ドブニウムとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ドブニウムの意味・解説 

ドブニウム

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/07/09 09:53 UTC 版)

ドブニウム(Dubnium)は、元素記号Db、原子番号105の化学元素である。高い放射性を持ち、最も安定な既知の同位体であるドブニウム268の半減期は約16時間である。このため、この元素に関する実験は非常に制限されている。


  1. ^ 核物理学では、原子番号の大きい元素は、「重い」元素と呼ばれる。原子番号82の鉛は、重い元素の一例である。「超重元素」という用語は、通常、原子番号103番以降の元素を指す(ただし、原子番号100[4]以降とするものや112以降[5]とするもの等、いくつかの定義がある。超アクチノイド元素と同義の言葉として使われることもある[6])。ある元素における「重い同位体」や「重い核」という言葉は、各々、質量の大きい同位体、質量の大きい核を指す。
  2. ^ 2009年、ユーリイ・オガネシアン率いるドゥブナ合同原子核研究所のチームは、対称の136Xe + 136Xe反応におるハッシウム合成の試みの結果について公表した。彼らはこの反応で単原子を観測できず、反応断面積の上限を2.5 pbとした[7]。対称的に、ハッシウムの発見に繋がった反応である208Pb + 58Feの反応断面積は、発見者らにより19+19-11pbと推定された[8]
  3. ^ 励起エネルギーが大きくなるほど、より多くの中性子が放出される。励起エネルギーが、各々の中性子を残りの核子に結び付けるエネルギーより低い場合、中性子は放出されない。その代わり、複合核はガンマ線を放出して脱励起する[12]
  4. ^ 共同作業部会による定義では、その核が10-14秒にわたり崩壊しない場合にのみ、発見として認定される。この値は、原子核が外側の電子を獲得して化学的性質を示すのにかかる時間の推定値として選択された[13]。また、一般的に考えられる複合核の寿命の上限値を示すものでもある[14]
  5. ^ この分離は、生成した原子核が未反応の粒子線の原子核よりも、標的の上をよりゆっくり通り過ぎることに基づく。セパレーター内には、特定の粒子速度で移動する粒子への影響が相殺される電磁場がある[16]。このような分離は、飛行時間型質量分析計や反跳エネルギー測定でも用いられ、この2つを組み合わせて、原子核の質量を推定することが可能となる[17]
  6. ^ 全ての崩壊モードが静電反発を原因とするのではなく、例えば、ベータ崩壊の原因は弱い相互作用である[20]
  7. ^ 原子核の質量は直接測定されず、ほかの原子核の値から計算され、このような方法を間接的と呼ぶ。直接測定も可能であるが、もっとも重い原子核についてはほとんどの場合可能ではない[23]。超重元素の質量の直接測定は、2018年にローレンス・バークレー国立研究所により初めて報告された[24]
  8. ^ 自発核分裂は、ドゥブナ合同原子核研究所を率いていたゲオルギー・フリョロフにより発見され[25]、この研究所の得意分野となった[26]。対称的に、ローレンス・バークレー国立研究所の科学者は、自発核分裂から得られる情報は新元素の合成を裏付けるのに不十分であると信じていた。これは、複合核が中性子だけを放出し、陽子やアルファ粒子のような荷電粒子を放出しないことを立証するのは困難なためである[14]。そのため彼らは、連続的なアルファ崩壊により、新しい同位体を既知の同位体と結び付ける方法を好んだ[25]
  9. ^ 例えば、1957年にスウェーデンのノーベル物理学研究所は、102番元素を誤同定した[27]。これ以前にこの元素の合成に関する決定的な主張はなく、発見者により、ノーベリウムと命名されたが、後に、この同定は誤りであったことが分かった[28]。翌年、ローレンス・バークレー国立研究所は、ノーベル物理学研究所による結果は再現性がなく、代わりに彼ら自身がこの元素を合成したと発表したが、この主張も後に誤りであったことが判明した[28]。ドゥブナ合同原子核研究所は、彼らこそがこの元素を最初に合成したと主張し、ジョリオチウムと命名したが[29]、この名前も認定されなかった(ドゥブナ合同原子核研究所は、のちに、102番元素の命名は「性急」であったと述べた)[30]。「ノーベリウム」という名前は、広く使われていたため、変更されなかった[31]
  10. ^ この表記は、核が自然分裂によって崩壊する核異性体であることを意味している。
  11. ^ 268Dbの半減期の現在の実験値は28+11
    -4
    時間であるが、実験 (崩壊) の数が非常に限られているため、半減期の決定が依存する大数の法則を直接適用することはできない。不確実性の範囲は、95%の確からしさで半減期がこの範囲内にあることを示す。
  12. ^ 原子核に関する現代の理論は、ドブニウムの長寿命同位体が存在することを示唆していないが、かつては、超重元素の未知の同位体が原始地球上に存在していたという主張がなされていた。例えば、1963 年には、4億年から5億年の半減期を持つ267108[61]、2009年には1億年以上の半減期を持つ292122[62]が存在するという主張がなされたが、どちらの主張も合意が得られていない。
  13. ^ 相対論効果は、物体が光速に近い速度で移動する時に生じる。原子の場合、高速に移動する物体は電子である。
  1. ^ Münzenberg, G.; Gupta, M. (2011). Production and Identification of Transactinide Elements. pp. 877. doi:10.1007/978-1-4419-0720-2_19. 
  2. ^ a b c d e http://newscenter.lbl.gov/news-releases/2010/10/26/six-new-isotopes/
  3. ^ Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H. et al. (2010). “Synthesis of a New Element with Atomic Number Z=117”. Physical Review Letters 104. doi:10.1103/PhysRevLett.104.142502. PMID 20481935. 
  4. ^ Kramer, K. (2016年). “Explainer: superheavy elements”. Chemistry World. 2020年3月15日閲覧。
  5. ^ Discovery of Elements 113 and 115”. Lawrence Livermore National Laboratory. 2015年9月11日時点のオリジナルよりアーカイブ。2020年3月15日閲覧。
  6. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons. pp. 1–16. doi:10.1002/9781119951438.eibc2632. ISBN 978-1-119-95143-8. S2CID 127060181
  7. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V. et al. (2009). “Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe”. Physical Review C 79 (2): 024608. doi:10.1103/PhysRevC.79.024608. ISSN 0556-2813. 
  8. ^ Munzenberg, G.; Armbruster, P.; Folger, H. et al. (1984). “The identification of element 108”. Zeitschrift fur Physik A 317 (2): 235-236. Bibcode1984ZPhyA.317..235M. doi:10.1007/BF01421260. オリジナルの7 June 2015時点におけるアーカイブ。. https://web.archive.org/web/20150607124040/http://www.gsi-heavy-ion-researchcenter.org/forschung/kp/kp2/ship/108-discovery.pdf 2012年10月20日閲覧。. 
  9. ^ Subramanian, S. (2019年). “Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist”. Bloomberg Businessweek. 2020年11月14日時点のオリジナルよりアーカイブ。2020年1月18日閲覧。
  10. ^ Ivanov, D. (2019年). “Сверхтяжелые шаги в неизвестное” [Superheavy steps into the unknown] (ロシア語). N+1. 2020年2月2日閲覧。
  11. ^ Hinde, D. (2014年). “Something new and superheavy at the periodic table”. The Conversation. 2020年1月30日閲覧。
  12. ^ a b Krasa, A. (2010年). “Neutron Sources for ADS”. Czech Technical University in Prague. pp. 4-8. 2019年3月3日時点のオリジナルよりアーカイブ。2019年10月20日閲覧。
  13. ^ Wapstra, A. H. (1991). “Criteria that must be satisfied for the discovery of a new chemical element to be recognized”. Pure and Applied Chemistry 63 (6): 883. doi:10.1351/pac199163060879. ISSN 1365-3075. http://publications.iupac.org/pac/pdf/1991/pdf/6306x0879.pdf 2020年8月28日閲覧。. 
  14. ^ a b Hyde, E. K.; Hoffman, D. C.; Keller, O. L. (1987). “A History and Analysis of the Discovery of Elements 104 and 105”. Radiochimica Acta 42 (2): 67-68. doi:10.1524/ract.1987.42.2.57. ISSN 2193-3405. http://www.escholarship.org/uc/item/05x8w9h7. 
  15. ^ a b c Chemistry World (2016年). “How to Make Superheavy Elements and Finish the Periodic Table [Video]”. Scientific American. 2020年1月27日閲覧。
  16. ^ Hoffman, Ghiorso & Seaborg 2000, p. 334.
  17. ^ Hoffman, Ghiorso & Seaborg 2000, p. 335.
  18. ^ Zagrebaev, Karpov & Greiner 2013, p. 3.
  19. ^ Beiser 2003, p. 432.
  20. ^ Beiser 2003, p. 439.
  21. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). “Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory”. Physical Review C 87 (2): 024320-1. arXiv:1208.1215. Bibcode2013PhRvC..87b4320S. doi:10.1103/physrevc.87.024320. ISSN 0556-2813. 
  22. ^ Audi et al. 2017, pp. 030001-128–030001-138.
  23. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). “A beachhead on the island of stability”. Physics Today 68 (8): 32-38. Bibcode2015PhT....68h..32O. doi:10.1063/PT.3.2880. ISSN 0031-9228. OSTI 1337838. https://www.osti.gov/biblio/1337838. 
  24. ^ Grant, A. (2018). “Weighing the heaviest elements”. Physics Today. doi:10.1063/PT.6.1.20181113a. 
  25. ^ a b Robinson, A. E. (2019). “The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War”. Distillations. https://www.sciencehistory.org/distillations/the-transfermium-wars-scientific-brawling-and-name-calling-during-the-cold-war 2020年2月22日閲覧。. 
  26. ^ Популярная библиотека химических элементов. Сиборгий (экавольфрам)” [Popular library of chemical elements. Seaborgium (eka-tungsten)] (ロシア語). n-t.ru. 2020年1月7日閲覧。 Reprinted from “Экавольфрам [Eka-tungsten]” (ロシア語). Популярная библиотека химических элементов. Серебро - Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond]. Nauka. (1977) 
  27. ^ Nobelium - Element information, properties and uses | Periodic Table”. Royal Society of Chemistry. 2020年3月1日閲覧。
  28. ^ a b Kragh 2018, pp. 38–39.
  29. ^ Kragh 2018, p. 40.
  30. ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts. et al. (1993). “Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group”. Pure and Applied Chemistry 65 (8): 1815-1824. doi:10.1351/pac199365081815. オリジナルの25 November 2013時点におけるアーカイブ。. https://web.archive.org/web/20131125223512/http://www.iupac.org/publications/pac/1993/pdf/6508x1815.pdf 2016年9月7日閲覧。. 
  31. ^ Commission on Nomenclature of Inorganic Chemistry (1997). “Names and symbols of transfermium elements (IUPAC Recommendations 1997)”. Pure and Applied Chemistry 69 (12): 2471-2474. doi:10.1351/pac199769122471. http://publications.iupac.org/pac/pdf/1997/pdf/6912x2471.pdf. 
  32. ^ Choppin, G. R.; Liljenzin, J.-O.; Rydberg, J. (2002). Radiochemistry and Nuclear Chemistry. Elsevier. p. 416. ISBN 978-0-7506-7463-8 
  33. ^ Hoffman, D. C. (1996). The Transuranium Elements: From Neptunium and Plutonium to Element 112 (Report). Lawrence Livermore National Laboratory. オリジナルの2017-10-09時点におけるアーカイブ。. https://web.archive.org/web/20171009195038/http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/28/017/28017156.pdf 2017年10月10日閲覧。. 
  34. ^ Karol, P. (1994). “The Transfermium Wars”. Chemical & Engineering News 74 (22): 2-3. doi:10.1021/cen-v072n044.p002. 
  35. ^ a b c d e f g h i j Barber, R. C.; Greenwood, N. N.; Hrynkiewicz, A. Z. et al. (1993). “Discovery of the Transfermium elements”. Pure and Applied Chemistry 65 (8): 1757. doi:10.1351/pac199365081757. オリジナルの2016-09-20時点におけるアーカイブ。. https://web.archive.org/web/20160920113229/http://s3.documentcloud.org/documents/562229/iupac1.pdf 2016年9月7日閲覧。. 
