
Prefix Tag Clouds

Michael Burch, Steffen Lohmann, Daniel Pompe, Daniel Weiskopf

VIS/VISUS, University of Stuttgart, Germany
{michael.burch,daniel.weiskopf}@visus.uni-stuttgart.de

steffen.lohmann@vis.uni-stuttgart.de

Abstract—Tag clouds are a popular way to visually represent
word frequencies. However, one major limitation is that they
do not relate different word forms but treat every form as
an individual tag. This results not only in a non-efficient use
of screen space but, in particular, leaves the viewer with no
indication whether there are other forms of a word or not.
To overcome this limitation, we introduce prefix tag clouds: a
visualization technique that uses a prefix tree to group different
word forms and visualizes the subtrees as tag cloud. The
grouping is emphasized by color, while the relative frequencies
of the word forms are indicated by font size. A circular tag
cloud layout supports the quick identification of the most
frequent words and word forms. We show the usefulness of the
approach for a large dataset of paper titles from the computer
science bibliography DBLP.

Keywords-tag cloud; prefix tree; word forms; circular layout;
word cloud

I. INTRODUCTION

Having their roots “outside the world of computers” [1],

tag clouds (also known as word clouds) became popular

in the context of community-oriented websites that use

tagging as indexing method [2], [3]. Meanwhile, they have

crystallized themselves as a core technique of information

visualization that is applied in many different contexts [1],

[2]. One popular application area is text summarization,

where tag clouds are typically used to depict the words that

occur most often in texts. The font sizes of the tags indicate

the word frequencies, i.e. the larger a tag the more often it

occurs in the text [4].

A major limitation of tag clouds is that they treat different

forms of the same word as individual tags. Typical examples

are inflections (e.g. singular and plural), nominalizations

(e.g. the gerund “-ing”), or spelling differences (e.g. British

vs. American English). Such variations of words either also

appear in the tag cloud or are not shown at all if not frequent

enough. In the first case, they take up screen space that could

better be used to display other information or additional tags.

In the second case, the viewer has no indication whether

there are other forms of a word in the text or not.

Especially the latter is problematic: Assume, for example,

an information retrieval context where a user is interested

in all documents related to the topic of “visualization”.

Searching for this term would likely not return all relevant

documents, as the term would not have been used by all

authors. However, if other word forms like “visualisation”

or “visually” are less frequent in the documents, they might

not be shown in the tag cloud. Hence, there would be no

hint that would tell the user what else to try as search term.

To overcome this limitation, we have developed an ex-

tension of the tag cloud visualization that we call prefix
tag cloud. It creates a prefix tree that groups different word

forms and visualizes the subtrees as tag cloud. Color is used

to emphasize the grouping, while the relative frequencies of

the word forms are indicated by font size, as it is common

in tag clouds. The grouped word forms are arranged in a cir-

cular tag cloud layout that supports the quick identification

of the most frequent words and word forms.

II. RELATED WORK

Several extensions to the basic tag cloud visualization

have been presented in the last couple of years. Many

approaches address layout issues of tag clouds, such as large

white spaces or the restriction to specific boundaries. As

just one example, Kaser and Lemire tackle the problem

of wasted and unbalanced space and present models and

algorithms to improve the display of HTML-based tag

clouds [5]. They consider tag relationships and use slicing

trees, nested tables, and rectangle packing to optimize the

distribution of space in the clouds. Seifert et al. [6] also

propose algorithms for space optimization in tag clouds. The

resulting layouts are more compact and clear and can even

feature shaped boundaries for tag clouds. Advanced layouts

are also provided by popular tag cloud generators, such as

Wordle [4], [7], Tagxedo [8], or Tagul [9].

While there are several works on layout issues of tag

clouds, only few address the grouping of different word

forms. One related approach is that of Cui et al. who use

a porter stemmer to collapse words with the same stem

and only include the most frequent word form in the tag

cloud [10]. A similar approach is taken by Dörk et al. [11].

