
Compactness

Compact subsets of the real line: A subset K ⊆ R is called compact if, whenever O
is a set of open subsets ofRwith

⋃
O⊇ K , there is a finite subset Q⊂O with

⋃
Q⊇ K .

O is called an open cover of K , and Q is called a finite subcover.

To be more precise, we might wish to specify that Q is a subcover of K , or of O. But the
language gets really awkward if we have to specify both K and O. Perhaps then it is better to
say that Q⊆O is a (sub)cover of K . We might also say that Q⊆O covers K .



Characterization of compact sets: A subset of R is compact if, and only if, it is
closed and bounded.

Proof. An unbounded subset ofRhas an open cover consisting of all bounded, open
intervals. This has no finite subcover, since the union of a finite set of bounded
intervals is bounded.

Similarly, if K is not closed then it has a boundary point x ∉ K . But then the collec-
tion of sets R\ [x −ε, x +ε] with ε> 0 is an open cover with no finite subcover.

We have shown that a set which is either unbounded or not closed is not compact.
It remains to prove that a set K ⊂R which is both bounded and closed is compact.

First, we show that a closed and bounded interval [a,b] is compact.

Let O be an open cover of [a,b].

Define

s = supC where C = {
c ∈ [a,b] : O has a finite subcover for [a,c]

}
.

It is clear that a ∈C , since O is a cover for [a,b]. So C is not empty, and s ∈ [a,b].

Pick some U ∈O with s ∈U , and let ε> 0 so that [s −ε, s +ε] ⊆U .

Pick some c ∈C with c > s −ε (it exists by the definition of s). Then there is a finite
subcover Q of O for [a,c]. But then Q∪{

U
}

is a finite subcover of O for [a,c ′], where
c ′ = min(s + ε,b). Thus c ′ ∈ C . If s < b then this contradicts the definition of s,
therefore s = b, and b = c ′ ∈C , in other words there is a finite subcover for [a,b].

Finally, let K ⊂ R be closed and bounded, and let O be an open cover of K . Then
U = R \ K is open, and O∪ {

U
}

is an open cover of [a,b], where K ⊆ [a,b] (which
can be so arranged because K is bounded). Since [a,b] is compact, it has a finite
subcover Q. Now Q\

{
U

}⊆O is a finite cover of K , and the proof is complete.



Sequential compactness: A subset K of the real line is compact if, and only if, every
sequence inside K has a cluster point which lies in K .

The proof below is not the simplest for subsets of the real line, but it has the advantage of being easily
generalizable to Rn , or indeed any metric space.

Proof. Assume that K is compact. Let (xn ) be a sequence in K . If w ∈ K is not a cluster point
of (xn ), there is some ε > 0 and N ∈ N so that |w − xn | ≥ ε whenever n ≥ N . Assume that
(xn ) has no cluster point in K . Then, by compactness, K is covered by a finite set of intervals,
say (wi − εi , wi + εi ) for i ∈ {

1, . . . ,m
}
, where |wi − xn | ≥ ε whenever n ≥ Ni . But then, if

n ≥ max(N1, . . . , Nm ), |wi − xn | ≥ ε for all i ∈ {
1, . . . ,m

}
. But this is a contradiction since the

intervals (wi −εi , wi +εi ) cover K .

Conversely, assume that every sequence in K has a cluster point in K . Also, assume that O is
an open cover of K containing no finite subcover.

First, we claim that for every ε > 0 there is some x ∈ K so that (x − ε, x + ε) 6⊆ O for all O ∈
O. For otherwise, pick sequences (xn ) in K and (On ) ∈ O so that xn ∉ O1 ∪ ·· · ∪On−1 and
(xn −ε, xn +ε) ⊆On . These conditions imply |xm −xn | ≥ ε for all m < n, and such a sequence
can have no cluster point. This contradiction proves the claim.

Now let (εn ) be a sequence of positive numbers converging to zero (for example, εn = 1/n),
and for each n pick xn ∈ K with (xn −εn , xn +εn ) 6⊆O for all O ∈O.

The sequence (xn ) must have a cluster point w in K . Pick O ∈O with w ∈O. Since O is open,
there is some ε> 0 with (w −ε, w +ε) ⊆O. Since w is a cluster point of (xn ), and εn → 0, we
can find some n with |xn−w | < ε/2 and εn < ε/2. But then (xn−εn , xn+εn ) ⊂ (w−ε, w+ε) ⊆
O, and this contradicts the choice of xn and εn .