  36. ^ "Dubnium | chemical element". Encyclopedia Britannica (英語). 2018年3月25日閲覧
  37. ^ Stadtler, Ingrid; Niemann, Hans (1971) (ドイツ語). Symbolik und Fachausdruecke. Mathematik, Physik, Chemie. Germany: Verlag Enzyklopadie. p. 83. https://www.google.com/books/edition/Symbolik_und_Fachausdruecke_Mathematik_P/314LAQAAIAAJ?hl=en&gbpv=0 
  38. ^ (フランス語) Industries atomiques et spatiales, Volume 16. Switzerland. (1972). pp. 30-31. https://books.google.com/books?id=GDU7AAAAMAAJ 
  39. ^ Radiochemistry. Royal Society of Chemistry. (1972). ISBN 9780851862545. https://www.google.ru/books/edition/Radiochemistry/6GCqk1BSid0C?hl=ru&gbpv=1&dq=dubnium&pg=PA59&printsec=frontcover 
  40. ^ Suomen kemistilehti. Suomalaisten Kemistien Seura.. (1971). https://www.google.ru/books/edition/Suomen_kemistilehti/dI3QAAAAMAAJ?hl=ru&gbpv=1&bsq=dubnium&dq=dubnium&printsec=frontcover 
  41. ^ Fontani, M.; Costa, M.; Orna, M. V. (2014). The Lost Elements: The Periodic Table's Shadow Side. Oxford University Press. p. 386. ISBN 978-0-19-938335-1. オリジナルのFebruary 27, 2018時点におけるアーカイブ。. https://web.archive.org/web/20180227084247/https://books.google.com/books?id=Te1jBAAAQBAJ&pg=PA386 
  42. ^ Hoffmann, K. (1987) (ロシア語). Можно ли сделать золото? Мошенники, обманщики и ученые в истории химических элементов [Can one make gold? Swindlers, deceivers and scientists from the history of the chemical elements]. Nauka. pp. 180-181  Translation from Hoffmann, K. (1979) (ドイツ語). Kann man Gold machen? Gauner, Gaukler und Gelehrte. Aus der Geschichte der chemischen Elemente [Can one make gold? Swindlers, deceivers and scientists. From the history of the chemical elements]. Urania 
  43. ^ a b c d e Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts. et al. (1993). “Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group”. Pure and Applied Chemistry 65 (8): 1815-1824. doi:10.1351/pac199365081815. オリジナルの25 November 2013時点におけるアーカイブ。. https://web.archive.org/web/20131125223512/http://www.iupac.org/publications/pac/1993/pdf/6508x1815.pdf 2016年9月7日閲覧。. 
  44. ^ Robinson, A. (2017). “An Attempt to Solve the Controversies Over Elements 104 and 105: A Meeting in Russia, 23 September 1975”. Bulletin of the American Physical Society 62 (1): B10.003. Bibcode2017APS..APRB10003R. オリジナルのSeptember 22, 2017時点におけるアーカイブ。. https://web.archive.org/web/20170922194715/http://meetings.aps.org/Meeting/APR17/Session/B10.3 2017年10月14日閲覧。. 
  45. ^ Ohrstrom, L.; Holden, N. E. (2016). “The Three-letter Element Symbols”. Chemistry International 38 (2). doi:10.1515/ci-2016-0204. 
  46. ^ “Names and symbols of transfermium elements (IUPAC Recommendations 1994)”. Pure and Applied Chemistry 66 (12): 2419-2421. (1994). doi:10.1351/pac199466122419. オリジナルのSeptember 22, 2017時点におけるアーカイブ。. https://web.archive.org/web/20170922194905/https://www.iupac.org/publications/pac-2007/1994/pdf/6612x2419.pdf 2016年9月7日閲覧。. 
  47. ^ Yarris, L. (1994年). “Naming of element 106 disputed by international committee”. 2016年9月7日閲覧。
  48. ^ Hoffman, Ghiorso & Seaborg 2000, pp. 389–394
  49. ^ a b c d e f g h i j k l m Hoffman, D. C.; Lee, D. M.; Pershina, V. (2006). “Transactinides and the future elements”. In Morss, L.R.; Edelstein, N. M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Springer Science+Business Media. pp. 1652–1752. ISBN 978-1-4020-3555-5 
  50. ^ Loss, R. D.; Corish, J. (2012). “Names and symbols of the elements with atomic numbers 114 and 116 (IUPAC Recommendations 2012)”. Pure and Applied Chemistry 84 (7): 1669-1672. doi:10.1351/PAC-REC-11-12-03. https://www.iupac.org/publications/pac/pdf/2012/pdf/8407x1669.pdf 2018年4月21日閲覧。. 
  51. ^ Bera, J. K. (1999). “Names of the Heavier Elements”. Resonance 4 (3): 53-61. doi:10.1007/BF02838724. 
  52. ^ Hoffman, Ghiorso & Seaborg 2000, pp. 369–399
  53. ^ “Names and symbols of transfermium elements (IUPAC Recommendations 1997)”. Pure and Applied Chemistry 69 (12): 2471-2474. (1997). doi:10.1351/pac199769122471. 
  54. ^ Periodic Table of the Elements”. lbl.gov. Lawrence Berkeley National Laboratory (1999年). 2022年12月6日閲覧。
  55. ^ Wilk, P. A. (2001). Properties of Group Five and Group Seven transactinium elements (PhD). University of California, Berkeley. doi:10.2172/785268. 2022年12月6日閲覧
  56. ^ Buhler, Brendan (2014年). “Branding the Elements: Berkeley Stakes its Claims on the Periodic Table”. alumni.berkeley.edu. Cal Alumni Association. 2022年12月6日閲覧。 “Poor element 105 has had five different names-Berkeley partisans still call it hahnium.”
  57. ^ @BerkeleyLab. "#16elements from Berkeley Lab: mendelevium, nobelium, lawrencium, rutherfordium, hahnium, seaborgium" (ツイート). Twitterより2022年12月23日閲覧
  58. ^ Armbruster, Peter; Munzenberg, Gottfried (2012). “An experimental paradigm opening the world of superheavy elements”. The European Physical Journal H 37: 237-309. doi:10.1140/epjh/e2012-20046-7. https://link.springer.com/article/10.1140/epjh/e2012-20046-7 2022年12月6日閲覧。. 
  59. ^ a b Karpov, A. V.; Zagrebaev, V. I.; Palenzuela, Y. M.; Greiner, W. (2013). Greiner, W.. ed (英語). Exciting Interdisciplinary Physics. FIAS Interdisciplinary Science Series. Springer International Publishing. pp. 69-79. doi:10.1007/978-3-319-00047-3_6. ISBN 978-3-319-00046-6 
  60. ^ a b Audi, G.; Kondev, F. G.; Wang, M. et al. (2012). “The NUBASE2012 evaluation of nuclear properties”. Chinese Physics C 36 (12): 1157-1286. Bibcode2012ChPhC..36....1A. doi:10.1088/1674-1137/36/12/001. オリジナルのJuly 6, 2016時点におけるアーカイブ。. https://web.archive.org/web/20160706052152/http://amdc.in2p3.fr/nubase/Nubase2012-v3.pdf. 
  61. ^ Emsley, J. (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York: Oxford University Press. pp. 215-217. ISBN 978-0-19-960563-7 
  62. ^ Marinov, A.; Rodushkin, I.; Kolb, D. et al. (2010). “Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th”. International Journal of Modern Physics E 19 (1): 131-140. arXiv:0804.3869. Bibcode2010IJMPE..19..131M. doi:10.1142/S0218301310014662. 
  63. ^ Karpov, A. V.; Zagrebaev, V. I.; Palenzuela, Y. M. et al. (2013). “Superheavy Nuclei: Decay and Stability”. Exciting Interdisciplinary Physics. FIAS Interdisciplinary Science Series. p. 69. doi:10.1007/978-3-319-00047-3_6. ISBN 978-3-319-00046-6 
  64. ^ Botvina, Al.; Mishustin, I.; Zagrebaev, V. et al. (2010). “Possibility of synthesizing superheavy elements in nuclear explosions”. International Journal of Modern Physics E 19 (10): 2063-2075. arXiv:1006.4738. Bibcode2010IJMPE..19.2063B. doi:10.1142/S0218301310016521. 
  65. ^ Wuenschel, S.; Hagel, K.; Barbui, M. et al. (2018). “An experimental survey of the production of alpha decaying heavy elements in the reactions of 238U +232Th at 7.5-6.1 MeV/nucleon”. Physical Review C 97 (6): 064602. arXiv:1802.03091. Bibcode2018PhRvC..97f4602W. doi:10.1103/PhysRevC.97.064602. 
  66. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D. et al. (29 September 2022). “First experiment at the Super Heavy Element Factory: High cross section of 288Mc in the243Am+48Ca reaction and identification of the new isotope 264Lr”. Physical Review C 106 (3): L031301. doi:10.1103/PhysRevC.106.L031301. https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.L031301. 
  67. ^ Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D. et al. (2010). “Synthesis of a New Element with Atomic Number Z=117”. Physical Review Letters 104 (14): 142502. Bibcode2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935. オリジナルのDecember 19, 2016時点におけるアーカイブ。. https://web.archive.org/web/20161219150219/https://www.researchgate.net/publication/44610795_Synthesis_of_a_New_Element_with_Atomic_Number_Z117. 
  68. ^ Khuyagbaatar, J.; Yakushev, A.; Dullmann, Ch. E. et al. (2014). 48Ca + 249Bk Fusion Reaction Leading to Element Z = 117: Long-Lived α-Decaying 270Db and Discovery of 266Lr”. Physical Review Letters 112 (17): 172501. Bibcode2014PhRvL.112q2501K. doi:10.1103/PhysRevLett.112.172501. hdl:1885/148814. PMID 24836239. オリジナルの2017-08-17時点におけるアーカイブ。. https://web.archive.org/web/20170817044936/http://lup.lub.lu.se/search/ws/files/2377958/4432321.pdf. 
  69. ^ Wills, S.; Berger, L. (2011). “Science Magazine Podcast. Transcript, 9 September 2011”. Science. オリジナルのOctober 18, 2016時点におけるアーカイブ。. https://web.archive.org/web/20161018212118/http://science.sciencemag.org/content/sci/suppl/2011/09/08/333.6048.1479-b.DC1/SciencePodcast_110909.pdf 2016年10月12日閲覧。. 
  70. ^ Oganessian, Yu. Ts.; Sobiczewski, A.; Ter-Akopian, G. M. (2017). “Superheavy nuclei: from prediction to discovery”. Physica Scripta 92 (2): 023003. Bibcode2017PhyS...92b3003O. doi:10.1088/1402-4896/aa53c1. 
  71. ^ Östlin, A.; Vitos, L. (2011). “First-principles calculation of the structural stability of 6d transition metals”. Physical Review B 84 (11). Bibcode2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104. 
  72. ^ Gyanchandani, Jyoti; Sikka, S. K. (10 May 2011). “Physical properties of the 6 d -series elements from density functional theory: Close similarity to lighter transition metals”. Physical Review B 83 (17): 172101. doi:10.1103/PhysRevB.83.172101. 
  73. ^ Stoyer, N. J.; Landrum, J. H.; Wilk, P. A. (2006). Chemical Identification of a Long-Lived Isotope of Dubnium, a Descendant of Element 115 (Report). IX International Conference on Nucleus Nucleus Collisions. オリジナルのJanuary 31, 2017時点におけるアーカイブ。. https://web.archive.org/web/20170131161312/https://e-reports-ext.llnl.gov/pdf/338922.pdf 2017年10月9日閲覧。. 
  74. ^ Nagame, Y.; Kratz, J. V.; Schadel, M. (2016). “Chemical properties of rutherfordium (Rf) and dubnium (Db) in the aqueous phase” (英語). EPJ Web of Conferences 131: 07007. Bibcode2016EPJWC.13107007N. doi:10.1051/epjconf/201613107007. オリジナルの2019-04-28時点におけるアーカイブ。. https://web.archive.org/web/20190428145306/https://jopss.jaea.go.jp/pdfdata/BB2016-0022.pdf. 
  75. ^ Chiera, Nadine M.; Sato, Tetsuya K.; Eichler, Robert et al. (2021). “Chemical Characterization of a Volatile Dubnium Compound, DbOCl3”. Angewandte Chemie International Edition 60 (33): 17871-17874. doi:10.1002/anie.202102808. 




このページでは「ウィキペディア」からドブニウムを検索した結果を表示しています。
Weblioに収録されているすべての辞書からドブニウムを検索する場合は、下記のリンクをクリックしてください。
 全ての辞書からドブニウムを検索

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ドブニウム」の関連用語

ドブニウムのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ドブニウムのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのドブニウム (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS