軌条 継ぎ目

軌条

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/14 06:39 UTC 版)

継ぎ目

異形継目板(37kg-50Nレール)
中継レール(50T-50Nレール)
伸縮継目
ロングレールの溶接作業(テルミット法
斜め接着絶縁レールの継目部分

レールは端部同士を繋いで用いる。この接続方法は左右のレールを対に接続する相対式継目方式と、左右のレールが対ではなく、それぞれをほぼ交互に接続する相互式継目方式の2種類がある。前者は、レールの下に設置された枕木の補強や信号回路の分断がやり易いが、継ぎ目の沈下が発生し易い。後者は、継ぎ目の沈下や走行中の列車の揺れは減るが、逆に列車のローリングが走行中に起こり易くなる。このため、21世紀における世界各国の鉄道では相互式継目を採用している事例は少なくなっている。

継ぎ目の観点から、レールの長さによる区分を以下に述べる。

定尺レール

レールの標準の長さは、日本の場合、1本25 m[2]で、定尺レールと呼ぶ。線路では、これを、継ぎ目ではレール同士を突合せて突合せ継目とし継目板で繋いで連続させて用いている。レールの継ぎ目を繋ぐ継目板には、断面形状により短冊型・L型・I型が用いられており、I型はN型レールで使用されている。また、レールの継ぎ目の間では、適当な隙間を継目板の中間で設定している。これは、レールが気温日射の変化に応じて伸縮するためであり、レール自身の温度は、気温の他に直射日光が当たる所では相当高くなり、その温度差は60 - 80 ℃となる。そのため、定尺レールでは、40 ℃において1 mm、0 ℃において13 mm程度としている。車輪がレールの継ぎ目を通過する際に発生するガタンゴトンという音はジョイント音と呼ばれる。

継ぎ目構造の望ましい条件としては次のことが上げられる。

  • 垂直及び横の荷重に対してレールと同等の強度を有する
  • 温度変化での伸縮に対して、最高温度でレールが座屈せず、最低温度において継目ボルトに過大な力がかからない
  • 取り付け取り外しが容易である

継目板とレールを締結しているボルト・ナットには、レールの温度による伸縮に対して支障が起きない条件が要求される緊締力で締結されており、ナットの緩みを防止するため、ナットと継目板の間にロックナットワッシャーを挿入している。また、レールは、電気車による電気運転において使用された動力電流を変電所に戻す帰線や、軌道回路により使用される電流を流すための電流回路としても利用されるため、継目板とレールとの間の接触面ではなどで電気抵抗が大きくなることを防ぐため、レールの継ぎ目の間にレールボンドや信号ボンドを繋いでおり、ハンダ合金によりレールに溶着されている。また軌道回路の境界などで絶縁が必要な場合には、継目板とレールの間に絶縁プレートを挟み、かつ、ボルトと継目板の間に絶縁チューブを挿入して軌道回路のための絶縁を確保している。これを絶縁継目という。

ロングレール

一方、定尺レール(工場出荷時の標準で25 m)を溶接して繋いだレールもある。このうち、全長200 m以上のレールをロングレールという。継ぎ目を減らすことで保守作業の省力化や、騒音・振動対策で乗り心地の向上が目指せる[10]。2014年(平成26年)には新日鐵住金八幡製鉄所が長さ150 mのレールを出荷する体制を整えており、溶接する労力の低減やロングレール化した際の精度の向上を目指す動きも見られる[11]

ロングレールの中央部(不動区間)は枕木に固く締結し、枕木の周囲にバラストを十分に敷き詰めることで気温変化によるレール方向の伸縮は抑え込まれており、常にレール内部には応力軸力)が発生している[12]。しかし、端部(可動区間)は、温度変化により定尺レールよりも大きく伸縮するため、通常の突合せ継目ではなく、伸縮継目が用いられる[13]。枕木への締結力や枕木の周囲に敷き詰められたバラストの量、レール温度の管理などが十分でないと、猛暑時にレールが座屈する事故や、極寒時にレールが破断する事故が発生することもある。これらは前述のロングレールの不動区間が温度変化によりレール方向に伸縮する軸力に耐えきれなくなった時に発生する。

ロングレール区間では、初期の頃は伸縮継手を軌道回路の区分前後に設置し、通常のレール間を絶縁継目でつないで軌道回路を絶縁分割するが、1970年に強力な接着剤をレールと継目板の間に接着して、レールの軸力と列車衝撃強度に耐えるとともに、電気絶縁性能を十分に持たせた接着絶縁レールを用いて軌道回路を絶縁分割する方式が採用されている。この方式には、最初の頃は湿式法が採用されていたが、1年未満で接着部が剥離する損傷が発生したため、1984年にエポキシ樹脂をプレート状に予備成型した固定接着剤をレールと継目板の間に圧着して加熱する乾式法が現在において採用されている。最近ではレールのボルト穴の空隙部に接着剤を充填して、レールと継目板の間の接着層内にテフロンシートを介在させることで、継目板からの接着剤の剥離と継目板の腐食を防止するともに、電気絶縁性能を更に上げた改良形の乾式法が採用されつつある[14]。この方式では、レールのウィークポイントである絶縁継目が無くなりかつ、軌道回路ごとに絶縁付き伸縮継手を挿入する必要がなくなるのが採用するメリットである。

日本でのロングレールは東海道新幹線で本格的に採用され、その後、在来線や私鉄幹線にも導入が進んでいる。

なお、溶接後の処理が甘いか、長期間の使用により、もともと継ぎ目だった部分からジョイント音が聞こえてくる。また、ロングレールの長さには限度があるため、継ぎ目を全くなくすことは出来ない。またロングレールは万能ではなく急カーブのあるところへの敷設はレールの偏摩耗の観点から適当ではなく、とくに半径300 m未満のカーブ区間ではレール自身の弾性で反発が強くなるため使用には適さない。このことから急カーブの区間は定尺レールが使用される。

区分

種類 摘要
ロングレール 200m以上
長尺レール 25m以上 200m未満
定尺レール 25m(30kgレールは20m)
(一部では、24mなどの寸詰まりなレールも存在する)
短尺レール 5m - 25m(調整用レールに使われているほか、
ごく一部の地方のローカル線の古い規格のレールがそれである)

軽レールの長さは数メートルのものが多い。


注釈

  1. ^ 引っ張り試験、荷重試験、破断面試験、曲げ試験、硬度試験、磨耗試験、腐食試験、顕微鏡試験を行う。
  2. ^ 日本の普通レールはJIS E 1101 により、レール腹面に鋼塊又は鋳片の頭部方向、レールの種類の記号、製鋼炉の記号、製造業者名又はその略号、製造年月又はその略号 について浮き出し表示を求めている。また逆の腹面には、鋼塊又は鋳片の順位番号、鋼塊注入順位記号、製鋼番号、作業組の記号、炭素含有量、マンガン含有量(60N、70S、80Sに限る)、鋼の種類(種類 AR は無表示)を刻印することを求めている。
  3. ^ 成分は、C 0.60-0.75%、Si 0.10-0.30% Mn 0.7-1.1% P≦0.035% S≦0.040% 引っ張り強さ≧80Kgf/mm2 伸び≧8%である。
  4. ^ 日本においても茅沼炭鉱軌道木道社藤枝焼津間軌道で木道が使用された。

出典

  1. ^ 西亀ら 1980, p. 121.
  2. ^ a b c d e ゆがむレール 猛暑で相次ぐ/過去には脱線事故も発生」『東京新聞』朝刊2023年8月29日20面(同日閲覧)
  3. ^ 高橋 2006, p. 519.
  4. ^ a b 天野ら 1984, p. 16.
  5. ^ 片岡 2007, p. 24.
  6. ^ 片岡 2007, p. 25.
  7. ^ JIS E 1101:2001 普通レール及び分岐器類用特殊レール. 日本規格協会. (2001/6/30) 
  8. ^ レール | 鉄道用語辞典 | 日本民営鉄道協会”. www.mintetsu.or.jp. 2020年1月10日閲覧。
  9. ^ 稲田 隆『鐵道工学 上巻』誠文堂〈総合工学全集2・土木工学科、13巻の7〉、1937年10月18日、299頁http://library.jsce.or.jp/Image_DB/s_book/jsce100/htm/061.htm 
  10. ^ 天野ら 1984, p. 22.
  11. ^ 世界最長となる鉄道用 150mレールの製造・出荷体制を整備』(プレスリリース)新日鐵住金、2014年4月16日http://www.nssmc.com/news/20140416_100.html 
  12. ^ 西亀ら 1980, p. 147.
  13. ^ 西亀ら 1980, p. 147,149.
  14. ^ 接着絶縁レールの継目構造とその製造方法」(pdf)『RRR』、鉄道総合技術研究所、2011年8月、38-39頁、2023年12月14日閲覧 
  15. ^ a b 天野ら 1984, p. 19.
  16. ^ 片岡 2007, p. 27.
  17. ^ 名村ら 2007, p. 6.
  18. ^ 名村ら 2007, pp. 6–7.
  19. ^ 高屋 2015.
  20. ^ a b 名村ら 2007, p. 7.
  21. ^ a b c 天野ら 1984, p. 20.
  22. ^ 小代ら 2012, p. 986.
  23. ^ 相川明、林雅江、坂井宏隆、Kaewunruen Sakdirat「車輪転動の不安定化とRail Squatsの発生メカニズムに関する転がり接触解析」『理論応用力学講演会 講演論文集』第65巻、2019年、205頁、doi:10.11345/japannctam.65.0_205 
  24. ^ クリスティアン・ウォルマー著、安原和見・須川綾子訳『世界鉄道史』(河出書房新社、2012年)pp.28-29
  25. ^ a b c 片岡 2012, p. 28.
  26. ^ 佐伯ら 2013, p. 19-20.
  27. ^ 佐伯ら 2013, p. 20.
  28. ^ 西野ら 1982, p. 30.





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「軌条」の関連用語

軌条のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



軌条のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの軌条 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS