クルックス管 クルックス管を用いた実験

Weblio 辞書 > 辞書・百科事典 > 百科事典 > クルックス管の解説 > クルックス管を用いた実験 

クルックス管

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/05 03:35 UTC 版)

クルックス管を用いた実験

クルックス管は多くの歴史的な実験に用いられたが、その焦点は陰極線の正体を探ることだった[14]。当時二つの説があった。イギリスのクルックスやヴァ―リー(en)らが信じているところでは、陰極線とは「小体」("corpuscle")ないし「放射物質」("radiant matter")、すなわち電荷を帯びた原子であった。ドイツのヘルツゴルトシュタインらは陰極線を「エーテル振動」、すなわち未知の種類の電磁波だとみなし、管内を流れる電流とは切り離して考えていた[15][16]トムソンが陰極線の質量を測定し、その正体が負の電荷を持った新種の粒子だと実証したことで論争は終結した。トムソンはこの粒子を「小体」と呼んでいたが、後に「電子」("electron")という名に改められた。

マルタ十字

プリュッカーは1869年マルタ十字型の陽極をクルックス管に取り付けた。陽極にはヒンジがついており、折り曲げて管の底面に寝かせることができた。スイッチを入れると管底の蛍光面に鮮明な十字型の影が映り、陰極線が直進していることが見て取れた。そのまましばらくおくと、蛍光が「へたって」光が弱まってくる。ここで十字架を倒して陰極線の経路を空けると、それまで影だった領域が他よりも明るく蛍光を発した。

表面に垂直な方向への放出

ゴルトシュタイン1876年、陰極線は常に陰極表面に対して垂直に放出されることを発見した[17][10]。陰極が平板なら、陰極線はその面に直交する直線上を進む。これは陰極線が粒子であるという証拠の一つだった。なぜなら、赤熱した金属板のような発光体はあらゆる方向に光を発するが、荷電粒子ならば同電荷を帯びた物体表面から垂直に遠ざかる方向に力を受けるはずである。陰極が凹球面を持つ皿型であれば、陰極線は皿の前にある一点に集中する。これを利用して試料の一点に陰極線を照射することで高温に熱することができた。

電場による偏向

ヘルツはクルックス管の両側面にもう一組の極板を取り付け、陰極線を挟むようにした。この構造はごく素朴なCRT(ブラウン管)だとみなせる。もし陰極線が荷電粒子であれば、極板に電圧をかけると電場が生じて陰極線の軌道を曲げ、ビームが照射されている管底の蛍光スポットが横に動くはずである。ヘルツは陰極線の偏向を観察できなかったが、その原因は装置の真空度が不十分だったことで表面電荷が蓄積し、電場を遮蔽していたためだと後に結論付けられた。アーサー・シュスターはより真空度が高い装置を用いて陰極線を偏向させることに成功し、陰極線が正電荷を帯びた極板に引き付けられ、負電荷に反発することを発見した。これは陰極線が負電荷を帯びており、したがって電磁波ではないことの証拠とされた。

クルックスの磁気偏向管。

羽根車

クルックスによる1879年の論文"On Radiant Matter"で紹介されている羽根車の実験。

クルックスは陰極線の経路上に小さい羽根車を取り付け、陰極線が当たると車が回転することを発見した。回転は陰極から離れる向きだったことから、ビームが陰極から発していることが示唆された。クルックスはこの現象から陰極線が運動量を持っており、したがって質量を持つ粒子だと結論した。しかし後になって、羽根車が回るのは粒子(電子)の運動量のためではなく、ラジオメーター効果のためだと判明した。すなわち、羽根の表面で陰極線が当たっている部分が熱を帯び、熱で膨張した気体が羽根を押すというものである。これを1903年に実証したのはトムソンである。トムソンは計算により、羽根車に当たっている電子の運動量では毎分1回転というゆっくりした回転しか起こせないことを示した。クルックスの実験が示していたのは、単に陰極線が物体表面を加熱することができるということである。

電荷

ジャン・ペランは陰極線それ自体が負電荷を持っているのか、あるいはドイツ説のように電荷のキャリアが別に存在するのかを突き止めようとした。1895年、ペランはクルックス管に「捕獲器」("catcher")を取り付けた。これは両端が閉じたアルミニウム筒で、陰極に向いた側に小さい穴が開けられており、陰極線を捕えられるようになっていた。捕獲器は検電器と接続され電荷を測定することが可能だった。その結果、負電荷が検出され、陰極線が負の電気を持つことが確かめられた。

陽極線

陰極に穴が開けられた特製のクルックス管で陽極線が生じている(上部のピンク色の発光)。

1886年にゴルトシュタインは、陰極に穴を穿つと陽極と逆側の口からぼんやりした光を放つものが流れ出すことを発見した[18][19]。この「陽極線英語版」に電場をかけると、陰極線とは逆に負電荷を帯びた極板に引き付けられた。陽極線の正体は陰極に引き寄せられた陽イオンのビームであった。ゴルトシュタインはこれを「カナル線」("canal ray")と名付けた[20]

陽極線管の模式図。「perforated cathode」(穴が開いた陰極)の右側に陽極線が発生している。

ドップラーシフト

ゴルトシュタインは陰極線の速度を測定する方法を見つけたと考えた。クルックス管内の気体にみられるグロー放電が陰極線の運動によって引き起こされているなら、管に沿って陰極線が進む方向に放射される光はドップラー効果によって振動数に変調を受けるはずである。変調の有無は放出スペクトルのシフトを分光器を用いて検出することで確かめられる。ゴルトシュタインはL字型のクルックス管の両端に電極を設け、一方の電極からコーナーに向けてアームに沿って飛んできた光をコーナー部の分光器で観測できるようにした。まず分光器が向いている側の電極を陰極としてグローのスペクトルを測定した後、電源の配線をつなぎ変えて陰極と陽極を交代させ、電子の運動方向を逆転させた状態でスペクトルを記録し、シフト量を測定した。しかしゴルトシュタインはシフトを検出することができず、陰極線の移動速度は極端に遅いと解釈せざるを得なかった。現在理解されているところでは、クルックス管のグロー光を発しているのは電子そのものではなく、電子と衝突した気体原子である。原子は電子の数千倍の質量を持つため、その運動は電子に比べて非常に遅い。ドップラーシフトが検出できなかったのはこれが理由である。

レーナルトの窓

フィリップ・レーナルトは陰極線をクルックス管の外に取り出すことができるか確かめようとした。彼は陰極に面した容器壁に「窓」を開け、外界からの大気圧にちょうど耐えられる程度の厚さのアルミ箔を張って陰極線を受けるようにした。この仕組みは後に「レーナルトの窓」と呼ばれた。レーナルトが実験を行うと、まさに何かが窓から放射されていた。窓の前に掲げた蛍光スクリーンは光が当たっていなくとも蛍光を発し、写真乾板を掲げると露光していないはずなのに黒く感光した。この効果が及ぶ範囲は非常に短く、2.5 cm程度であった。レーナルトは様々な物質のシートを用いて陰極線の透過力を測定し、原子線には不可能なほど厚い物体を陰極線は透過できることを見出した。原子は当時最も小さい粒子だと考えられていたため、当初この結果は陰極線がである証拠とみなされた。のちになって電子は原子よりも小さいことが明らかになり、透過力の高さもそのためだとされた。レーナルトはこの仕事に対して1905年ノーベル物理学賞を授与された。


  1. ^ クルックス管(クルックスかん)の意味”. goo国語辞書. 2019年12月8日閲覧。
  2. ^ Crookes, William (December 1878). “On the illumination of lines of molecular pressure, and the trajectory of molecules”. Phil. Trans. 170: 135–164. doi:10.1098/rstl.1879.0065. 
  3. ^ "Crookes Tube". The New International Encyclopedia. Vol. 5. Dodd, Mead & Co. 1902. p. 470. 2016年6月29日閲覧
  4. ^ Crookes tube”. The Columbia Electronic Encyclopedia, 6th Ed.. Columbia Univ. Press (2007年). 2016年6月29日閲覧。
  5. ^ Mosby's Dental Dictionary, 2nd ed., 2008, Elsevier, Inc. cited in "X-ray tube". The Free Dictionary. Farlex, Inc. 2008. 2016年6月29日閲覧
  6. ^ Kaye, George W. K. (1918). X-rays (3rd Ed ed.). London: Longmans, Green Co.. p. 262. https://books.google.co.jp/books?id=UFhDAAAAIAAJ&pg=PA262&redir_esc=y&hl=ja 2016年6月27日閲覧。  Table 27.
  7. ^ Tousey, Sinclair (1915). Medical Electricity, Rontgen Rays, and Radium. Saunders. p. 624. http://www.electrotherapymuseum.com/Library/TouseyMedicalElectricity/Vacuums/index.htm 2016年6月27日閲覧。 
  8. ^ C. H. Gimingham (1876). “On a new Form of the 'Sprengel' Air-pump and Vacuum-tap”. Proceedings of the Royal Society of London 25: 396-402. https://archive.org/details/philtrans05435332 2016年6月28日閲覧。. 
  9. ^ Pais, Abraham (1986). Inward Bound: Of Matter and Forces in the Physical World. UK: Oxford Univ. Press. p. 79. ISBN 0-19-851997-4. https://books.google.co.jp/books?id=mREnwpAqz-YC&pg=PA81&redir_esc=y&hl=ja 2016年6月28日閲覧。 
  10. ^ a b Thomson, Joseph J. (1903). The Discharge of Electricity through Gasses. USA: Charles Scribner's Sons. p. 138. https://books.google.co.jp/books?id=Ryw4AAAAMAAJ&pg=PA138&redir_esc=y&hl=ja 2016年6月28日閲覧。 
  11. ^ X線のエネルギーと透過力は管電圧とともに上昇する。電圧5000 V以下でもX線は生成するが、「硬度」が足りないため、ごくわずかなX線しかガラス壁を貫通しない。
  12. ^ Peters, Peter (1995年). “W. C. Roentgen and the discovery of X-rays” (Chapter 1). Textbook of Radiology. Medcyclopedia.com, GE Healthcare. 2013年6月16日時点のオリジナルよりアーカイブ。2008年5月5日閲覧。レントゲンは死後に研究ノートを焼き捨てさせたため、X線発見時の情況については多くの異説がある。この記述は伝記作家が作り上げたストーリーである可能性が高い。
  13. ^ Röntgen, Wilhelm (1896-01-23). “On a New Kind of Rays”. Nature 53 (1369): 274–276. Bibcode1896Natur..53R.274.. doi:10.1038/053274b0. http://www.nature.com/nature/journal/v53/n1369/pdf/053274b0.pdf 2016年6月29日閲覧。. , 1895年12月28日にWurtzberg Physical and Medical Societyに届けられた論文の英訳版。
  14. ^ Brona, Grzegorz. “The Cathode Rays”. Atom - The Incredible World. 2009年5月25日時点のオリジナルよりアーカイブ。2008年9月27日閲覧。
  15. ^ (Pais 1986), pp. 79-81.
  16. ^ (Thomson 1903), pp. 189-190.
  17. ^ E. Goldstein (1876). Monat der Berl. Akad.. p. 284. 
  18. ^ E. Goldstein (1886). Berliner Sitzungsberichte 39: 391. 
  19. ^ (Thomson 1903)pp.158-159
  20. ^ Concept review Ch.41 Electric Current through Gasses”. Learning Physics for IIT JEE (2008年). 2016年6月29日閲覧。


「クルックス管」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「クルックス管」の関連用語

クルックス管のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



クルックス管のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのクルックス管 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS