ヒトの脳とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ヒトの脳の意味・解説 

ヒトの脳

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/18 08:14 UTC 版)

ヒトの脳(ヒトののう)は、ヒト神経系の中枢となる器官であり、脊髄と共に中枢神経系を成す。は、大脳脳幹小脳に分けられる。脳は、身体の活動のほとんどを制御し、感覚器から受け取った情報の処理・統合・調整、体の各部位へどのような指令を送るかの決定、といった役割を司る。脳は頭蓋骨の中に納められ、それにより保護されている。


注釈

  1. ^ "Cerebrum Etymology". dictionary.com. 2015年10月24日時点のオリジナルよりアーカイブ。2015年10月24日閲覧
  2. ^ "Encephalo- Etymology". Online Etymology Dictionary. 2017年10月2日時点のオリジナルよりアーカイブ。2015年10月24日閲覧
  3. ^ Fan, Xue; Markram, Henry (2019-05-07). “A Brief History of Simulation Neuroscience”. Frontiers in Neuroinformatics 13: 32. doi:10.3389/fninf.2019.00032. ISSN 1662-5196. PMC 6513977. PMID 31133838. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513977/. 
  4. ^ Parent, A.; Carpenter, M.B. (1995). “Ch. 1”. Carpenter's Human Neuroanatomy. Williams & Wilkins. ISBN 978-0-683-06752-1 
  5. ^ a b Bigos, K.L.; Hariri, A.; Weinberger, D. (2015). Neuroimaging Genetics: Principles and Practices. Oxford University Press. p. 157. ISBN 978-0199920228. https://books.google.com/books?id=TF_iCgAAQBAJ&pg=PA157 
  6. ^ a b Cosgrove, K.P.; Mazure, C.M.; Staley, J.K. (2007). “Evolving knowledge of sex differences in brain structure, function, and chemistry”. Biol Psychiatry 62 (8): 847–855. doi:10.1016/j.biopsych.2007.03.001. PMC 2711771. PMID 17544382. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711771/. 
  7. ^ Molina, D. Kimberley; DiMaio, Vincent J.M. (2012). “Normal Organ Weights in Men”. The American Journal of Forensic Medicine and Pathology 33 (4): 368–372. doi:10.1097/PAF.0b013e31823d29ad. ISSN 0195-7910. PMID 22182984. 
  8. ^ Molina, D. Kimberley; DiMaio, Vincent J. M. (2015). “Normal Organ Weights in Women”. The American Journal of Forensic Medicine and Pathology 36 (3): 182–187. doi:10.1097/PAF.0000000000000175. ISSN 0195-7910. PMID 26108038. 
  9. ^ a b c Gray's Anatomy 2008, p. 227-9.
  10. ^ a b Gray's Anatomy 2008, p. 335-7.
  11. ^ a b Ribas, G. C. (2010). “The cerebral sulci and gyri”. Neurosurgical Focus 28 (2): 7. doi:10.3171/2009.11.FOCUS09245. PMID 20121437. 
  12. ^ Frigeri, T.; Paglioli, E.; De Oliveira, E.; Rhoton Jr, A. L. (2015). “Microsurgical anatomy of the central lobe”. Journal of Neurosurgery 122 (3): 483–98. doi:10.3171/2014.11.JNS14315. PMID 25555079. 
  13. ^ Purves 2012, p. 724.
  14. ^ a b Cipolla, M.J. (2009-01-01). Anatomy and Ultrastructure. Morgan & Claypool Life Sciences. オリジナルの2017-10-01時点におけるアーカイブ。. https://web.archive.org/web/20171001170945/https://www.ncbi.nlm.nih.gov/books/NBK53086/#s2.2 
  15. ^ A Surgeon's-Eye View of the Brain”. NPR.org. 2017年11月7日時点のオリジナルよりアーカイブ。2020年6月9日閲覧。
  16. ^ Gray's Anatomy 2008, p. 227-229.
  17. ^ Sampaio-Baptista, C; Johansen-Berg, H (2017-12-20). “White Matter Plasticity in the Adult Brain.”. Neuron 96 (6): 1239–1251. doi:10.1016/j.neuron.2017.11.026. PMC 5766826. PMID 29268094. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766826/. 
  18. ^ Davey, G. (2011). Applied Psychology. John Wiley & Sons. p. 153. ISBN 978-1444331219. https://books.google.com/books?id=K1qq1SsgoxUC&pg=PA153 
  19. ^ Arsava, E. Y.; Arsava, E. M.; Oguz, K. K.; Topcuoglu, M. A. (2019). “Occipital petalia as a predictive imaging sign for transverse sinus dominance”. Neurological Research 41 (4): 306–311. doi:10.1080/01616412.2018.1560643. PMID 30601110. 
  20. ^ a b Ackerman, S. (1992). Discovering the brain. Washington, D.C.: National Academy Press. pp. 22–25. ISBN 978-0-309-04529-2. https://archive.org/details/discoveringbrain00acke 
  21. ^ Larsen 2001, pp. 455–456.
  22. ^ Kandel, E.R.; Schwartz, J.H.; Jessel T.M. (2000). Principles of Neural Science. McGraw-Hill Professional. p. 324. ISBN 978-0-8385-7701-1. https://archive.org/details/isbn_9780838577011/page/324 
  23. ^ Gray's Anatomy 2008, pp. 227–229.
  24. ^ Guyton & Hall 2011, p. 574.
  25. ^ Guyton & Hall 2011, p. 667.
  26. ^ Principles of Anatomy and Physiology 12th Edition – Tortora, Page 519.
  27. ^ a b c Freberg, L. (2009). Discovering Biological Psychology. Cengage Learning. pp. 44–46. ISBN 978-0547177793. https://books.google.com/books?id=-zyTMXAjzQsC&pg=PA44 
  28. ^ a b Kolb, B.; Whishaw, I. (2009). Fundamentals of Human Neuropsychology. Macmillan. pp. 73–75. ISBN 978-0716795865. https://books.google.com/books?id=z0DThNQqdL4C&pg=PA73 
  29. ^ Pocock 2006, p. 64.
  30. ^ a b Purves 2012, p. 399.
  31. ^ Gray's Anatomy 2008, p. 325-6.
  32. ^ Goll, Y.; Atlan, G.; Citri, A. (August 2015). “Attention: the claustrum”. Trends in Neurosciences 38 (8): 486–95. doi:10.1016/j.tins.2015.05.006. PMID 26116988. 
  33. ^ Goard, M.; Dan, Y. (2009-10-04). “Basal forebrain activation enhances cortical coding of natural scenes”. Nature Neuroscience 12 (11): 1444–1449. doi:10.1038/nn.2402. PMC 3576925. PMID 19801988. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576925/. 
  34. ^ Guyton & Hall 2011, p. 699.
  35. ^ a b c Gray's Anatomy 2008, p. 298.
  36. ^ Netter, F. (2014). Atlas of Human Anatomy Including Student Consult Interactive Ancillaries and Guides. (6th ed.). Philadelphia, Penn.: W B Saunders Co. p. 114. ISBN 978-1-4557-0418-7 
  37. ^ a b Gray's Anatomy 2008, p. 297.
  38. ^ Guyton & Hall 2011, pp. 698–9.
  39. ^ Squire 2013, pp. 761–763.
  40. ^ a b c d e f Gray's Anatomy 2008, p. 275.
  41. ^ Guyton & Hall 2011, p. 691.
  42. ^ Purves 2012, p. 377.
  43. ^ a b Azevedo, F. (2009-04-10). “Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain”. The Journal of Comparative Neurology 513 (5): 532–541. doi:10.1002/cne.21974. PMID 19226510. "despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 ± 8.1 billion NeuN-positive cells (“neurons”) and 84.6 ± 9.8 billion NeuN-negative (“nonneuronal”) cells." 
  44. ^ Pavel, Fiala; Jiří, Valenta (2013-01-01). Central Nervous System. Karolinum Press. p. 79. ISBN 9788024620671. https://books.google.com/?id=LPlSBAAAQBAJ&pg=PA79 
  45. ^ a b c d Polyzoidis, S.; Koletsa, T.; Panagiotidou, S.; Ashkan, K.; Theoharides, T.C. (2015). “Mast cells in meningiomas and brain inflammation”. Journal of Neuroinflammation 12 (1): 170. doi:10.1186/s12974-015-0388-3. PMC 4573939. PMID 26377554. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573939/. 
  46. ^ a b c d e Guyton & Hall 2011, pp. 748–749.
  47. ^ Budzyński, J; Kłopocka, M. (2014). “Brain-gut axis in the pathogenesis of Helicobacter pylori infection”. World J. Gastroenterol. 20 (18): 5212–25. doi:10.3748/wjg.v20.i18.5212. PMC 4017036. PMID 24833851. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017036/. 
  48. ^ Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. (2015). “The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems”. Ann Gastroenterol 28 (2): 203–209. PMC 4367209. PMID 25830558. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367209/. 
  49. ^ Sjöstedt, Evelina; Fagerberg, Linn; Hallström, Björn M.; Häggmark, Anna; Mitsios, Nicholas; Nilsson, Peter; Pontén, Fredrik; Hökfelt, Tomas et al. (2015-06-15). “Defining the human brain proteome using transcriptomics and antibody-based profiling with a focus on the cerebral cortex”. PLOS One 10 (6): e0130028. Bibcode2015PLoSO..1030028S. doi:10.1371/journal.pone.0130028. ISSN 1932-6203. PMC 4468152. PMID 26076492. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468152/. 
  50. ^ a b c d Gray's Anatomy 2008, pp. 242–244.
  51. ^ Purves 2012, p. 742.
  52. ^ Gray's Anatomy 2008, p. 243.
  53. ^ Iliff, JJ; Nedergaard, M (June 2013). “Is there a cerebral lymphatic system?”. Stroke 44 (6 Suppl 1): S93-5. doi:10.1161/STROKEAHA.112.678698. PMC 3699410. PMID 23709744. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699410/. 
  54. ^ Glymphatic pathway”. radiopaedia.org. 2017年10月30日時点のオリジナルよりアーカイブ。2020年6月9日閲覧。
  55. ^ a b c Bacyinski A, Xu M, Wang W, Hu J (November 2017). "The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy". Frontiers in Neuroanatomy. 11: 101. doi:10.3389/fnana.2017.00101. PMC 5681909. PMID 29163074. The paravascular pathway, also known as the "glymphatic" pathway, is a recently described system for waste clearance in the brain. According to this model, cerebrospinal fluid (CSF) enters the paravascular spaces surrounding penetrating arteries of the brain, mixes with interstitial fluid (ISF) and solutes in the parenchyma, and exits along paravascular spaces of draining veins.  ... In addition to Aβ clearance, the glymphatic system may be involved in the removal of other interstitial solutes and metabolites. By measuring the lactate concentration in the brains and cervical lymph nodes of awake and sleeping mice, Lundgaard et al. (2017) demonstrated that lactate can exit the CNS via the paravascular pathway. Their analysis took advantage of the substantiated hypothesis that glymphatic function is promoted during sleep (Xie et al., 2013; Lee et al., 2015; Liu et al., 2017).
  56. ^ Dissing-Olesen, L.; Hong, S.; Stevens, B. (August 2015). “New brain lymphatic vessels drain old concepts”. EBioMedicine 2 (8): 776–7. doi:10.1016/j.ebiom.2015.08.019. PMC 4563157. PMID 26425672. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563157/. 
  57. ^ a b Sun, BL; Wang, LH; Yang, T; Sun, JY; Mao, LL; Yang, MF; Yuan, H; Colvin, RA et al. (April 2018). “Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases.”. Progress in Neurobiology 163–164: 118–143. doi:10.1016/j.pneurobio.2017.08.007. PMID 28903061. 
  58. ^ Gray's Anatomy 2008, p. 247.
  59. ^ Gray's Anatomy 2008, p. 251-2.
  60. ^ a b c Gray's Anatomy 2008, p. 250.
  61. ^ a b Gray's Anatomy 2008, p. 248.
  62. ^ a b Gray's Anatomy 2008, p. 251.
  63. ^ a b c Gray's Anatomy 2008, p. 254-6.
  64. ^ a b c d e Elsevier's 2007, pp. 311–4.
  65. ^ Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. (2010-11-25). “Pericytes are required for blood-brain barrier integrity during embryogenesis”. Nature 468 (7323): 562–6. Bibcode2010Natur.468..562D. doi:10.1038/nature09513. PMC 3241506. PMID 20944625. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241506/. 
  66. ^ Laterra, J.; Keep, R.; Betz, L.A. (1999). “Blood–cerebrospinal fluid barrier”. Basic neurochemistry: molecular, cellular and medical aspects (6th ed.). Philadelphia: Lippincott-Raven 
  67. ^ Sadler, T. (2010). Langman's medical embryology (11th ed.). Philadelphia: Lippincott Williams & Wilkins. p. 293. ISBN 978-07817-9069-7 
  68. ^ a b Larsen 2001, p. 419.
  69. ^ a b c Larsen 2001, pp. 85–88.
  70. ^ Purves 2012, pp. 480–482.
  71. ^ a b c d Larsen 2001, pp. 445–446.
  72. ^ OpenStax CNX”. cnx.org. 2015年5月5日時点のオリジナルよりアーカイブ。2015年5月5日閲覧。
  73. ^ Larsen 2001, pp. 85–87.
  74. ^ Purves 2012, pp. 481–484.
  75. ^ Purves, Dale; Augustine, George J; Fitzpatrick, David et al., eds (2001). “Rhombomeres”. Neuroscience (2nd ed.). ISBN 978-0-87893-742-4. https://www.ncbi.nlm.nih.gov/books/NBK10954/box/A1478/ 
  76. ^ a b Chen, X. (2012). Mechanical Self-Assembly: Science and Applications. Springer Science & Business Media. pp. 188–189. ISBN 978-1461445623. https://books.google.com/books?id=94aPR_Oh40oC&pg=PA188 
  77. ^ a b c Ronan, L; Voets, N; Rua, C; Alexander-Bloch, A; Hough, M; Mackay, C; Crow, TJ; James, A et al. (August 2014). “Differential tangential expansion as a mechanism for cortical gyrification.”. Cerebral Cortex 24 (8): 2219–28. doi:10.1093/cercor/bht082. PMC 4089386. PMID 23542881. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089386/. 
  78. ^ Van Essen, DC (1997-01-23). “A tension-based theory of morphogenesis and compact wiring in the central nervous system.”. Nature 385 (6614): 313–8. Bibcode1997Natur.385..313E. doi:10.1038/385313a0. PMID 9002514. 
  79. ^ Borrell, V (2018-01-24). “How Cells Fold the Cerebral Cortex.”. The Journal of Neuroscience 38 (4): 776–783. doi:10.1523/JNEUROSCI.1106-17.2017. PMC 6596235. PMID 29367288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596235/. 
  80. ^ Florio, M. (2015-03-27). “Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion”. Science 347 (6229): 1465–70. Bibcode2015Sci...347.1465F. doi:10.1126/science.aaa1975. PMID 25721503. 
  81. ^ 永江誠司「子どもの脳と発達 : 神経発達心理学序論(I)」『福岡教育大学紀要. 第四分冊教職科編』第51巻、福岡教育大学、2002年、207-216頁、hdl:10780/657ISSN 0286-3235NAID 120006379474 
  82. ^ Parts of the Brain | Introduction to Psychology”. courses.lumenlearning.com. 2019年9月20日閲覧。
  83. ^ Guyton & Hall 2011, p. 685.
  84. ^ a b Guyton & Hall 2011, p. 687.
  85. ^ a b Guyton & Hall 2011, p. 686.
  86. ^ Guyton & Hall 2011, pp. 698, 708.
  87. ^ Davidson's 2010, p. 1139.
  88. ^ a b Hellier, J. (2014). The Brain, the Nervous System, and Their Diseases [3 volumes]. ABC-CLIO. pp. 300–303. ISBN 978-1610693387. https://books.google.com/books?id=SDi2BQAAQBAJ&pg=PA300 
  89. ^ a b Guyton & Hall 2011, p. 571–576.
  90. ^ Guyton & Hall 2011, pp. 573–574.
  91. ^ Guyton & Hall 2011, pp. 623–631.
  92. ^ Guyton & Hall 2011, pp. 739–740.
  93. ^ Pocock 2006, pp. 138–139.
  94. ^ Squire 2013, pp. 525–526.
  95. ^ Guyton & Hall 2011, pp. 647–648.
  96. ^ Guyton & Hall 2011, pp. 202–203.
  97. ^ Guyton & Hall 2011, pp. 205–208.
  98. ^ a b c d Guyton & Hall 2011, pp. 505–509.
  99. ^ Brain Basics: Understanding Sleep | National Institute of Neurological Disorders and Stroke”. www.ninds.nih.gov. 2017年12月22日時点のオリジナルよりアーカイブ。2017年12月22日閲覧。
  100. ^ Understanding Sleep (Brain Basics) 2017/8
  101. ^ Guyton & Hall 2011, p. 723.
  102. ^ Davis, J.F.; Choi, D.L.; Benoit, S.C. (2011). “24. Orexigenic Hypothalamic Peptides Behavior and Feeding – 24.5 Orexin”. In Preedy, V.R.; Watson, R.R.; Martin, C.R.. Handbook of Behavior, Food and Nutrition. Springer. pp. 361–362. ISBN 9780387922713. https://books.google.com/books?id=KuAEPOPbW6MC&pg=PA361 
  103. ^ Squire 2013, p. 800.
  104. ^ Squire 2013, p. 803.
  105. ^ Squire 2013, p. 805.
  106. ^ Guyton & Hall 2011, p. 720-2.
  107. ^ Poeppel, D.; Emmorey, K.; Hickok, G.; Pylkkänen, L. (2012-10-10). “Towards a new neurobiology of language”. The Journal of Neuroscience 32 (41): 14125–14131. doi:10.1523/JNEUROSCI.3244-12.2012. PMC 3495005. PMID 23055482. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495005/. 
  108. ^ Hickok, G (September 2009). “The functional neuroanatomy of language”. Physics of Life Reviews 6 (3): 121–143. Bibcode2009PhLRv...6..121H. doi:10.1016/j.plrev.2009.06.001. PMC 2747108. PMID 20161054. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747108/. 
  109. ^ Fedorenko, E.; Kanwisher, N. (2009). “Neuroimaging of language: why hasn't a clearer picture emerged?”. Language and Linguistics Compass 3 (4): 839–865. doi:10.1111/j.1749-818x.2009.00143.x. https://doi.org/10.1111/j.1749-818x.2009.00143.x. 
  110. ^ Damasio, H. (2001). “Neural basis of language disorders”. In Chapey, Roberta. Language intervention strategies in aphasia and related neurogenic communication disorders (4th ed.). Lippincott Williams & Wilkins. pp. 18–36. ISBN 9780781721332. OCLC 45952164 
  111. ^ a b Berntson, G.; Cacioppo, J. (2009). Handbook of Neuroscience for the Behavioral Sciences, Volume 1. John Wiley & Sons. p. 145. ISBN 978-0470083550. https://books.google.com/books?id=LwdJhh8bOvwC&pg=PA145 
  112. ^ Hellier, J. (2014). The Brain, the Nervous System, and Their Diseases [3 volumes]. ABC-CLIO. p. 1135. ISBN 978-1610693387. https://books.google.com/books?id=SDi2BQAAQBAJ&pg=PA1135 
  113. ^ Kolb, B.; Whishaw, I.Q. (2013). Introduction to Brain and Behavior. Macmillan Higher Education. p. 296. ISBN 978-1464139604. https://books.google.com/books?id=teUkAAAAQBAJ 
  114. ^ Sherwood, L. (2012). Human Physiology: From Cells to Systems. Cengage Learning. p. 181. ISBN 978-1133708537. https://books.google.com/books?id=CZkJAAAAQBAJ&pg=PT181 
  115. ^ Kalat, J (2015). Biological Psychology. Cengage Learning. p. 425. ISBN 978-1305465299. https://books.google.com/books?id=EzZBBAAAQBAJ&pg=PA425 
  116. ^ a b Cowin, S.C.; Doty, S.B. (2007). Tissue Mechanics. Springer Science & Business Media. p. 4. ISBN 978-0387499857. https://books.google.com/books?id=8BJhRkat--YC&pg=PA4 
  117. ^ a b Morris, C.G.; Maisto, A.A. (2011). Understanding Psychology. Prentice Hall. p. 56. ISBN 978-0205769063. https://books.google.com/books?id=hoVWAAAAYAAJ 
  118. ^ a b Kolb, B.; Whishaw, I.Q. (2013). Introduction to Brain and Behavior (Loose-Leaf). Macmillan Higher Education. pp. 524–549. ISBN 978-1464139604. https://books.google.com/books?id=teUkAAAAQBAJ 
  119. ^ Schacter, D.L.; Gilbert, D.T.; Wegner, D.M. (2009). Introducing Psychology. Macmillan. p. 80. ISBN 978-1429218214. https://books.google.com/books?id=gt8lpZylVmkC&pg=PA80 
  120. ^ Sander, David (2013). Armony, J.; Vuilleumier, Patrik. eds. The Cambridge handbook of human affective neuroscience. Cambridge: Cambridge Univ. Press. pp. 16. ISBN 9780521171557 
  121. ^ Lindquist, KA.; Wager, TD.; Kober, H; Bliss-Moreau, E; Barrett, LF (2012-05-23). “The brain basis of emotion: A meta-analytic review”. Behavioral and Brain Sciences 35 (3): 121–143. doi:10.1017/S0140525X11000446. PMC 4329228. PMID 22617651. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329228/. 
  122. ^ Phan, KL; Wager, Tor; Taylor, SF.; Liberzon, l (2002-06-01). “Functional Neuroanatomy of Emotion: A Meta-Analysis of Emotion Activation Studies in PET and fMRI”. NeuroImage 16 (2): 331–348. doi:10.1006/nimg.2002.1087. PMID 12030820. 
  123. ^ Malenka, RC; Nestler, EJ; Hyman, SE (2009). “Preface”. In Sydor, A; Brown, RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. xiii. ISBN 9780071481274 
  124. ^ a b c d Malenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). "Chapter 14: Higher Cognitive Function and Behavioral Control". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 9780071827706
  125. ^ a b Malenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 9780071827706
  126. ^ a b c d e Diamond, A (2013). “Executive functions”. Annual Review of Psychology 64: 135–168. doi:10.1146/annurev-psych-113011-143750. PMC 4084861. PMID 23020641. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084861/. 
  127. ^ Figure 4: Executive functions and related terms Archived 2018-05-09 at the Wayback Machine.
  128. ^ a b c d Hyun, J.C.; Weyandt, L.L.; Swentosky, A. (2014). “Chapter 2: The Physiology of Executive Functioning”. In Goldstein, S.; Naglieri, J.. Handbook of Executive Functioning. New York: Springer. pp. 13–23. ISBN 9781461481065. https://books.google.com/books?id=1e8VAgAAQBAJ&pg=PA13 
  129. ^ a b Malenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). "Chapter 14: Higher Cognitive Function and Behavioral Control". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 9780071827706. In conditions in which prepotent responses tend to dominate behavior, such as in drug addiction, where drug cues can elicit drug seeking (Chapter 16), or in attention deficit hyperactivity disorder (ADHD; described below), significant negative consequences can result. ... ADHD can be conceptualized as a disorder of executive function; specifically, ADHD is characterized by reduced ability to exert and maintain cognitive control of behavior. Compared with healthy individuals, those with ADHD have diminished ability to suppress inappropriate prepotent responses to stimuli (impaired response inhibition) and diminished ability to inhibit responses to irrelevant stimuli (impaired interference suppression). ... Functional neuroimaging in humans demonstrates activation of the prefrontal cortex and caudate nucleus (part of the dorsal striatum) in tasks that demand inhibitory control of behavior. ... Early results with structural MRI show a thinner cerebral cortex, across much of the cerebrum, in ADHD subjects compared with age-matched controls, including areas of [the] prefrontal cortex involved in working memory and attention.
  130. ^ Pocock 2006, p. 68.
  131. ^ Clark, B.D.; Goldberg, E.M.; Rudy, B. (December 2009). “Electrogenic tuning of the axon initial segment.”. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry 15 (6): 651–68. doi:10.1177/1073858409341973. PMC 2951114. PMID 20007821. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951114/. 
  132. ^ Pocock 2006, pp. 70–74.
  133. ^ a b NIMH » Brain Basics”. www.nimh.nih.gov. 2017年3月26日時点のオリジナルよりアーカイブ。2017年3月26日閲覧。
  134. ^ Purves, Dale (2011). Neuroscience (5. ed.). Sunderland, Mass.: Sinauer. p. 139. ISBN 978-0-87893-695-3 
  135. ^ Swaminathan, N (2008年4月29日). “Why Does the Brain Need So Much Power?”. Scientific American. Scientific American, a Division of Nature America, Inc.. 2014年1月27日時点のオリジナルよりアーカイブ。2010年11月19日閲覧。
  136. ^ a b Wasserman DH (January 2009). "Four grams of glucose". American Journal of Physiology. Endocrinology and Metabolism. 296 (1): E11–21. doi:10.1152/ajpendo.90563.2008. PMC 2636990. PMID 18840763. Four grams of glucose circulates in the blood of a person weighing 70 kg. This glucose is critical for normal function in many cell types. In accordance with the importance of these 4 g of glucose, a sophisticated control system is in place to maintain blood glucose constant. Our focus has been on the mechanisms by which the flux of glucose from liver to blood and from blood to skeletal muscle is regulated. ... The brain consumes ∼60% of the blood glucose used in the sedentary, fasted person. ... The amount of glucose in the blood is preserved at the expense of glycogen reservoirs (Fig. 2). In postabsorptive humans, there are ∼100 g of glycogen in the liver and ∼400 g of glycogen in muscle. Carbohydrate oxidation by the working muscle can go up by ∼10-fold with exercise, and yet after 1 h, blood glucose is maintained at ∼4 g. ... It is now well established that both insulin and exercise cause translocation of GLUT4 to the plasma membrane. Except for the fundamental process of GLUT4 translocation, [muscle glucose uptake (MGU)] is controlled differently with exercise and insulin. Contraction-stimulated intracellular signaling (52, 80) and MGU (34, 75, 77, 88, 91, 98) are insulin independent. Moreover, the fate of glucose extracted from the blood is different in response to exercise and insulin (91, 105). For these reasons, barriers to glucose flux from blood to muscle must be defined independently for these two controllers of MGU.
  137. ^ Quistorff, B; Secher, N; Van Lieshout, J (2008-07-24). “Lactate fuels the human brain during exercise”. The FASEB Journal 22 (10): 3443–3449. doi:10.1096/fj.08-106104. PMID 18653766. 
  138. ^ Obel, L.F.; Müller, M.S.; Walls, A.B.; Sickmann, H.M.; Bak, L.K.; Waagepetersen, H.S.; Schousboe, A. (2012). “Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level.”. Frontiers in Neuroenergetics 4: 3. doi:10.3389/fnene.2012.00003. PMC 3291878. PMID 22403540. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291878/. 
  139. ^ Marin-Valencia, I. (February 2013). “Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain.”. Journal of Cerebral Blood Flow and Metabolism 33 (2): 175–82. doi:10.1038/jcbfm.2012.151. PMC 3564188. PMID 23072752. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564188/. 
  140. ^ Tsuji, A. (2005). “Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems”. NeuroRx 2 (1): 54–62. doi:10.1602/neurorx.2.1.54. PMC 539320. PMID 15717057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539320/. "Uptake of valproic acid was reduced in the presence of medium-chain fatty acids such as hexanoate, octanoate, and decanoate, but not propionate or butyrate, indicating that valproic acid is taken up into the brain via a transport system for medium-chain fatty acids, not short-chain fatty acids. ... Based on these reports, valproic acid is thought to be transported bidirectionally between blood and brain across the BBB via two distinct mechanisms, monocarboxylic acid-sensitive and medium-chain fatty acid-sensitive transporters, for efflux and uptake, respectively." 
  141. ^ Vijay, N.; Morris, M.E. (2014). “Role of monocarboxylate transporters in drug delivery to the brain”. Curr. Pharm. Des. 20 (10): 1487–98. doi:10.2174/13816128113199990462. PMC 4084603. PMID 23789956. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084603/. "Monocarboxylate transporters (MCTs) are known to mediate the transport of short chain monocarboxylates such as lactate, pyruvate and butyrate. ... MCT1 and MCT4 have also been associated with the transport of short chain fatty acids such as acetate and formate which are then metabolized in the astrocytes [78]." 
  142. ^ Clark, D.D.; Sokoloff. L. (1999). Siegel, G.J.; Agranoff, B.W.; Albers, R.W. et al.. eds. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Philadelphia: Lippincott. pp. 637–670. ISBN 978-0-397-51820-3 
  143. ^ Mrsulja, B.B. (2012). Pathophysiology of Cerebral Energy Metabolism. Springer Science & Business Media. pp. 2–3. ISBN 978-1468433487. https://books.google.com/books?id=8yzvBwAAQBAJ&pg=PA2 
  144. ^ Raichle, M.; Gusnard, DA (2002). “Appraising the brain's energy budget”. Proc. Natl. Acad. Sci. U.S.A. 99 (16): 10237–10239. Bibcode2002PNAS...9910237R. doi:10.1073/pnas.172399499. PMC 124895. PMID 12149485. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC124895/. 
  145. ^ Gianaros, Peter J.; Gray, Marcus A.; Onyewuenyi, Ikechukwu; Critchley, Hugo D. (2010). “Chapter 50. Neuroimaging methods in behavioral medicine”. In Steptoe, A.. Handbook of Behavioral Medicine: Methods and Applications. Springer Science & Business Media. p. 770. doi:10.1007/978-0-387-09488-5_50. ISBN 978-0387094885. https://books.google.com/books?id=Si9TtI5AGIEC&pg=PA770 
  146. ^ Brain may flush out toxins during sleep”. National Institutes of Health. 2013年10月20日時点のオリジナルよりアーカイブ。2013年10月25日閲覧。
  147. ^ Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (October 2013). "Sleep drives metabolite clearance from the adult brain". Science. 342 (6156): 373–377. Bibcode:2013Sci...342..373X. doi:10.1126/science.1241224. PMC 3880190. PMID 24136970. Thus, the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.
  148. ^ Tononi, Guilio; Cirelli, Chiara (August 2013). “Perchance to Prune”. Scientific American 309 (2): 34–39. Bibcode2013SciAm.309b..34T. doi:10.1038/scientificamerican0813-34. PMID 23923204. https://pdfs.semanticscholar.org/6f9d/f7817534e55865bd1f6b7da6d2912bdbeaf3.pdf. 
  149. ^ a b Van Essen, D.C. (October 2012). “The Human Connectome Project: A data acquisition perspective”. NeuroImage 62 (4): 2222–2231. doi:10.1016/j.neuroimage.2012.02.018. PMC 3606888. PMID 22366334. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606888/. 
  150. ^ Jones, E.G.; Mendell, L.M. (1999-04-30). “Assessing the Decade of the Brain”. Science 284 (5415): 739. Bibcode1999Sci...284..739J. doi:10.1126/science.284.5415.739. PMID 10336393. 
  151. ^ A $4.5 Billion Price Tag for the BRAIN Initiative?”. Science | AAAS (2014年6月5日). 2017年6月18日時点のオリジナルよりアーカイブ。2020年6月28日閲覧。
  152. ^ Towle, V.L. (January 1993). “The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy”. Electroencephalography and Clinical Neurophysiology 86 (1): 1–6. doi:10.1016/0013-4694(93)90061-y. PMID 7678386. 
  153. ^ Purves 2012, pp. 632–633.
  154. ^ Silverstein, J. (2012). “Mapping the Motor and Sensory Cortices: A Historical Look and a Current Case Study in Sensorimotor Localization and Direct Cortical Motor Stimulation”. The Neurodiagnostic Journal 52 (1): 54–68. PMID 22558647. オリジナルの2012-11-17時点におけるアーカイブ。. https://web.archive.org/web/20121117021132/http://www.readperiodicals.com/201203/2662763741.html. 
  155. ^ Boraud, T.; Bezard, E. (2002). “From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control”. Progress in Neurobiology 66 (4): 265–283. doi:10.1016/s0301-0082(01)00033-8. PMID 11960681. 
  156. ^ Lancaster, MA; Renner, M; Martin, CA; Wenzel, D; Bicknell, LS; Hurles, ME; Homfray, T; Penninger, JM et al. (2013-09-19). “Cerebral organoids model human brain development and microcephaly.”. Nature 501 (7467): 373–9. Bibcode2013Natur.501..373L. doi:10.1038/nature12517. PMC 3817409. PMID 23995685. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817409/. 
  157. ^ Lee, CT; Bendriem, RM; Wu, WW; Shen, RF (2017-08-20). “3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders.”. Journal of Biomedical Science 24 (1): 59. doi:10.1186/s12929-017-0362-8. PMC 5563385. PMID 28822354. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563385/. 
  158. ^ Magnetic Resonance, a critical peer-reviewed introduction; functional MRI”. European Magnetic Resonance Forum. 2017年6月2日時点のオリジナルよりアーカイブ。2017年6月30日閲覧。
  159. ^ Buxton, R.; Uludag, K.; Liu, T. (2004). “Modeling the haemodynamic response to brain activation”. NeuroImage 23: S220–S233. doi:10.1016/j.neuroimage.2004.07.013. PMID 15501093. 
  160. ^ Biswal, B.B. (2012-08-15). “Resting state fMRI: a personal history”. NeuroImage 62 (2): 938–44. doi:10.1016/j.neuroimage.2012.01.090. PMID 22326802. 
  161. ^ Purves 2012, p. 20.
  162. ^ Kane, R.L.; Parsons, T.D. (2017). The Role of Technology in Clinical Neuropsychology. Oxford University Press. p. 399. ISBN 978-0190234737. https://books.google.com/books?id=iuAwDgAAQBAJ. "Irimia, Chambers, Torgerson, and Van Horn (2012) provide a first-step graphic on how best to display connectivity findings, as is presented in Figure 13.15. This is referred to as a connectogram." 
  163. ^ Andrews, D.G. (2001). Neuropsychology. Psychology Press. ISBN 978-1-84169-103-9. https://books.google.com/?id=kiCtU8wBTfwC 
  164. ^ Lepage, M. (2010年). “Research at the Brain Imaging Centre”. Douglas Mental Health University Institute. 2012年3月5日時点のオリジナルよりアーカイブ。2020年6月28日閲覧。
  165. ^ a b Steward, C.A. (2017). “Genome annotation for clinical genomic diagnostics: strengths and weaknesses”. Genome Med 9 (1): 49. doi:10.1186/s13073-017-0441-1. PMC 5448149. PMID 28558813. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448149/. 
  166. ^ Harrow, J. (September 2012). “GENCODE: the reference human genome annotation for The ENCODE Project.”. Genome Res. 22 (9): 1760–74. doi:10.1101/gr.135350.111. PMC 3431492. PMID 22955987. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431492/. 
  167. ^ Gibson G, Muse SV. A primer of genome science (3rd ed.). Sunderland, MA: Sinauer Associates.
  168. ^ The human proteome in brain – The Human Protein Atlas”. www.proteinatlas.org. 2017年9月29日時点のオリジナルよりアーカイブ。2017年9月29日閲覧。
  169. ^ Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.; Lindskog, Cecilia; Oksvold, Per; Mardinoglu, Adil; Sivertsson, Åsa; Kampf, Caroline et al. (2015-01-23). “Tissue-based map of the human proteome” (英語). Science 347 (6220): 1260419. doi:10.1126/science.1260419. ISSN 0036-8075. PMID 25613900. 
  170. ^ Warden, A (2017). “Gene expression profiling in the human alcoholic brain.”. Neuropharmacology 122: 161–174. doi:10.1016/j.neuropharm.2017.02.017. PMC 5479716. PMID 28254370. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479716/. 
  171. ^ Farris, S.P. (2015). “Applying the new genomics to alcohol dependence.”. Alcohol 49 (8): 825–36. doi:10.1016/j.alcohol.2015.03.001. PMC 4586299. PMID 25896098. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586299/. 
  172. ^ Rozycka, A; Liguz-Lecznar, M (August 2017). “The space where aging acts: focus on the GABAergic synapse.”. Aging Cell 16 (4): 634–643. doi:10.1111/acel.12605. PMC 5506442. PMID 28497576. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506442/. 
  173. ^ Flores, CE; Méndez, P (2014). “Shaping inhibition: activity dependent structural plasticity of GABAergic synapses.”. Frontiers in Cellular Neuroscience 8: 327. doi:10.3389/fncel.2014.00327. PMC 4209871. PMID 25386117. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209871/. 
  174. ^ Brain Injury, Traumatic”. Medcyclopaedia. GE. 2011年5月26日時点のオリジナルよりアーカイブ。2018年6月20日閲覧。
  175. ^ Dawodu, S.T. (2017-03-09). Traumatic Brain Injury (TBI) – Definition and Pathophysiology: Overview, Epidemiology, Primary Injury. オリジナルの2017-04-09時点におけるアーカイブ。. https://web.archive.org/web/20170409021001/http://emedicine.medscape.com/article/326510-overview#a3. 
  176. ^ Davidson's 2010, p. 1196-7.
  177. ^ a b Davidson's 2010, p. 1205-15.
  178. ^ a b c d e Davidson's 2010, p. 1216-7.
  179. ^ Volkow, N.D.; Koob, G.F.; McLellan, A.T. (January 2016). “Neurobiologic advances from the brain disease model of addiction”. The New England Journal of Medicine 374 (4): 363–371. doi:10.1056/NEJMra1511480. PMC 6135257. PMID 26816013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135257/. 
  180. ^ Simpson, J.M.; Moriarty, G.L. (2013). Multimodal Treatment of Acute Psychiatric Illness: A Guide for Hospital Diversion. Columbia University Press. pp. 22–24. ISBN 978-0231536097. https://books.google.com/books?id=MbtkAgAAQBAJ&pg=PA22 
  181. ^ a b c d Davidson's 2010, p. 1172-9.
  182. ^ Status Epilepticus” (英語). Epilepsy Foundation. 2020年6月28日閲覧。
  183. ^ Moore, S.P. (2005). The Definitive Neurological Surgery Board Review. Lippincott Williams & Wilkins. p. 112. ISBN 978-1405104593. https://books.google.com/books?id=mkK1a4mEx3IC&pg=PA112 
  184. ^ a b Pennington, B.F. (2008). Diagnosing Learning Disorders, Second Edition: A Neuropsychological Framework. Guilford Press. pp. 3–10. ISBN 978-1606237861. https://books.google.com/books?id=LVV10L62z6kC&pg=PA3 
  185. ^ Govaert, P.; de Vries, L.S. (2010). An Atlas of Neonatal Brain Sonography: (CDM 182–183). John Wiley & Sons. pp. 89–92. ISBN 978-1898683568. https://books.google.com/books?id=FzcaxpvV1JUC&pg=PA89 
  186. ^ a b Perese, E.F. (2012). Psychiatric Advanced Practice Nursing: A Biopsychsocial Foundation for Practice. F. A. Davis. pp. 82–88. ISBN 978-0803629998. https://books.google.com/books?id=6X_2AAAAQBAJ&pg=PA82 
  187. ^ Kearney, C.; Trull, T.J. (2016). Abnormal Psychology and Life: A Dimensional Approach. Cengage Learning. p. 395. ISBN 978-1337098106. https://books.google.com/books?id=B9q5DQAAQBAJ&pg=PA395 
  188. ^ Stevenson, D.K.; Sunshine, P.; Benitz, W.E. (2003). Fetal and Neonatal Brain Injury: Mechanisms, Management and the Risks of Practice. Cambridge University Press. p. 191. ISBN 978-0521806916. https://books.google.com/books?id=RuekFAj_tIAC&pg=PA191 
  189. ^ Dewhurst, John (2012). Dewhurst's Textbook of Obstetrics and Gynaecology. John Wiley & Sons. p. 43. ISBN 978-0470654576. https://books.google.com/books?id=HfakBRceodcC&pg=PA43 
  190. ^ Harbison, J.; Massey, A.; Barnett, L.; Hodge, D.; Ford, G.A. (June 1999). “Rapid ambulance protocol for acute stroke”. Lancet 353 (9168): 1935. doi:10.1016/S0140-6736(99)00966-6. PMID 10371574. 
  191. ^ Davidson's 2010, p. 1183.
  192. ^ a b Davidson's 2010, p. 1180-1.
  193. ^ a b c d e f g Davidson's 2010, p. 1183-1185.
  194. ^ Davidson's 2010, p. 1181.
  195. ^ a b Davidson's 2010, p. 1185-1189.
  196. ^ Goyal, M. (April 2016). “Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials”. The Lancet 387 (10029): 1723–1731. doi:10.1016/S0140-6736(16)00163-X. PMID 26898852. 
  197. ^ Saver, J. L. (2005-12-08). “Time is brain—quantified”. Stroke 37 (1): 263–266. doi:10.1161/01.STR.0000196957.55928.ab. PMID 16339467. 
  198. ^ Winstein, C.J. (June 2016). “Guidelines for adult stroke rehabilitation and recovery”. Stroke 47 (6): e98–e169. doi:10.1161/STR.0000000000000098. PMID 27145936. 
  199. ^ Kuźma, Elżbieta; Lourida, Ilianna; Moore, Sarah F.; Levine, Deborah A.; Ukoumunne, Obioha C.; Llewellyn, David J. (November 2018). “Stroke and dementia risk: A systematic review and meta-analysis”. Alzheimer's & Dementia 14 (11): 1416–1426. doi:10.1016/j.jalz.2018.06.3061. ISSN 1552-5260. PMC 6231970. PMID 30177276. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231970/. 
  200. ^ a b c d Goila, AK; Pawar, M (2009). “The diagnosis of brain death”. Indian Journal of Critical Care Medicine 13 (1): 7–11. doi:10.4103/0972-5229.53108. PMC 2772257. PMID 19881172. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772257/. 
  201. ^ a b c Wijdicks, EFM (2002-01-08). “Brain death worldwide: accepted fact but no global consensus in diagnostic criteria”. Neurology 58 (1): 20–25. doi:10.1212/wnl.58.1.20. PMID 11781400. 
  202. ^ Dhanwate, AD (September 2014). “Brainstem death: A comprehensive review in Indian perspective.”. Indian Journal of Critical Care Medicine 18 (9): 596–605. doi:10.4103/0972-5229.140151. PMC 4166875. PMID 25249744. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166875/. 
  203. ^ a b c d Davidson's 2010, p. 1158.
  204. ^ Davidson's 2010, p. 200.
  205. ^ Urden, L.D.; Stacy, K.M.; Lough, M.E. (2013). Priorities in Critical Care Nursing – E-Book. Elsevier Health Sciences. pp. 112–113. ISBN 978-0323294140. https://books.google.com/books?id=lLvwAwAAQBAJ&pg=PA112 
  206. ^ Domínguez, J.F.; Lewis, E.D.; Turner, R.; Egan, G.F. (2009). Chiao, J.Y.. ed. The Brain in Culture and Culture in the Brain: A Review of Core Issues in Neuroanthropology. Special issue: Cultural Neuroscience: Cultural Influences on Brain Function. 178. 43–6. doi:10.1016/S0079-6123(09)17804-4. ISBN 9780444533616. PMID 19874961 
  207. ^ Cultural Environment Influences Brain Function | Psych Central News”. Psych Central News (2010年8月4日). 2017年1月17日時点のオリジナルよりアーカイブ。2020年7月2日閲覧。
  208. ^ a b Macmillan, Malcolm B. (2000). An Odd Kind of Fame: Stories of Phineas Gage. MIT Press. ISBN 978-0-262-13363-0. https://books.google.com/?id=Qx4fMsTqGFYC 
  209. ^ Rescher, N. (1992). G. W. Leibniz's Monadology. Psychology Press. p. 83. ISBN 978-0-415-07284-7 
  210. ^ Hart, WD (1996). Guttenplan S. ed. A Companion to the Philosophy of Mind. Blackwell. pp. 265–267 
  211. ^ Churchland, P.S. (1989). “Ch. 8”. Neurophilosophy. MIT Press. ISBN 978-0-262-53085-9. https://books.google.com/?id=hAeFMFW3rDUC 
  212. ^ Selimbeyoglu, Aslihan; Parvizi, J (2010). “Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature”. Frontiers in Human Neuroscience 4: 46. doi:10.3389/fnhum.2010.00046. PMC 2889679. PMID 20577584. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889679/. 
  213. ^ Schwartz, J.H. Appendix D: Consciousness and the Neurobiology of the Twenty-First Century. In Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. (2000). Principles of Neural Science, 4th Edition.
  214. ^ Lilienfeld, S.O.; Lynn, S.J.; Ruscio, J.; Beyerstein, B.L. (2011). 50 Great Myths of Popular Psychology: Shattering Widespread Misconceptions about Human Behavior. John Wiley & Sons. p. 89. ISBN 9781444360745. https://books.google.com/?id=8DlS0gfO_QUC&pg=PT89 
  215. ^ McDaniel, M. (2005). “Big-brained people are smarter”. Intelligence 33 (4): 337–346. doi:10.1016/j.intell.2004.11.005. オリジナルの2014-09-06時点におけるアーカイブ。. https://web.archive.org/web/20140906221726/http://www.people.vcu.edu/~mamcdani/Big-Brained%20article.pdf. 
  216. ^ Luders, E. (September 2008). “Mapping the relationship between cortical convolution and intelligence: effects of gender”. Cerebral Cortex 18 (9): 2019–26. doi:10.1093/cercor/bhm227. PMC 2517107. PMID 18089578. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517107/. 
  217. ^ Hoppe, C; Stojanovic, J (2008). “High-Aptitude Minds”. Scientific American Mind 19 (4): 60–67. doi:10.1038/scientificamericanmind0808-60. 
  218. ^ Tupaia belangeri”. The Genome Institute, Washington University. 2010年6月1日時点のオリジナルよりアーカイブ。2016年1月22日閲覧。
  219. ^ Jarrett, C. (2014-11-17). Great Myths of the Brain. John Wiley & Sons. ISBN 9781118312711. https://books.google.com/?id=fBPyBQAAQBAJ 
  220. ^ Phillips, Helen (2002-07-11). “Video game "brain damage" claim criticised”. New Scientist. オリジナルの2009-01-11時点におけるアーカイブ。. https://web.archive.org/web/20090111065557/http://www.newscientist.com/article/dn2538-video-game-brain-damage-claim-criticised.html 2008年2月6日閲覧。. 
  221. ^ Popova, Maria (2011年8月18日). “'Brain Culture': How Neuroscience Became a Pop Culture Fixation”. The Atlantic. オリジナルの2017年7月28日時点におけるアーカイブ。. https://web.archive.org/web/20170728165041/https://www.theatlantic.com/health/archive/2011/08/brain-culture-how-neuroscience-became-a-pop-culture-fixation/243810/ 
  222. ^ Thornton, Davi Johnson (2011). Brain Culture. Neuroscience and Popular Media. Rutgers University Press. ISBN 978-0813550138 
  223. ^ Manfred E. Clynes; Nathan S. Kline (9 1960). “Cyborgs and Space” (PDF). Astronautics. http://web.mit.edu/digitalapollo/Documents/Chapter1/cyborgs.pdf.  Archived 2011-10-06 at the Wayback Machine.
  224. ^ Bergfelder, Tim (2005). International Adventures: German Popular Cinema and European Co-productions in the 1960s. Berghahn Books. p. 129. ISBN 978-1-57181-538-5. https://books.google.com/books?id=B1Nj41yxvZkC&pg=PA129 
  225. ^ Kandel, ER; Schwartz JH; Jessell TM (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1 
  226. ^ a b c d Gross, Charles G. (1987). Adelman, George. ed. Encyclopedia of neuroscience (2. ed.). Boston: Birkhäeuser. pp. 843–847. ISBN 978-0817633356. オリジナルの2013-05-05時点におけるアーカイブ。. https://web.archive.org/web/20130505044949/http://www.princeton.edu/~cggross/Hist_Neurosci_Ency_neurosci.pdf 
  227. ^ a b Bear, M.F.; B.W. Connors; M.A. Paradiso (2001). Neuroscience: Exploring the Brain. Baltimore: Lippincott. ISBN 978-0-7817-3944-3 
  228. ^ von Staden, p.157
  229. ^ a b 加納喜光『中国医学の誕生』東京大学出版会、1987年。ISBN 978-4130130325 192-229頁。
  230. ^ Swanson, Larry W. (2014-08-12). Neuroanatomical Terminology: A Lexicon of Classical Origins and Historical Foundations. Oxford University Press. ISBN 9780195340624. https://books.google.com/?id=--PRAwAAQBAJ&pg=PA7&lpg=PA7&dq=nervous+system+anatomy+stagnation+galen+to+vesalius#v=onepage 
  231. ^ a b Descartes and the Pineal Gland”. The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University (2016年1月1日). 2017年3月11日閲覧。
  232. ^ a b c d e f Gross, Charles G. (1999). Brain, vision, memory : tales in the history of neuroscience. (1st MIT Press pbk. ed.). Cambridge, Mass.: MIT. pp. 37–51. ISBN 978-0262571357 
  233. ^ Marshall, Louise H.; Magoun, Horace W. (2013-03-09). Discoveries in the Human Brain: Neuroscience Prehistory, Brain Structure, and Function. Springer Science & Business Media. p. 44. ISBN 978-1-475-74997-7. https://books.google.com/?id=guncBwAAQBAJ&pg=PR5&dq=vesalius+and+the+human+brain#v=onepage&q=vesalius&f=false 
  234. ^ Holtz, Anders; Levi, Richard (2010-07-20). Spinal Cord Injury. Oxford University Press. ISBN 9780199706815. https://books.google.com/?id=ZvCqdwWwGRsC&pg=PA5&lpg=PA5#v=onepage 
  235. ^ Tessman, Patrick A.; Suarez, Jose I. (2002). “Influence of early printmaking on the development of neuroanatomy and neurology”. Archives of Neurology 59 (12): 1964–1969. doi:10.1001/archneur.59.12.1964. PMID 12470188. 
  236. ^ O'Connor, James (2003). “Thomas Willis and the background to Cerebri Anatome”. Journal of the Royal Society of Medicine 96 (3): 139–143. doi:10.1258/jrsm.96.3.139. PMC 539424. PMID 12612118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539424/. 
  237. ^ EMERY, ALAN (October 2000). “A Short History of Neurology: The British Contribution 1660–1910. Edited by F. CLIFFORD ROSE. (Pp. 282; illustrated; £25 Paperback; ISBN 07506 4165 7.) Oxford: Butterworth-Heinemann”. Journal of Anatomy 197 (3): 513–518. doi:10.1046/j.1469-7580.2000.197305131.x. PMC 1468164. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1468164/. 
  238. ^ Sabbatini, R.M.E.: The Discovery of Bioelectricity. Nerve Conduction”. www.cerebromente.org.br. 2017年6月26日時点のオリジナルよりアーカイブ。2017年6月10日閲覧。
  239. ^ Karbowski, Kazimierz (2008-02-14). “Sixty Years of Clinical Electroencephalography”. European Neurology 30 (3): 170–175. doi:10.1159/000117338. PMID 2192889. 
  240. ^ Pearce, J.M.S. (2009-03-17). “Marie-Jean-Pierre Flourens (1794–1867) and Cortical Localization”. European Neurology 61 (5): 311–314. doi:10.1159/000206858. PMID 19295220. 
  241. ^ a b c De Carlos, Juan A.; Borrell, José (August 2007). “A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience”. Brain Research Reviews 55 (1): 8–16. doi:10.1016/j.brainresrev.2007.03.010. hdl:10261/62299. PMID 17490748. 
  242. ^ Burke, R.E. (April 2007). “Sir Charles Sherrington's The integrative action of the nervous system: a centenary appreciation”. Brain 130 (Pt 4): 887–894. doi:10.1093/brain/awm022. PMID 17438014. 
  243. ^ Squire, Larry R., ed (1996). The history of neuroscience in autobiography. Washington DC: Society for Neuroscience. pp. 475–97. ISBN 978-0126603057 
  244. ^ Cowan, W.M.; Harter, D.H.; Kandel, E.R. (2000). “The emergence of modern neuroscience: Some implications for neurology and psychiatry”. Annual Review of Neuroscience 23: 345–346. doi:10.1146/annurev.neuro.23.1.343. PMID 10845068. 
  245. ^ Brady, Joseph V.; Nauta, Walle J. H. (2013-10-22). Principles, Practices, and Positions in Neuropsychiatric Research: Proceedings of a Conference Held in June 1970 at the Walter Reed Army Institute of Research, Washington, D.C., in Tribute to Dr. David Mckenzie Rioch upon His Retirement as Director of the Neuropsychiatry Division of That Institute. Elsevier. p. vii. ISBN 9781483154534. https://books.google.com/?id=AK4aAwAAQBAJ&pg=PR7&lpg=PR7 
  246. ^ Adelman, George (2010-01-15). “The Neurosciences Research Program at MIT and the Beginning of the Modern Field of Neuroscience”. Journal of the History of the Neurosciences 19 (1): 15–23. doi:10.1080/09647040902720651. PMID 20391098. 
  247. ^ a b Principles of Neural Science, 4th ed. Eric R. Kandel, James H. Schwartz, Thomas M. Jessel, eds. McGraw-Hill:New York, NY. 2000.
  248. ^ Papez, J.W. (February 1995). “A proposed mechanism of emotion. 1937.”. The Journal of Neuropsychiatry and Clinical Neurosciences 7 (1): 103–12. doi:10.1176/jnp.7.1.103. PMID 7711480. 
  249. ^ Papez, J. W. (1995-02-01). “A proposed mechanism of emotion. 1937 [classical article]”. The Journal of Neuropsychiatry and Clinical Neurosciences 7 (1): 103–112. doi:10.1176/jnp.7.1.103. PMID 7711480. 
  250. ^ Lambert, Kelly G. (August 2003). “The life and career of Paul MacLean”. Physiology & Behavior 79 (3): 343–349. doi:10.1016/S0031-9384(03)00147-1. PMID 12954429. 
  251. ^ Chatterjee, Anjan; Coslett, H. Branch (December 2013). The Roots of Cognitive Neuroscience: Behavioral Neurology and Neuropsychology. OUP USA. pp. 337–8. ISBN 9780195395549. https://books.google.com/?id=f9dMAgAAQBAJ&pg=PA338&dq=neuroscience+20th+century#v=onepage 
  252. ^ Bliss, Michael (2005-10-01). Harvey Cushing : A Life in Surgery: A Life in Surgery. USA: Oxford University Press. pp. ix–x. ISBN 9780195346954. https://books.google.com/?id=EzbjVnjwjPYC 
  253. ^ Kretzer, RM; Coon, AL; Tamargo, RJ (June 2010). “Walter E. Dandy's contributions to vascular neurosurgery”. Journal of Neurosurgery 112 (6): 1182–91. doi:10.3171/2009.7.JNS09737. PMID 20515365. 
  254. ^ Glees, Paul (2005). The Human Brain. Cambridge University Press. p. 1. ISBN 9780521017817. https://books.google.com/?id=kWgeOPGdl_MC&pg=PA1#v=onepage 
  255. ^ Simpkins, C. Alexander; Simpkins, Annellen M. (2012). Neuroscience for Clinicians: Evidence, Models, and Practice. Springer Science & Business Media. p. 143. ISBN 978-1461448426. https://books.google.com/books?id=QG4LC-d2sm8C&pg=PA143 
  256. ^ Bornstein, Marc H.; Lamb, Michael E. (2015). Developmental Science: An Advanced Textbook. Psychology Press. p. 220. ISBN 978-1136282201. https://books.google.com/books?id=XhA-CgAAQBAJ&pg=PA220 
  257. ^ a b Bernstein, Douglas (2010). Essentials of Psychology. Cengage Learning. p. 64. ISBN 978-0495906933. https://books.google.com/books?id=rd77N0KsLVkC&pg=PA64 
  258. ^ Hofman, Michel A. (2014-03-27). “Evolution of the human brain: when bigger is better”. Frontiers in Neuroanatomy 8: 15. doi:10.3389/fnana.2014.00015. PMC 3973910. PMID 24723857. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973910/. 
  259. ^ Gray, Peter (2002). Psychology (4th ed.). Worth Publishers. ISBN 978-0716751625. OCLC 46640860. https://archive.org/details/psychology00gray 
  260. ^ Lu, Zhong-Lin; Dosher, Barbara (2013). Visual Psychophysics: From Laboratory to Theory. MIT Press. p. 3. ISBN 978-0262019453. https://books.google.com/books?id=nYr6AQAAQBAJ&pg=PA3 
  261. ^ Sharwood Smith, Mike (2017). Introducing Language and Cognition. Cambridge University Press. p. 206. ISBN 978-1107152892. https://books.google.com/books?id=fe-SDQAAQBAJ&pg=PA206 
  262. ^ Kolb, Bryan; Whishaw, Ian Q. (2013). Introduction to Brain and Behavior. Macmillan Higher Education. p. 21. ISBN 978-1464139604. https://books.google.com/books?id=teUkAAAAQBAJ&q 
  263. ^ Nieuwenhuys, Rudolf; ten Donkelaar, Hans J.; Nicholson, Charles (2014). The Central Nervous System of Vertebrates. Springer. p. 2127. ISBN 978-3642182624. https://books.google.com/books?id=gsDqCAAAQBAJ&pg=PA2127 
  264. ^ Lerner, Lee; Lerner, Brenda Wilmoth (2004). The Gale Encyclopedia of Science: Pheasants-Star. Gale. p. 3759. ISBN 978-0787675592. https://books.google.com/books?id=mp7kcdK6SekC&q. "As human's position changed and the manner in which the skull balanced on the spinal column pivoted, the brain expanded, altering the shape of the cranium." 
  265. ^ Begun, David R. (2012). A Companion to Paleoanthropology. John Wiley & Sons. p. 388. ISBN 9781118332375. https://books.google.com/books?id=oIoT1RcFeCwC&pg=PT388 
  266. ^ Jones, R. (2012). “Neurogenetics: What makes a human brain?”. Nature Reviews Neuroscience 13 (10): 655. doi:10.1038/nrn3355. PMID 22992645. 
  1. ^ 具体的には、動眼神経滑車神経三叉神経外転神経顔面神経内耳神経舌咽神経迷走神経副神経舌下神経[40]





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  ヒトの脳のページへのリンク

辞書ショートカット

すべての辞書の索引

「ヒトの脳」の関連用語

ヒトの脳のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ヒトの脳のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのヒトの脳 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS