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Abstract

The calculation of the average pro�le of the squared Euclidean distance is derived for the
individual coding levels of multilevel-coding schemes using the weight enumerators of the
binary linear component codes. It is shown that the multiple representation of binary
symbols at low coding levels causes a signi�cant loss in power e�ciency. This e�ect can
also be observed for the capacities of the equivalent channels at the individual coding levels,
which are derived. It is proven that the capacity of any digital modulation scheme can
be achieved by a multilevel-coding scheme together with multistage-decoding in principle.
The results allows an optimum tuning of the rates for the component codes.

Zusammenfassung

F�ur Multilevel-Codes mit linearen bin�aren Komponentencodes wird das Distanzpro�l bzgl.
der quad. Euklidischen Distanz f�ur die einzelne Codierebene aus der Gewichtsverteilung
des Bin�arcodes abgeleitet. Es zeigt sich, da� infolge der mehrfachen Repr�asentation der
Bin�arsymbole durch Signalpunkte deutliche St�orabstandsverluste zu verzeichnen sind. Die-
ser E�ekt zeigt sich auch hinsichtlich der Kapazit�aten der �aquivalenten Kan�ale f�ur die
einzelnen Codierebenen, deren Berechnung sehr einfach abgeleitet wird. Es wird nachgewie-
sen, da� durch Multilevel-Codierung und Multistage-Decodierung im Prinzip die Kapazit�at
eines mehrstu�gen digitalen �Ubertragungsverfahrens erreichbar ist. Die Ergebnisse erlau-
ben eine optimale Aufteilung der Rate auf die einzelnen Komponentencodes.

Keywords: power and bandwidth e�cient digital transmission schemes, multilevel-coding,
multistage-decoding, distance pro�le, channel capacity

Schlagworte: Leistungs- und bandbreitene�ziente digitale �Ubertragungsverfahren, Co-
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1 Introduction

For M > 2-ary digital transmission schemes like ASK, PSK, QAM or CPM (incl. FSK) an
e�cient combining of channel coding and modulation is possible using multilevel-coding
(MLC). Transmission schemes with high power and bandwidth e�ciency can be designed
by this method in various ways. The concept of MLC has been developed almost at the
same time as trellis-coded pulse-amplitude modulation (TCM), cf. [10, 18, 19] and various
aspects of both approaches have carefully been investigated in detail, see e.g. [6, 15, 4,
2, 22, 20, 3, 17] and many other references. MLC and TCM are closely related because
both methods are based on an iterative partitioning of the set of signal elements of the
modulation scheme. TCM may be interpreted as a special MLC-scheme with only two
levels, a lower one with coding and a higher one without coding, whereas MLC with short
component block codes is applied to design multidimensional signal sets and partitions
thereupon for TCM, see e.g. [13]. The distance structure of MLC-schemes is in principle
known as methods of generalized concatenated codes can be applied, [14]. Often, a design
of MLC-schemes according to the minimum Euclidean distance criterion for sequences of
signal elements of eqs. (5) and (6) has been proposed, e.g. [2].

Decoding can e�ciently be done individually for each component code beginning from the
lowest level and later on using decisions of lower levels. This suboptimum process is called
multistage-decoding (MSD), see e.g. [22, 20, 17]. Simulation results for simple exam-
ples have shown that surprisingly MSD with Maximum-Likelihood-Sequence-Estimation
(MLSE) on each level is only very slightly inferior to an optimum joint MLSE over all
levels, cf. [12, 16], while saving an enormous implementation e�ort. On the other hand, it
can be observed that the performance of MLC-schemes with binary component codes which
are designed according to the usual rule (5) and (6), is far away from desired asymptotic
curves corresponding to the designed minimum Euclidean distance. Errors in the lowest
level predominate, cf. e.g. [22, 21, 16]. For that reason an increase in the number of possible
error events with low distances often has been supposed. In order to get rid of this e�ect
interleaving between the levels, forwarding of reliability information from lower to higher
levels using so-called soft-output decoding-algorithms (cf. e.g. [9]), and especially iterative
MSD has been proposed [21]. But interleaving between coding levels causes a very high
delay of data which often is not tolerable in practice. On the other hand, a comparison
of schemes with and without interleaving is not fair because interleaving produces an
enormous increase of the e�ective codeword length. Using such long component codes in a
direct way would yield a quite better performance, especially since now there are powerful
schemes available for which a near optimum decoding algorithm with constant e�ort per
information symbol exists for all codeword lengths, cf. e.g. [1]. Although there is a rich
bibliography on MLC, the properties of the individual equivalent channels at the di�erent
coding levels has yet not been in the focus of interest.

In this paper the inuence of the multiple representation of symbols at low levels caused by
the information at higher levels on the distance pro�le at the individual level is investigated
in section 3. It turns out that a design of component codes at low levels according to the
criterion of balanced minimumEuclidean distances is not su�cient as long as not very short
codes are used. The capacities of the individual equivalent channels which are derived
in section 4, give a quite better criterion. It is shown that the capacity of any digital
modulation scheme can be achieved in principle by MLC together with MSD. Thus, the



channel coding problem for any digital modulation scheme can be solved by the application
of binary codes for components of a properly designed MLC-scheme. In order to specify
the notation applied in this paper, a brief introduction to MLC is presented in section 2.

2 Multilevel-Coding

MLC is applied to a digital modulation scheme with M = 2n; n � 1 signal elements, i.e.M
signal points am ; m 2 f1; 2; : : : ;Mg in a signal space with D dimensions per modulation
interval de�ned by D well suited base-functions. The signal points are assumed to be
equiprobable. (The restriction to 2n-ary schemes with equiprobable signal points is only
due to conciseness reasons. The general results hold for any number of signal points
with arbitrary probability distributions, too.) This assumption is no serious restriction
because possible gains by signal shaping are very small for small signal constellations
A = famjm 2 f1; 2; : : : ;Mgg, whereas for large constellations channel coding and shaping
can be treated separately, [5]. An iterative binary set partitioning with subsets of equal
cardinality at each partitioning level is applied to A in order to de�ne a bijective mapping
of binary signal numbers ~c = (c0; c1; : : : ; cn�1); cq 2 f0; 1g; q 2 f0; 1; : : : ; n � 1g to the
signal points: m$ ~c. The subsets on level q are characterized by the paths c0; c1; : : : ; cq�1

from the root to these subsets in the partitioning tree of A:

Ac0:::cq�1 =
n
amjm$ (c0; c1; : : : ; cq�1; xq; : : : ; xn�1); xi 2 f0; 1g

o
(1)

We claim the set partitioning to be regular , i.e. all 2q subsets at partitioning level q
(regarded as constellations of individual modulation schemes) have equal capacities Kq on
the given channel:

K(Ac0c1:::cq�1) = Kq; ci 2 f0; 1g; i 2 f0; 1; q � 1g (2)

Here,K(B) denotes the capacity of a modulation scheme with a signal setB. The memory-
less, discrete time channel without intersymbol interference is speci�ed by the conditional
probability density functions fyjam(y) of the channel output variable y for transmission of
signal point am. For equiprobable signal points

K(B) =
1

jBj
Z
Y

X
am2B

fyjam(y) log2

0
BB@ fyjam(y)

1
jBj

P
ak2B

fyjak(y)

1
CCA dy (3)

is valid, cf. [11]. The integration has to be done over the set of channel output variables,
e.g. over RD (soft decision). If the channel output is quantized (e.g. hard decision) the
integral degenerates to an ordinary sum. For the additive white Gaussian noise channel
(AWGN) the partitioning is regular, if the pro�les of the squared Euclidean distance are
equal for all subsets on one partitioning level, i.e. if all these subsets di�er only in trans-
lation and/or rotation in the signal space with D dimensions. Usually, for each sequence
hcq�i := h: : : ; cq�1; cq0; cq1; cq2; : : :i ; � 2 Z of the components of the binary signal numbers ~c an
individual binary code Cq with rate Rq is applied, see Fig. 1. This special case is assumed
in section 3. But it is also possible to form I classes of ni consecutive components with



Figure 1 Block diagram of a multilevel-coding scheme (special case: binary component
codes with wordlength N and min. Hamming distances �q, digital PAM)

I�1X
i=0

ni = n ; (4)

and to use individual codes Ci over 2ni -ary symbols for these classes. Each class speci�es a
coding level. The equiprobability of the signal points results immediately from the assumed
independence of the di�erent coding levels. For the AWGN-channel the minimum squared
Euclidean distance (MSED) d2min between any pair of sequences of signal points speci�ed
by the MLC-scheme is given by, see e.g. [6]:

d2min = min
i
(d2min;i) ; i 2 f0; 1; : : : ; I � 1g (5)

Here, d2min;i denotes the MSED at the i-th coding level provided that the components of
the binary signal number below this level are speci�ed, e.g. for the subset A00:::0|{z}

q

with

q =
Pi�1

j=0 nj . Using a binary component code Ci with minimum Hamming distance �i on
coding-level i, the MSED at this level is given by, see e.g. [2]

d2min;i = �i � d2q ; q =
i�1X
j=0

nj (6)

Here, dq denotes the minimum intra subset Euclidean distance at the q-th partitioning
level.

3 Distance Pro�le for Linear, Binary Component

Codes

For transmission schemes using MLC with binary component codes and a design of the
individual rates Rq, or minimum Hamming distances �q, resp., using eqs. (5) and (6)
according to the criterion of balanced �2min;q over all levels, errors at the lowest coding-level



predominate the system performance. The coding gain is far away from the asymptotic
curve promised by the designed MSED. The reason for this degradation is the multiple
representation of binary symbols which causes an enormous multiplication of possible error
events with low distances. In Fig. 2, the multiple representation of binary symbols is
illustrated for a set partitioning according to the criterion of maximum intra subset MSED
(Ungerboeck's set partitioning [19]) for large ASK- and QAM-constellations. For signal
points which are far away from the boundary of the constellation, the inverse binary symbol
is represented by two and four nearest neighbours, respectively. In general, each point in
a D-dimensional constellation over ZD has up to 2D neighbours representing the inverse
binary symbol. A single binary codeword of C0 with minimum Hamming weight �0 causes
up to (2D)�

0

sequences of signal points with MSED �0 � d20 from a sequence representing
the all zero sequence. For the lowest coding-level the minimum intra set distance d0 is
the smallest one and, therefore, a code C0 with the highest minimum Hamming weight �0

has to be applied for this level. Thus, the greatest degradation due to multiple symbol
representation occurs at level 0. For set partitioning according to Ungerboeck's criterion,
the rates Rq rapidly goes up close to 1 at higher levels. Therefore, only a small portion of
all possible multiple representations is cancelled by the code constraints at higher levels.
The di�erence in the number of error events with relatively small Euclidean distances for
independent symbols and for coded symbols at higher levels is not very great. But the
only bene�t of an overall MLSE over MSD with individual MLSE consists in the fact that
the code constraints at higher levels are taken into account while decoding at lower levels.
This observation gives an explanation of the small di�erence in performance of optimum
overall MLSE and MSD for set-partitioning according to Ungerboeck's criterion.

Figure 2 Multiple representation of the binary symbols c0 at level 0 for signal constellation
taken from lattices (2Z+ 1) and (2Z+ 1)2 (� : cq = 0 ; � : cq = 1)

In this section we assume binary, linear component codes Cq. Under this restriction the
pro�les of the squared Euclidean distance for each individual coding level can be derived
from the weight distributions of the linear codes Cq, see [16]. Assume that correct decisions
have already been found for the binary symbol sequences hcj�i ; j 2 f0; 1; : : : ; q� 1g before
starting the q-th step of the MSD. Without loss of generality, we assume that the all zero
sequence is transmitted at level q. Additionally we claim for the moment that special signal
points a� 2 Ac0:::cq�10 ; � = f1; 2; : : : ; 2qg are used for representation of these symbols



cq� = 0. These special points { one per subset Ac0:::cq�10 { are characterized by equal
distance distributions to all points of the corresponding opposite subset Ac0:::cq�11, whose
elements represent the inverse symbol cq = 1. The squared Euclidean distances from each
a� to all r = 2n�q�1 points of the corresponding opposite subset Ac0:::cq�11 are denoted by
#1; #2; : : : ; #r. Because of the regularity of the set partitioning a point a� with these squared
distances exists for any of the subsets Ac0:::cq�10. Due to the information transmitted at
higher levels one codeword of Cq with weight � can be mapped to 2(n�q�1)�� = r� di�erent
sequences of signal points. (Symbols cq = 0 of this codeword are still represented by the
special signal points a� at this point of our derivation.) There are

�!

j1! j2! : : : jr!
with j` 2 f0; 1; : : : ; �g and

rX
`=1

j` = � (7)

sequences for which the di�erent squared Euclidean distances #` occur j` times each; ` 2
f1; 2; : : : ; rg. Applying the polynomial theorem

X � � � X
j1+j2+:::+jr=�

�!

j1! j2! : : : jr!
Xj1

1 �Xj2
2 : : :Xjr

r = (X1 +X2 + : : :+Xr)
� ; (8)

the pro�le of the squared Euclidean distance can simply be expressed by substituting
the variables X` in (8) by Z#`, where Z is a real dummy variable. The exponents are
added to the entire squared Euclidean distance and the corresponding factors describe the
multiplicities of sequences with these entire squared distances. If the distribution of the
squared distances #1; #2; : : : ; #r is expressed by a polynomial (distance enumerator)

Bq
�(Z) =

rX
`=1

Z#` =
X
s

bq�;sZ
#s (9)

as usual, the pro�le of the squared Euclidean distances for one binary codeword with
weight � to the uniquely represented all zero word is speci�ed by the polynomial

(Bq
�(Z))

� (10)

In (9), the coe�cients bq�;s denote the multiplicities of squared distances #s from the points
a�. Now we drop the restriction that all symbols cq = 0 are represented by special signal
points a�. The representators for cq = 0 are chosen for each subset Ac0c1:::cq�10 with equal
probabilities 1=r. The probability for a sequence of � signal points for cq = 0, for which
points ai 2 Ac0c1:::cq�10 with distance enumerators Bq

i (Z) are used ki times each, is given
by

1

r�
� �!

k1! k2! : : : kr!
with ki 2 f0; 1; : : : ; �g and

rX
i=1

ki = � (11)

The distance pro�le for a codeword with weight � to the all zero sequence represented by
ki points ai with distance pro�les Bq

i (Z) in the di�ering binary symbols is expressed by
the polynomial:

(Bq
1(Z))

k1 � (Bq
2(Z))

k2 : : : (Bq
r (Z))

kr (12)

Using (11), the average of the distance pro�le over all possible sequences of representators
for the zero sequence reads:

1

r�
X � � � X
k1+k2+:::+kr=�

�!

k1! k2! : : : kr!
(Bq

1(Z))
k1 : : : (Bq

r(Z))
kr =

 
1

r

rX
i=1

Bq
i (Z)

!�

(13)



Again the polynomial theorem (8) is applied. As a regular partitioning is assumed, the
average pro�le

Bq(Z) =
1

r

rX
i=1

Bq
i (Z) with r = 2n�q�1 (14)

of squared Euclidean distances between all representators of symbols cq = 0 and cq = 1
is equal for all subsets at the partitioning level q. The probabilities of errors from 0 to 1
and vice versa are equal and the result (13) is valid for any pair of the codewords with
Hamming distance �.

Let N q(D) = 1�D0+Nmin�D�min+N2�D�2+: : : be the weight enumerator of the linear binary
code Cq. For a convolutional component code N q(D) and Cq(D) denote the enumerator of
the free Hamming distance and the enumerator of the free distance weighted by the average
number of information symbol errors per error event as usual, see e.g. [7]. By application
of (13) the average distance pro�le of the squared Euclidean distance of the code at level
q is expressed by the polynomials

N q
E(Z) = N q (D = Bq(Z)) and Cq

E(Z) = Cq (D = Bq(Z)) (15)

Using this result, the error probability at level q (without taking into account a possible
error propagation from lower levels) can be upper-bounded via the union-bound in the
same way as usual for binary coding, antipodal signalling, and MLSE, see e.g. [7].

Example: 8-ary PSK, level 0, partitioning for maximum intra subset MSED (see Fig. 3)

#1 = #2 = 4 sin2(�8 ); #3 = #4 = 4 sin2(3�8 )

B0(Z) = 2 � Z#1 + 2 � Z#3

Figure 3 Squared Euclidean Distances #` at level 0 for 8-ary PSK

Simulation results and the upper bound (15) (dashed-dotted line) taking multiple symbol
representation into account are given for a convolutional code Cq with rate 1=3 and 8
states in Fig. 4 (�min = 10; weighted weight enumerator C0(D) see [7]). At moderately
high signal to noise ratios SNRs the simulation results are very close to the upper bound
(15). Additionally, the union bound for a unique representation of the binary symbols by
only two antipodal signal points with Euclidean distance d0 =

p
#1 is shown by a dashed

line. Because of the enormous increase in the number of low distance error events a loss
of more than 2 dB has to be accepted at a bit error rate BER = 10�6 due to multiple
symbol representation. The number of nearest neighbour error events is enlarged from 6



to 6144. Using the traditional design rule eqs. (5) and (6), this e�ect would not be taken
into account. An error curve close to the dashed line would be expected. Therefore, this
rough design rule does not lead to satisfying MLC-schemes.

Figure 4 Simulation results and upper bound (union-bound) for the bit error rate (BER)
at level 0 for 8-ary PSK; component code C0: rate 1/3 convolutional code with 8 states
(�min = 10)

4 Capacity of the Equivalent Channels

As shown in the previous section a design of a MLC-scheme according to the criterion
of balanced minimum Euclidean distances at all levels turned out to be problematical.
Especially, for the application of component codes which cannot su�ciently be character-
ized by a minimumHamming distance, e.g. product codes or TURBO-codes [1], this rough
rule cannot be applied at all. Therefore, we propose to choose the ratesRq of the component
codes from the capacities Cq of the equivalent channels at the individual coding levels.

We assume a regular set partitioning tree for the signal set satisfying eq. (2) on each level.
At �rst capacity C0 is calculated. The multiple representation of symbols by signal points
due to the information at higher levels can be interpreted as an additional discrete noise
in level 0, by which the signal points are shifted from unique to ambiguous representators,
and which decreases capacity.

Let n0 ; 1 � n0 � n components of the binary signal number ~c be combined for coding



level 0. The capacity C0 of the equivalent channel of this coding level 0 is de�ned to be

C0 =
1

2n0

1X
c0=0

: : :
1X

cn0�1=0

Z
Y

fyjc0:::cn0�1(y) log2
fyjc0:::cn0�1(y)

fy(y)
dy ; (16)

if the signal points are equiprobable. The conditional probability density functions of the
channel output variable y for given symbols c0; c1; : : : ; cn0�1 reads:

fyjc0:::cn0�1(y) = 2n0�n � X
am2A

c0c1:::cn0�1

fyjam(y) (17)

The capacity K(B) for an arbitrary (sub-)set B of equiprobable signal points (see eq. (3))
can be expanded to:

K(B) =
1

jBj
Z
Y

X
am2B

fyjam(y)

2
664log2

 
fyjam(y)

fy(y)

!
� log2

0
BB@

1
jBj

P
ak2B

fyjak(y)

fy(y)

1
CCA
3
775dy (18)

Eq. (18) is a simple application of the well known chain rule for mutual information, [11].
This expansion is now applied to all 2n0 subsets Ac0:::cn0�1 which contain all representators
of the encoder output symbols (c0 : : : cn0�1) at level 0. Substitution of (17) yields:

1P
c0=0

: : :
1P

cn0�1=0
K (Ac0:::cn0�1) =

1P
c0=0

: : :
1P

cn0�1=0

 
2n0�n

Z
Y

X
am2A

c0:::cn0�1

fyjam(y) log2
fyjam(y)

fy(y)
dy �

�
Z
Y

fyjc0:::cn0�1(y) log2
fyjc0:::cn0�1(y)

fy(y)
dy

!
=

= 2n0K(A) � 2n0C0 = 2n0Kn0

(19)

The last expression results from the regularity of the set partitioning. The simple result

C0 = K0 �Kn0 = K(A) �K(A0:::0|{z}
n0

) (20)

says that the capacity of the equivalent channel at coding level 0 is the di�erence of the
capacities of the entire constellation A and its subset speci�ed by a certain output symbol
of the level 0 encoder.

If rate R0 � C0 and the codeword length is chosen su�ciently high, an error free decoding
in step 0 in the MSD-process is possible in principle. Thus, the sequence hAc0:::cn0�1i of
subsets can correctly be speci�ed. Because of this reason, eq. (20) can be applied to the
capacity of the equivalent channel at coding level 1 in the same way as for level 0:

C1 = Kn0 �Kn0+n1 (21)

This argument holds iteratively for all levels:

C i = KPi�1

`=0
n`
�KPi

`=0
n`

(22)



The subsets at the highest level of the set partitioning tree contain only a single signal
point. Therefore, Kn = 0. Thus, we have proven the subsequent theorem:

Theorem

The capacity C of a 2n-ary digital modulation scheme is equal to the sum of the
capacities Cq of the equivalent channels at the individual coding levels of a multilevel-
coding scheme which is based on a regular binary partitioning tree of the signal set:

C =
I�1X
i=0

C i (23)

The capacity C can be achieved via multilevel-encoding and multistage-decoding if
and only if the individual rates Ri at the di�erent coding levels are chosen to be the
capacities of the equivalent channels, Ri = C i.

This theorem can be generalized to arbitrary, even irregular partitioning trees and for
nonequiprobable signal points in a straight forward way. Please notice that the method of
partitioning has no inuence on the fact that MLC together with MSD can lead to capacity.
Only the distribution of the rates to the di�erent levels is a�ected by the speci�c method
of partitioning. Seen from this point of view, the usual set partitioning for maximum intra
subset MSED has no special importance.

The theorem is not only an e�cient way for an optimum design of a MLC-scheme, but
also shows in general that out of the huge set of all possible codes with length N which
map N �PI�1

i=0 R
i bits to N channel symbols of a transmission scheme, the (in comparison

very small) subset of codes with an independent mapping of NRi bits to the I levels is a
selection whose performance is not below average. Additionally the theorem states that
the channel coding problem for any digital transmission scheme can be solved in principle
by the application of binary codes in an optimum way via MLC and MSD.

In Fig. 5 the capacities of the equivalent channels and the total capacity for the application
of binary component codes to 8-ary ASK are shown versus the variance �2 of the Gaussian
noise per (real) dimension of the signal space. The signal points are taken from the lattice
of odd integers (A = f�1;�3;�5;�7g). The usual partitioning for maximum intra subset
MSED is applied. Additionally, the capacity of 2ASK (f�1g, level 0, but without multiple
symbol representation) is illustrated by a dashed line in order to show the loss due to
multiple symbol representation. In contrast to the usual abscissa parameter Eb=N0, the
variance �2 of noise is used for a better illustration of the relationships between the various
capacity curves.

Analogous results for 8-ary PSK and 16-ary QAM with binary component codes are shown
in Figs. 6 and 7. In Fig. 8 the capacity curves C0 for binary coding at level 0 (n0 = 1)
are given for large constellations taken from the lattices 2Z + 1; D = 1 and (2Z + 1)2;
D = 2. The capacity C0 decreases with increasing dimensionality of the signal constellation
because the number of nearest neighbour error events increases with (2D)�. For very large
constellations, these curves can also be used for higher levels by rescaling of the abscissa.



Figure 5 Capacities of the (sub-)sets and capacities of the equivalent channels at the indi-
vidual coding levels for 8-ary ASK versus noise variance (AWGN-channel, set partitioning
for maximum intra subset minimum Euclidean distance)

Figure 6 Capacities of the (sub-)sets (Fig. A) and capacities of the equivalent channels
(Fig. B) at the individual coding levels for 8-ary PSK versus noise variance per dimension
of the signal space (jamj = 1, AWGN-channel, set partitioning for maximum intra subset
minimum Euclidean distance)



Figure 7 Capacities of the (sub-)sets (Fig. A) and capacities of the equivalent channels
(Fig. B) at the individual coding levels for 16-ary QAM versus noise variance per dimension
of the signal space (AWGN-channel, set partitioning for maximum intra subset minimum
Euclidean distance)

Figure 8 Capacities of the equivalent channels at level 0 for large constellations taken
from lattices (2Z+1) and (2Z+1)2, cf. Fig. 2. (dashed line: capacity with equal minimum
distance but without multiple representation of binary symbols (=̂ 2-ary ASK))

Finally, Fig. 9 shows the capacities Cq for 8-ary ASK and a partitioning of the signal set
according to a criterion of minimum variance of intra subset signal points, see Fig. 10.
Now, level 0 o�ers the highest capacity. The capacities Cq have a smaller divergency
which may facilitate implementation in some cases. Additionally, schemes may be designed
by this partitioning method with a natural adaptation of the total rate on the actual



SNR (gracefully degrading schemes). Choosing the rates Rq for all levels equally, errors
appear for decreasing SNR at level 2, whereas the lower levels o�er a reliable transmission
furthermore. This behaviour may be suited better for MSD as the unequal distribution of
capacities with increasing order as given in Fig. 5.

Figure 9 Capacities of the (sub-)sets and capacities of the equivalent channels at the indi-
vidual coding levels for 8-ary ASK versus noise variance (AWGN-channel, set partitioning
for minimum intra subset variance, cf. Fig. 10)

Figure 10 Set partitioning tree for 8-ary ASK for minimum intra subset variance

Besides capacities, we have calculated the individual cut-o� rates Ri
0 of the equivalent chan-

nels at the individual coding levels q, see [14], too. It turned out that for set partitioning
for maximum intra subset MSED the sum

PI�1
i=0 R

i
0 of individual cut-o�-rates even exceeds

the cut-o�-rate R0 of the entire digital modulation scheme. The author interprets this sur-
prising result in that way that for a �nite codeword length the MLC approach corresponds
to a subset out of the huge set of all possible codes whose performance even is above av-
erage. On the contrary we observed

PI�1
i=0 R

i
0 < R0 for set partitioning for minimum intra



subset variance (e.g. Fig. 10). Thus, set partitioning according to Ungerboeck's criterion
nevertheless seems to be well suited for MLC-schemes. The distribution of rates Ri to the
levels according to the cut-o�-rate criterion is very close to the distribution derived from
the capacity criterion.
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