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A NOTE ON THE NON-INTEGRABILITY OF SOME

HAMILTONIAN SYSTEMS WITH A HOMOGENEOUS POTENTIAL∗

JUAN J. MORALES-RUIZ† AND JEAN PIERRE RAMIS‡

Abstract. We obtain a non-integrability result on Hamiltonian Systems with a homogeneous
potential with an arbitrary number of degrees of freedom which generalizes a Yoshida’s Theorem
[7]. Except for the cases when the degree of homogeneity of the potential is equal to two or minus
two, only a discrete set of families of these type of potentials are compatible with the complete
integrability condition. We illustrate this result with two examples: the collinear problem of three
bodies and a highly symmetrical family introduced by Umeno ([6]).

1. Introduction. The purpose of this note is to give a simple non-integrability
criterion for complex Hamiltonian Systems with homogeneous potentials, i.e., of the
type

H(x, y) = T + V =
1

2
(y2

1 + ...+ y2
n) + V (x1, ..., xn),

where V is a homogeneous function of integer degree k. We consider this as a first non
exclusively academic application in order to test the results of our previous paper [4].
In this way, we improve some Yoshida’s results even for two degrees of freedom (see [7])
and we avoid the arithmetical problems related with the non-resonance assumptions
in Ziglin’s Theorem or its generalizations, that are exclusively based on an analysis
of the monodromy group of the variational equations (see [6]).

As two concrete examples we study the collinear homogeneous problem of three
particles, studied by Yoshida in [7], and the n-degrees of freedom system with potential

V =
1

s

∑
xs

i1
xs

i2
· · ·xs

ir

,

studied by Umeno ([6]).
We note that from Kimura’s Theorem (Theorem 2) and our Theorem 1, the

methods of this note are completely systematic and elementary. In our opinion, that
reflects the fact that the natural setting to obtain non-integrability results, using
an analysis of the variational equations (along a particular integral curve), is the
Differential Galois Theory.

2. Non-integrability Theorem. Consider a complex analytic symplectic man-
ifold M of dimension 2n and let XH be a holomorphic Hamiltonian system defined on
it. Let Γ be the (abstract) connected Riemann surface corresponding to an integral
curve C defined by z = z(t) (which is not an equilibrium point) of XH . Then we can
obtain the variational equations (VE)

η̇ = X ′
H(z(t))η

over along Γ, and we can obtain, also, the normal variational equations (NVE) along
Γ. These variational equations are given by holomorphic (resp. meromorphic) con-
nections over Γ and it is possible to interpret them as meromorphic linear differential
equations over Γ. (For more details see [4].)
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‡Laboratoire Emile Picard, Université Paul Sabatier, 118, route de Narbonne, Toulouse, Cedex,

France and Institut Universitaire de France (ramis@picard.ups-tlse.fr).

113



114 J. J. MORALES-RUIZ AND J. P. RAMIS

Then, in the above situation, we prove in [4] the following result

Theorem 1. Assume that there are n meromorphic first integrals of XH in
involution and independent in a neighborhood of the curve C in M , not necessarily on
C itself. Then the identity component of the Galois group of the VE (resp. (NVE))
is an abelian subgroup of the symplectic group.

In particular, the VE (and the NVE) are solvable in the sense of the Differential
Galois Theory. To be more precise, the Picard-Vessiot extension of the VE (and of
the NVE) is obtained by (a combination of) quadratures, exponential of quadratures
and algebraic functions. We recall that this is the case if, and only if, the identity
component of the Galois group is solvable (see, for instance [1, 3, 5]).

In the above theorem the differential Galois group G is computed relatively to
the differential field kΓ of meromorphic functions over Γ. Then it is well known
that G is the Zariski closure in the general linear group of the monodromy group
of the variational equation. (That is G the smallest complex algebraic linear group
containing the monodromy group.)

In many practical situations (as in the examples of homogeneous potentials be-
low), it is possible to add to our Riemann surface Γ a finite number of points (cor-
responding in general to equilibrium points in M or points at infinity) such that we
get a connected compact Riemann surface Γ and such that the connection of the VE
extends as a meromorphic connection over Γ. Then we can compute the differential
Galois group G of the VE relatively to the differential field kΓ of meromorphic func-

tions over Γ. Then G ⊂ G, but in general this inclusion is strict. This is unfortunate,
because in general it is more easy to compute G than G. (Theoretically there exists an
algebraic algorithm to decide if G is solvable.) Happily when the extended connection
of the VE over Γ is Fuchsian (that is when its singular points are regular singular),
then we have G = G. It will be the case in the present paper and therefore we will
get a purely algebraic systematic method to decide if the identity component of G is
not abelian (in fact non solvable). (This will be based upon Kimura’s result about
hypergeometric differential equations.)

3. Application to homogeneous potentials. Let an n degrees of freedom
Hamiltonian System with Hamiltonian

H(x, y) = T + V =
1

2
(y2

1 + ...+ y2
n) + V (x1, ..., xn),(3.1)

being V a homogeneous function of integer degree k and 2 ≤ n. For the case n = 2,
Yoshida obtained a remarkable non-integrability theorem based on Ziglin’s Theorem
([7]).

As Yoshida notes, it is not possible to generalize, in a direct way, his theorem to
n > 2. Indeed, it is difficult to check the non-resonant condition of Ziglin’s Theorem.
He asks for a generalization of Ziglin’s Theorem in order to handle these systems ([7],
p. 141). With Theorem 1 it is possible to solve this problem and furthermore, even
for the case n = 2, to improve Yoshida’s results.

We will follow the Yoshida arguments in order to obtain a set of hypergeometric
equations as the NVE along a particular solution of the Hamiltonian System H(x, y)
above. From the homogeneity of V , it is possible to get an invariant plane

x = z(t)c,

y = ż(t)c, i = 1, 2, ..., n,
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where z = z(t) is a solution of the (scalar) hyperelliptic differential equation

ż2 =
2

k
(1− zk)

(where we assume case k �= 0), and c = (c1, c2, ...cn) is a solution of the equation

c = V ′(c).

This is our particular solution, Γ, along which we compute the VE and the NVE.
The VE along Γ is given (in the temporal parametrization) by

η̈ = −z(t)k−2V ′′(c)η.

By the symmetry of the Hessian matrix V ′′(c), it is possible to express the VE as a
direct sum of second order equations

η̈i = −z(t)k−2λiηi, i = 1, 2, ..., n,

where we preserve η for the new variable, being λi the eigenvalues of the matrix
V ′′(c). We will call Yoshida coefficients these eigenvalues. One of the above second
order equations is the tangential variational equation, say, the equation corresponding
to λn = k − 1. This equation is trivialy solvable and we get as NVE an equation in
the variables ξ := (η1, ..., ηn−1) := (ξ1, ..., ξn−1), i.e.,

ξ̈ = −z(t)k−2diag(λ1, ..., λn−1)ξ.

Now, following Yoshida, we consider the finite branched covering map

Γ→ P1,

given by t �→ x, being x =: z(t)k (here Γ is the compact hyperelliptic Riemann surface
of the hyperelliptic curve w2 = 2

k
(1 − zk), see [4] for the notation and technical

details). By the symmetries of this problem, we get as NVE a system of independent
hypergeometric differential equations in the new independent variable x

x(1 − x)
d2ξ

dx2
+ (

k − 1

k
− 3k − 2

2k
x)

dξ

dx
+

λi

2k
ξ = 0, i = 1, 2, ..., n− 1.

This system of equations is the algebraic normal variational equation (ANVE). If
we write ANVEi for the scalar second order equation corresponding to the Yoshida
coefficient λi then

ANVE=AVNE1 ⊕ AVNE2 ⊕ . . .⊕ AVNEn−1,
(in fact it is a direct sum in the more intrinsic sense of linear connections, see [4]).
Then it is clear that the ANVE is solvable if, and only if, each one of the ANVEi’s
is also solvable. In other words, the identity component of the Galois Group of the
ANVE is solvable if, and only if, each one of the identity components of the Galois
Group of the AVNEi’s i = 1, 2, . . . , n − 1, is solvable.

Each one of the above ANVEi is an hypergeometric equation with three regular
singular points at x = 0, x = 1 and x = ∞. We remark that, by a result proved in [4],
the identity component of the Galois Group of the NVE is the same as the identity
component of the Galois Group of the ANVE.
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For the equation ANVEi, the exponent differences at x = 0, x = ∞ and x = 1
are (respectively) λ̂ = 1/k, μ̂ =

√
(k − 2)2 + 8kλi/(2k) and ν̂ = 1/2. Now, we recall

the theorem of Kimura ([2]) already mentioned in [4]

Theorem 2. The identity component of the Galois Group of the hypergeometric
equation is solvable if, and only if, either
(i) At least one of the four numbers λ̂ + μ̂ + ν̂, −λ̂+ μ̂ + ν̂, λ̂ − μ̂ + ν̂, λ̂ + μ̂ − ν̂ is
an odd integer, or
(ii) The numbers λ̂ or −λ̂, μ̂ or −μ̂ and ν̂ or −ν̂ belong (in an arbitrary order) to
some of the following fifteen families

1 1/2 + l 1/2 +m arbitrary complex number
2 1/2 + l 1/3 +m 1/3 + q
3 2/3 + l 1/3 +m 1/3 + q l +m+ q even
4 1/2 + l 1/3 +m 1/4 + q
5 2/3 + l 1/4 +m 1/4 + q l +m+ q even
6 1/2 + l 1/3 +m 1/5 + q
7 2/5 + l 1/3 +m 1/3 + q l +m+ q even
8 2/3 + l 1/5 +m 1/5 + q l +m+ q even
9 1/2 + l 2/5 +m 1/5 + q l +m+ q even
10 3/5 + l 1/3 +m 1/5 + q l +m+ q even
11 2/5 + l 2/5 +m 2/5 + q l +m+ q even
12 2/3 + l 1/3 +m 1/5 + q l +m+ q even
13 4/5 + l 1/5 +m 1/5 + q l +m+ q even
14 1/2 + l 2/5 +m 1/3 + q l +m+ q even
15 3/5 + l 2/5 +m 1/3 + q l +m+ q even

Here l,m and q are integers.

We recall that the Schwarz’s table gives us the cases for which the Galois (and
monodromy) Groups are finite (i.e., the identity component of the Galois Group is
reduced to the identity element) and is given by fifteen families. These families are
given by families 2–15 of the table above and by the family (1/2+Z)× (1/2+Z)×Q.
As this last family is already contained in family 1 of the above table, all of the
Schwarz’s Families are, of course, contained in the above table.

The main result of this note is the following

Theorem 3. If the Hamiltonian System with Hamiltonian (3.1) is completely
integrable with meromorphic first integrals, then each pair (k, λi) belongs to one of the
following list (we assume k �= 0)

(1) (k, p+ p(p − 1)k/2),

(2) (2,arbitrary complex number),

(3) (−2,arbitrary complex number),

(4) (−5, 49
40 − 1

40 (
10
3 + 10p)2),

(5) (−5, 49
40 − 1

40 (4 + 10p)2),

(6) (−4, 9
8 − 1

8 (
4
3 + 4p)2),

(7) (−3, 25
24 − 1

24 (2 + 6p)2),

(8) (−3, 25
24 − 1

24 (
3
2 + 6p)2),

(9) (−3, 25
24 − 1

24 (
6
5 + 6p)2),
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(10) (−3, 25
24 − 1

24 (
12
5 + 6p)2),

(11) (3,− 1
24 +

1
24 (2 + 6p)2),

(12) (3,− 1
24 +

1
24 (

3
2 + 6p)2),

(13) (3,− 1
24 +

1
24 (

6
5 + 6p)2),

(14) (3,− 1
24 +

1
24 (

12
5 + 6p)2),

(15) (4,− 1
8 +

1
8 (

4
3 + 4p)2),

(16) (5,− 9
40 +

1
40 (

10
3 + 10p)2),

(17) (5,− 9
40 +

1
40 (4 + 10p)2),

(18) (k, 1
2 (

k−1
k

+ p(p+ 1)k)),

where p is an arbitrary integer.

Proof. The proof follows from our Theorem 1 and from Kimura’s Theorem, be-
cause if the identity component of the Galois Group is abelian, then, in particular,
it is solvable. Case (1) corresponds to case (i) in the Kimura’s Theorem and cases
(2)–(18) to case (ii) in Kimura’s Theorem. In particular, in cases (4)–(18) the Galois
Group is finite and the identity component of the Galois Group (of the ANVE and of
the NVE) is trivial.

We recall Yoshida’s Theorem. For n = 2 (only one parameter λ appears), let us
consider the four regions

(i) Sk = {λ > 1,−j(j + 1)|k|/2− j + 1 > λ > −j(j + 1)|k|/2/+ j + 1, j ∈ N},
for k ≤ −3,

(ii) S−1 = C− {−j(j − 1)/2 + 1, j ∈ N},
(iii) S1 = C− {j(j − 1)/2 + 1, j ∈ N},
(iv) Sk = {λ < 0, j(j − 1)k/2 + j < λ < j(j + 1)k/2− j, j ∈ N}, for k ≥ 3.

Then ([7])

Theorem 4. If λ is in the region Sk then the corresponding Hamiltonian System
is not integrable.

Now, it is easy to show that Yoshida’s Theorem is a particular case of Theorem
3. We sketch the steps. For the case (1) of the Theorem 3, we see that the parameter
λ belongs to the complement, in the complex plane, of the Yoshida non–integrability
regions Sk, k ∈ Z−{2,−2}, because S1 = C−{p+p(p−1)/2}, S−1 = C−{p−p(p+
1)/2} (with p ∈ Z) and for the rest of the k values λ = p+p(p−1)k/2 are precisely the
extremities of the open intervals which appear in Sk. For the cases (3)–(18) we give
an indirect argument. As these cases corresponds to a finite Galois (and monodromy)
Group and Yoshida’s Theorem is based (as Ziglin’s Theorem) on the existence of a
non-resonant monodromy matrix, but for these cases all the Galois (and monodromy)
transformations of the NVE are resonant (we recall that the identity component of
the Galois Group is preserved when we obtain the ANVE from the NVE, see [4]), then
necessarily the values of the Yoshida coefficient λ for the cases (3)–(18) are contained
in C− ∪Sk.

The inquisitive reader can ask why we do not use the last argument (used for cases
(3)–(18)) for the case (2). The reason is that, in this case, may be the Galois group
has an identity component solvable but not abelian and in Yoshida’s (and Ziglin’s)
Theorem a necessary condition for integrability is the abelianess of the identity com-
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ponent of the Galois Group (in fact, for a two degrees of freedom Hamiltonian System,
the Ziglin’s Theorem is a consequence of our Theorem 1, see [4]).

4. Examples.

Example 1. We consider with Yoshida the collinear three body problem with a
homogeneous potential

V (q1, q2, q3) = |q1 − q2|k + |q1 − q3|k + |q3 − q1|k.

By a reduction to the center of masses it is transformed to a two degrees of freedom
potential

V (x1, x2) = (
√
3x1 + x2)

k + (−
√
3x1 + x2)

k + (2x2)
k.

For k arbitrary integer it is possible to obtain an hyperelliptic integral curve
with ANVE having Yoshida parameter λ = 3(k − 1)/(1 + 2k−1). For k even and
positive there exists an additional hyperelliptic integral curve with an ANVE having
λ = (k − 1)/3 ([7]).

By applying the last theorem we get

Proposition 1. Except for the four cases k = −2, 1, 2, 4, the collinear (homoge-
neous) potential of three particles of degree k is not integrable (we do not consider the
trivially integrable case k = 0).

We remark that with respect to Yoshida’s results the new feature is the non–
integrability of the system for k odd and greater than or equal to 5. Furthermore, the
four cases k = −2, 1, 2 and 4 are well known integrable systems (see the references in
[7]). In this way we close the integrability problem for this family.

Example 2. We will apply Theorem 3 to a family of systems with an arbitrary
number of degrees of freedom studied by Umeno ([6]).

In order to avoid the already mentioned arithmetical problems (for n greater than
two) related to the non-resonance condition, Umeno introduced the non-resonance-
degenerate-condition. In this way he studied the non-integrability of the systems
given by the very symmetric n-degrees of freedom homogeneous potentials

V =
1

s

∑
xs

i1
xs

i2
· · ·xs

ir

,

where in the summation appear all the possible combinations of r different integers,
i1, i2, ..., ir, with ip equal to 1, 2, ..., n. With Umeno we will denote this Hamiltonian
System by (n, r, s). We observe that, in any case, r ≤ n.

For these systems, we have k = rs and it is possible (see [6]) to find a hyperelliptic
curve with associated ANVE admitting as Yoshida parameters the values

λ1 = λ2 = · · · = λn−1 = s − 1− s(r − 1)

n − 1
:= λ.

Then, by Theorem 3, we get

Proposition 2. The above Hamiltonian Systems with parameters (n, r, s) (2 ≤
n) are not completely integrable, except perhaps for the five cases

(i) n(s − 1) = rs − 1,

(ii) n(s − 2) = rs − 2,
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(iii) r = 1,

(iv) rs = 2

(v) 2(s − 1− s(r−1)
n−1 ) = sr−1

sr
.

Proof. We need to check cases (1), (2) and (11)–(18) of Theorem 3. Case (iv)

corresponds to case (2). Now, it is easy to see that λ = s − 1− s(r−1)
n−1 ≤ rs − 1 (this

fact is also used in [6]). Hence, it is only necessary to consider the values p = 0, 1 and
−1 in the case (1) of Theorem 3 (for other values of p we do not have positive integer
values of n, r and s). These values gives us the conditions (i), (ii), (iii) and (v). This
last case corresponds to (18), p = 0.

Case (11) is not possible, because rs = 3 implies r = 1, s = 3 or r = 3, s = 1. As
r = 1 appears in (iii), it is only necessary to consider r = 3, s = 1. But the equation
−2/(n − 1) = −1/24 + (2 + 6p)2/24 has not integer solutions n and p. In a similar
way, the cases (12)–(17) are not possible.

We observe that the trivial case (iii) corresponds to a separable potential.
In his paper Umeno proved the non-existence of an additional integral for the

following systems:

(a) (n, r, 1) with 3 ≤ r,

(b) (n, r, 2) except for the five cases (2, 2, 2), (3, 3, 2), (26, 4, 2), (6, 6, 2), (28, 6, 2), the
two families (2r − 1, r, 2), (r + 1, r, 2) (2 ≤ r) and the trivial family r = 1.

(c) (n, r, s) with 2 < s, rs−2
s−2 < n and 2 ≤ r.

We remark that condition (c) is incompatible with condition (v) of Proposition 2.

We first notice that n−1 > 0. Then condition (v) implies 2(s−1− s(r−1)
n−1 ) = sr−1

sr
< 1.

Therefore 2(s−1)(n−1)−2sr+2s < n−1 and 2s(n− r) < 3(n−1). From condition
(c) we get s > 2 and rs − 2 < sn − 2n. Therefore 2s(n − r) > 4(n − 1). Finally
3(n − 1) > 4(n − 1), 0 > n − 1, and we get a contradiction.

Using similar (simpler...) arguments, starting from Proposition 2 we can prove
the non-complete integrability of systems (a), (b) and (c) and, furthermore, we get
new non-integrable systems. For instance, the systems of type (n, r, 2) (2 ≤ n) are not
completely integrable except for either (n, 1, 2) or (2r − 1, r, 2). Umeno considers in
[6] as an open problem for these systems, with r = 2, the fact that among the systems
in (b) there are some of them which have a non integer difference of Kowalevski
exponents, but his criterion leaves open their non-integrability. We have proved above
that all these systems are never completely integrable.

We note that the non integrable system with parameters (2, 2, 2) is the Yang-Mills
potential studied by Ziglin in [8].

As a final remark, we think that it is possible to apply Theorem 3 to other
interesting systems.
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