グランド・タック・モデルとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > グランド・タック・モデルの意味・解説 

グランド・タック・モデル

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/29 03:10 UTC 版)

グランド・タック・モデル[1] (grand tack hypothesis) とは、「太陽から 3.5 au の軌道で形成された木星が、より内側の 1.5 au の辺りまで移動 (migration) し、さらに土星との軌道共鳴の影響を受けて反転し、現在の 5.2 au の軌道で停止した。」とする、惑星物理学における仮説である。木星の方向転換が、帆船が風上に向けて帆走する際に方向を変える「タッキング」と似ていることから名付けられた[2]


注釈

  1. ^ 外側に行くほど円盤の厚み (スケールハイト) が増す構造のこと[13]
  2. ^ 2つの天体が衝突後に合体せず、共に生き残る衝突を指す[30]
  3. ^ 衝突によって生成された溶融物。

出典

  1. ^ 木星は「壊し屋」だった、太陽系形成過程に新説 - 太陽系が他の惑星系と大きく異なる要因か”. ナショナルジオグラフィック. 日経ナショナル ジオグラフィック社 (2015年3月27日). 2017年8月10日閲覧。
  2. ^ Jupiter's Youthful Travels Redefined Solar System”. NASA (2011年6月6日). 2017年8月10日閲覧。
  3. ^ a b Kelly Beatty (2010年10月16日). “Our "New, Improved" Solar System”. Sky & Telescope. F+W Media. 2017年8月10日閲覧。
  4. ^ How Did Jupiter Shape Our Solar System?”. Universe Today (2015年12月24日). 2017年8月13日閲覧。
  5. ^ Jupiter's 'Smashing' Migration May Explain Our Oddball Solar System”. Space.com (2015年3月23日). 2017年8月13日閲覧。
  6. ^ 井田茂 2016, p. 202.
  7. ^ a b New Research Suggests Solar System May Have Once Harbored Super-Earths”. Caltech (2015年3月12日). 2017年8月13日閲覧。
  8. ^ a b Morbidelli, Alessandro; Crida, Aurélien (2007). “The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk”. Icarus 191 (1): 158-171. arXiv:0704.1210. Bibcode2007Icar..191..158M. doi:10.1016/j.icarus.2007.04.001. ISSN 00191035. 
  9. ^ Brasser, R.; Matsumura, S. et al. (2016). “Analysis of Terrestrial Planet Formation by the Grand Tack Model: System Architecture and Tack Location”. The Astrophysical Journal 821 (2): 75. arXiv:1603.01009v1. Bibcode2016ApJ...821...75B. doi:10.3847/0004-637X/821/2/75. ISSN 1538-4357. 
  10. ^ Masset, F.; Snellgrove, M. (2001). “Reversing type II migration: resonance trapping of a lighter giant protoplanet”. Monthly Notices of the Royal Astronomical Society 320 (4): L55-L59. arXiv:astro-ph/0003421. Bibcode2001MNRAS.320L..55M. doi:10.1046/j.1365-8711.2001.04159.x. ISSN 0035-8711. 
  11. ^ a b c d e f D'Angelo, Gennaro; Marzari, Francesco (2012). “Outward Migration of Jupiter and Saturn in Evolved Gaseous Disks”. The Astrophysical Journal 757 (1): 50 (23 pp.). arXiv:1207.2737. Bibcode2012ApJ...757...50D. doi:10.1088/0004-637X/757/1/50. ISSN 0004-637X. 
  12. ^ a b c d e Walsh, Kevin J. et al. (2011). “A low mass for Mars from Jupiter's early gas-driven migration”. Nature 475 (7355): 206-209. arXiv:1201.5177. Bibcode2011Natur.475..206W. doi:10.1038/nature10201. ISSN 0028-0836. PMID 21642961. 
  13. ^ 生まれたての原始惑星系円盤でも回転軸は不揃い? - アストロアーツ”. アストロアーツ (2019年1月10日). 2019年4月4日閲覧。
  14. ^ Pierens, A.; Raymond, S. N. (2011). “Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula”. Astronomy & Astrophysics 533: A131. arXiv:1107.5656. Bibcode011A&A...533A.131P Check bibcode: length (help). doi:10.1051/0004-6361/201117451. ISSN 0004-6361. 
  15. ^ Raymond, Sean N.; O'Brien, David P.; Morbidelli, Alessandro; Kaib, Nathan A. (2009). “Building the terrestrial planets: Constrained accretion in the inner Solar System”. Icarus 203 (2): 644-662. arXiv:0905.3750. Bibcode2009Icar..203..644R. doi:10.1016/j.icarus.2009.05.016. ISSN 0019-1035. 
  16. ^ Ripping Apart Asteroids to Account for Earth's Strangeness”. Astrobites (2015年11月2日). 2017年8月13日閲覧。
  17. ^ Carter, Philip J. et al. (2015). “Compositional Evolution during Rocky Protoplanet Accretion”. The Astrophysical Journal 813 (1): 72. arXiv:1509.07504. Bibcode2015ApJ...813...72C. doi:10.1088/0004-637X/813/1/72. ISSN 1538-4357. 
  18. ^ a b The Grand Tack”. Southwest Research Institute. 2017年8月13日閲覧。
  19. ^ Hansen, Brad M. S. (2009). “Formation of the Terrestrial Planets from a Narrow Annulus”. The Astrophysical Journal 703 (1): 1131-1140. arXiv:0908.0743. Bibcode2009ApJ...703.1131H. doi:10.1088/0004-637X/703/1/1131. ISSN 0004-637X. 
  20. ^ Mysteries of the asteroid belt”. The History of the Solar System (2014年3月9日). 2017年8月13日閲覧。
  21. ^ The Grand Tack”. PlanetPlanet (2013年8月2日). 2017年8月13日閲覧。
  22. ^ Deienno, Rogerio; Gomes, Rodney S.; Walsh, Kevin J.; Morbidelli, Alessandro; Nesvorný, David (2016). “Is the Grand Tack model compatible with the orbital distribution of main belt asteroids?”. Icarus 272: 114–124. Bibcode2016Icar..272..114D. doi:10.1016/j.icarus.2016.02.043. http://www.sciencedirect.com/science/article/pii/S0019103516001214. 
  23. ^ O'Brien, David P. et al. (2014). “Water delivery and giant impacts in the 'Grand Tack' scenario”. Icarus 239: 74-84. arXiv:1407.3290. Bibcode2014Icar..239...74O. doi:10.1016/j.icarus.2014.05.009. 
  24. ^ Matsumura, Soko et al. (2016). “Effects of Dynamical Evolution of Giant Planets on the Delivery of Atmophile Elements during Terrestrial Planet Formation”. The Astrophysical Journal 818 (1): 15. arXiv:1512.08182. Bibcode2016ApJ...818...15M. doi:10.3847/0004-637X/818/1/15. 
  25. ^ Batygin, Konstantin; Laughlin, Greg (2015). “Jupiter's decisive role in the inner Solar System's early evolution”. Proceedings of the National Academy of Sciences 112 (14): 4214-4217. arXiv:1503.06945. doi:10.1073/pnas.1423252112. ISSN 0027-8424. PMC 4394287. PMID 25831540. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394287/. 
  26. ^ University of California Santa Cruz Press Release (2015年3月25日). “Wandering Jupiter swept away super-Earths, creating our unusual Solar System”. Astronomy Now. Pole Star Publications Ltd. 2017年8月14日閲覧。
  27. ^ a b c d e Raymond, Sean N. et al. (2016). “Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?”. Monthly Notices of the Royal Astronomical Society 458 (3): 2962-2972. arXiv:1602.06573. doi:10.1093/mnras/stw431. ISSN 0035-8711. 
  28. ^ Spalding, Christopher (2018-12-11). “The Primordial Solar Wind as a Sculptor of Terrestrial Planet Formation”. The Astrophysical Journal 869 (1): L17. doi:10.3847/2041-8213/aaf478. ISSN 2041-8213. http://stacks.iop.org/2041-8205/869/i=1/a=L17?key=crossref.97d88aa456b2cdf3a43e1c4a119f2ad7. 
  29. ^ Brasser, R.; Matsumura, S.; Ida, S.; Mojzsis, S. J.; Werner, S. C. (2016-04-12). “ANALYSIS OF TERRESTRIAL PLANET FORMATION BY THE GRAND TACK MODEL: SYSTEM ARCHITECTURE AND TACK LOCATION”. The Astrophysical Journal 821 (2): 75. doi:10.3847/0004-637X/821/2/75. ISSN 1538-4357. http://stacks.iop.org/0004-637X/821/i=2/a=75?key=crossref.0addc73be3d98d191ddde286edce6b33. 
  30. ^ Asphaug, Erik; Agnor, Craig B.; Williams, Quentin (2006). “Hit-and-run planetary collisions”. Nature 439 (7073): 155–160. doi:10.1038/nature04311. ISSN 0028-0836. 
  31. ^ Clement, Matthew S.; Kaib, Nathan A.; Raymond, Sean N.; Chambers, John E.; Walsh, Kevin J. (2019-3). “The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation” (英語). Icarus 321: 778–790. doi:10.1016/j.icarus.2018.12.033. https://linkinghub.elsevier.com/retrieve/pii/S0019103518306262. 
  32. ^ Johnson, B. C.; Walsh, K. J.; Minton, D. A.; Krot, A. N.; Levison, H. F. (2016). “Timing of the formation and migration of giant planets as constrained by CB chondrites”. Science Advances 2 (12): e1601658. doi:10.1126/sciadv.1601658. ISSN 2375-2548. 
  33. ^ Heller, R. et al. (2015). “The formation of the Galilean moons and Titan in the Grand Tack scenario”. Astronomy & Astrophysics 579: L4. arXiv:1506.01024. Bibcode2015A&A...579L...4H. doi:10.1051/0004-6361/201526348. 
  34. ^ Hold on to Your Moons! Ice, Atmospheres and the Grand Tack”. astrobites. 2017年8月17日閲覧。
  35. ^ Hansen, Bradley M S (2018-04-01). “A dynamical context for the origin of Phobos and Deimos” (英語). Monthly Notices of the Royal Astronomical Society 475 (2): 2452–2466. doi:10.1093/mnras/stx3361. ISSN 0035-8711. https://academic.oup.com/mnras/article/475/2/2452/4793256. 
  36. ^ Jacobson, S. A.; Morbidelli, A., A. (2014). “Lunar and terrestrial planet formation in the Grand Tack scenario”. Phil. Trans. R. Soc. A 372: 174. arXiv:1406.2697. Bibcode2014RSPTA.37230174J. doi:10.1098/rsta.2013.0174. http://rsta.royalsocietypublishing.org/content/372/2024/20130174. 
  37. ^ Brasser, R.; Mojzsis, S. J.; Matsumura, S.; Ida, S. (2017). “The cool and distant formation of Mars”. Earth and Planetary Science Letters 468: 85–93. arXiv:1704.00184. doi:10.1016/j.epsl.2017.04.005. http://www.sciencedirect.com/science/article/pii/S0012821X1730184X. 
  38. ^ a b Pierens, Arnaud; Raymond, Sean N.; Nesvorny, David; Morbidelli, Alessandro. “Outward Migration of Jupiter and Saturn in 3:2 or 2:1 Resonance in Radiative Disks: Implications for the Grand Tack and Nice models”. The Astrophysical Journal Letters 795 (1): L11. arXiv:1410.0543. Bibcode2014ApJ...795L..11P. doi:10.1088/2041-8205/795/1/L11. 
  39. ^ Marzari, F.; D’Angelo, G.; Picogna, G. (2019). “Circumstellar Dust Distribution in Systems with Two Planets in Resonance”. The Astronomical Journal 157 (2): id. 45 (12 pp.). arXiv:1812.07698. Bibcode2019AJ....157...45M. doi:10.3847/1538-3881/aaf3b6. 
  40. ^ D'Angelo, G.; Marzari, F. (2015). “Sustained Accretion on Gas Giants Surrounded by Low-Turbulence Circumplanetary Disks”. American Astronomical Society, DPS meeting #47 id.418.06. Bibcode2015DPS....4741806D. 
  41. ^ Marzari, F.; D'Angelo, G. (2013). “Mass Growth and Evolution of Giant Planets on Resonant Orbits”. American Astronomical Society, DPS meeting #45 id.113.04. Bibcode2013DPS....4511304M. 
  42. ^ 井田茂 2016, p. 214-215.
  43. ^ Chambers, J. E. (2013). “Late-stage planetary accretion including hit-and-run collisions and fragmentation”. Icarus 224 (1): 43-56. Bibcode2013Icar..224...43C. doi:10.1016/j.icarus.2013.02.015. ISSN 00191035. 
  44. ^ Fischer, Rebecca A.; Ciesla, Fred J. (2014). “Dynamics of the terrestrial planets from a large number of N-body simulations”. Earth and Planetary Science Letters 392: 28-38. Bibcode2014E&PSL.392...28F. doi:10.1016/j.epsl.2014.02.011. ISSN 0012821X. 
  45. ^ Barclay, Thomas; Quintana, Elisa V. (2015). “In-situ Formation of Mars-like Planets - Results from Hundreds of N-body Simulations That Include Collisional Fragmentaion”. American Astronomical Society, DPS meeting #47 #507.06. Bibcode2015DPS....4750706B. http://adsabs.harvard.edu/abs/2015DPS....4750706B. 
  46. ^ Izidoro, A. et al. (2014). “Terrestrial Planet Formation in a Protoplanetary Disk with a Local Mass Depletion: A Successful Scenario for the Formation of Mars”. The Astrophysical Journal 782 (1): 31. arXiv:1312.3959. Bibcode2014ApJ...782...31I. doi:10.1088/0004-637X/782/1/31. ISSN 0004-637X. 
  47. ^ Izidoro, André et al. (2015). “Terrestrial planet formation constrained by Mars and the structure of the asteroid belt”. Monthly Notices of the Royal Astronomical Society 453 (4): 3619-3634. arXiv:1508.01365. Bibcode2015MNRAS.453.3619I. doi:10.1093/mnras/stv1835. ISSN 0035-8711. 
  48. ^ Scientists predict that rocky planets formed from "pebbles"”. Southwest Research Institute. 2017年8月17日閲覧。
  49. ^ Levison, Harold F.; Kretke, Katherine A.; Walsh, Kevin; Bottke, William (2015). “Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects”. Proceedings of the National Academy of Sciences 112 (46): 14180-14185. arXiv:1510.02095. Bibcode2015PNAS..11214180L. doi:10.1073/pnas.1513364112. ISSN 0027-8424. 
  50. ^ Bromley, Benjamin C.; Kenyon, Scott J. (2017). “Terrestrial Planet Formation: Dynamical Shake-up and the Low Mass of Mars”. The Astronomical Journal 153 (5): 216. arXiv:1703.10618. Bibcode2017AJ....153..216B. ISSN 1538-3881. 
  51. ^ Raymond, Sean N.; Izidoro, Andre (2017). “Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion”. Icarus 297: 134–148. arXiv:1707.01234. Bibcode2017Icar..297..134R. doi:10.1016/j.icarus.2017.06.030. http://www.sciencedirect.com/science/article/pii/S0019103517302592. 
  52. ^ Raymond, Sean N.; Izidoro, Andre (2017). “The empty primordial asteroid belt”. Science Advances 3 (9): e1701138. arXiv:1709.04242. Bibcode2017SciA....3E1138R. doi:10.1126/sciadv.1701138. PMID 28924609. 
  53. ^ The asteroid belt: a cosmic refugee camp?”. planetplanet. 2017年9月14日閲覧。
  54. ^ Where did Earth’s (and the asteroid belt’s) water come from?”. planetplanet. 2017年7月7日閲覧。
  55. ^ Izidoro, Andre; Raymond, Sean N.; Pierens, Arnaud; Morbidelli, Alessandro; Winter, Othon C.; Nesvorny, David (2016). “The Asteroid Belt as a Relic From a Chaotic Early Solar System”. The Astrophysical Journal Letters 833 (1): 40. arXiv:1609.04970. Bibcode2016ApJ...833...40I. doi:10.3847/1538-4357/833/1/40. http://iopscience.iop.org/article/10.3847/1538-4357/833/1/40. 
  56. ^ Modest chaos in the early solar system”. astrobites. 2016年11月21日閲覧。
  57. ^ Deienno, Rogerio; Izidoro, Andre; Morbidelli, Alessandro; Gomes, Rodney S.; Nesvorny, David; Raymond, Sean N. (2018). “The excitation of a primordial cold asteroid belt as an outcome of the planetary instability”. The Astrophysical Journal 864 (1): 50. arXiv:1808.00609. Bibcode2018ApJ...864...50D. doi:10.3847/1538-4357/aad55d. 
  58. ^ Clement, Matthew S.; Raymond, Sean N.; Kaib, Nathan A. (2019). “Excitation and Depletion of the Asteroid Belt in the Early Instability Scenario”. The Astronomical Journal 157 (1): 38. arXiv:1811.07916. doi:10.3847/1538-3881/aaf21e. 
  59. ^ Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N. (2017). “Planetesimal Clearing and Size-dependent Asteroid Retention by Secular Resonance Sweeping during the Depletion of the Solar Nebula”. The Astrophysical Journal 836 (2): 207. arXiv:1610.09670. Bibcode2017ApJ...836..207Z. doi:10.3847/1538-4357/836/2/207. http://iopscience.iop.org/article/10.3847/1538-4357/836/2/207/meta. 
  60. ^ Did the Solar System form inside-out?”. PlanetPlanet. 2016年2月23日閲覧。
  61. ^ a b Ogihara, Masahiro; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Suzuki, Takeru K. (2015). “Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the solar system's terrestrial planets”. Astronomy & Astrophysics 579: A65. arXiv:1505.01086. Bibcode2015A&A...579A..65O. doi:10.1051/0004-6361/201525636. http://www.aanda.org/articles/aa/abs/2015/07/aa25636-15/aa25636-15.html. 
  62. ^ a b Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru K.; Morbidelli, Alessandro (2018). “Formation of the terrestrial planets in the solar system around 1 au via radial concentration of planetesimals”. Astronomy & Astrophysics 612: L5. arXiv:1804.02361. doi:10.1051/0004-6361/201832654. 
  63. ^ a b c Volk, Kathryn; Gladman, Brett (2015). “Consolidating and Crushing Exoplanets: Did It Happen Here?”. The Astrophysical Journal Letters 806 (2): L26. arXiv:1502.06558. Bibcode2015ApJ...806L..26V. doi:10.1088/2041-8205/806/2/L26. http://iopscience.iop.org/article/10.1088/2041-8205/806/2/L26. 
  64. ^ Mercury Sole Survivor of Close Orbiting Planets”. Astrobiology Magazine. 2017年1月14日閲覧。
  65. ^ a b c Morbidelli, A.; Bitsch, B.; Crida, A.; Gounelle, M.; Guillot, T.; Jacobsen, S.; Johansen, A.; Lambrechts, M. et al. (2016). “Fossilized condensation lines in the Solar System protoplanetary disk”. Icarus 267: 368–376. arXiv:1511.06556. Bibcode2016Icar..267..368M. doi:10.1016/j.icarus.2015.11.027. http://www.sciencedirect.com/science/article/pii/S0019103515005448. 
  66. ^ a b Why is Mercury so far from the Sun?”. astrobites. 2016年11月29日閲覧。
  67. ^ a b Simon, Jacob (2016). “The Influence of Magnetic Field Geometry on the Formation of Close-in Exoplanets”. The Astrophysical Journal Letters 827 (2): L37. arXiv:1608.00573. Bibcode2016ApJ...827L..37S. doi:10.3847/2041-8205/827/2/L37. http://iopscience.iop.org/article/10.3847/2041-8205/827/2/L37. 
  68. ^ a b c Lambrechts, Michiel; Morbidelli, Alessandro; Jacobson, Seth A.; Johansen, Anders; Bitsch, Bertram; Izidoro, Andre; Raymond, Sean N. (2019). "Formation of planetary systems by pebble accretion and migration: How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode". arXiv:1902.08694


「グランド・タック・モデル」の続きの解説一覧


このページでは「ウィキペディア」からグランド・タック・モデルを検索した結果を表示しています。
Weblioに収録されているすべての辞書からグランド・タック・モデルを検索する場合は、下記のリンクをクリックしてください。
 全ての辞書からグランド・タック・モデルを検索

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「グランド・タック・モデル」の関連用語

グランド・タック・モデルのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



グランド・タック・モデルのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのグランド・タック・モデル (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS