

Global Standards for the Microelectronics Industry

UFS 3.0 Controller Design Considerations

JEDEC Mobile & IOT Forum

Copyright © 2017 Phison Electronics Corp. Horace Chen

Mobile Storage Evolution

Market Segmentation

UFS 3.0

	Automotive UFS AEC-Q100 ISO-26262 ISO-16949	Commercial UFS and uMCP	Commercial UFS Card	
Performance	Low-Mid	High	Low (1-Lane only)	
Density	Application-Specific	Mid/High	Mid/High	
Cost	Higher	Optimized	Lower	
Reliability	High	Standard	Standard	
Support	Long term	Standard	Standard	
Application	InfotainmentADAS	 Smartphone Tablet Chromebook Slim laptops 	 Camera (4K, 8K) Smartphone Tablet Chromebook Slim laptops 	

Generic NAND Flash Controller

- Host Interface
- CPU
- ECC: Error Correction Engine
- **SRAM** w/ Protection (bit-flip)

- NAND Flash Interface
- Power: Regulators, Detectors,

Management

- **Other** HW and Peripherals

NAND Flash Evolution

- Process improvement
 - 2D 1x/1y nm, 3D Gen.1, 3D Gen.2, ...

• TLC prevails

- Lower Cost
- 30% more density when compared to MLC
- Computational demanding ECC algorythms
- High bandwidth interfaces
 - 533MT/s, 667MT/s, 800MT/s..., 1066MT/s? 1200MT/s? 1600MT/s?

UFS 3.0 Controller Requirements

- 1. High Throughput: ~2400MB/s
- 2. Low Latencies
- 3. Low Active Power: < 700mA
- 4. Cost Management
 - a) Reduced DIE Size
 - b) Support to latest 3D NAND technologies

UFS 3.0 Controller Challenges

High Speed Host Interface 12Gbps per Lane

Full control over the IP design allowing for optimization

Design with packaging in mind to avoid Signal Integrity issues

Reduce IP Area and Power Consumption

Having in-house IPs can shape the design around these requirements

USB 3.0 Controller Challenges 110101000101110100(000)

Example of performance & cost trade-off in design:

□ Latest NAND Flash technologies error correction requirements are very computational demanding

Error

Correction Engine

Need to enable the latest generations of 3D TLC NAND flash without compromising endurance and reliability for embedded and mobile devices

Power Consumption grows with increased througput and increased error correction capability

LDPC

□ Silicon area grows with increased througput and increased error correction capability

Global Standards for the Microelectronics Industry

1010??

1000??

Newer Process: All About the Right Balance

Choosing the Ideal Process

EXAMPLE – Phison's Error Correction Engine IP Study					
	40nm	28nm	28nm		
Application	UFS 2.1 - HS G3 x1-L	UFS 2.1 - HS G3 x2-L UFS 3.0 - HS G4 x1-L	UFS3.0 - HS G4 x2-L		
ECC Throughput	800MB/s	1333MB/s	2666MB/s		
(Higher than I/F)	(800 <mark>x1</mark>)	(800 x1.66)	(800 x3.33)		
Area (aprox.)	x1	x0.32	x0.44		
Power Consumption	x1	x0.46	x0.67		
DIE Area Cost	x1	x0.53	x0.75		

333% Throughput56% Area reduction25% Cost Reduction33% Decrease in Power Consumption

A newer process will bring more advantages. However mask investment, wafer cost, production schedule, IP availability (if not in-house) will have to be considered (40 \rightarrow 28 \rightarrow FinFET)

Design, Validation, Time to Market

Total control of engineering provides a predictable planning with flexibility to adjustments

Summary

- UFS 3.0 performance is comparable to NVMe SSD, yet power and cost are expected to be similar to eMMC: meeting the dynamic mobile market requirements
- In device controller design, the balance between performance,
 power and cost is critical. In addition, a total control of the design
 will offer more flexibility to optimize the solution
- Validation strategy, NAND support & time to market are the determinants of a successful product

Thank You

