 
Trotter et al. (2008). However, we cannot easily 
reconcile the Early through Middle Ordovician  
cooling with 87Sr/86Sr and δ13C proxy records.

GEOLOGIC BACKGROUND
A thick succession of Middle and Upper 

Ordovician strata deposited in central Nevada is 
among the best studied in the world (Harris et 
al., 1979; Ross et al., 1989; Finney et al., 1999). 
These strata contain key conodont and graptolite 
taxa that allow for integration into an emerging 
global biostratigraphic framework (Webby et 
al., 2004). The study area is unique in contain-
ing both North Atlantic and North American 

Midcontinent conodonts (Sweet et al., 2005), 
which allow for global correlation (Fig. DR2). 
The 87Sr/86Sr data presented here are from the 
same samples previously analyzed for δ13C in 
Nevada (Finney et al., 1999; Kump et al., 1999; 
Saltzman and Young, 2005). The δ13C curve 
records two globally signifi cant excursions in 
the Upper Ordovician (Katian and Hirnantian 
stages), but little change in the Lower and Mid-
dle Ordovician.

METHODS AND RESULTS
Carbonate rock samples were cleaned and 

polished, and fi ne-grained components were 
selectively microdrilled (Saltzman and Young, 
2005). Procedures similar to Montañez et al. 
(1996) were used to extract Sr with ultrapure 
reagents: aliquots of ~25 mg were pretreated 
in 1M ammonium acetate (pH 8) and leached 
in 4% acetic acid, before spiking with an 84Sr 
tracer. Sr was purifi ed using cation exchange 
and isotopic compositions were measured using 
dynamic multicollection with a MAT-261A 
thermal ionization mass spectrometer (see Table 
DR1 for laboratory standards used, external 
reproducibility, and 2σ uncertainties). 

The 87Sr/86Sr values in the Lower and Mid-
dle Antelope Valley Limestone range between 
~0.7089 and 0.7090 (Fig. 1). Values then fall 
in the uppermost Antelope Valley Limestone to 
~0.7086 and continue to drop from 0.7085 to 
0.7080 in the Copenhagen Formation. This timing 
and magnitude of the shift is in good agreement 
with previous studies (Qing et al., 1998; Shields 
et al., 2003). We do, however, note differences in 
absolute 87Sr/86Sr values for some intervals that 
could be related to secondary alteration, which 
typically produces more radiogenic values, or to 
errors in age assignments of individual sample 
sets. For example, Qing et al.’s (1998) 87Sr/86Sr 
values in the late Darriwilian–early Sandbian are 
less radiogenic than our data, but this is appar-
ently due to incorrect age assignments for the 
Gull River and Shadow Lake formations that 
correlate to the uppermost Sandbian (e.g., Kolata 
et al., 1996). The degree of diagenetic alteration 
of our micritic limestone 87Sr/86Sr values may 
potentially be addressed by associated Sr concen-
trations and δ18O values (e.g., Gao et al., 1996; 
Qing et al., 1998). Crossplots of 87Sr/86Sr and Sr 
(ppm) and δ18O from our sections (Figs. DR3 and 
DR4) show no apparent  covariance, although 
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ABSTRACT
A large drop in seawater 87Sr/86Sr during the Middle Ordovician was among the most rapid 

in the entire Phanerozoic. New 87Sr/86Sr measurements from Nevada indicate that the rapid 
shift began in the Pygodus serra conodont zone of the upper Darriwilian Stage. We use a 
numerical model to explore the hypothesis that volcanic weathering provided the fl ux of non-
radiogenic Sr to the oceans. A close balance between volcanic outgassing and CO2 consump-
tion from weathering produced steady pCO2 levels and climate through the middle Katian, 
consistent with recent Ordovician paleotemperature estimates. In the late Katian, outgassing 
was reduced while volcanic weathering continued, and resulted in a cooling episode leading 
into the well-known end-Ordovician glaciation.



952 GEOLOGY, October 2009

this may not completely rule out some degree of 
alteration. More generally, our Sr concentrations 
(100–700 ppm) are similar to carbonates previ-
ously reported to preserve a record of primary 
Late Cambrian seawater 87Sr/86Sr variations (e.g., 
Montañez et al., 1996).

