A Critique of the GNU Hurd Multi-Server Operating System

Neal H. Walfield
neal@gnu.org

ABSTRACT

The GNU Hurd’s design was motivated by a desire to rec-
tify a number of observed shortcomings in Unix. Foremost
among these is that many policies that limit users exist sim-
ply as remnants of the design of the system’s mechanisms
and their implementation. To increase extensibility and in-
tegration, the Hurd adopts an object-based architecture and
defines interfaces, in particular those for the composition of
and access to name spaces, that are virtualizable.

This paper is first a presentation of the Hurd’s design goals
and a characterization of its architecture primarily as it rep-
resents a departure from Unix’s. We then critique the ar-
chitecture and assess it in terms of the user environment of
today focusing on security. Then follows an evaluation of
Mach, the microkernel on which the Hurd is built, empha-
sizing the design constraints which Mach imposes as well as
a number of deficiencies its design presents for multi-server
like systems. Finally, we reflect on the properties such a
system appears to require.

Categories and Subject Descriptors

D.4.7 [Organization and Design]: Interactive systems;
D.4.6 [Security and Protection]: Access controls

Keywords

Multi-server, Naming, Access Controls, Structure

1 Introduction

The goal of the GNU project is to create an operating sys-
tem consisting entirely of free software. By the end of the
1980s, the most important missing component was the ker-
nel. As Unix systems were the primary operating system
used by both GNU software users and developers, and as
the components written to that date were designed for such
systems, a high degree of API compatibility was deemed
necessary. With the hope of speeding development, the de-
cision was made to base the system on a free version of the
Mach kernel from CMU. The designers exploited the micro-
kernel foundation to build a more integrated and extensible
system thereby improving its usability.

In [4], Bushnell outlines the Hurd’s architecture and states
that its goals, in addition to legacy compatibility, are to
permit:

e Efficient sharing of scarce resources
e Greater extensibility and integration

e Mutually suspicious collaboration

Marcus Brinkmann
marcus@gnu.org

e Sharing without prior arrangement

The intent was to improve the usability of the system through
the creation of a well integrated, component-based system
in which system services can be easily replaced and ex-
tended at a fine granularity yet which is sufficiently com-
patible with existing APIs to run most important software
packages with little modification, in particular those from
the GNU project. These concerns motivated a multi-server
structured system with a distributed, user extensible nam-
ing framework. Today, hundreds of software packages from
Debian run on the Hurd without modification.

2 The GNU Hurd’s Architecture

The Hurd is a set of objects. An object is similar to a
closure: it implements an interface and consists of a program
and state. These objects extend the objects exposed by
the underlying microkernel, Mach [35], to include standard
system functionality and to dictate system policy. System
services are made available exclusively through objects.
Hurd objects are realized in user-space processes called servers.
To improve fault isolation and reduce that on which a pro-
gram instance depends for its correct operation, its reliance
set, |17, Ch. 5], a server implements a minimal number of
related objects. Typically, a server decomposes some larger
object. For instance, a file system server exposes a part of
backing store as a hierarchy of files and directories. This is
in contrast to a monolithic system where many components
execute in the kernel’s protection domain and component
boundaries are only a formality.

Objects are referenced by capabilities |6]. Capabilities both
designate an object and authorize access to it. Mach pro-
vides protected capabilities: unforgeable, task-local, opaque
references conceptually held in a capability slot. They can
only be transferred using the message passing facility.

A capability does not directly reference an object. On Mach,
it references a kernel message queue, a port. A client holds
a send right capability that permits enqueuing of messages,
and a server holds a receive right capability that permits
dequeuing of messages. A server internally associates the
kernel object with the user object.

A process may sense (read) and manipulate (modify) an
object only by invoking a capability which references it. In-
voking a capability causes a message to be made available to
the process implementing the referenced object. Messages
may carry data and capabilities determined by the invoker.
Typically, the client will include at least a reply capability,
a send-once right designating a queue for which the client
has a receive right. It then waits for a reply message. This

is the remote procedure call (RPC) pattern.

Because gaining access to an object, whether it is imple-
mented by Mach or by a user-space process, is only possible
using the message passing interface, any process may trans-
parently implement, proxy or extend an object insofar as it
can interpose itself between the object and the user. This
is a basic requirement for virtualization [21] and reference
monitors [1].

2.1 System Structure

The Hurd is defined by approximately a dozen canonical
interfaces. The fs interface is used in the examination and
manipulation of directory and file meta-data. This includes
traversing object relationships using symbolic names. The
io interface is used to read from data sources and to write
to data sinks. File handle objects usually implement both
of these interfaces. The fsys interface is used for whole file
system related operations, e.g., those set on Unix using the
-o option to mount, as well as to obtain an unauthenticated
file handle to the root of the file system (an unauthenticated
file handle is one that is not yet associated with any user ID
on the server side).

Additional interfaces include the auth interface for manag-
ing identities and for the support of identity-based access
control (IBAC), the password interface for obtaining iden-
tity objects against passwords, the exec interface for help
in instantiating programs and the process interface for pro-
cess management including process identifiers (PIDs), ses-
sion and process group management and non-preemptive
signal delivery.

A Hurd system consists of at least the Mach kernel, an auth
server, a proc server, an exec server, a password server and
a file system server. These servers provide a similar level
of abstraction as the system call interface of a traditional
monolithic Unix kernel.

The C library directly interacts with these servers to imple-
ment POSIX and other higher-level interfaces. Most pro-
grams use these interfaces exclusively. The implementation
also contains hooks and extensions for more convenient use
of some Hurd-specific features.

A number of utility programs extend the traditional collec-
tion of Unix utilities giving the user direct access to Hurd
functionality. The most important of these is the settrans
program for starting new servers and linking them to a name
space.

2.2 Naming and Name Spaces

Although capabilities allow processes to reference objects,
a convention is required to permit users to designate the
objects on which a program should operate. The Hurd’s so-
lution appears similar to Unix’s virtual file system (VFS),
however, it differentiates itself in that its realization is dis-
tributed, not centralized. In particular, any process, with-
out special privilege, can implement the conventions of the
Hurd’s VFS and create and publish a commonly understood
naming hierarchy.

In this framework, object relations are named symbolically.
The traversal of object relationships, name resolution, is re-
alized using the dir_lookup interface. There is no implicit
root: resolution is always done relative to an explicitly ref-
erenced object. Applications, however, resolve most names
either relative to the capability stored in its root directory
capability slot or relative to the capability stored in its cur-

rent working directory slot, which are normally filled by the
parent process with a copy of its own respective references at
process creation, leading de facto to a single global names-
pace.

Often, the dir_lookup method does not actually return a
capability referencing the resolved object: it creates a new
object, a handle, which references some session state and the
resolved object. These sessions are used primarily to fulfill
some POSIX requirements. A file handle, for instance, in-
cludes a cursor, which records the session’s current position
in the file.

2.2.1 Extending a Name Space

When Alice wishes to access files on an FTP server from her
Unix workstation, she likely uses an FTP program to copy
the relevant files locally. Later, after having made some
modifications, she again runs the FTP program to copy the
modifications back to the server.

These steps are necessary as the programs Alice uses to ma-
nipulate the data cannot manipulate the objects on the FTP
server: neither do the programs understand the object nam-
ing and access conventions of the FTP server nor is Alice
able to instantiate her own file system that can make the
objects available using the API they do understand. In the
latter case, the problem is that this typically requires up-
loading code to the kernel or using a fragile kernel service
(e.g., a file system driver, most implementations of which
assume correct input).

To work around this, the GNOME and KDE projects have
built their own VFS implementations which are user exten-
sible but only accessible using different calling conventions.
As such, applications which do not use this API appear less
integrated. The Linux kernel developers have acknowledged
this problem and have recently extended their kernel to sup-
port unprivileged, user-space file systems.

On the Hurd, Alice could have used the ftpfs program to
make the objects on the FTP server available in a portion
of the VFS she controls. Alice does not require any special
privilege to do this: ftpfs is a normal program which im-
plements a protocol; she just requires the appropriate access
to the node to which she wants to attach it. Such programs
are referred to as tramslators, as they translate between a
pair of naming and access conventions.

Hurd translators are linked to other translators by inserting
a capability referencing the fsys object of the translator
at the desired mount point. This is usually done using the
settrans program and is conceptually similar to mounting
a file system on Unix. In the scenario presented above, Alice
could have run a command similar to the following:

$ settrans -a “/mnt /hurd/ftpfs \
username :password@site.org/”

settrans starts an instance of the ftpfs program and at-
taches it to the node ~/mnt. The remaining arguments are
passed through to the translator.

The settrans program works by first obtaining a handle to
the mount point. It then instantiates the program and, be-
fore setting it running, creates a port and inserts a send right
to it in the bootstrap capability slot of the process (Figure
. As the translator starts, it invokes the fsys_startup
method on the bootstrap capability, passing a capability
referencing its £sys object as an argument. (As explained
below, this object is required by the parent translator in its

ref. mnt’

S

Bs insert_right
(a) settrans S has opened ~/mnt and
created the new translator instance,
T’. settrans now inserts the boot-
strap capability Bs into the bootstrap
capability slot of T’. settrans starts
T’ running.

ref. mnt’

fsys_startup

(b) Upon finding the bootstrap capa-
bility Bs, T’ invokes fsys_startup,
passing a reference to its fsys ob-
ject. S invokes file_set_translator
to mount T’ on T.

Figure 1: The settrans program.

(c) T installs the fsys object of T'. S
obtains and returns a reference to an
unauthenticated handle for the mount
point to T".

dir_lookup implementation to redirect a caller to the trans-
lator.) settrans then invokes file_set_translator on the
capability designating the mount point handle, passing the
fsys capability as an argument (Figure. settrans also
obtains and returns a reference to an unauthenticated han-
dle for the mount point to the new translator (Figure.
It uses this to resolve the dot-dot directory at its root.

2.2.2 Name Resolution

A translator may use its fsys object simply as a rendezvous
point. The auth and password servers do this: neither ex-
poses objects in a way appropriate for a directory struc-
ture. Most servers, however, implement a hierarchy of ob-
jects which they make accessible via the standard interfaces.
Object relationships are named symbolically by a path, a se-
ries of symbolic names, path components, separated by one
or more / characters, and traversed following the name reso-
lution protocol. At its core is the dir_lookup method, which
starts by resolving the first path component. If the resolved
object is also implemented by the server and path compo-
nents remain, the next path component is also resolved by
the server without returning to the caller as an optimization.
This process continues until the path is completely resolved,
or the server finds the named object is implemented by an-
other server. If the path resolves to an object which the
server implements, a capability designating a new handle
to the resolved object is returned. Otherwise the server re-
turns a so-called retry message to the client which contains
a capability to a new unauthenticated root object handle
on the other server as well as the path which remains to be
resolved. The client then identifies itself to the new server
and invokes dir_lookup on the authenticated root object
handle, passing the rewritten path.

For POSIX compatibility, a dir_lookup implementation is
required to resolve the special name dot-dot for the parent
directory. (The root directory is its own parent.) If a process
calls dir_lookup on a capability naming /home/alice/mnt,
as in Figure [1] passing dot-dot as the path to resolve, the
ftpfs instance would return a retry message which included
a capability naming the object /home/alice/mnt on the par-

ent translator and have rewritten the path to dot-dot.

The Unix chroot mechanism requires that a directory ap-
pears to a group of processes as a root. That is, the mean-
ing of dot-dot must be overridden. The Hurd provides the
more general file_reparent mechanism, which does not re-
quire superuser privilege. It creates a new handle for which
lookups of dot-dot resolve to the provided capability. The
special void capability indicates that the directory should
appear as a root. Handles derived from a reparented node
naming the same node preserve this property.

file _reparent also allows the realization of firm links, links
which bind a portion of the VFS to another location, a sort
of cross file system hard link. Bind mounts on Linux provide
a similar mechanism.

2.2.3 Persistent Translators

On the Hurd, neither processes nor capabilities are persis-
tent: files are the only persistent resource. To restore the
operating environment, sufficiently privileged programs can
register a command to be run at system restart. When the
system is shut down, processes are informed of their immi-
nent termination and given the opportunity to save their
state into files.

This approach was inherited from Unix and is sufficient for
configuration recovery for a relatively static, centrally con-
trolled system. On the Hurd, users have much more control
over their computing environment through the use of trans-
lators. To allow translators to be restarted transparently
and consistent with the distributed architecture, a passive
translator setting can be saved in the node on which the
translator is set. If no translator is running when the node
is accessed, the translator performing the dir_lookup will
run the program specified in the passive translator setting.
The program is started with the UID and GID of the node,
which is often possible as it is normally the case that the
parent either has the same identity as the translator or an
identity which dominates that of the translator (e.g., root).
When this is not the case, the translator is safely started
without an identity.

The passive translator setting is saved using the file_set_-

translator method. Since the translator is started with the
UID and GID of the node, it can typically only be set by
the owner of the node. How and if the passive translator
setting is saved is implementation defined. The ext2 file
system implementation, for instance, allocates a file system
block for the passive translator setting and saves the block
address in the relevant inode.

2.3 Protection and Security

Hurd servers control access to objects based on the iden-
tity of the subject. The policy is similar to Unix but the
mechanism is quite different. On the Hurd, identities are
first-class objects (meaning that a single process may have
more than one or none at all) and are managed by the auth
server. The auth server also supports programs in the real-
ization of IBAC by providing an authentication mechanism
which allows programs to safely expose identities to others
in a verifiable manner.

2.3.1 Identity Management

As identities are first class objects, a process may have ac-
cess to any number of UIDs and GIDs or none at all. More-
over, because they are simply objects named by capabili-
ties, a process is able to remove its authority to an identity
by dropping the capability referencing it, so-called discre-
tionary authority reduction. This technique allows applica-
tions to run with less excess authority thereby reducing the
amount of damage a bug or an attacker can cause.
Applications that require access to a fixed number of re-
sources known at start up and after which do not require
the authority an identity grants, can take advantage of this
technique. For example, a network server which needs to
bind to a TCP port below 1024, but which does not oth-
erwise require the authority the superuser identity conveys,
can run with no UIDs or GIDs after binding to the port.
This pattern is not limited to those applications which re-
quire access to a resource to which only the superuser 1D
grants access: a document viewer, after opening a user spec-
ified file, could destroy the identity object to diminish the
effects of a malicious macro.

Servers which authenticate users such as FTP or SSH servers
can also take advantage of this additional functionality: un-
like the previous class of applications, these programs re-
quire the ability to change UIDs during the lifetime of the
program. Because they interact with unauthenticated users
while holding large amounts of authority, they are highly
targeted. In particular, such programs are susceptible to
buffer overflows and input validation errors during the login
phase. On the Hurd, such a program instance can run with
no identities. Then, after a user has provided a user name
and password, it presents them to the password server in
exchange for an identity object thereby increasing its au-
thority. The Hurd’s login program does this. Because the
amount of havoc an attacker can wreck is proportional to the
accessible authority, the effects of a breach are diminished
proportionally.

On Unix, privilege separation [22] is used to isolate the parts
of a program requiring root authority. This technique uses
multiple collaborating processes. One process implements
the typically small number of required privileged operations
exposing them via a simple interface and the other imple-
ments the balance of the functionality. This eases verifi-
cation of the privileged program and makes exploitation of

bugs more difficult. However, this approach requires supe-
ruser privileges for the allocation of unused user and group
IDs for each program instance which uses this technique.

2.3.2 Authorization

IBAC is based on knowing the identity of the user. Thus,
when a subject authenticates access to an object which is
controlled by such a regime, it needs to disclose its iden-
tity to the object. On Unix, the identity manager and most
servers are in the same trust domain. On the Hurd, this is
not the case. This exposes a tension: the server implement-
ing the object must be able to examine the identities of the
user, but not be able to use them. The Hurd’s auth server
provides a three-way handshake to support such mutually
suspicious collaboration and sharing without prior arrange-
ment.

When a client wishes to authenticate access to an object,
such as when it crosses a translator boundary and only has
an unauthenticated root handle, it uses io_reauthenticate.
The client includes a so-called rendezvous capability refer-
encing a new kernel message queue (Figure . In re-
sponse to this request, the server invokes the auth_server_ -
authenticate method on a capability which references an
identity object on a trusted auth server. It includes the
rendezvous capability as well as a second capability which
names an as of yet unauthenticated handle to the object.
Without waiting for a reply, the client invokes the auth -
user_authenticate method on a capability naming the iden-
tity object whose contents it wishes to disclose to the server.
It also includes the rendezvous capability as an argument
(Figure . The auth server then pairs the rendezvous
capabilities and completes the handshake by returning the
identifiers in the identity object to the server and the ca-
pability naming the new object to the client (Figure .
The server then stores the identifiers in the object.

The capability to the new object is returned via the authen-
tication server to avoid giving access to the authenticated
object to an unprivileged third party. This prevents man
in the middle attacks: if Bob has a connection to Alice via
Mallet, i.e., Mallet is forwarding messages between the two,
Alice and Bob can be sure that the established channel only
traverses the union of their reliance sets. Otherwise, when
Alice replies to Bob with the capability, Mallet could proxy
the capability and observe all communication.

The authentication interface and protocol are designed such
that it is possible to transparently interpose reference moni-
tors and proxy auth servers between both the client and the
common auth server as well as the server and the common
auth server. This allows easy implementation of extended
functionality, such as Debian’s fakeroot.

2.4 Abstractions

Although the Hurd provides a rich set of abstractions, many
are easily circumvented for either flexibility or efficiency rea-
sons. The store abstraction provides an example of the lat-
ter: a store abstracts seekable data stores such as files and
block devices as well as combined stores such as those in a
RAID configuration.

As there is a cost involved in providing this level of indirec-
tion, sufficiently privileged programs (i.e., programs which
would be able to access the underlying store in its entirety
in the case of a partitioned store) can bypass the store
translator using the file_get_storage_info method. In

0

B I
unauth !

io_reauth

(a) The client C invokes the
io_reauthenticate method on
an unauthenticated handle Ounauth
to object O, passing a reference to a
rendezvous object R.

; éo
O’ 7

)
“unauth

(b) Client C and server S each in-
voke a capability referencing an ID
object, passing the rendezvous capa-
bility. The server also includes a capa-
bility referencing a new object handle

reauth-

o

)
“Lunauth

(c) After pairing the rendezvous ref-
erences, the auth server returns the
new object handle to the client and
the client IDs as a string literal to the
server. The server can now realize its
access control policy.

Figure 2: The authentication mechanism.

the simplest case, the returned information can be passed
to libstore for a completely local implementation, thereby
avoiding the additional context switches. This strategy has
similarities to the Exokernel approach to abstraction elimi-
nation: remove mandatory abstractions and instead imple-
ment abstractions in user libraries [13].

2.5 Legacy Support

As it was expected that the bulk of applications would use
the POSIX interface, it was important not to treat them as
second-class citizens, e.g., via support through a poorly in-
tegrated subsystem. To this end, compatibility was realized
through the use of a so-called fat C library where much of
the POSIX API is implemented in terms of Hurd and Mach
mechanisms.

This strategy provides several advantages: many legacy ap-
plications can be used with minimal modification, applica-
tions are rarely disadvantaged for having used the POSIX
API, and few modifications are required to take advantage
of Hurd features. For example, an FTP server on Unix nor-
mally requires the authority of the root user. This program
can be modified using two isolated changes to take advan-
tage of the Hurd’s protection mechanisms. As described in
Section [2.3.1} an FTP server needs to bind to a privileged
TCP port and be able to change users. On the Hurd the
server can drop its root identity after binding to the TCP
port and use the password server to authenticate the user
and obtain the respective identity object. Our experience
suggests that such isolated changes are more readily inte-
grated by upstream authors than invasive platform specific
patches.

3 A Critique

The design presented above has a number of shortcomings
in reaching its own stated goals as well as the demands of a
modern computing environment.

3.1 Malicious File Systems

Most legacy applications assume that file systems are not
malicious. This assumption is reasonable on a system where

all file systems are part of a process’s reliance set, as is the
case on Unix. On the Hurd, where arbitrary programs are
able to attach to and extend the virtual file system, this
assumption leads to a vulnerability. For instance, an igno-
rant backup program may walk the VFS, copying the ob-
jects it finds. A malicious file system can mount a denial of
service attack by generating an infinitely-deep virtual direc-
tory structure populated with arbitrary amounts of pseudo-
random data.

It can be argued that there are always scenarios requiring
defensive programming and that this is simply one of which
Hurd programs need to be aware. This would be correct but
avoids the question of legacy support.

Our observation is that compatibility is not only respecting
the interfaces but also the deep assumptions that programs
have regarding the API. Thus, it is the responsibility of the
compatibility layer to recognize these assumptions and to
meet them.

3.2 A File or a Directory?

In the Hurd, objects are dynamically typed. For example, all
directory objects also implement the file interface, as was the
case in early Unix systems. On modern Unix, a VFS node is
strongly typed: it is either a file, a directory or some other
well defined object. While early Unix systems made direc-
tories readable as files for internal implementation reasons,
this approach appears useful for other reasons as well. Data
can sometimes be seen as either a linear file or a structured
hierarchy of objects. For instance, it is convenient to copy
a backup archive by copying a single file. However, when
searching for a file in the same backup archive, it is more
convenient to view the data backup as a directory hierarchy
and have the ability to search it using normal tools such as
find and grep.

In this example, the view is selected by the use of disjoint
sets of interfaces. Some programs, like grep -r, support
multiple object types and rely on advice from the object
in the form of the file type information for disambiguation.
Which view should be presented depends on the intent of the
user. We found that this ambiguity made it difficult to lever-

age the potential advantages of a dynamically typed object
system in the context of a legacy POSIX environment. This
motivates a mechanism by which a user or an agent acting
on his behalf can acquire separate names for separate views
on the same underlying object. Requiring explicit naming of
views reduces ambiguity thereby simplifying code, removes
a security risk and provides the user with greater expressive-
ness through the uniform interface. Adding a new naming
mechanism would require that all programs be taught how
to use it. Instead, the existing naming framework should be
reused and objects should implement a single type. For ex-
ample, different views on the same underlying object could
be selected by a path component suffix built from a special
character plus type specifier, with only minimum practical
impact on POSIX compatibility.

3.3 The Dot-Dot Directory Entry

The resolution of dot-dot to the physical parent was moti-
vated by POSIX compatibility. Unfortunately, it requires
server help. This is further complicated as processes may
have different views of the VFS, e.g., processes running in
a chroot. Additional support is thus required to override
dot-dot so that chrooted processes (and their children) do
not see the physical parent of the root but a VFS root.
The file _reparent method appears to solve this issue, how-
ever, introduces its own problems. If a translator is it-
self started in a chroot, say /chroot, and a process which
has a different root directory, say /, attempts to resolve
a path starting in the translator’s name space but which
ascends the hierarchy traversing the translator’s root direc-
tory, it will get unexpected results: Assume the transla-
tor is mounted on /chroot/mnt and the process, starting
at /chroot/mnt, looks up ../../foo. When the process in-
vokes the dir_lookup method, the translator returns a retry
message including a capability referencing the underlying
node but whose logical root is set to /chroot. When the
process retries the rest of the path with this handle, it will
resolve to /chroot rather than / as the underlying file sys-
tem compressed dot-dot at the handle’s logical root. Had
the process resolved dot-dot on its own, it would have ar-
rived at the correct directory. What has happened is that
the naming context has changed.

Pike argues for lexical name resolution, i.e., making appli-
cations responsible for the resolution of dot-dot, as POSIX
semantics are actually rarely what users want [20]. Adopt-
ing such a policy on the Hurd would not only improve the
user experience but would also fix the above and similar
problems by entirely removing the need for server resolu-
tion of dot-dot and thus file_reparent. This also has the
additional fortunate effect of significantly simplifying servers
and proxies.

3.4 Passive Translators and Naming

Translators are started in two different scenarios: by a pro-
gram, at the behest of a user; and by a file system, as it
traverses the VFS and accesses a node which has a passive
translator setting but no running translator. The latter sce-
nario was motivated by the requirement for a mechanism
which restores running translators after system restart.

When a program instantiates a translator, it provides it with
a naming context, that is to say the new translator’s root
and current directory objects. As passive translator settings
do not include naming contexts—they are strings—the file

system uses its own default naming context. Users tend to
encounter this problem when they provide a relative path in
the passive translator setting rather than an absolute path.
More of a concern, however, are the implications for en-
forcement of security policies: chroot is sometimes used as
a protection mechanism as it restricts the name space of
a set of processes, limiting reachability. Making the whole
name space of the file system available to the encapsulated
process circumvents this mechanism.

Consider the case where the root of the translator’s nam-
ing context is / and the root of a chrooted program in-
stance’s naming context is /chroot. The encapsulated pro-
gram instance can escape by setting a passive translator
on /chroot/foo (what it locally knows as /foo) and then
stating the object:

$ settrans -cp /foo /hurd/firmlink /
$ 1s -1 /foo

When the translator examines the object, it sees that the
node has no translator but does have a passive translator
setting. It proceeds to start a translator by resolving the
command name to an £s object relative to its own root and,
in executing it, providing the program instance with a ca-
pability to its own root. If the translator is, as above, a firm
link, a translator which makes some name space available
at the translated node, then the encapsulated program has
successfully escaped. Alternatively, the encapsulated pro-
gram instance could debug the translator (it has the same
UID) and simply copy the capability.

To avoid this, the program instance that sets the passive
translator must also provide a naming context in which the
passive translator is interpreted as well as a default naming
context for the translator instance. That is, it must provide
closures, not just strings [23]. Arguably, the file system has
at least the former: it need only remember which handle
the passive translator was set with. The problem is that the
handles are not persistent and the main motivation behind
passive translators is that since capabilities and processes
are not persistent, a method is needed to restore translators.
This problem, known as trusted recovery [7|, can be solved
partially by making the system persistent, thereby circum-
venting the reconfiguration problem (14} 26| [33]. From a
user’s perspective, persistence is a highly desired feature:
desktop environments work to restore running applications
to the state they were running in when the user logged out;
and many users, in particular laptop users, choose to sus-
pend to disk or memory rather than turn the computer off.
However, persistence does not address other configuration
management issues such as update and migration. We are
not aware of alternatives to persistence that solve the trusted
recovery problem in a dynamic environment.

3.5 Server Allocations

On the Hurd, most objects are accessed via sessions. This
is usually motivated by POSIX compatibility. File handles,
for instance, are required to maintain the cursor position
and record the logical dot-dot binding. For each session,
the server must allocate some storage. In the case of objects
that cause allocations, this is not a problem. However, with
only read access to an object, the client should not be able
to cause additional storage allocation. Yet, this is the case
and, as such, a malicious program, having only authorized to
use the read-only interface to an object, is able, in bounded

space, to cause the server to consume an unbounded amount
of memory: it simply enters an endless loop performing an
open on the file. The server cannot tell which process is
causing the allocation; it can, at best, implement a local
per-user memory quota. This has the unfortunate side effect
of potentially limiting legitimate uses of the server (what
is the right quota?). It also makes a new denial-of-service
attack possible: an encapsulated process can exhaust the
user’s resource quota. Again, identity based access control
is inadequate.

To avoid this, read-only interfaces should be designed such
that they do not require server allocations or that the client
provides the resources by passing a capability which names
a resource pool of some sort, similar to EROS space banks
[26] or resource containers |2], against which the server then
allocates the resources.

When possible, allocations should be avoided. In the case
of the cursor, this is possible. As multiple processes can ac-
cess a single file descriptor (i.e., a single handle), this raises
the question of how to coordinate access to the cursor. The
majority of shared file descriptors name pipes. As pipes are
unseekable, they do not require a cursor. In the remaining
rare cases in which two processes share a file description to
a seekable object, they must coordinate access to the cursor
anyway. This already requires that they be mutually trust-
ing. However, as this is quite complicated, it is normally
avoided by immediately dup-ing the file handle on receipt.
Thus, it appears, a shared cursor is rarely required.

3.6 Security and Protection

Computers are used to store and process data. This data
has value and, as such, should have appropriate mechanisms
in place according to the user’s security policy to protect it
from unauthorized access and disclosure and to ensure its
availability. Although the Hurd provides some mechanisms
for protecting data from other users, the Hurd does not pro-
vide mechanisms for the enforcement of a security policy for
particular program instances: programs are assumed to rep-
resent the interests of the user and, as such, are run with
the user’s authority.

Although the US military was acutely aware of such threats
over three decades ago [1], in the early 1990s when the Hurd
was designed, the average computer user did not consider
them important: malware was mostly non-existent. This
sentiment is echoed by Bushnell at the end of his archi-
tectural overview of the Hurd: “[yJou can’t harm a pro-
cess by giving it extra permission” [4]. Yet as programs
are buggy (18, |[19], sometimes malicious and often exploited
[32], not providing adequate protection mechanisms today
is irresponsible.

To mitigate these problems, users need to be able to provide
a program instance access to only the objects it needs to
realize the user’s intent. That is, it should be possible to
run programs consistent with the principle of least privilege
(POLP) [24].

The discretionary authority reduction pattern described in
Section [2:3:1]does not address this problem: although it use-
ful in mitigating the effects of bugs and their exploitation,
the use of this pattern is at the discretion of the program—
not the user. As such, although it represents good program-
ming practice, users have not gained any control: they still
rely on the goodwill of programmers.

Capability practitioners contend that a well-structured ca-

pability system can run programs under a POLP regime
without modification and without being invasive to users.
Polaris [30] and Plash [25] are two such systems built on top
of Windows XP and GNU/Linux respectively which illus-
trate that this is possible. Their frameworks are based on
three observations. First, most programs require access to
a limited number of objects which can be statically enumer-
ated. Second, authorization can often be inferred, e.g., when
the user double clicks on a resource to launch the associated
application [34]. Finally, additional access at run-time is
only required by interactive programs and most often after
a user interaction via an open or save dialog box. These
can be replaced with a call to a trusted program, the power-
box, with access to all of the users resources which interfaces
with the user on the program’s behalf and delegates access
to those objects the user authorizes. This can be done trans-
parently by replacing the appropriate library routines.

If the Hurd were to abandon IBAC and implement such a
framework, the structure of most Hurd objects would never-
theless remain problematic: most Hurd objects convey large
amounts of authority which is not easily decomposed. This
is often motivated by concern for POSIX compatibility. A
directory, for instance, provides access not only to the sub-
tree it dominates but to the entire name space due to dot-dot
naming the physical parent. The behavior of dot-dot can be
overridden using file_reparent, however, this requires ex-
plicit action violating the principle of safe-by-default [24].

4 Evaluating Mach

Liedtke argues that the microkernel approach to system
structure is often rejected based primarily on the perceived
high cost of the message passing mechanism [15]. We ob-
serve additional shortcomings in Mach regarding resource
scheduling and resource accounting that we contend also
need to be addressed for the microkernel approach to have
competitive performance and be able to support safe use of
potentially malicious programs.

4.1 Resource Scheduling

Most systems provide tasks the illusion that they are run-
ning on a machine with infinite resources: tasks allocate vir-
tual memory, memory that the kernel transparently moves
between physical memory and backing store; likewise, threads
need never explicitly yield the CPU as the kernel automati-
cally preempts them. This is convenient insofar as it relieves
applications from having to respond to resource shortages,
multiplex resources and simplifies dynamic reallocation of
resources. Assuming that competition for the physical re-
sources remains relatively low, good resource utilization can
be achieved without application support as evidenced by
the many monolithic kernels that successfully employ such
techniques. When this assumption is violated, when signifi-
cant resource multiplexing occurs, system performance can
significantly degrade if poor scheduling decisions are made
|12].

4.1.1 Efficiency

For transparent resource management, a monolithic kernel
has two resource scheduling advantages over a multi-server:
it can better predict resource usage patterns and more com-
ponents can interact with the scheduler.

Due to their centralized nature, monolithic kernels have a
higher-level view of how users and processes use resources:

they implement the high-level abstractions such as UIDs, file
systems and network protocols and directly interact with the
users of these resources. These abstractions can provide im-
portant hints regarding expected resource usage. A mono-
lithic kernel, for instance, can implement file-based read-
ahead heuristically. On the Hurd, these abstractions are
implemented by user-space servers that Mach does not only
not regard as special but of which Mach has no additional
knowledge. Such optimization techniques cannot be reliably
implemented in the respective user-space servers as these
processes do not have information regarding memory pres-
sure and thus cannot correctly determine how aggressively
to act.

Second, the components of a monolithic kernel can hook into
the resource-management framework in ways which violate
formal component boundaries. For instance, Linux employs
a page-replacement strategy based on memory access pat-
terns, but also makes up-calls to a number of subsystems to
request they shrink their caches. This includes the widely-
used slab allocator [3|, the directory entry cache, the inode
cache and the disk-quota-entry cache. Gorman reports that
the last three have a “cascading effect [which] allows a lot
more pages to be freed” [10, Sect. 10.4]. On a multi-server
system, far fewer components run in the microkernel limit-
ing the applicability of this approach.

Transparent multiplexing of resources thus limits those who
can effectively influence resource scheduling to those who
do not run under its regime. As observed, this problem
is minimized on monolithic systems as major resource con-
sumers such as file systems run in the kernel. The designers
of databases [31], scientific applications 5], multimedia and
other adaptive applications [?] and garbage collectors [12],
however, have also observed this problem. For multi-server
systems to be viable, we contend that applications must be
able to better participate in resource scheduling decisions.
The difficulty is that the interfaces must be designed such
that the system can protect itself from destructive interfer-
ence without unduly increasing complexity [8].

4.1.2 Real-Time and Quality of Service

The utility of the results of real-time applications is per def-
inition dependent on the wall clock. A common example of
real-time applications found on general-purpose operating
systems are multimedia applications. Interactive applica-
tions also have a real-time aspect. Real-time can also be
formulated as a quality of service problem. Although sup-
port for real-time applications is not an explicitly stated goal
of the Hurd, given the increasing use of applications which
have such properties, the Hurd’s lack of support reduces the
usability of the system.

The realization of real-time properties depends on the abil-
ity of programs to be able to make predictions of progress.
This does not necessarily require hard resource guarantees:
statistical guarantees for the these classes of applications
may be sufficient. What is required is that the amount of
resources available to the application as well as their access
properties be known and these be useful for reasoning.
Transparently multiplexed resources as commonly imple-
mented fail to satisfy this last property. The worst case
access times of virtual resources is essentially infinite in par-
ticular compared with their average case access times. Cur-
rently, applications have to hope that data will not be paged
and that the CPU allocation will remain at least as large as

in the recent past. This encourages conservative behavior.
The decentralized nature of a multi-server system combined
with these observed application demands motivates mecha-
nisms which allow untrusted programs to request resource
schedules. Further, applications are served by many differ-
ent components each of which must guarantee some level
of service. That is, the scheduling domain crosses pro-
cess boundaries. This motivates mechanisms which parallel
those for better control of resource scheduling.

4.2 Resource Accounting

Consistent with the illusion that resources are infinite, Mach
performs no resource accounting. This introduces a security
hole as virtual resources are, in fact, limited: the degree of
multiplexing of physical memory is limited by the amount
of backing store reserved for that purpose, opening up the
possibility of a denial of resource attack.

Because resources are not accounted, simply allocating large
amounts of resources is sufficient to perform a denial of re-
source attack. It might seem that the effects of such an at-
tack could be mitigated by enforcing reasonable per-process
quotas. This is easily overcome by malicious entities, how-
ever, by spawning multiple processes. Extending the quotas
to users will not work either: users are a Hurd abstraction
not known to Mach.

The problem underpinning the above thought experiment is
the assumption that we can successfully coax an implicitly
named resource principal out from where there is none: the
process which allocates the resource is often not the resource
principal. When a process reads data from a file, it invokes
the io_read method on a capability naming an io object.
The server then allocates memory on behalf of the client,
reads the data into the memory and returns it to the calling
process. Thus, although the file system invoked the kernel
to perform the resource allocation, the allocation should, in
this case, be charged to the process, or rather, the principal
on whose behalf the process is running. This problem is
explored in the context of monolithic kernels by Banga et
al. in [2].

To ward off denial of resource attacks, the idea of a resource
principal or container needs to be introduced. A resource
container must be passed around securely, allowing servers
to allocate resources on behalf of clients, but also allowing
clients to recover their resources in case the server misbe-
haves. Later versions of OSF Mach introduced so-called
resource ledgers for accounting the use of wired memory
and swap space. However, they are not directly named but
rely on ambient authority, complicating allocation. A bet-
ter model may be KeyKOS’s CPU meters and space banks
[11] and as later evolved in EROS [26|, which do not have
these deficiencies. Still, dynamic reallocation of resources
at a global scale remains a challenge in such a distributed
approach.

5 Lessons and Thoughts

Our experience with the Hurd has led to a number of real-
izations that may help future designers of general purpose
operating systems.

5.1 Security

The Hurd empowers the user by making a number of useful
privileged operations unprivileged. By reifying identities,
it also provides discretionary authority reduction mecha-

nisms allowing programs to protect themselves from attack-
ers. Neither of these address a major security problem of
today: the inability to protect data from program instances.
To achieve this, programs should be run consistent with
the principle of least privilege. Recent research on capabil-
ity systems suggests that capabilities can provide a usable
framework to realize such a system. In particular, to allow
run-time delegation of authority, the powerbox, a trusted
program, interacts with the user on the program’s behalf.

5.2 Naming and Binding

Recovering the configuration of the system on restart im-
proves usability. To facilitate this, the Hurd allows users to
save translator settings in nodes. When the node is accessed
and no translator is running, the file system can then trans-
parently restart the translator. The problem that this raises
is that the naming context cannot be serialized, leading to
a number of security concerns as a malicious user is able to
confuse file systems.

This is a general problem wherever symbolic names are sev-
ered from their naming context and often occurs at the
storage boundary where there is no easy way to serialize a
naming context. As symbolic names are primarily of inter-
est to users and not to programs, we suggest that symbolic
names be avoided and capabilities be used as designators.
The problem this raises is that capabilities, like naming con-
texts, need to be saved. By making the system persistent,
this problem is circumvented.

5.3 Resource Management

We have noted that although virtualized resources are con-
venient, they are also often problematic due to inefficient
resource scheduling and their ineffectiveness when trying
to realize real-time properties. This former problem is not
unique to multi-server systems but particularly pressing as
it appears the techniques used by monolithic kernels to com-
pensate for lack of local knowledge, namely, introspection of
high-level functionality to help predict resource usage pat-
terns, cannot be used by a microkernel where such func-
tionality is implemented in user-space. We contend that
an interface is needed to allow unprivileged programs an
increased ability to influence resource scheduling both re-
garding distribution and multiplexing.

5.4 Legacy Support

Legacy support is highly desirable for non-mainstream oper-
ating systems: application developers tend to target widely
deployed systems, however, deployment penetration appears
to be strongly correlated with the number of applications
available. Moreover, if a system lacks support for just one
or two applications, users will reject it.

The Hurd aimed to not only run legacy applications, but to
tightly integrate them and provide them with many of the
advantages of Hurd mechanisms. In this regard, the Hurd
was successful. The Hurd, however, in its strict support of
POSIX, unnecessarily complicated the system structure. We
have observed that this was often motivated by questionable
features such as server resolution of dot-dot and a server-
implemented cursor.

Finally, care must be taken to preserve non-functional API
and ABI requirements such as trust assumptions. The most
important example of the Hurd’s failure is that legacy pro-
grams are susceptible to attack by malicious file systems.

6 Related Work

KeyKOS is the only other complete multi-server operating
system of which we are aware |11]. KeyKOS is an object-
oriented capability-based system designed for applications
with high-security requirements. It was used in ATMs, for
instance, but not as a general purpose system. Work on
EROS, KeyKOS’s successor, has concentrated on refining
and formalizing KeyKOS’s security model [27].

The focus of L4 has been to enumerate a minimal set of
portable primitives and operations that must be provided
by the kernel. L4 performs well in microbenchmarks [15].
Little is known, however, regarding large scale system de-
sign: systems on L4 have mostly consisted of domain specific
applications [16] and specialized functionality supplement-
ing a system running in a legacy container [28|.

The architects of Mach [35] focused primarily on a single-
server system. Mach-US, a multi-server system, is struc-
turally similar to the Hurd [29]. To our knowledge, its name
space is not user extensible. IBM used Mach as a platform
to support multiple operating system personalities [9].

7 Conclusion

The Hurd started with the observation that a number of use-
ful Unix mechanisms, in particular, those regarding the ex-
tension of the VFS, should be available to users. By adopt-
ing a multi-server system and a decentralized naming frame-
work, the Hurd makes it possible for users to provide their
own file systems implementations and integrate them into
the VFS.

The Hurd has two noteworthy security shortcomings: it does
not provide mechanisms to protect resources from program
instances; and symbolic names are often separated from
their naming contexts.

An important goal of the Hurd was to support POSIX ap-
plications. Sometimes this was done too faithfully, compro-
mising parts of the system structure. Other times, the Hurd
failed to consider important aspects of legacy compatibility,
namely, assumptions applications have regarding behavior.
To allow the efficient use of resources on microkernel based
systems, it appears that applications must participate in
resource scheduling. We observe that there are two main
areas where applications can usefully extent greater control
of resource scheduling: distribution and multiplexing.

8 Acknowledgements

Roland McGrath and Thomas Bushnell have been pivotal in
helping the early development of our understanding of the
Hurd. We are particularly indebted to Jonathan Shapiro for
informative discussions regarding security and system de-
sign. Michael Hohmuth, Thomas Bushnell, Jed Donnelley,
Thomas Schwinge and Jonathan Shapiro provided helpful
criticism of early drafts of this document.

9 References

[1] ANDERSON, J. P. Computer security technology
planning study. Tech. rep., Air Force Electronic
Systems Division, Oct. 1972.

[2] BaNGA, G., DRUSCHEL, P., AND MocuL, J. C.
Resource containers: A new facility for resource
management in server systems. In 8rd USENIX
Symposium on Operating Systems Design and
Implementation (Feb. 1999).

3]

[6]

[14]

15

16

[17

18]

[19]

Bonwick, J. The slab allocator: An object-caching
kernel memory allocator. In USENIX Summer (1994),
pp. 87-98.

BUSHNELL, M. Towards a new strategy of OS design.
GNU’s Bulletin 1, 16 (Jan. 1994).

Cox, M., AND ELLsWORTH, D. Application-controlled
demand paging for out-of-core visualization. In VIS
’97: Proceedings of the 8th conference on Visualization
(1997).

DeNNIS, J. B., AND VAN HORN, E. C. Programming
semantics for multiprogrammed computations.
Communications of the ACM 9, 3 (Mar. 1966),
143-155.

DEPARTMENT OF DEFENSE. Trusted Computer System
Evaluation Criteria DOD 5200.28-STD. Dec. 1985.
DRUSCHEL, P., PA1, V. S., AND ZWAENEPOEL, W.
Extensible kernels are leading OS research astray.
Proceedings of the 6th Workshop on Hot Topics in
Operating Systems (May 1997).

FLEISCH, B. The failure of personalities to generalize.
In HOTOS °97: Proceedings of the 6th Workshop on
Hot Topics in Operating Systems (HotOS-VI) (1997).
GORMAN, M. Understanding the Linuz Virtual
Memory Manager. Bruce Perens’ Open source series.
Prentice Hall Professional Technical Reference, 2004.
HARDY, N. The KeyKOS architecture. In Operating
Systems Review (Oct. 1985), vol. 19, pp. 8-25.
HEerTZ, M., FENG, Y., AND BERGER, E. D. Garbage
collection without paging. In Proceedings of the 2005
ACM SIGPLAN conference on Programming language
design and implementation (June 2005).

KAASHOEK, M. F., ENGLER, D. R., GANGER, G. R.,
Briceo, H. M., HunT, R., MAZIRES, D., PINCKNEY,
T., GRimM, R., JANNOTTI, J., AND MACKENZIE, K.
Application performance and flexibility on exokernel
systems. 16th Symposium on Operating Systems
Principles (1997).

Lanpau, C. R. The checkpoint mechanism in
KeyKOS. In Second International Workshop on Object
Orientation in Operating Systems (Sept. 1992).
LIEDTKE, J. Improving IPC by kernel design. In
Proceedings of the 14th Symposium on Operating
System Principles (SOSP) (Asheville, NC, Dec. 1993).
LIEDTKE, J., PANTELEENKO, V., JAEGER, T., AND
IsLaM, N. High-performance caching with the lava
hit-server. In Proceedings of the USENIX 1998 Annual
Technical Conference (New Orleans, Lousiana, June
1998).

MILLER, M. S. Robust Composition: Towards a
Unified Approach to Access Control and Concurrency
Control. PhD thesis, Johns Hopkins University, May
2006.

OSsTRAND, T., AND WEYUKER, E. The distribution of
faults in a large industrial software system. In ACM
SIGSOFT International Symposium on Software
Testing and Analysis (2002), pp. 55-64.

OSTRAND, T., WEYUKER, E., AND BELL, R. Where
the bugs are. In ACM SIGSOFT International
Symposium on Software Testing and Analysis (2004),
pp. 86-96.

20]

(21]

29]

(30]

(31]

(32]

(33]

(34]

(35]

PikE, R. Lexical file names in Plan 9 or getting
dot-dot right. In 2000 USENIX Annual Technical
Conference (June 2000).

Porexk, G. J., AND GOLDBERG, R. P. Formal
requirements for virtualizable third generation
architectures. Communications of the ACM 17,7
(July 1974), 412-421.

Provos, N., FrRIEDL, M., AND HONEYMAN, P.
Preventing privilege escalation. In 12th USENIX
Security Symposium (Aug. 2003).

SALTZER, J. H. Naming and binding of objects. In
Operating Systems, An Advanced Course (London,
UK, 1978), Springer-Verlag, pp. 99-208.

SALTZER, J. H., AND SCHROEDER, M. D. The
protection of information in computer systems. In
Proceedings of the IEEE (Sept. 1975), vol. 63,

pp. 1278-1308.

SEABORN, M. Plash: tools for practical least privilege.
http://plash.beasts.org.

SHAPIRO, J. S.;, AND ADAMS, J. Design evolution of
the EROS single-level store. In 2002 USENIX Annual
Technical Conference (2002), pp. 59-72.

SHAPIRO, J. S.;, AND HARDY, N. Eros: A
principle-driven operating system from the ground up.
IEEE Software 19, 1 (2002), 26-33.

SINGARAVELU, L., Pu, C., HARTIG, H., AND
HeLMuTH, C. Reducing tcb complexity for
security-sensitive applications: Three case studies. In
EuroSys 2006 (Leuven, Belgium, April 2006).
STEVENSON, J. M., AND JULIN, D. P. Mach-US: Unix
on generic OS object servers. In USENIX Winter
(1995), pp. 119-130.

STIEGLER, M., KArP, A. H., YEE, K.-P., AND
MILLER, M. Polaris: Virus safe computing for
Windows XP. Communications of the ACM 49, 9
(2006), 83-88.

STONEBRAKER, M. Operating system support for
database management. Communications of the ACM
24, 7 (July 1981), 412-418.

THOMAS, R., AND MARTIN, J. The underground
economy: priceless. ;login: 31, 6 (Dec. 2006).
TULLMANN, P., LEPREAU, J., FORD, B., AND
HiIBLER, M. User-level checkpointing through
exportable kernel state. IEEE International Workshop
on Object-Orientation in Operating Systems (Oct.
1996).

YEE, K.-P. User interaction design for secure systems.
In International Conference on Information and
Communications Security (2002).

Young, M., TEVANIAN, A., RasHID, R., GoLuB, D.,
EPPINGER, J., CHEW, J., BoLosky, W., BLACK, D.,
AND BARON, R. The duality of memory and
communication in the implementation of a
multiprocessor operating system. In 11th ACM
Symposium on Operating Systems Principles (SOSP)
(Nov. 1987), pp. 63-76.

http://plash.beasts.org

	Introduction
	The GNU Hurd's Architecture
	System Structure
	Naming and Name Spaces
	Extending a Name Space
	Name Resolution
	Persistent Translators

	Protection and Security
	Identity Management
	Authorization

	Abstractions
	Legacy Support

	A Critique
	Malicious File Systems
	A File or a Directory?
	The Dot-Dot Directory Entry
	Passive Translators and Naming
	Server Allocations
	Security and Protection

	Evaluating Mach
	Resource Scheduling
	Efficiency
	Real-Time and Quality of Service

	Resource Accounting

	Lessons and Thoughts
	Security
	Naming and Binding
	Resource Management
	Legacy Support

	Related Work
	Conclusion
	Acknowledgements
	References

