二項分布 二項分布の概要

二項分布

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2013/12/02 16:33 UTC 版)

二項分布
確率質量関数
Binomial distribution pmf.svg
累積分布関数
Binomial distribution cdf.svg
色は上図と同じ
母数 n \geq 0 試行回数(整数)
0 \leq p \leq 1 成功確率(実数)
k \in \{0,\dots,n\}\!
確率質量関数 {n\choose k} p^k (1-p)^{n-k} \!
累積分布関数 I_{1-p}(n-\lfloor k\rfloor, 1+\lfloor k\rfloor) \!
期待値 n\,p\!
最頻値 \lfloor (n+1)\,p\rfloor\!
分散 n\,p\,(1-p)\!
歪度 \frac{1-2\,p}{\sqrt{n\,p\,(1-p)}}\!
尖度 \frac{1-6\,p\,(1-p)}{n\,p\,(1-p)}\!
モーメント母関数 (1-p + p\,e^t)^n \!
特性関数 (1-p + p\,e^{i\,t})^n \!
テンプレートを表示

二項分布の典型例を次に示す。全住民の5%がある感染症に罹患しており、その全住民の中から無作為に500人を抽出する。ただし住民は500人よりずっと多いとする。このとき、抽出された集団の中に罹患者が30人以上いる確率はどれくらいか。抽出された集団の中に含まれる罹患者数を確率変数 X で表すとき、Xn = 500、p = 0.05 の二項分布に近似的に従う。ここで、求める確率は Pr[X ≥ 30] である。

定義

パラメータp(ただし0\leq p \leq 1)ならび自然数のパラメータnに対して、自然数を値としてとる確率変数X

P[X=k]={n\choose k}p^k(1-p)^{n-k}\quad\mbox{for}\ k=0,1,2,\dots,n

を満たすとき、確率変数Xはパラメータ np の二項分布B(n, p)に従うという。確率変数 X が二項分布 B(n, p)に従うとき、X ~ B(n, p) と表記する。

ここで、

{n\choose k} = {}_n C_k =\frac{n!}{k!(n-k)!}

n 個から k 個を選ぶ組合せの数、すなわち二項係数を表す。二項分布という名前は、この二項係数に由来している。n = 1 の場合を特に、ベルヌーイ分布と呼ぶ。

この公式は、次のように解釈することができる。一回の試行において成功する確率がpであるとき、pk の項は k 回成功する確率を表し、(1 − p)nkの項 は nk 回失敗する確率を表している。ただし、k 回の成功は n 回の試行の中のどこかで発生したものであるから、C(n, k) 通りの発生順序がある。したがって、n 回の独立な試行を行ったときの成功回数がkとなる確率を意味する。

性質

期待値・分散

B(n, p)にしたがう確率変数X に対し、X期待値E[X]は

E[X]=np

であり、分散Var[X]は

\mbox{Var}(X)=np(1-p)

となる。

X最頻値は、(n+1)p 以下の最大の整数によって与えられる。ただし、m = (n+1)p において m が整数である場合、m − 1 と m の双方が最頻値となる。

再生性

二項分布は再生性を有する。すなわち B(n, p) に従う確率変数X、と B(m, p)に従う確率変数Y が互いに独立であるとき、確率変数の和X + Y は二項分布B(n+m, p)に従う。

近似

二項分布の近似として、次の2種類の分布が知られている。

正規分布

期待値np および 分散np(1 − p) が5よりも大きい場合、二項分布B(n, p)に対する良好な近似として正規分布がある。但し、この近似を適用するにあたっては、変数のスケールに注意し、連続な分布への適切な処理がなされる必要がある。より厳密に述べれば、nが十分大きくかつ、期待値np および 分散np(1 − p) も十分大きい場合、期待値からの差|k-np|が標準偏差(np(1 − p))1/2と同程度となるkに対して

P[X=k] \simeq \frac{1}{\sqrt{2 \pi np(1-p)}}\exp{ \left(- \frac{(k-np)^2}{2np(1-p)}  \right)}=N(np, np(1-p))

が漸近的に成り立つ。ここで、N(np,np(1 − p))は期待値np 、分散np(1 − p)の正規分布を表す。二項分布が一定の条件下で正規分布に近づく、この近似式は数学者アブラーム・ド・モアブルが1733年に著書 The Doctrine of Chances の中で紹介したのが最初であり、ド・モアブル=ラプラスの極限定理と呼ばれる。これは、今日でいうところの中心極限定理の特別な場合に相当する。この正規分布による近似を用いることにより、計算の労力を大きく削減することができる。

例えば、多数の住民の中から n 人を無作為に抽出し、ある質問について同意するかどうかを尋ねる場合を考える。同意する人数の割合は、もちろんサンプルに依存する。n 人を無作為に抽出する作業を何度も繰り返し行うとき、同意する人々の割合の分布は、実際の全住民の合意割合 p とほぼ等しい平均を持ち、標準偏差 σ = (p(1 − p)/n)1/2 である正規分布に近似される。未知の変数 p は、標準偏差が小さいほど正確な推定が可能である。そのため、抽出する人数 n は多い方が好ましい。

95%信頼区間ならば、正規分布で近似すると、その範囲は、

p-2\sqrt{\frac{p(1-p)}{n}} \sim p+2\sqrt{\frac{p(1-p)}{n}}

となる。たとえば、p = 50%の場合、n = 100なら40%〜60%、n = 1,000ならば47%〜53%、n = 10,000ならば49%〜51%となる。n = 10の場合、正規分布近似ではなく、本来の定義に従って計算すると、89%信頼区間で、30%〜70%となる[1]

ポアソン分布

n が大きく p が十分小さい場合、np は適度な大きさとなるため、パラメータ λ = np であるポアソン分布が 二項分布B(n, p) の良好な近似を与える。すなわち、期待値λ = npを一定とし、nを十分大きくしたとき、

P[X=k] \simeq \frac{\lambda^k e^{-\lambda}}{k!}


が成り立つ(詳細はポアソン分布の項を参照)。この結果は数学者シメオン・ドニ・ポアソンが1837年に著書 Recherches sur la probabilite des jugements (Researches on the Probabilities) の中で与えており、ポアソンの極限定理と呼ばれる。

関連項目




「二項分布」の続きの解説一覧





二項分布と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

二項分布に関係した商品

辞書ショートカット

カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

「二項分布」の関連用語

二項分布のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

画像から探す




二項分布のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの二項分布 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2014 Weblio RSS