コンデンシン 翻訳後修飾

コンデンシン

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/21 02:45 UTC 版)

コンデンシン(condensin)は、分裂期の染色体凝縮(chromosome condensation; 図1)と分離に中心的な役割を果たすタンパク質複合体である[1][2]細胞分裂期の染色体を構成する主要なタンパク質として、アフリカツメガエル (Xenopus laevis) の卵抽出液(カエル卵抽出液)から初めて同定された[3]


  1. ^ Hirano T (2016). “Condensin-based chromosome organization from bacteria to vertebrates”. Cell 164 (5): 847-857. PMID 26919425. 
  2. ^ Kalitsis P, Zhang T, Marshall KM, Nielsen CF, Hudson DF (2017). “Condensin, master organizer of the genome”. Chromosome Res. 25 (1): 61-76. PMID 28181049. 
  3. ^ Hirano T, Kobayashi R, Hirano M. (1997). “Condensins, chromosome condensation complex containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein”. Cell 89 (4): 511-21. PMID 9160743. 
  4. ^ a b Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003). “Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells”. Cell 115 (1): 109-21. PMID 14532007. 
  5. ^ Uhlmann F (2016). “SMC complexes: from DNA to chromosomes”. Nat. Rev. Mol. Cell Biol. 17: 399-412. PMID 27075410. 
  6. ^ Yatskevich S, Rhodes J, Nasmyth K (2019). “Organization of chromosomal DNA by SMC complexes”. Annu. Rev. Genet. 53: 445-482. PMID 31577909. 
  7. ^ Neuwald AF, Hirano T (2000). “HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions”. Genome Res. 10 (10): 1445-52. PMID 11042144. 
  8. ^ Yoshimura SH, Hirano T (2016). “HEAT repeats - versatile arrays of amphiphilic helices working in crowded environments?”. J. Cell Sci. 129 (21): 3963-3970. PMID 27802131. 
  9. ^ a b Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F (2003). “Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners”. Mol. Cell 11 (3): 571-575. PMID 12667442. 
  10. ^ Herzog S, Nagarkar Jaiswal S, Urban E, Riemer A, Fischer S, Heidmann SK (2013). “Functional dissection of the Drosophila melanogaster condensin subunit Cap-G reveals its exclusive association with condensin I”. PLoS Genet. 9 (4): e1003463. PMID 23637630. 
  11. ^ King TD, Leonard CJ, Cooper JC, Nguyen S, Joyce EF, Phadnis, N (2019). “Recurrent losses and rapid evolution of the condensin II complex in insects”. Mol. Biol. Evol.: doi: 10.1093/molbev/msz140. PMID 31270536. 
  12. ^ a b c Csankovszki G, Collette K, Spahl K, Carey J, Snyder M, Petty E, Patel U, Tabuchi T, Liu H, McLeod I, Thompson J, Sarkeshik A, Yates J, Meyer BJ, Hagstrom K (2009). “Three distinct condensin complexes control C. elegans chromosome dynamics”. Curr. Biol. 19 (1): 9-19. PMID 19119011. 
  13. ^ a b c Sutani T, Yuasa T, Tomonaga T, Dohmae N, Takio K, Yanagida M (1999). “Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4”. Genes Dev. 13 (17): 2271-83. PMID 10485849. 
  14. ^ Freeman L, Aragon-Alcaide L, Strunnikov A (2000). “The condensin complex governs chromosome condensation and mitotic transmission of rDNA”. J. Cell Biol. 149 (4): 811–824. PMID 10811823. 
  15. ^ a b c Fujiwara T, Tanaka K, Kuroiwa T, Hirano T (2013). “Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae”. Mol. Biol. Cell. 24 (16): 2515-27. PMID 23783031. 
  16. ^ Howard-Till R, Loidl J (2017). “Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in Tetrahymena thermophila”. Mol. Biol. Cell 29 (4): 466-478. PMID 29237819. 
  17. ^ Howard-Till R, Tian M, Loidl J (2019). “A specialized condensin complex participates in somatic nuclear maturation in Tetrahymena thermophila”. Mol Biol Cell: doi: 10.1091/mbc.E18-08-0487. PMID 30893010. 
  18. ^ Zhang F, Bechara S, Nowacki M (2023). “Structural maintenance of chromosomes (SMC) proteins are required for DNA elimination in Paramecium”. Life Sci Alliance (2): e202302281. PMID 38056908. 
  19. ^ a b Mascarenhas J, Soppa J, Strunnikov AV, Graumann PL (2002). “Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein”. EMBO J. 21 (12): 3108-18. PMID 12065423. 
  20. ^ a b Yamazoe M, Onogi T, Sunako Y, Niki H, Yamanaka K, Ichimura T, Hiraga S (1999). “Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli”. EMBO J. 18 (21): 5873-84. PMID 10545099. 
  21. ^ Palecek JJ, Gruber S (2015). “Kite proteins: a superfamily of SMC/kleisin partners conserved across Bacteria, Archaea, and Eukaryotes”. Structure 23 (12): 2183-2190. PMID 26585514. 
  22. ^ Petrushenko ZM, She W, Rybenkov VV (2011). “A new family of bacterial condensins”. Mol. Microbiol. 81 (4): 881-896. PMID 21752107. 
  23. ^ Lioy VS, Junier I, Lagage V, Vallet I, Boccard F (2020). “Distinct Activities of Bacterial Condensins for Chromosome Management in Pseudomonas aeruginosa”. Cell Rep 33 (5): 108344. PMID 33147461. 
  24. ^ Böhm K, Giacomelli G, Schmidt A, Imhof A, Koszul R, Marbouty M, Bramkamp M (2020). “Chromosome organization by a conserved condensin-ParB system in the actinobacterium Corynebacterium glutamicum”. Nat Commun 11 (1): 1485. PMID 32198399. 
  25. ^ Melby TE, Ciampaglio CN, Briscoe G, Erickson HP (1998). “The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge”. J. Cell Biol. 142 (6): 1595-1604. PMID 9744887. 
  26. ^ Anderson DE, Losada A, Erickson HP, Hirano T (2002). “Condensin and cohesin display different arm conformations with characteristic hinge angles”. J. Cell Biol. 156 (6): 419-424. PMID 11815634. 
  27. ^ Onn I, Aono N, Hirano M, Hirano T (2007). “Reconstitution and subunit geometry of human condensin complexes”. EMBO J. 26 (4): 1024-1034. PMID 17268547. 
  28. ^ Fennell-Fezzie R, Gradia SD, Akey D, Berger JM (2005). “The MukF subunit of Escherichia coli condensin: architecture and functional relationship to kleisins”. EMBO J. 24 (11): 1921-1930. PMID 15902272. 
  29. ^ Woo JS, Lim JH, Shin HC, Suh MK, Ku B, Lee KH, Joo K, Robinson H, Lee J, Park SY, Ha NC, Oh BH (2009). “Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions”. Cell 136 (1): 85-96. PMID 19135891. 
  30. ^ Bürmann F, Shin HC, Basquin J, Soh YM, Giménez-Oya V, Kim YG, Oh BH, Gruber S (2013). “An asymmetric SMC-kleisin bridge in prokaryotic condensin”. Nat. Struct. Mol. Biol. 20 (3): 371-379. PMID 23353789. 
  31. ^ Kamada K, Miyata M, Hirano T (2013). “Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB”. Structure 21 (4): 581-594. PMID 23541893. 
  32. ^ Griese JJ, Witte G, Hopfner KP (2010). “Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins”. Nucleic Acids Res. 38 (10): 3454-3465. PMID 20139420. 
  33. ^ Soh Y, Bürmann F, Shin H, Oda T, Jin KS, Toseland CP, Kim C, Lee H, Kim SJ, Kong M, Durand-Diebold M, Kim Y, Kim HM, Lee NK, Sato M, Oh B, Gruber S (2015). “Molecular basis for SMC rod formation and its dissolution upon DNA binding”. Mol. Cell 57 (2): 290-303. PMID 25557547. 
  34. ^ a b c Kschonsak M, Merkel F, Bisht S, Metz J, Rybin V, Hassler M, Haering CH (2017). “Structural basis for a safety-belt mechanism that anchors condensin to chromosomes”. Cell 171 (3): 588-600.e24. PMID 28988770. 
  35. ^ Hara K, Kinoshita K, Migita T, Murakami K, Shimizu K, Takeuchi K, Hirano T, Hashimoto H (2019). “Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex”. EMBO Rep 20 (5): pii: e47183. doi: 10.15252/embr.201847183. PMID 30858338. 
  36. ^ a b Hassler M, Shaltiel IA, Kschonsak M, Simon B, Merkel F, Thärichen L, Bailey HJ, Macošek J, Bravo S, Metz J, Hennig J, Haering CH (2019). “Structural basis of an asymmetric condensin ATPase cycle”. Mol Cell 74 (6): 1175-1188.e24. PMID 31226277. 
  37. ^ Lee BG, Merkel F, Allegretti M, Hassler M, Cawood C, Lecomte L, O'Reilly FJ, Sinn LR, Gutierrez-Escribano P, Kschonsak M, Bravo S, Nakane T, Rappsilber J, Aragon L, Beck M, Löwe J, Haering CH (2020). “Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism”. Nat Struct Mol Biol 27 (8): 743-751. PMID 32661420. 
  38. ^ Eeftens JM, Katan AJ, Kschonsak M, Hassler M, de Wilde L, Dief EM, Haering CH, Dekker C (2016). “Condensin Smc2-Smc4 dimers are flexible and dynamic”. Cell Rep 14 (8): 1813-1818. PMID 26904946. 
  39. ^ Kimura K, Hirano T (1997). “ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation”. Cell 90 (4): 625-634. PMID 9288743. 
  40. ^ Kimura K, Rybenkov VV, Crisona NJ, Hirano T, Cozzarelli NR (1999). “13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation”. Cell 98 (2): 239-248. PMID 10428035. 
  41. ^ Hagstrom KA1, Holmes VF, Cozzarelli NR, Meyer BJ (2002). “C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis”. Genes Dev 16 (6): 729-742. PMID 11914278. 
  42. ^ a b c St-Pierre J, Douziech M, Bazile F, Pascariu M, Bonneil E, Sauvé V, Ratsima H, D'Amours D (2009). “Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity”. Mol Cell 120 (Pt 7): 1245-1255. PMID 19481522. 
  43. ^ a b Kimura K, Hirano M, Kobayashi R, Hirano T (1998). “Phosphorylation and activation of 13S condensin by Cdc2 in vitro”. Science 282 (5388): 487-490. PMID 9774278. 
  44. ^ Baxter J, Sen N, Martínez VL, De Carandini ME, Schvartzman JB, Diffley JF, Aragón L (2011). “Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes”. Science 331 (6022): 1328-1332. PMID 21393545. 
  45. ^ Strick TR, Kawaguchi T, Hirano T (2004). “Real-time detection of single-molecule DNA compaction by condensin I”. Curr. Biol. 14 (10): 874-880. PMID 15186743. 
  46. ^ Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017). “The condensin complex is a mechanochemical motor that translocates along DNA”. Science 358 (6363): 672-676. PMID 28882993. 
  47. ^ Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, Dekker C (2018). “Real-time imaging of DNA loop extrusion by condensin”. Science 360 (6384): 102-105. PMID 29472443. 
  48. ^ Kim E, Kerssemakers J, Shaltiel IA, Haering CH, Dekker C (2020). “DNA-loop extruding condensin complexes can traverse one another”. Nature 579 (7799): 438-442. PMID 32132705. 
  49. ^ Oldenkamp R, Rowland BD (2022). “A walk through the SMC cycle: From catching DNAs to shaping the genome”. Mol Cell 82 (9): 1616-1630. PMID 35477004. 
  50. ^ Dekker C, Haering CH, Peters, JM, Rowland, BD (2023). “How do molecular motors fold the genome?”. Science 382 (6671): 646-648. PMID 37943927. 
  51. ^ Shaltiel IA, Datta S, Lecomte L, Hassler M, Kschonsak M, Bravo S, Stober C, Ormanns J, Eustermann S, Haering CH. (2022). “A hold-and-feed mechanism drives directional DNA loop extrusion by condensin”. Science 376 (6597): 1087-1094. PMID 35653469. 
  52. ^ Kim E, Gonzalez AM, Pradhan B, van der Torre J, Dekker C (2022). “Condensin-driven loop extrusion on supercoiled DNA”. Nat Struct Mol Biol 29 (7): 719-727. PMID 35835864. 
  53. ^ Martínez-García B, Dyson S, Segura J, Ayats A, Cutts EE, Gutierrez-Escribano P, Aragón L, Roca J (2022). “Condensin pinches a short negatively supercoiled DNA loop during each round of ATP usage”. EMBO J: e111913. PMID 36533296. 
  54. ^ a b Kinoshita K, Kobayashi TJ, Hirano T (2015). “Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes”. Dev Cell 33 (1): 94-106. PMID 25850674. 
  55. ^ a b Kinoshita K, Tsubota Y, Tane S, Aizawa Y, Sakata R, Takeuchi K, Shintomi K, Nishiyama T, Hirano T (2022). “A loop extrusion-independent mechanism contributes to condensin I-mediated chromosome shaping”. J Cell Biol 221 (3): e202109016. PMID 35045152. 
  56. ^ a b Shintomi K, Takahashi TS, Hirano T (2015). “Reconstitution of mitotic chromatids with a minimum set of purified factors”. Nat Cell Biol 17 (8): 1014-1023. PMID 26075356. 
  57. ^ Shintomi K, Hirano T (2021). “Guiding functions of the C-terminal domain of topoisomerase IIα advance mitotic chromosome assembly”. Nat Commun 12 (1): 2917. PMID 34006877. 
  58. ^ Choppakatla P, Dekker B, Cutts EE, Vannini A, Dekker J, Funabiki H (2021). “Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization”. eLife 10: e68918. PMID 34406118. 
  59. ^ Shintomi K, Inoue F, Watanabe H, Ohsumi K, Ohsugi M, Hirano T (2017). “Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts”. Science 356 (6344): 1284-1287. PMID 28522692. 
  60. ^ Kong M, Cutts EE, Pan D, Beuron F, Kaliyappan T, Xue C, Morris EP, Musacchio A, Vannini A, Greene EC (2020). “Human condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA”. Mol. Cell 79 (1): 99-114. PMID 32445620. 
  61. ^ a b Yoshida MM, Kinoshita K, Aizawa Y, Tane S, Yamashita D, Shintomi K, Hirano T (2022). “Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays”. eLife 11: e78984. PMID 35983835. 
  62. ^ a b c d Yoshida MM, Kinoshita K, Shintomi K, Aizawa Y, Hirano T (2023). “Regulation of condensin II by self-suppression and release mechanisms”. Mol Biol Cell: mbcE23100392. PMID 38088875. 
  63. ^ Goloborodko A, Imakaev MV, Marko JF, Mirny L (2016). “Compaction and segregation of sister chromatids via active loop extrusion”. eLife 5: doi: 10.7554/eLife.14864. PMID 27192037. 
  64. ^ Cheng TM, Heeger S, Chaleil RA, Matthews N, Stewart A, Wright J, Lim C, Bates PA, Uhlmann F (2015). “A simple biophysical model emulates budding yeast chromosome condensation”. eLife 4: doi: 10.7554/eLife.05565. PMID 25922992. 
  65. ^ Sakai Y, Mochizuki A, Kinoshita K, Hirano T, Tachikawa M. (2018). “Modeling the functions of condensin in chromosome shaping and segregation”. PLoS Comput Biol 14 (6): e1006152. doi: 10.1371/journal.pcbi.1006152. PMID 29912867. 
  66. ^ Ono T, Fang Y, Spector DL, Hirano T (2004). “Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells”. Mol. Biol. Cell 15 (7): 3296-308. PMID 15146063. 
  67. ^ Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM (2004). “Distinct functions of condensin I and II in mitotic chromosome assembly”. J. Cell Sci. 117 (Pt 26): 6435-45. PMID 15572404. 
  68. ^ a b c Shintomi K, Hirano T (2011). “The relative ratio of condensin I to II determines chromosome shapes”. Genes Dev. 25 (14): 1464-1469. PMID 21715560. 
  69. ^ a b Lee J, Ogushi S, Saitou M, Hirano T (2011). “Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes”. Mol. Biol. Cell 22 (18): 3465-3477. PMID 21795393. 
  70. ^ a b c d e f Nishide K, Hirano T (2014). “Overlapping and non-overlapping functions of condensins I and II in neural stem cell divisions”. PLoS Genet 10 (12): e1004847. PMID 25474630. 
  71. ^ a b c Hirano T (2012). “Condensins: universal organizers of chromosomes with diverse functions”. Genes Dev 26 (4): 1659-1678. PMID 22855829. 
  72. ^ Green LC, Kalitsis P, Chang TM, Cipetic M, Kim JH, Marshall O, Turnbull L, Whitchurch CB, Vagnarelli P, Samejima K, Earnshaw WC, Choo KH, Hudson DF (2012). “Contrasting roles of condensin I and condensin II in mitotic chromosome formation”. J. Cell Sci. 125 (Pt6): 1591-1604. PMID 22344259. 
  73. ^ Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M (1994). “Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis”. EMBO J. 13 (20): 4938-4952. PMID 7957061. 
  74. ^ Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003). “Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes”. Dev. Cell 5 (2): 323-336. PMID 12919682. 
  75. ^ a b c Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T (2011). “Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis”. Plant Cell 23 (9): 3533-3546. PMID 21917552. 
  76. ^ Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013). “Organization of the mitotic chromosome”. Science 342 (6161): 948-953. PMID 24200812. 
  77. ^ Schalbetter SA, Goloborodko A, Fudenberg G, Belton JM, Miles C, Yu M, Dekker J, Mirny L, Baxter J (2017). “SMC complexes differentially compact mitotic chromosomes according to genomic context”. Nat Cell Biol 19 (9): 1071-1080. PMID 28825700. 
  78. ^ Lazar-Stefanita L , Scolari VF, Mercy G, Muller H, Guérin TM, Thierry A, Mozziconacci J, Koszul R (2017). “Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle”. EMBO J 36 (18): 2684-2697. PMID 28729434. 
  79. ^ Kakui Y, Rabinowitz A, Barry DJ, Uhlmann F (2017). “Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast”. Nat Genet 49 (10): 1553-1557. PMID 28825727. 
  80. ^ Tanizawa H, Kim KD, Iwasaki O, Noma KI (2017). “Architectural alterations of the fission yeast genome during the cell cycle”. Nat Struct Mol Biol (11): 965-976. PMID 28991264. 
  81. ^ Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, Xie L, Paulson JR, Earnshaw WC, Mirny LA, Dekker J (2018). “A pathway for mitotic chromosome formation”. Science: pii: eaao6135. doi: 10.1126/science.aao6135. PMID 29348367. 
  82. ^ Walther N, Hossain MJ, Politi AZ, Koch B, Kueblbeck M, Ødegård-Fougner Ø, Lampe M, Ellenberg J (2018). “A quantitative map of human Condensins provides new insights into mitotic chromosome architecture”. J Cell Biol: doi: 10.1083/jcb.201801048. PMID 29632028. 
  83. ^ Yu HG, Koshland DE (2003). “Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages”. J. Cell Biol. 163 (5): 937-947. PMID 14662740. 
  84. ^ Hartl TA, Sweeney SJ, Knepler PJ, Bosco G (2008). “Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis”. PLoS Genet. 4 (10): e1000228. PMID 18927632. 
  85. ^ Resnick TD, Dej KJ, Xiang Y, Hawley RS, Ahn C, Orr-Weaver TL (2009). “Mutations in the chromosomal passenger complex and the condensin complex differentially affect synaptonemal complex disassembly and metaphase I configuration in Drosophila female meiosis”. Genetics 181 (3): 875-887. PMID 19104074. 
  86. ^ Chan RC, Severson AF, Meyer BJ (2004). “Condensin restructures chromosomes in preparation for meiotic divisions”. J. Cell Biol. 167 (4): 613-625. PMID 15557118. 
  87. ^ a b Houlard M, Godwin J, Metson J, Lee J, Hirano T, Nasmyth K (2015). “Condensin confers the longitudinal rigidity of chromosomes”. Nat Cell Biol 17: 771-781. PMID 25961503. 
  88. ^ Kinoshita K, Hirano T (2017). “Dynamic organization of mitotic chromosomes”. Curr Opin Cell Biol 46: 46-53. PMID 28214612. 
  89. ^ Johzuka K, Terasawa M, Ogawa H, Ogawa T, Horiuchi T (2006). “Condensin loaded onto the replication fork barrier site in the rRNA gene repeats during S phase in a FOB1-dependent fashion to prevent contraction of a long repetitive array in Saccharomyces cerevisiae”. Mol Cell Biol. 26 (6): 2226-2236. PMID 16507999. 
  90. ^ Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR (2008). “Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes”. Genes Dev. 22 (16): 2204-2214. PMID 18708579. 
  91. ^ Aono N, Sutani T, Tomonaga T, Mochida S, Yanagida M (2002). “Cnd2 has dual roles in mitotic condensation and interphase”. Nature 417 (6885): 197-202. PMID 12000964. 
  92. ^ Iwasaki O, Tanaka A, Tanizawa H, Grewal SI, Noma K (2010). “Centromeric localization of dispersed Pol III genes in fission yeast”. Mol. Biol. Cell 21 (2): 254-265. PMID 19910488. 
  93. ^ Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, Uzawa S, Dekker J, Meyer BJ (2015). “Condensin-driven remodelling of X chromosome topology during dosage compensation”. Nature 523 (7559): 210-244. PMID 26030525. 
  94. ^ Yan THK, Wu Z, Kwok ACM, Wong JTY (2020). “Knockdown of Dinoflagellate condensin CcSMC4 subunit leads to S-Phase impediment and decompaction of liquid crystalline chromosomes”. Microorganisms 8 (4): E565. PMID 32295294. 
  95. ^ Pandey R, Abel S, Boucher M, Wall RJ, Zeeshan M, Rea E, Freville A, Lu XM, Brady D, Daniel E, Stanway RR, Wheatley S, Batugedara G, Hollin T, Bottrill AR, Gupta D, Holder AA, Le Roch KG, Tewari R (2020). “Plasmodium condensin core subunits SMC2/SMC4 mediate atypical mitosis and are essential for parasite proliferation and transmission”. Cell Rep. 30 (6): 1883-1897.e6. PMID 32049018. 
  96. ^ a b Hartl TA, Smith HF, Bosco G (2008). “Chromosome alignment and transvection are antagonized by condensin II”. Science 322 (5906): 1384-1387. PMID 19039137. 
  97. ^ Bauer CR, Hartl TA, Bosco G (2012). “Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes”. PLoS Genet 8 (8): e1002873. PMID 22956908. 
  98. ^ Rosin LF, Nguyen SC, Joyce EF (2018). “Condensin II drives large-scale folding and spatial partitioning of interphase chromosomes in Drosophila nuclei”. PLoS Genet 14 (7): e1007393. doi: 10.1371/journal.pgen.1007393. PMID 30001329. 
  99. ^ Ono T, Yamashita D, Hirano T (2013). “Condensin II initiates sister chromatid resolution during S phase”. J. Cell Biol. 200 (4): 429-441. PMID 23401001. 
  100. ^ Dekker B, Dekker J (2022). “Regulation of the mitotic chromosome folding machines”. Biochem J 479 (20): 2153-2173. PMID 36268993. 
  101. ^ a b Bazile F, St-Pierre J, D'Amours D (2010). “Three-step model for condensin activation during mitotic chromosome condensation”. Cell Cycle 9 (16): 3243-3255. PMID 20703077. 
  102. ^ Tane S, Shintomi K, Kinoshita K, Tsubota Y, Yoshida MM, Nishiyama T, Hirano T (2022). “Cell cycle-specific loading of condensin I is regulated by the N-terminal tail of its kleisin subunit”. eLife 11: e84694. PMID 36511239. 
  103. ^ Robellet X, Thattikota Y, Wang F, Wee TL, Pascariu M, Shankar S, Bonneil É, Brown CM, D'Amours D (2015). “A high-sensitivity phospho-switch triggered by Cdk1 governs chromosome morphogenesis during cell division”. Genes Dev. 29 (4): 426-439. PMID 25691469. 
  104. ^ Thadani R, Kamenz J, Heeger S, Muñoz S, Uhlmann F (2018). “Cell-Cycle Regulation of Dynamic Chromosome Association of the Condensin Complex”. Cell Rep 23 (8): 2308-2317. PMID 29791843. 
  105. ^ Lipp JJ, Hirota T, Poser I, Peters JM (2007). “Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes”. J Cell Sci 120 (Pt 7): 1245-1255. PMID 17356064. 
  106. ^ Nakazawa N, Mehrotra R, Ebe M, Yanagida M. (2011). “Condensin phosphorylated by the Aurora-B-like kinase Ark1 is continuously required until telophase in a mode distinct from Top2”. J Cell Sci 124 (Pt 11): 1795-1807. PMID 21540296. 
  107. ^ Takemoto A, Kimura K, Yanagisawa J, Yokoyama S, Hanaoka F. (2006). “Negative regulation of condensin I by CK2-mediated phosphorylation”. EMBO J 25 (22): 5339-5348. PMID 17066080. 
  108. ^ Abe S, Nagasaka K, Hirayama Y, Kozuka-Hata H, Oyama M, Aoyagi Y, Obuse C, Hirota T (2011). “The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II”. Genes Dev 25 (8): 863-874. PMID 21498573. 
  109. ^ Bakhrebah M, Zhang T, Mann JR, Kalitsis P, Hudson DF (2015). “Disruption of a conserved CAP-D3 threonine alters condensin loading on mitotic chromosomes leading to chromosome hypercondensation”. J Biol Chem 290 (10): 6156-6167. PMID 25605712. 
  110. ^ Kim JH, Shim J, Ji MJ, Jung Y, Bong SM, Jang YJ, Yoon EK, Lee SJ, Kim KG, Kim YH, Lee C, Lee BI, Kim KT (2014). “The condensin component NCAPG2 regulates microtubule-kinetochore attachment through recruitment of Polo-like kinase 1 to kinetochores”. Nat Commun 5: 4588. PMID 25109385. 
  111. ^ Kagami Y, Nihira K, Wada S, Ono M, Honda M, Yoshida K (2014). “Mps1 phosphorylation of condensin II controls chromosome condensation at the onset of mitosis”. J. Cell Biol. 205 (6): 781-790. PMID 24934155. 
  112. ^ Yeong FM, Hombauer H, Wendt KS, Hirota T, Mudrak I, Mechtler K, Loregger T, Marchler-Bauer A, Tanaka K, Peters JM, Ogris E (2003). “Identification of a subunit of a novel Kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A”. Curr Biol 13 (23): 2058-2064. PMID 14653995. 
  113. ^ Buster DW, Daniel SG, Nguyen HQ, Windler SL, Skwarek LC, Peterson M, Roberts M, Meserve JH, Hartl T, Klebba JE, Bilder D, Bosco G, Rogers GC (2013). “SCFSlimb ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2”. J. Cell Biol. 201 (1): 49-63. PMID 23530065. 
  114. ^ Yamashita D, Shintomi K, Ono T, Gavvovidis I, Schindler D, Neitzel H, Trimborn M, Hirano T (2011). “MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II”. J. Cell Biol. 194 (6): 841-854. PMID 21911480. 
  115. ^ Trimborn M, Schindler D, Neitzel H, Hirano T (2006). “Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II”. Cell Cycle 5 (3): 322-326. PMID 16434882. 
  116. ^ Martin CA, Murray JE, Carroll P, Leitch A, Mackenzie KJ, Halachev M, Fetit AE, Keith C, Bicknell LS, Fluteau A, Gautier P, Hall EA, Joss S, Soares G, Silva J, Bober MB, Duker A, Wise CA, Quigley AJ, Phadke SR, The Deciphering Developmental Disorders Study., Wood AJ, Vagnarelli P, Jackson AP (2016). “Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis”. Genes Dev. 30 (19): 2158-2172. PMID 27737959. 
  117. ^ Gosling KM, Makaroff LE, Theodoratos A, Kim YH, Whittle B, Rui L, Wu H, Hong NA, Kennedy GC, Fritz JA, Yates AL, Goodnow CC, Fahrer AM (2007). “A mutation in a chromosome condensin II subunit, kleisin beta, specifically disrupts T cell development”. Proc. Natl. Acad. Sci. USA. 104 (30): 12445-12450. PMID 17640884. 
  118. ^ Woodward J, Taylor GC, Soares DC, Boyle S, Sie D, Read D, Chathoth K, Vukovic M, Tarrats N, Jamieson D, Campbell KJ, Blyth K, Acosta JC, Ylstra B, Arends MJ, Kranc KR, Jackson AP, Bickmore WA, Wood AJ (2016). “Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability”. Genes Dev. 30 (19): 2173-2186. PMID 27737961. 
  119. ^ Hoencamp C, Dudchenko O, Elbatsh AMO, Brahmachari S, Raaijmakers JA, van Schaik T, Sedeño Cacciatore Á, Contessoto VG, van Heesbeen RGHP, van den Broek B, Mhaskar AN, Teunissen H, St Hilaire BG, Weisz D, Omer AD, Pham M, Colaric Z, Yang Z, Rao SSP, Mitra N, Lui C, Yao W, Khan R, Moroz LL, Kohn A, St Leger J, Mena A, Holcroft K, Gambetta MC, Lim F, Farley E, Stein N, Haddad A, Chauss D, Mutlu AS, Wang MC, Young ND, Hildebrandt E, Cheng HH, Knight CJ, Burnham TLU, Hovel KA, Beel AJ, Mattei PJ, Kornberg RD, Warren WC, Cary G, Gómez-Skarmeta JL, Hinman V, Lindblad-Toh K, Di Palma F, Maeshima K, Multani AS, Pathak S, Nel-Themaat L, Behringer RR, Kaur P, Medema RH, van Steensel B, de Wit E, Onuchic JN, Di Pierro M, Lieberman Aiden E, Rowland BD (2021). “3D genomics across the tree of life reveals condensin II as a determinant of architecture type”. Science 372 (6545): 984-989. PMID 34045355. 






固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「コンデンシン」の関連用語

コンデンシンのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



コンデンシンのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのコンデンシン (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS