Fully relativistic *ab initio* studies of superheavy elements

Anastasia Borschevsky Valeria Pershina Uzi Kaldor Ephraim Eliav

Reliable Calculations must take into account:

Relativity

Correlation

Relativity

Dirac-Coulomb-Breit Hamiltonian:

$$H_{\text{DCB}} = \sum_{i} h_D(i) + \sum_{i < j} (1/r_{ij} + B_{ij})$$
$$h_D = c\boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta c^2 + V_{\text{nuc}}$$

$$\alpha = \begin{pmatrix} 0_2 & \sigma \\ \sigma & 0_2 \end{pmatrix}, \quad \beta = \begin{pmatrix} I_2 & 0_2 \\ 0_2 & -I_2 \end{pmatrix}$$

α and β are the four-dimensional Dirac matrices
V_{nuc} is the nuclear attraction operator
*finite nucleus model is used, charge described by a Gaussian distribution/uniformly charged sphere

DF spinors:

$$\phi_{n\kappa} = \begin{pmatrix} P_{n\kappa}(r) & \text{LARGE} \\ Q_{n\kappa}(r) & \text{small} \end{pmatrix}$$

$$(|\kappa| = j + 1/2)$$

DF equation:

$$F_{\kappa}\phi_{n\kappa} = \varepsilon_{n\kappa}\phi_{n\kappa}$$

$$F(x) = h_d(x) + \sum_j^N \int \frac{\phi_j^*(x')(1 - P_{ij})\phi_j^*(x')}{|r - r'|} dx'$$

Correlation

$$\begin{aligned} & \Psi = \exp(S)\Psi_0 = \left(1 + S + \frac{S^2}{2!} + \cdots\right)\Psi_0 \\ & S = S_1 + S_2 + \cdots + S_N \quad S_1 = \sum_{ia} s_i^a a_a^{\dagger} a_i; S_2 = \sum_{ijab} s_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i \end{aligned}$$

Excitation amplitudes s_i^a and s_{ij}^{ab} needed. Obtained by projecting Schrödinger equation unto Φ_i^a and Φ_{ij}^{ab} .

$$\langle \Phi_i^a | (H - E_{\text{CCSD}})(1 + S_1 + S_2 + \frac{1}{2}S_1^2 + S_1S_2 + \frac{1}{3!}S_1^3) | \Phi_0 \rangle = 0,$$

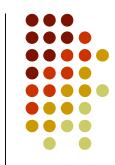
$$\langle \Phi_{ij}^{ab} | (H - E_{\text{CCSD}})(1 + S_1 + S_2 + \frac{1}{2}S_1^2 + S_1S_2 + \frac{1}{3!}S_1^3 + \frac{1}{2}S_1^2 + \frac{1}{2}S_1^2S_2 + \frac{1}{4!}S_1^4) | \Phi_0 \rangle = 0 .$$

Result – coupled nonlinear equations for s_i^a and s_{ij}^{ab} . Very large systems of equations, solved iteratively.

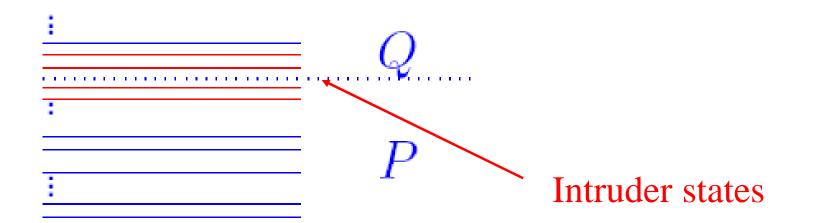
Multireference CC

- Divide the function space into a small model space P (containing the important functions) and a complementary ("virtual") space Q, P+Q=1.
- Diagonalize the effective Hamiltonian:

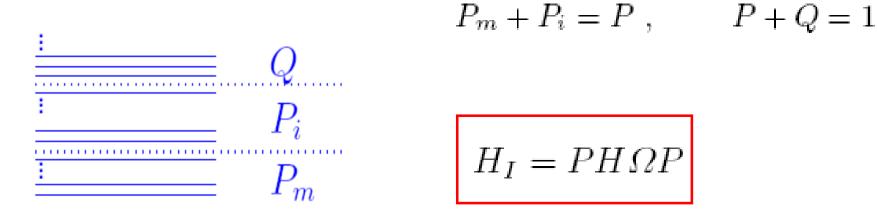
$$H_{\text{eff}} = P H \Omega P \qquad \qquad \Omega = \{\exp(S)\}$$


 $Q[\Omega, H_0]P = Q(V\Omega - \Omega H_{\text{eff}})_{\text{linked}}P$

Fock space CC:



- One of the most powerful and accurate methods
- A large number of energies obtained in a single calculation
- Limitation: <u>convergence difficulties</u>


Convergence difficulties

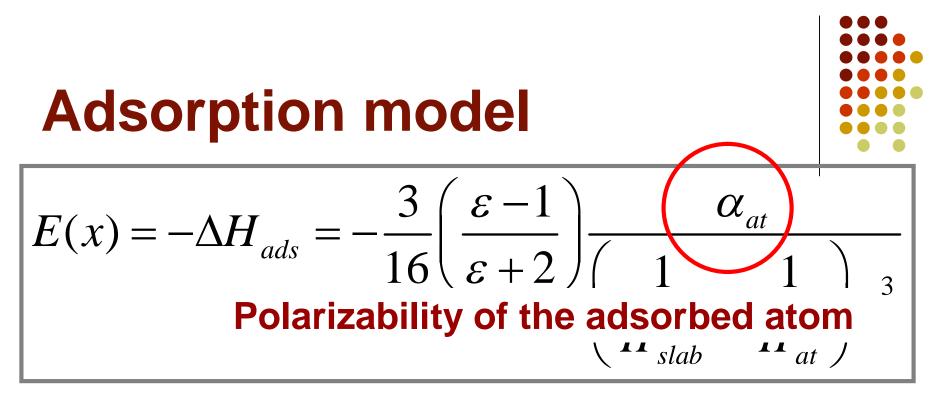
- Large model space P provides better description of the states of interest
- Convergence is enhanced if P and Q are well separated in energy and weakly interacting

Intermediate Hamiltonian Method (IH)

$$H_I P |\Psi_m\rangle = E_m P |\Psi_m\rangle$$

Freedom in evaluation of the problematic QSP_i matrix elements

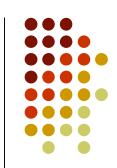
Applications


Polarizabilities of the 7p elements

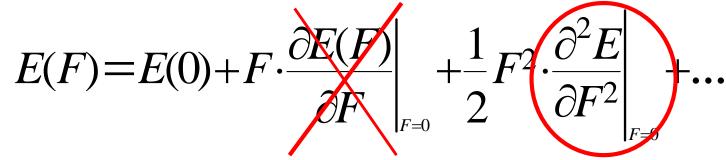
- Electron affinities of group 14 elements
- Ionization potentials and electron affinities of the 7p elements

Polarizabilities of the 7p elements

1 1 H	2			Met	als	M	etallo	ids	N	onm	etals		13	14	15	16	17	18 2 He	
3 Li	4 Be												5 B	6 C	7 N	8 0	9 F	10 Ne	
11 Na	12 Mg		3	- 4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
19 K	20 Ca		2 2	20		8	M		27		2	3	5	34		24		g	6
37 Rb	38 Sr		. 6													-03			
55 Cs	56 Ba	t	7 L						P					0		4	t		n
87 Fr	88 Ra	t	1(L	11	2	1,	13	,	11	4	11	5	1	16		11	7	1	18
Lantha series	anide		5 L	Uu		Ē				-	_						-	-	
Actini series	de		89 Ac		91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No			



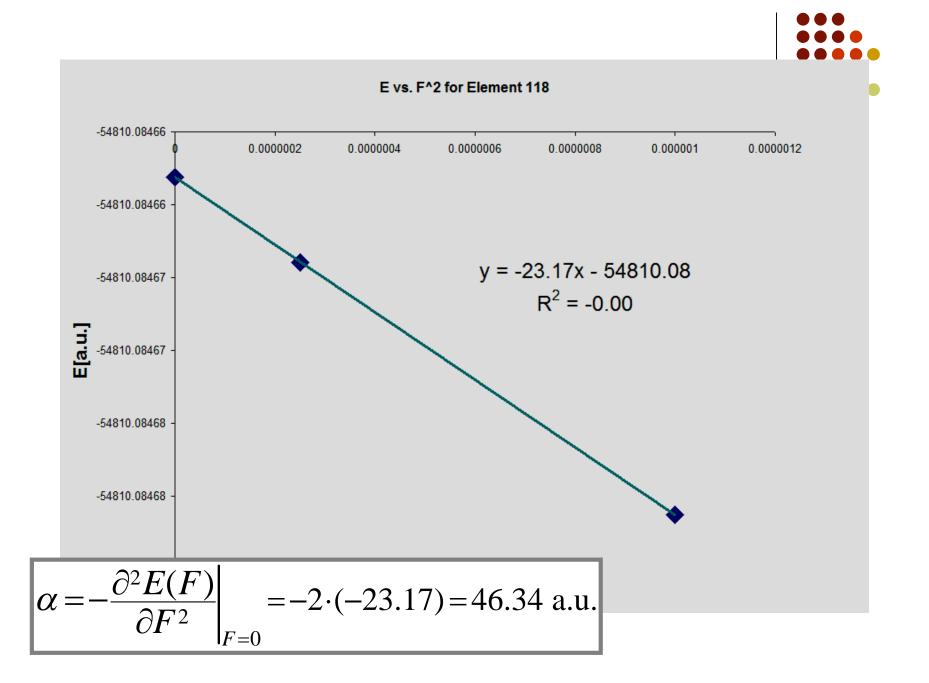
 $IP_{slab/at}$ - the ionization potentials of the surface material and the adsorbed atom


- ε the dielectric constant of the surface
- *x* ad-atom distance, approximated by R_{vdW} of the adsorbed element.

Polarizability:

$$\alpha = -\frac{\partial^2 E(F)}{\partial F^2}\Big|_{F=0}$$

Energy of an atom in a static uniform electric field:



Obtaining the polarizability

$$E(F) = E(0) + \frac{1}{2} F^2 \cdot \frac{\partial^2 E}{\partial F^2} + \dots \Box E(0) - \frac{1}{2} \alpha F^2$$

- Calculate the energy for different values of the external field
- Plot the energies E(F) as a function of F²
- Obtain the derivative by numerical differentiation

Energy calculations

Relativistic effects:

4 component Dirac-Coulomb Hamiltonian:

$$H_{DC} = \sum_{i} h_{D}(i) + \sum_{i < j} \frac{1}{r_{ij}}$$
$$h_{D} = c \boldsymbol{\alpha} \cdot \mathbf{p} + \boldsymbol{\beta} c^{2} + V_{nuc}$$

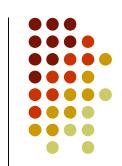
Dirac08 package was used

Electron correlation

- For closed shell elements- single reference CCSD(T)
- Open shell elements- Fock space CC

Basis sets

• 26s24p18d13f5g2h


	Hg	TI	Pb	Rn
α [a.u.]	34.2	51.3	46.9	35.0
Exp.		51(7)		
	E112	E113	E114	E118
α [a.u.]	27.6	29.9	30.6	46.3

Results

Resul	ts			
	Hg	ΤΙ	Pb	Rn
α [a.u.]	34.2	51.3	46.9	35.0
Exp.		51(7)	47(7)*	
	E112	E113	E114	E118
α [a.u.]	27.6	29.9	30.6	46.3

* Phys. Rev. A **78**, 05250 (2008)

Electron affinities of group 14 elements

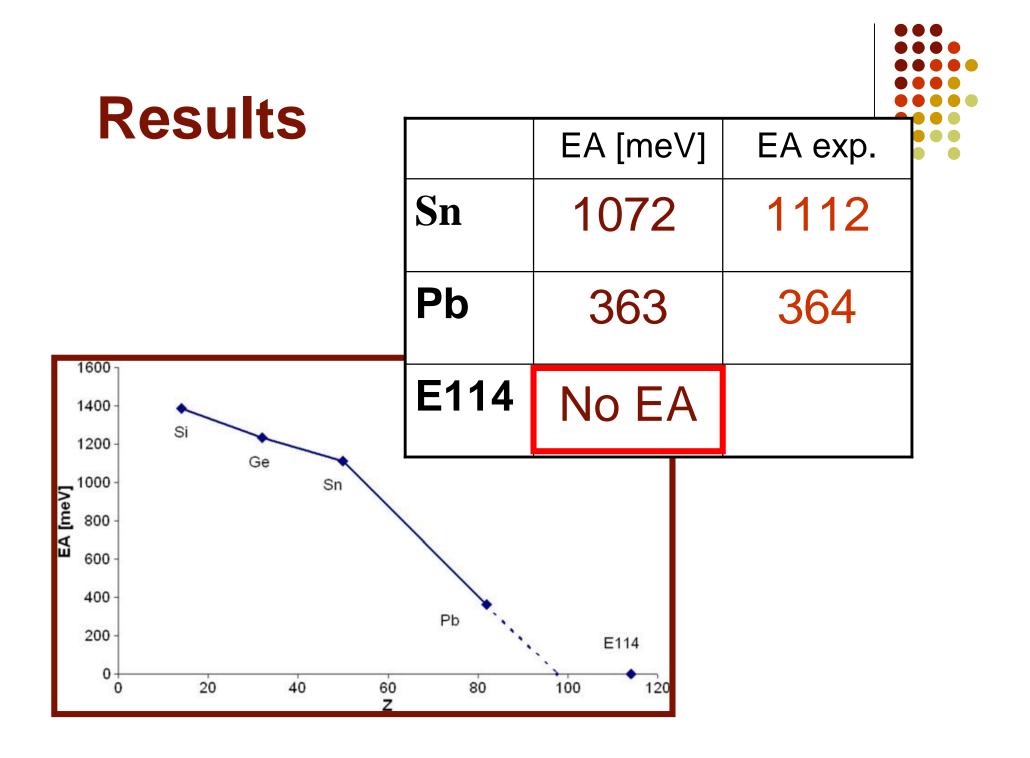
1	_			_									_						18
1 H	2				Met	als	M	etallo	ids	N	lonme	etals			5(n	16	17	2 He
3 Li	4 Be														~		8 0	9 F	10 Ne
11 Na	12 Mg	_		3	4	5	6	7	8	9	10	11	12	1	Э	îI.	16 S	17 Cl	18 Ar
19 K	20 Ca			21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn		82	2	34 Se	35 Br	36 Kr
37 Rb	38 Sr			39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	4	P	h	52 Te	53 1	54 Xe
55 Cs	56 Ba		t	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	1		_	B4 Po	85 At	86 Rn
87 Fr	88 Ra	ſ		103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub	1	11	4	16	117	118
Lantha series	anide		Ц	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	Ho	Er	Tm	70 Yb		
Actini series	de	L	_	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Calculations

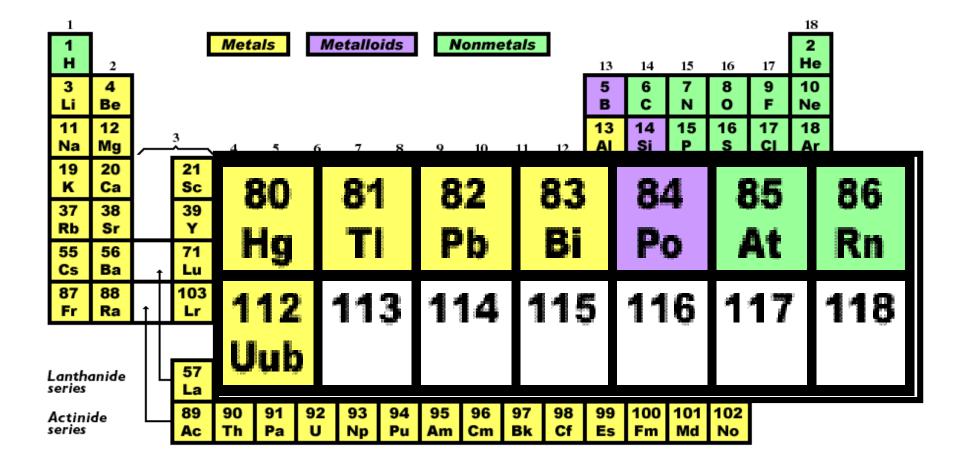
 4-component Dirac-Coulomb-Breit Hamiltonian

$$H_{\rm DCB} = \sum_{i} h_D(i) + \sum_{i < j} (1/r_{ij} + B_{ij})$$

• Mixed sector intermediate Hamiltonian CC Sn: $[Kr]4d^{10}5s^{2}5p^{2}_{1/2} \longrightarrow Sn^{-} (5p^{2}_{1/2}5p_{3/2})$ Pb: $[Xi] 5d^{10}4f^{14} 6s^{2}6p^{2}_{1/2} \longrightarrow Pb^{-} (6p^{2}_{1/2}6p_{3/2})$ E114: $[Rn]5d^{10}4f^{14} 6s^{2}7p^{2}_{1/2} \longrightarrow E114^{-} (7p^{2}_{1/2}7p_{3/2})$

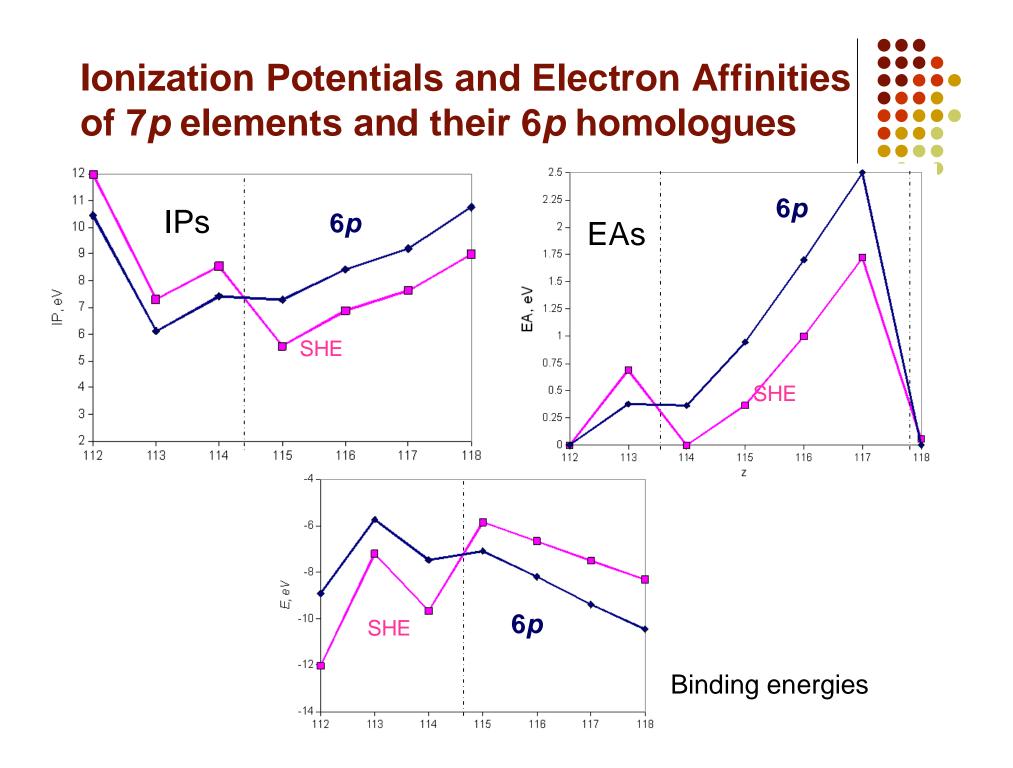


Sn	35s29p24d20f15g9h4i
Pb	37s31p26d21f16g11h6i
E114	37s31p26d21f16g11h6i



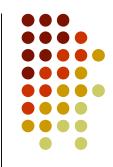
Model spaces

Sn	6-11 <i>s</i> 5 <i>p</i> _{3/2} 6-8 <i>p</i> 5-7 <i>d</i> 4-6 <i>f</i> 5 <i>g</i>
Pb	7-12 <i>s</i> 6 <i>p</i> _{3/2} 7-10 <i>p</i> 6-8 <i>d</i> 5-6 <i>f</i> 5 <i>g</i>
E114	8-13 <i>s</i> 7 <i>p</i> _{3/2} 8-10 <i>p</i> 7-10 <i>d</i> 6-7 <i>f</i> 5 <i>g</i>




Ionization Potentials and Electron Affinities of 7*p* elements

	Hg	ТΙ	Pb	Bi	Ро	At	Rn
IP	10.445	6.096	7.349	7.295	8.499	9.430	10.833
IPexp.	10.438	6.110	7.415	7.285	8.414	-	10.749
EA	0	0.41	0.363	1.008	-	2.525	0
EAexp.	0	0.378	0.364	0.946		-	0
	E112	E113	E114	E115	E116	E117	E118
IP	11.97	7.306	8.539	5.553	6.881*	7.626*	8.984
EA	0	0.69	0	0.366		1.719	0.056


<u>*Previous calculations:</u> (B. Fricke, Structure and Bonding **21**, 89 (1975)) IP(E116): 7.5 eV IP(E117): 7.7 eV

- 4-c Dirac-Coulomb-Breit Hamiltonian
- Fock space coupled cluster method
- Intermediate Hamiltonian approach

Benchmark calculations of properties of superheavy elements

Thank you for your attention!