However, the viewer gets no idea which word forms have

been collapsed, as this information is not shown in the tag

clouds. Also related to our idea is the work on Word Trees

by Wattenberg and Viégas [12]. They use a suffix tree to

present search terms in their textual context. Instead of single

words, they analyze complete sentences and visualize the

sentence structure as tree. It is the only work we found that

uses a data structure similar to prefix trees for visualization

purposes. It is conceptually related to our approach but

To appear in:
Proceedings of the 17th International Conference on Information Visualisation (IV 2013)
Los Alamitos, CA, USA: IEEE, 2013.

serves a different purpose by displaying keywords in context

instead of grouping word forms in tag clouds.

There are also visualization techniques that combine tag

clouds and trees. For instance, Tree Clouds arrange tags on a

tree to visually depict their semantic relatedness [13]. Other

approaches, such as clustered tag clouds [2], [5], [14], do not

explicitly express semantic relatedness of tags by visual links

but implicitly by spatial proximity. Parallel Tag Clouds [15]

combine the ideas of tag clouds and parallel coordinates

to allow for a direct comparison of changes in word use.

In contrast, SparkClouds add sparklines (i.e. simplified line

graphs) to the tags to depict changes in word use over

time [16]. Yet other works propose geographical variants

of tag clouds, using either virtual tag landscapes [17] or

real geographical space [18]. Finally, there are also 3D

variants of tag clouds, such as WP-Cumulus [19] that

provides a rotating, three-dimensional sphere of tags. All

these variations are compatible with, and complementary to,

prefix tag clouds, so that they can be integrated with our

approach.

III. CREATION OF PREFIX TAG CLOUDS

The process of creating prefix tag clouds consists of three

main components: First, a prefix tree is generated from a set

of tags. This requires us to order the tags lexicographically

and to compute a prefix hierarchy from the resulting list.

In a second step, the prefix subtrees are rendered as node-

link diagrams. The font sizes of the prefixes in the diagrams

are scaled according to the tag frequencies. Finally, the tag

cloud is composed from the subtrees and placed in a given

drawing area. We use a circular tag cloud layout that makes

efficient use of the available screen space. In the following,

we will detail these three components of the visualization

process.

A. Prefix Tree Generation

Initial input is a set of tags T := {t1, . . . , tn} with individual

tags ti, 1≤ i≤ n. The tags are composed of a finite sequence

of characters from the alphabet Σ := {σ1, . . . ,σm}. Since ti ∈
Σ+, each tag ti contains at least one character and is not an

empty string.

In addition, each tag is associated with a quantitative value

expressing its occurrence frequency. This mapping is given

by the function f f req : T −→N. Likewise, we define Tf req to

denote that the tag set T is ordered by frequency, while we

use Tlex if it is ordered lexicographically.

The prefix tree P is generated from the set of tags T with

the function ftree : T −→P. Algorithm 1 provides the pseudo

code for that function which consists of the following steps:

• Adding the empty string λ to T : It serves as prefix1

for all tags ti ∈ T that do not have another tag t j ∈ T
as prefix.

1Note that the term prefix is not used in its linguistic sense but in its
meaning related to data structures in this work.

Algorithm 1 Prefix Tree Generation

PrefixTree(T):
// T : set of tags

T := T.add(λ); // add empty string λ to T
Tlex := lex order(T); // order T lexicographically

n := size(Tlex);
V := Tlex; // vertices of prefix tree

E := /0; // edges of prefix tree

for i := n to 1 do
j := i−1;

while (!(t j ≺pre f ti)∧ (j ≥ 1)) do
j−−;

end while
vi := ti − t j; // subtract tag t j from tag ti
E := E ∪ (vi,v j); // add edge to prefix tree

end for
return P = (V,E); // prefix tree P

• Ordering T lexicographically: Fast sorting algorithms

such as merge sort can do this in O(n log n) time. As a

result, we obtain the lexicographically ordered list Tlex
with the empty string λ as first element.

• Generating the prefix tree from Tlex: This step pro-

cesses the entire list Tlex once and checks if tag t j ∈ Tlex
is a prefix of tag ti ∈ Tlex, where j < i. If true, it subtracts

t j from ti and saves the resulting string (i.e. the prefix)

as vertex vi ∈V . In addition, it creates an edge between

vi and v j ∈V . Since it uses two nested loops, one being

conditional, it has O(n2) time complexity in worst case

and O(n) in best.

The result of Algorithm 1 is the prefix tree P := (V,E)
for T , i.e. a graph where the vertices V represent the prefixes

and the edges E ⊂V ×V describe the hierarchical structure

of the prefix tree. The root node vroot ∈V of the tree is the

empty string λ .

Figure 1 illustrates the generation of the prefix tree Px
for a sample list of tags Tlexx . The list contains a small

number of lexicographically ordered tags starting with the

letter “v”. The occurrence frequencies f f req of the tags are

also depicted, as they will later be used to scale the font

sizes in the prefix subtrees. Figure 1b depicts the hierarchical

structure of the prefix tree, while Figure 1c shows the

actual prefix tree as it results from Algorithm 1. The tree

is displayed in a left-to-right orientation that is later also

used to display the subtrees in the prefix tag cloud.

The mapping between prefixes and tags is described by

the bijective function fmap : V −→ T , i.e. each prefix vi ∈V
is associated with exactly one tag ti ∈ T and vice versa. In

the example of Figure 1, it means that the prefix “visual” is

associated with the tag “visual”, while the prefix “ization”

is mapped to the tag “visualization”. Note that the ending

(a) (b) (c)

Figure 1. Transforming a list of tags into a prefix tree: (a) Lexicograph-
ically ordered list of tags and their frequencies. (b) Node-link diagram
illustrating the prefix tree structure. Tags are shown in full length. (c) Node-
link diagram of the vertically aligned prefix tree. Tags are split into prefixes.

“s” following the prefix “ization” is also called prefix in our

case. It represents the tag “visualizations” and is treated like

the other prefixes.

B. Subtree Rendering

Before we generate the prefix tag cloud, we split the prefix

tree P at its root node vroot into a set of subtrees P′ :=(V ′,E ′)
with V ′ ⊂V and E ′ ⊂ E. Each subtree P′

i represents either a

group of word forms (if |V ′
i |> 1) or a single word (if |V ′

i |=
1). The latter is the case for tags that have vroot as prefix

and no child node, such as the word “virtual” in Figure 1.

The subtrees of P′ are visualized as node-link diagrams

in a left-to-right orientation. Parent nodes are placed in the

vertical center and to the left of their child nodes, as it was

sketched for the whole prefix tree in Figure 1c. The diagrams

have different background colors so that they can be more

easily distinguished. However, color is not necessary to read

and understand the visualization.

The font sizes of the prefixes in the subtrees are scaled

according to the frequency values (given by f f req) of the

associated tags (given by fmap). Since a linear change of

the font size has a roughly quadratic effect on the text area,

we use the square root of the frequency values for scaling.

Using a linear scale instead would overstate the larger tags,

while a logarithmic scale would understate them. There may

be cases where such scales are more suitable, even though

they increase the “lie factor” [20] of the visualization. For

instance, a logarithmic scale is often used if the frequency

values of the tags tend to follow a power law distribution,

as in many folksonomies [3].

Figure 2 shows two alternative renderings of subtree

P′
visual ⊂ Px that was already depicted in Figure 1c: One

visualizes the tags ti ∈ Tx and the other the prefixes vi ∈Vx.

As the latter diagram is less redundant and more space-

efficient, we use it for the prefix tag clouds.

(a) (b)

Figure 2. Alternative renderings of the same prefix subtree: (a) showing
the complete tags, (b) showing only the prefixes.

C. Tag Cloud Generation

The subtrees are visualized in a circular tag cloud layout

with the most frequent tags in the center and tags with

decreasing frequencies towards the boundary. According to

Lohmann et al. [2], this layout supports particularly well the

identification of popular tags, which we consider a key task

related to prefix tag clouds.

We create the circular layout with a simple yet effective

algorithm that is similar to the one presented in [4]. It

places the subtrees of P′ along a spiral path, as sketched

in Figure 3.2

First, the drawing area is defined, which can, in principle,

be of any shape. As graphical user interfaces are usually

based on 2D grid layouts, a rectangle may be the ‘shape of

choice’ in most cases. Drawing starts with the subtree that

contains the tag with the highest frequency value, i.e. tag

t1 from the descending ordered list of tags Tf req. This first

subtree is placed in the center of the drawing area. In the

example of Figure 3, it consists of the tags “system” and

“systems”, i.e. the diagram shows the prefixes “system” and

“s” accordingly.

Subsequently, subtrees with decreasing frequencies are

placed along the spiral path. This is done by traversing Tf req
and rendering the associated subtrees as described above.

As long as a subtree would intersect with any previously

placed subtrees in the drawing, it is moved further along the

spiral path. It is also moved if it would be placed outside

the drawing area. If there is not enough free space left to

place a subtree in the drawing area, it is continued with the

next subtrees until some predefined threshold or until the last

element of Tf req is reached. Rendered subtrees are marked

as rendered to avoid multiple placement of the same subtree.

If we would strictly adhere to the circular layout as

described in [2], we would not be allowed to place tags with

small font sizes close to the center of the cloud. However,

we would waste a lot of space in such a strict layout, as

we do not only place tags of rectangular shape but also

subtrees with more complex shapes. Hence, we decided to

fill free space between larger subtrees with smaller ones.

We do this by starting the spiral placement for each subtree

in the center of the drawing area so that smaller subtrees

2Note that the actual distance between turns of the spiral must be much
smaller than sketched to get results like in this paper.

Figure 3. Spiral placement of the prefix subtrees to create the circular tag
cloud layout.

are rendered whenever there is enough space, also between

already drawn subtrees.

Subtree drawing continues until one of three conditions

is met: 1) all subtrees of P′ have been rendered, 2) a user-

defined number of subtrees of P′ has been rendered, or 3) the

drawing area is completely filled with subtrees. The first

two conditions result in a circle-shaped tag cloud due to the

spiral placement of the subtrees. The circle may be cut by

the border of the drawing area if it does not completely fit.

The third condition results in a tag cloud with the shape of

the drawing area.

Finally, we implemented a method that combines the

above conditions. It automatically scales the font sizes of the

prefixes so that a given number of subtrees fits exactly in the

pre-defined drawing area. Different scaling factors are tested

until a solution is reached, while the relative differences

between the font sizes are retained as much as possible.

In the next section, we provide examples of a circle-shaped

tag cloud and a rectangle-shaped one.

IV. APPLICATION EXAMPLE

We applied prefix tag clouds in the context of text sum-

marization to evaluate their usefulness. The investigated text

corpus is a large dataset containing publication information

of the computer science bibliography DBLP [21]. We used

prefix tag clouds to create visual summaries of the words that

appear most often in the publication titles. Such summaries

provide an overview on the topics of the field and can serve

as a starting point for analysis [22]. As we will show in this

section, prefix tag clouds may provide additional insight in

such analyses.

We used the XML file of the DBLP dataset, dating from

February 25, 2013. It contains bibliographic information for

more than 2.1 million publications in the field of computer

science. We transformed the publication titles into individual

tags with techniques common in tag cloud generation [4],

[11]: We first used regular expressions to remove special

characters and separate words by spaces. We then converted

the tags to lowercase and removed stop words, i.e. common

words like “the”, “is”, or “at” that do not carry relevant

meaning. Finally, we counted the frequencies with which

the words appear in the titles. As a result, we got the data

required to generate prefix tag clouds, i.e. a set of tags T
and the mappings T −→ N defined by f f req.

Figure 4a depicts a rectangle-shaped prefix tag cloud

showing the 150 words that appear most frequently in all

publication titles. Very frequent words, such as “system”,

“network”, and “analysis”, become immediately apparent.

These words occur around 100,000 times in the titles. Words

with small font sizes, such as “integration” or “random”,

occur around 14,000 times. Words below this frequency

value are not displayed in this highly filtered view.