DISCUSSION

Controls on Middle to Late Ordovician 
Seawater 87Sr/86Sr

Seawater 87Sr/86Sr is determined by fl uxes 
from rivers and seafl oor hydrothermal exchange 
at mid-ocean ridges (e.g., Burke et al., 1982; 
Davis et al., 2003). The riverine fl ux includes Sr 
derived from old continental crust that is rela-
tively radiogenic with highly variable 87Sr/86Sr 
(~0.711 or higher), juvenile volcanic rocks with 
relatively nonradiogenic 87Sr/86Sr values similar 
to the hydrothermal exchange fl ux (~0.704), 
and weathered carbonates that are closest to the 
oceanic value (e.g., Davis et al., 2003). To bal-
ance the marine Sr cycle, Berner (2006) argued 

that basaltic volcanic weathering on land may 
represent a fl ux that is ~3 times that of basalt-
seawater exchange.

Shields et al. (2003) proposed that the Ordovi-
cian drop in 87Sr/86Sr resulted from a combina-
tion of factors. One factor was lowered rates of 
tectonism during the waning Pan-African orog-
eny, which had produced highly radiogenic Mid-
dle to Late Cambrian 87Sr/86Sr values (Montañez 
et al., 1996). The more rapid drop in the late 
Darriwilian may have been related to increased 
seafl oor spreading rates and eustatic rise that 
fl ooded radiogenic source areas, or to input of 
nonradiogenic Sr from weathering of volcanic 
rocks in island-arc settings in eastern Laurentia 
(Taconic orogeny) and Kazakhstan (Shields et 
al., 2003). Ultimately, these changes could relate 
to a mantle superplume (e.g., Qing et al., 1998).

The timing of the 87Sr/86Sr drop in Nevada 
(Fig. 1) supports the notion that volcanic weath-
ering played a critical role. A signifi cant increase 
in the rate of 87Sr/86Sr decline occurs within the 
Pygodus serra North Atlantic conodont zone 

(Fig. 1; late Darriwilian; time slice 4c of Webby 
et al., 2004; stage slice Dw3 of Bergström et al., 
2008), which also correlates to the Cahabagna-
thus friendsvillensis Midcontinent conodont zone 
in the McLish Formation in Oklahoma (Shields 
et al., 2003). Initiation of subsidence associ-
ated with the Taconic orogeny in eastern North 
America correlates to the Pygodus serra zone 
based on graptolitic shales of the Didymograp-
tus murchisoni and Glyptograptus teretiusculus 
graptolite zones (Finney et al., 1996). Analysis of 
ε

Nd
 values in these graptolitic shales at the base of 

the Taconic foreland basin sequence indicates a 
source rock consisting of relatively young igne-
ous rocks (D. murchisoni zone; Gleason et al., 
2002). Similar ε

Nd
 shifts are not observed in other 

ocean basins at this time (Wright et al., 2002), 
pointing to the potential importance of eastern 
Laurentian source rocks on 87Sr/86Sr. Numer-
ous altered volcanic ash beds also occur in the 
Argentine Precordillera in upper Floian–mid- 
Darriwilian strata (Oepikodus evae through P. 
suecicus conodont zones) (Huff et al., 1998). 
Weathering of the associated Famatinian arc may 
have produced the smaller, more gradual drop in 
seawater 87Sr/86Sr observed in the Floian portion 
of the Shields et al. (2003) compilation.

However, in contrast to the evidence for 
enhanced volcanic weathering in Laurentia dur-
ing the Ordovician 87Sr/86Sr drop, the timing of 
Middle Ordovician eustatic events is compli-
cated in our Nevada section and elsewhere in 
North America by regional tectonic events and 
locally variable sediment supply (e.g., Mussman 
and Read, 1986; Knight et al., 1991; Finney, 
2007). Moreover, links between seafl oor spread-
ing and changes in sea level or ocean chemistry 
are uncertain (e.g., Kump, 2008).

Modeling 87Sr/86Sr: Implications for 
Ordovician Climate

We have adapted the model of Kump and 
Arthur (1997) to quantitatively explore possible 
causes of Sr isotopic and climate change dur-
ing the Ordovician (see Table DR2). The slow 
decline of 87Sr/86Sr from the Early to Middle 
Ordovician (Fig. 2A) is driven by a reduction in 
the riverine isotope ratio, refl ecting the decreas-
ing importance of radiogenic source rocks asso-
ciated with the Pan-African orogeny (Shields et 
al., 2003), or enhanced weathering of the Fama-
tinian volcanic arc. A good fi t is obtained when 
the riverine 87Sr/86Sr falls from 0.7106 (similar 
to today) to 0.7104. To drive the sharp decline 
in the late Darriwilian, we introduce a new fl ux 
from weathering of arc basalt of 0.7043 (Tables 
DR2 and DR3). The proportional contribution 
of volcanic arc materials to the total Sr weath-
ering fl ux is tied to the specifi ed increase in 
weatherability (from 1 to 1.25; see following). 
The new volcanic weathering fl ux,  representing 
weathering of the Taconic arcs and possibly 
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other regions, is maintained for the remainder 
of the Late Ordovician to reproduce the steady 
87Sr/86Sr trend at ~0.7079. (Increased hydrother-
mal activity accompanying arc volcanism would 
simply reduce the magnitude of the excess vol-
canic fl ux needed because of similar 87Sr/86Sr.)

The volcanic weathering fl ux is modeled to 
correspond to an increase in continental weath-
erability by ~25% compared to the pre-volca-
nic initial conditions equivalent to the modern 
(Fig. 2A; Table DR2). Weatherability refers 
collectively to all of the factors that affect sili-
cate weathering other than climate (Kump and 
Arthur, 1997), and thus includes the proportion 
of continental basaltic rocks available to weather. 
Enhanced basaltic weathering beginning in the 
late Darriwilian and continuing through the end 
of the Ordovician is a major sink for pCO

2
 (Fig. 

2B). Because substantial volcanism began in 
eastern North America in the late Darriwilian, as 
seen in the abundant K-bentonite beds (Kolata 
et al., 1996), enhanced volcanic weathering was 
initially counterbalanced by volcanic outgas-
sing. We used an outgassing rate that balances 
increased silicate weathering to maintain near 
constant pCO

2
 (Fig. 2B) through the middle 

Katian, consistent with the paleotemperature 
curve of Trotter et al. (2008) (Fig. 3). In the late 
Katian, volcanic outgassing returned to baseline 
values but silicate weathering remained high 
due to continued volcanic weathering (Fig. 2 B). 
This caused pCO

2
 to fall and initiated cooling 

that led in the Hirnantian glacial episode (Fig. 3; 
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Figure 2. A: Model simula-
tion of seawater 87Sr/86Sr and 
the response to increase in 
weatherability (Kump and Ar-
thur, 1997) caused by weath-
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Figure 3. Strontium and carbon isoto-
pic variations in seawater through Or-
dovician. Gray dashed line represents 
best approximate seawater 87Sr/86Sr 
trend. Also plotted are major volcanic 
ash falls from Argentine Precordillera 
terrane (APT; Huff et al., 1998), east-
ern North America and Baltica (ENA; 
Kolata et al., 1996), and tropical sea-
water temperature trend from Trotter 
et al. (2008). Ordovician δ13C data are 
replotted from Gao et al. (1996), Kump 
et al. (1999), Saltzman (2005), and 
Saltzman and Young (2005) (VPDB– 
Vienna Peedee belemnite). Time scale 
is from Webby et al. (2004) with new 
global stage names. H is Hirnantian. 
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Trotter et al., 2008). Several positive δ13C excur-
sions, if used as a proxy for enhanced organic 
carbon burial, may also have contributed to low-
ering of CO

2
 (Figs. 1 and 3), but are not included 

in the current model. The specifi ed volcanism 
and weatherability functions, together with the 
isotopic values of the various fl uxes chosen, 
provide nonunique but internally consistent and 
geologically justifi able fi ts to the observed Sr 
isotope record (see Table DR2).

While the 87Sr/86Sr can be reconciled with the 
paleotemperature curve of Trotter et al. (2008) 
for the Late Ordovician, Early to Middle Ordo-
vician cooling (Fig. 3) is more problematic. 
Low rates of organic carbon burial indicated 
by low δ13C in the Late Cambrian and Early 
through Middle Ordovician (Figs. 1 and 3; 
and Saltzman, 2005) could not have contrib-
uted to pCO

2
 drawdown. Volcanic weathering 

related to the Famatinian arc in the Argentine 
Precordillera may have lowered CO

2
, but can-

not be the primary cause because cooling was 
already under way (Fig. 3). Perhaps the waning 
Pan-African orogeny and associated decrease 
in metamorphic degassing could have lowered 
CO

2
. Recent work on metamorphic degassing 

associated with the Himalayas (Evans et al., 
2008) indicates that continental orogenic events 
may potentially be a net source of CO

2
.
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