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I want first to express my thanks to the Presidium of the American 
Mathematical Society for the invitation to deliver an address to the 
Society. I feel very much honored by this invitation and I appreciate 
it highly. 

My address will be devoted to parametric surfaces, to that part of 
the subject which is connected with the definition of the area, with 
the expression of the area by an integral, and with the minimum 
area problem. It is an exceptional privilege to lecture on this subject 
to the American Mathematical Society, whose members have been 
responsible for such an impressive progress of the subject during the 
last two decades. I shall start with the definition of the area. 

In 1914 Carathéodory defined the ra-dimensional measure in the 
«-dimensional space, for integral values of m.1 He considered the 
one-dimensional measure as a generalization of the length and he 
proved that the length of a rectifiable curve coincides with its one-
dimensional measure. 

In 1919, Hausdorff,2 developing Caratheodory's ideas, constructed 
a continuous scale of measures. After the work of Carathéodory and 
Hausdorff the obvious problem was to treat the area as the two-di­
mensional measure and to establish the well known integral formulae. 
But a considerable amount of work on establishing the integral 
formulae for the area had been done before that, with a variety of 
definitions of the area, due no doubt to the difficulty of the problem. 
Later the Lebesgue definition, somewhat modified by Frechet, of the 
area as the lower limit of areas of approximating polyhedra became 
the dominant one. A particularly valuable feature of the Lebesgue-
Frechet (L.-F.) definition is that it provides the area with the prop­
erty of the lower semi-continuity. 

When applied to plane figures bounded by a Jordan curve the 
L.-F. definition gives in fact the value of the interior area of the 
figure, and thus in cases when the boundary is of positive L2-measure, 
the L.-F. area differs from the value of the closed area in the usual 
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1 Uber das Uneare Mass von Punktmengen—eine Verallgemeinerung des Lângenbe-
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Lebesgue sense. This of course need not be considered in any sense a 
serious fault with the definition, and of course there is nothing 
astonishing then if the area of the projection measured as a closed 
area happens to be greater than the area of the projective figure 
measured as an open area. This is the so-called projected conflict,8 

conflict only in name. Being entirely based on an obvious confusion 
of two measures, it could not have shaken any confidence in the L.-F. 
definition. As a matter of fact there is no conflict whatsoever, and 
the L.-F. area of the orthogonal projection of a parametric surface, 
which (the projection) is itself a parametric surface, is always less 
than or equal to the L.-F. area of the projected figure. This is obvious 
for polyhedral surfaces, and then it follows at once for the general 
case. 

In 1913, Geöcze4 gave an example of a parametric surface that fills 
up a cube and has at the same time L.-F. area equal to zero. But the 
Geöcze parametric surface is no surface in any geometric sense and 
the notion of its area is entirely artificial. Whatever value might have 
been obtained for its area, it could not have been a test for the 
definition. Thus no fault was suspected in the L.-F. definition until 
recently, and a large amount of work was done on the basis of the 
L.-F. definition, culminating in the proof of the integral formula for 
parametric surfaces under the most general conditions, and in the 
solution of the Plateau problem. But the study of the area cannot 
be restricted to the very narrow class of the parametric surfaces, 
that is, to the class of continuous images of a disk. A notion of area 
is attached to a much wider class of surfaces, such as continuous 
images of other figures than a disk, many cases of discontinuous 
images and to surfaces given as point sets. With the experience of 
more than fifty years of modern theory of functions of a real variable, 
any at tempt of extending the definition of the area to more and more 
general classes of surfaces would inevitably lead to treating the area 
as a measure, just as the length and the volume are treated. 

A few years ago I set myself the problem of treating the area as 
the Hausdorff A2-measure and of proving the identity of the L.-F. 
area of parametric surfaces and of their A2-measure (excluding the 
boundaries). However I came to results very different from ones I 
was hoping for. In my paper, On the definition and the value of the 
area of a surface* I constructed a topological disk and a topological 

3 T. Radó, On the problem of Plateau, Ergebnisse der Mathematik und ihre Grenz-
gebiete, vol. 2, 1933. 
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sphere whose surface, on the one hand, has L.-F. area as small as we 
please, and, on the other hand, has a positive Lebesgue three-dimen­
sional measure. In order to avoid too complicated diagrams, I shall 
first construct a plane curve to which the required surface is very 
similar. Let So = 4̂ be a unit square (Fig. 1). Divide A into four equal 
squares and let A1} A2, Az, AA be four smaller equal squares con­
centric with the above squares and of total area greater than 1/2. 
Write 5 i = ]T)î Aiv meaning by Si the set of interior and bound­
ary points of the squares Au • • . , AA. Similarly a set S2 

Co EiFtEiFtEsFiJStFtDo 

FIG. 1. 

= 2^n=i, • • • ,4,t2«i,. • • ,4 A ilh of 16 equal squares of total area greater than 
1/2 and less than the total area of Si are constructed, four squares in 
each square of Su and so on. In this way a decreasing sequence {Sn} 
is determined, where Sn is a set of 4» equal squares of total area 
greater than 1/2. Writing 5 = l i m Sni we have m2S^ 1/2 (w2 being the 
Lebesgue two-dimensional measure). Take now a segment CoD0 on 
a side of the square A and segments CXDU • • • , C4£>4 on 
sides of Au • * • , Ai and construct a polygonal line IIi = Po 
= C0EiCiDiFiE2C2D2F2 • • . D4F4P0 of four branches. Similarly on 
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each of the segments &Di, • • • , CJ)^ construct polygonal lines 
Pi, • • • , P4, each of four branches. Replacing the sides C1D1, • • • , 
C4D4 of III by the polygonal lines Pi, • • • , P4, we shall expand the 
line IIi to a line n 2 of four branches of the first order and 16 branches 
of the second order. Similarly n 2 is expanded to II3, II3 to EU, and so on. 
The sequence of polygonal lines {lln} defines a limit curve II, which 
is obviously a simple curve. The line IIn has a segment in common 
with every square of Sn, and consequently every point of Sn, and in 
particular every point of 5 is within 2™n+1/2 from IIn. Hence every 
point of 5 is on II. Thus II is a simple curve of infinite length and it 
contains the set S, whose two-dimensional measure is not less than 1/2. 

Now we carry out a similar construction in the three-dimensional 
space. Let So^A be a unit-cube, and S±= ]C?=i A%x a set of 8 equal 
cubes of total volume less than 1 and greater than 1/2, symmetrically 
situated in A, by which we mean that the cubes Aiv ii = l, • • • , 8, 
are concentric with the eight cubes into which A is divided by the 
three mid-planes. Let further 5 2 = ]Cn=i.2,---,8,t2==i,2,...t^4H;2 ^ e 64 
equal cubes of total volume less than that of Si and greater than 1/2, 
the cubes Aix\, • • • , Aix% being symmetrically situated in Aiv and so 
on. In this way a decreasing sequence of sets Sn is determined. Writing 
5 = lim 5 n , we have m3S ^1/2 (m3 being the Lebesgue 3-dimensional 
measure) since mdSn>l/2 for every n. 

On the bottom side of A take a small square CoD0 (Co, DQ are a pair 
of opposite vertices) and on CoD0 eight smaller disjoint squares 
E1P1, • • • , EsFsy then take squares CiDh • • • , C$Ds on the bottom 
sides of the cubes Ai, • • > , As and join them to EiFu • • • , EsF8 

respectively by rectangular tubes, that do not meet one another. 
The part CoD0— ]T)? EiFi of the square CQDQ, the eight tubes con­
structed above, and the squares Ci^i, • • • , C%D% form a polyhedral 
surface P 0 of eight branches. Call it IIi. IIi is a topological disk. Sim­
ilarly polyhedral surfaces Pi, • • • , P 8 , of eight branches each, will be 
constructed on the squares & A , • • • , C&Ds respectively. Replacing 
the squares C\D\y • • • , CsDs of IIi by the polyhedral surfaces, 
Pi, • • • , P 8 respectively, we shall get a polyhedral surface II2 of 
eight branches of the first order and 64 branches of the second order. 
n 2 is also a topological disk. Similarly Iï2 will be "expanded" to 
II3, IT3 to II4, and so on. The sequence of surfaces Iïn converges in the 
Frechet sense to a surface II. II is a topological disk. Just as in the 
case of the plane construction II contains all the points of 5, so that 
m 3 I I ^ l / 2 . Now comes a fundamental difference between the plane 
figure and the three-dimensional one. While in the case of the plane 
figure the length of the polygonal line IIn tends to infinity, in the 
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case of the three-dimensional figure the areas of the polyhedral sur­
faces u i , n 2 , • • • may be as small as we please, so that given e > 0 we 
may assume 

lim A2nw < e 

and hence L.-F. area of II less than e. 
(i) Thus we have constructed a topological disk, whose area, in the 

L.-F. definition, is less than e, and whose three-dimensional Lebesgue 
measure is not less than 1/2. 

(ii) If we seal the surface II by a surface of small area subtending 
the boundary of the square CoD0 and lying below it, we shall get a 
topological sphereTL*\ The volume of I I ' (that is, m3-measure) is greater 
than 1/2 and the area of the surface of I I ' may be as small as we 
please. The solid bounded by the surface I I ' has different values for 
the upper volume and for the lower volume. Therefore at pre-
Lebesgue time it would have been considered that the volume was not 
defined for this solid, and the surface I I ' would have had no bearing 
on the classical isoperimetric problem of finding the solid of maximum 
volume, bounded by a surface of a given area. However, since the 
development of methods of measure the notions of the upper and 
lower volumes have lost their relevance and the volume is defined 
as the w3-measure. Therefore the result presented by I I ' is in con­
flict with the existing solution of the above problem. The result (i) 
is in conflict with all geometrical ideas of the area: 

(a) I t shows that the L.-F. area cannot be fitted into any scale of 
measures. 

(b) I t has no property of additivity, even in the most clear cases. 
A construction similar to one employed above leads to a parametric 
surface that includes all points of a unit-square, and whose area is 
as small as we please. 

(c) I t has not been, and it cannot be, extended to surfaces given 
as point-sets. For these reasons, clinging to the L.-F. definition of 
area would imply treating it as a functional defined in an artificially 
restricted domain and completely detached from the general study 
of the area. 

The general study of area can be brought to the standards of per­
fection of the modern theory of functions of a real variable only by 
treating the area as a measure. I define the area as the Hausdorff 
two-dimensional measure (with a corrective for the case of multiple 
points), and I solve anew the fundamental problems on area: that 
of integral expression of the area and the Plateau problem. The right 
principle brings a generous reward : tremendous topological complica-
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tions for establishing the integral formulae are avoided completely, 
the integral formulae are valid not only for the whole surface, but 
also for sets of points on the surface; in the case of the Plateau prob­
lem all restrictions on the contour are dropped. In the solution of the 
Plateau problem I was helped by having discovered conditions of 
compactness and of semi-continuity of the area in the class of para­
metric surfaces. 

Before going further into the problems of my lecture, we have to 
introduce strict definitions concerning parametric surfaces. 

We shall consider continuous functions P = $(M) whose domain 
of definition is a disk H and whose values are points in the three-
dimensional space. For any point P , the set 4>_1(P) is closed. Any 
component of $"~X(P) is called a ^-element of H. Any ^-element is 
either a point or a saturated continuum in <É>-1(P). Thus the equa­
tion P = <ï>(ikf) defines a representation H= ^Q of H as the sum of 
^-elements. Any pair of ^-elements are either coincident or have no 
points in common. We form pairs (P, Q) where Q are ^-elements, 
and, for every Ç, P is the value of &(M) on Q. The set II = ] £ ( P , Q) 
of all such pairs is called the parametric surface defined by the equa­
tion P = <Ï>(M) (or by the function 3>(ilf)) and the pairs (P, Q) the 
points of the parametric surface. 

If a set EQH is given, the symbol 4>(E) will be used in two dif­
ferent senses: it is the set of values of $(M) a t all points of E, and 
also it is the set ^-<(P, Q) of points of II for all ^-elements Q such 
that QEjéO. In either case it is "the image of E." 

Given two points Xi={Pii Qi) ( i = l , 2), let c be any continuum 
in H joining Qi and Q2. The lower bound of the diameter of <£(c) for 
all possible c is called the EC-distance between Xi and X2i and is 
denoted by Dn(Xu X2). If Qi^Q2t Dn(Xu X2)>0 whether Px is 
different from P 2 or not. 

If there are exactly k points of II, (P, Ci), • • • , (P, Q*), with the 
same first element, then P is said to be of multiplicity k. The k points 
are distinct and are at a positive II-distance from one another. 

Given two parametric surfaces IIi and n 2 defined by the functions 
$i(ikf) and $2(M), let ^f(M) be any homeomorphism on H. Let D($ ) 
be the maximum of the Euclidean distance between the points &i(M) 
and * 2 { ^ ( l f ) } as M varies in H. The lower bound of D(^f) for all 
ty(M) is called the P-distance (Frechet distance) between IIi and II2 

and is denoted Z>F( I I I , I I 2 ) . If DFÇHi, ü2) = 0 , we say that IIi and ü 2 are 
identical parametric surfaces. Thus the surfaces defined by $(M) and 
by*{^(M)} are identical. P-distance can be defined in a different 
way, in terms of ^-elements, but we shall not dwell on that . Once the 
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distance between parametric surfaces is defined, convergent se­
quences of parametric surfaces and limit parametric surfaces are 
defined too. We have a simple theorem: 

THEOREM. A necessary and sufficient condition f or a sequence {lln} 
to be convergent is that it should be representable by a uniformly con­
vergent sequence {^nCU)} of functions. 

A set E(S, II) of points of II such that no pairs of them are within 
S from each other and that any point of II is within 8 of at least one 
point of E is called a S-set of II. A 8-set is always finite. 

We shall be considering aggregates of parametric surfaces in a 
bounded part of the space. We shall assume them bounded. Given an 
aggregate Ay if there exists a finite function N(8) of a positive varia­
ble 5 such that , for any I I G ^ , HE(S, II) <N(8) (7s[ stands for the 
number of points of E) we say that A is uniformly bounded with respect 
to neighborhoods. 

A plane domain G whose boundary consists of a finite number of 
disjoint Jordan curves is called a regular domain. A representation 
H= 52? St- where Gh • • • , Gn are disjoint regular domains is called 
a regular dissection of H. Given a regular domain G in H, $(G) will 
be called a regular domain in II. Similarly, to a regular dissection 
H= Yli S* corresponds a regular dissection 11= 5 J $ ( S » ) of II. 

We can now state the main results concerning our problems. We 
shall start with compactness. An aggregate of parametric surfaces is 
said to be compact if any sequence of parametric surfaces of the aggregate 
contains a convergent subsequence. A complete solution of the compact­
ness problem is given by the following theorem. 

THEOREM. A necessary and sufficient condition f or an aggregate A to 
be compact is that it should be uniformly bounded with respect to neigh­
borhoods. 

The proof of the theorem depends partly on the following problem. 
PROBLEM. TO divide II into regular domains of small diameters and 

to estimate the number of domains. 
This can be done in terms of the number n of points of the set 

6(8,11). The problem is more difficult than it looks. I t seems that if 
we take S-neighborhoods of points of £(S, II), they would give a solu­
tion. But these neighborhoods are overlapping, and if we try to re­
duce them for eliminating the overlapping, then this, in general, 
leads to dividing some of the neighborhoods into many disjoint ones. 
The actual answer to the problem is given by the following lemma. 
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LEMMA 1. II can be represented as the sum of not more than n regular 
domains each of diameter less than 505. 

This lemma becomes effective when coupled with the following 
lemma. 

LEMMA 2. The number of topologically different dissections of H into 
m regular domains is finite for every m. 

The next problem is that of lower semi-continuity of area. Let U 
be the set of the first elements of the points of the parametric surface 
II defined by the equation P = $(M). Write U- Y^i Uk, where Uk 

is the set of points of II of multiplicity k. Measure of II is defined by 
the sum 

CO 

A2n = X; kA2uk, 
fc-1 

where the term corresponding to k — <*> is 0 if A2 Uk = 0, and <*> if 
A2Z7A;>0. Similarly A2$(E) is defined for any EQ.H. The measure 
defined in this way obviously has the property of additivity. 

A parametric surface is called smooth if any part of II (if any) 
whose boundary lies in a plane lies itself in a plane. 

The lower semi-continuity theorem is established in the following 
form. 

If n = lim n n , then A2II0^lim inf A2n£ (IP, VL°n are the sets of in­
terior points ofH, nw) in two cases: 

(i) when II is a smooth surface; 
(ii) when II has a tangential plane at almost all points in the sense of 

Admeasure. 
Thus it is established only f or interior areas and it is not true for the 

closed areas. 
Having properties of compactness and of lower semi-continuity, 

we come in an obvious way to a proof of existence of a surface of 
minimum area subtending an arbitrary parametric contour Y. 

Let a = l.bd A2II, where II is any surface subtending T, and let {lln} 
be a sequence of surfaces subtending T and such that A2nw—>a. By 
smoothing operations, which may only reduce the value of the area, 
every IIW may be replaced by a smooth surface of area not greater 
than A2IIW. Thus we may simply assume all the surfaces IIW to be 
smooth. In this case the aggregate {n n } is easily seen to be uni­
formly bounded with respect to neighborhoods. Consequently, the 
compactness theorem is applicable. Thus we can assume the se­
quence {lln} convergent. Let II = lim IIW; II is obviously smooth and 
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thus the lower semi-continuity theorem is applicable: 

2 0 . 2 0 

A n g lim inf A n n . 

We have to establish a similar relation for the boundaries, which, 
one may think, is obvious as the boundary is the same. This is true 
in the case when all the points of the boundary are simple. If the 
boundary has multiple points, then their multiplicity may depend 
on the surface subtending them and thus measure of the boundary 
may vary from surface to surface. Still the required relation can be 
easily established and the proof of the formula A2II = a completed. 

The second part of the Plateau problem, that of showing that II is 
a harmonic surface, follows in the usual way since according to Cesari 
for a smooth surface II, A2II coincides with the L.-F. area of II. 

Now only a few words about the last problem, that of expressing 
the value of the area in the form of an integral. 

In the case of a non-parametric surface z~f(x, j ) , the formula is 
established under the Tonelli conditions. 

In the case of a parametric surface P = $ (M) , the integral formula 
holds if $(M) is approximately differentiable at almost all points of 
H and if it is absolutely continuous in the sense that for any EQH 
of m2-measure zero, A23>(£)=0. 
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