The grouping in the prefix tag cloud reveals that the

singular and plural forms of several words occur with similar

frequencies in the paper titles, as the plural “s” has often

nearly the same font size (e.g. “system” or “network”). Other

words occur more often in either singular (e.g. “image” or

“method”) or plural (e.g. “graph”). The word “model” is not

only used in singular and plural but additionally in its gerund

form. The gerund is also popular for the words “process” and

“test”. Finally, the words “data” and “database” are grouped,

while “data” is used more frequently, as indicated by its

larger font size.

Figure 4b depicts another prefix tag cloud generated from

the DBLP dataset. It has a circle shape and shows all words

that occur most frequently together with the word “visual”

or any other word having “visual” as prefix. We generated

it from the subset of publication titles that resulted after

filtering for the string “visual”. As this string appears in all

publication titles of the subset (which is 31,802 times), it

has the largest font size in the prefix tag cloud.

The prefix tag cloud contains several subtrees that are sim-

ilar to the ones visualized in Figure 4a. There are also new

subtrees, such as one consisting of the prefixes “real” and

“ity” or another grouping “audio” and “visual”. Furthermore,

we can observe that the word “program” is often used in its

gerund form while “technique” is mostly used in plural. The

subtree of “visual” is similar to the one that already served

as an example in Figure 2. The prefix is most often used

in the word “visualization”, while it also appears frequently

in the words “visualizing”, “visualisation”, “visually”, and

the plural form of “visualization”. Interestingly, even the

German word “visualisierung” is part of the subtree, even

though publications in computer science are usually written

in English.

V. CONCLUSION AND FUTURE WORK

We have introduced the prefix tag cloud—a tag cloud

variant that makes use of prefix trees. Different word forms

are visually grouped by color and space, facilitating their

identification and comparison in the tag cloud. The left-

to-right orientation of the prefix subtrees leads to a well-

readable tag cloud layout consistent with the dominant

reading direction in English and other languages. From

preliminary, informal user feedback, we have indication

(a) (b)

Figure 4. Differently shaped prefix tag clouds, each showing 150 words from publication titles indexed in the computer science bibliography DBLP:
(a) most frequent words of all publication titles, b) most frequent words of all publication titles containing the string “visual”.

that prefix tag clouds can be learned fast (even without

any instruction) and are easily understandable to viewers.

Furthermore, we have illustrated the usefulness of prefix tag

clouds for the example of a large database with bibliographic

information.
In contrast to other work, the approach does not require

any semantic analysis of the tags and their relationships but

relies purely on lexicographical ordering, which makes it

versatile and easy to implement. On the other hand, the

lack of semantic information comes with limitations; for

example, words may be grouped that are not related (like

”gene” and ”general”). However, we do not expect these

rare cases to cause serious problems when using prefix tag

clouds.
In future work, we plan to equip prefix tag clouds with

interaction techniques that provide additional support for the

visual analysis of texts, such as the interactive highlighting

of co-occurring words [23]. We will also consider other

application domains and types of data that may benefit from

prefix tag clouds. In addition, we will investigate further

extensions to the layout. One idea is to combine the circular

layout with a clustered one to additionally support the visual

identification of semantically related tags.

REFERENCES

[1] F. B. Viégas and M. Wattenberg, “Tag clouds and the case
for vernacular visualization,” interactions, vol. 15, no. 4, pp.
49–52, 2008.

[2] S. Lohmann, J. Ziegler, and L. Tetzlaff, “Comparison of tag
cloud layouts: Task-related performance and visual explo-
ration,” in Proceedings of the 12th IFIP TC 13 International

Conference on Human-Computer Interaction: Part I, ser.
INTERACT ’09. Springer, 2009, pp. 392–404.

[3] J. Sinclair and M. Cardew-Hall, “The folksonomy tag cloud:
when is it useful?” Journal of Information Science, vol. 34,
no. 1, pp. 15–29, 2008.

[4] J. Feinberg, “Wordle,” in Beautiful Visualization, J. Steele and
N. Iliinsky, Eds. O’Reilly, 2010, pp. 37–58.

[5] O. Kaser and D. Lemire, “Tag-cloud drawing: Algorithms
for cloud visualization,” in WWW’ 07 Workshop on Tagging
and Metadata for Social Information Organization, 2007.
Available: http://www2007.org/workshops/paper 12.pdf

[6] C. Seifert, B. Kump, W. Kienreich, G. Granitzer, and
M. Granitzer, “On the beauty and usability of tag clouds,”
in Proceedings of the 12th International Conference on In-
formation Visualisation, ser. IV ’08. IEEE, 2008, pp. 17–25.

[7] “Wordle – Beautiful Word Clouds,” http://www.wordle.net.

[8] “Tagxedo – Word Cloud with Styles,” http://www.tagxedo.
com.

[9] “Tagul – Gorgeous Tag Clouds,” http://tagul.com.

[10] W. Cui, Y. Wu, S. Liu, F. Wei, M. X. Zhou, and H. Qu,
“Context-preserving, dynamic word cloud visualization,”
IEEE Comput. Graph. Appl., vol. 30, no. 6, pp. 42–53, 2010.

[11] M. Dörk, D. M. Gruen, C. Williamson, and M. S. T. Carpen-
dale, “A visual backchannel for large-scale events,” IEEE
Trans. Vis. Comput. Graphics, vol. 16, no. 6, pp. 1129–1138,
2010.

[12] M. Wattenberg and F. B. Viégas, “The word tree, an interac-
tive visual concordance,” IEEE Trans. Vis. Comput. Graphics,
vol. 14, no. 6, pp. 1221–1228, 2008.

[13] P. Gambette and J. Véronis, “Visualising a text with a tree
cloud,” in Classification as a Tool for Research, H. Locarek-
Junge and C. Weihs, Eds. Springer, 2010, pp. 561–569.

[14] Y.-X. Chen, R. Santamarı́a, A. Butz, and R. Therón, “Tag-
Clusters: Semantic aggregation of collaborative tags beyond
tagclouds,” in Proceedings of the 10th International Sympo-
sium on Smart Graphics, ser. SG ’09. Springer, 2009, pp.
56–67.

[15] C. Collins, F. B. Viégas, and M. Wattenberg, “Parallel tag
clouds to explore and analyze faceted text corpora,” in Pro-
ceedings of the IEEE Symposium on Visual Analytics Science
and Technology, ser. VAST ’09. IEEE, 2009, pp. 91–98.

[16] B. Lee, N. H. Riche, A. K. Karlson, and S. Carpendale,
“SparkClouds: Visualizing trends in tag clouds,” IEEE Trans.
Vis. Comput. Graphics, vol. 16, no. 6, pp. 1182–1189, 2010.

[17] K. Fujimura, S. Fujimura, T. Matsubayashi, T. Yamada,
and H. Okuda, “Topigraphy: visualization for large-scale tag
clouds,” in Proceedings of the 17th International Conference
on World Wide Web, ser. WWW ’08. ACM, 2008, pp. 1087–
1088.

[18] A. Jaffe, M. Naaman, T. Tassa, and M. Davis, “Generating
summaries and visualization for large collections of geo-
referenced photographs,” in Proceedings of the 8th ACM
International Workshop on Multimedia Information Retrieval,
ser. MIR ’06. ACM, 2006, pp. 89–98.

[19] “WP-Cumulus – Word Press Plugin,” http://wordpress.org/
extend/plugins/wp-cumulus/.

[20] E. R. Tufte, The Visual Display of Quantitative Information,
2nd ed. Graphics Press, 2001.

[21] M. Ley, “DBLP: Some lessons learned,” Proceedings of Very
Large Data Bases, vol. 2, no. 2, pp. 1493–1500, 2009.

[22] S. Liu, M. X. Zhou, S. Pan, W. Qian, W. Cai, and X. Lian, “In-
teractive, topic-based visual text summarization and analysis,”
in Proceedings of the 18th ACM International Conference
on Information and Knowledge Management, ser. CIKM ’09,
2009, pp. 543–552.

[23] S. Lohmann, M. Burch, H. Schmauder, and D. Weiskopf,
“Visual analysis of microblog content using time-varying co-
occurrence highlighting in tag clouds,” in Proceedings of
the International Working Conference on Advanced Visual
Interfaces, ser. AVI ’12. ACM, 2012, pp. 753–756.

