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Abstract— One of the most challenging tasks for satellite on- 

orbit servicing is to rendezvous and capture a non-cooperative 

satellite such as a tumbling satellite. This paper presents an 

optimal control strategy for a servicing spacecraft to rendezvous 

(in close range) with a tumbling satellite. The strategy is to find 

an optimal trajectory which will guide the servicing spacecraft to 

approach the tumbling satellite such that the two vehicles will 

eventually have no relative rotation. Therefore, a subsequent 

docking or capture operation can be safely performed. 

Pontryagin’s maximum principle is applied in generation of the 

optimal approaching trajectory and the corresponding set of 

control force/torque profiles. A planar satellite chasing problem 

is presented as a case study, in which together with the maximum 

principle, the Lie algebras associated with the system are used to 

examine the existence of singular extremals for optimal control.  

Optimal trajectories for minimum fuel consumption are 

numerically simulated. 

I. INTRODUCTION 

There has been an increasing interest in satellite on-orbit 

autonomous servicing in the space industry recently. JAXA 

recently completed a technology demonstration mission ETS-7 

[1]. NASA just did an autonomous rendezvous mission 

through the DART mission, where the mission was not 

completed due to more than expected fuel usage during 

rendezvous maneuvering [2]. DARPA is currently developing 

a more advanced technology demonstration mission to be 

launched in 2006 through the Orbital Express Program [3-5]. 

Germany and Canada are also jointly developing a robotics-

based satellite rescue mission called TECSAS which will be 

launched likely in four years from now [6-7]. In order to 

perform on-orbit service, the servicing spacecraft has to first 

rendezvous and capture the satellite to be serviced in orbit.  In 

a general ‘satellite capture problem’, we suppose that there is a 

target satellite and a chaser satellite flying in space. The target 

satellite (target) is moving with spinning or tumbling motions 

in an orbit (see Fig. 1), while the task of the chaser satellite 

(chaser) is to rendezvous with the target in space in a desired 

way and finally capture it.  All of the current and past on-orbit 

servicing missions focus only on the capture of a cooperative 

satellite which is supposed to move smoothly in its orbit 

without rapid attitude changing. In reality, a malfunctioning 

satellite may spin or tumble in orbit. Such a satellite is 

considered as a non-cooperative satellite. Capture of a non-

cooperative satellite is a tremendous challenge. Very few 

research works on the problem of capturing a tumbling 

satellite have been done. Most of the proposed methods 

require a manipulator onboard the chaser satellite (e.g. [8-9]). 

Even with a very capable manipulator, the chaser still has to 

align with the tumbling satellite before any subsequent robotic 

operations can proceed. Sakawa studied the problem of 

controlling a single freely flying object to fly from one 

position and orientation to another in an optimal manner [10]. 

Matsumoto, et al. studied fly-by and optimal orbits for 

maneuvering to a rotating satellite [11]. Nakasuka and 

Fujiwara proposed a method for matching angular velocities 

between the chaser and target by changing the target’s 

moments of inertia [12]. Fitz-Coy and Liu proposed a two-

phase navigation solution for rendezvous with a tumbling 

satellite in 2D space [13]. 
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Fig. 1 A chaser  spacecraft trying to capture a tumbling satellite 
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Fig. 2 The chaser spacecraft has captured the tumbling satellite 

The research reported in this paper focuses on the close-

range rendezvous problem for servicing satellite to capture a 

tumbling satellite with external forces/torques as control 

inputs. The two satellites are modeled as rigid bodies, with no 

constraints on the target’s motion. Thus, for example, the 

target could be rapidly tumbling in space. The goal is to 
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control the motion of the chaser in an optimal manner so that it 

eventually flies at a close distance from the target without 

relative motion between the two (see Fig. 2). Without any 

relative rotation between the two vehicles, the subsequent 

capture operation becomes straightforward. 

The control problem that we tackle is defined next. 

Supposing that the kinematics of the tumbling target satellite 

is perfectly known, design a control law, with optimality 

criteria, following which the chaser will move towards the 

target along the designed trajectory till there is no relative 

motion between the target and the chaser. In this control law 

design problem, no errors are considered and therefore it is a 

feed-forward control problem. The feedback control part as 

the second stage will be considered in future work. Two 

optimality criteria are considered: minimum time and 

minimum fuel-consumption. Optimization of fuel-

consumption is gaining more attention by the space 

community after the DART mission [2].  In this paper both 

analytic and numerical approaches to the optimization 

problem are presented. 

II. DYNAMICS MODELLING 

A. Dynamics of the Two Satellites 

The relative motion between the target and the chaser can be 

described in the target’s body fixed frame.  Further, the 

following assumptions will be made: 

a) The target’s motion (position, orientation, and velocities) 

in space are known.   

b) Except for the control thrusts of the chaser, no other 

external forces are considered. 

Assumption b) simplifies the analysis but will not affect the 

generality of developing the proposed control methodology. 

The possible external forces such as these due to the gravity 

gradient, Earth magnet, residual air drag, etc., are all much 

smaller than the thrust forces in the close-range rendezvous 

situation. With the above-listed two assumptions, it follows 

that the center of the mass of the target is moving along a 

straight line. The relative motion of the chaser with respect to 

the free-flying target is expressed in the target’s body fixed 

frame by a system of first-order ordinary differential equations 

of the form: 

x=f(x)%                                             (1) 

where , in which  is the vector of 

generalized coordinates representing the relative position and 

orientation of the chaser with respect to the target, the dot 

denotes differentiation with respect to time, and  . 

12[ ]T Œx= q,q% R
6Œq R

12Œf(x) R

B. Affine Control System 

Dynamic system represented by eq.(1) has no control inputs. 

It is now assumed that control forces and torques are applied 

to the chaser through thrusters or other means and that these 

forces and torques actuate all six degrees of freedom of the 

chaser. With the inclusion of these control forces and torques, 

the system (1) gets replaced by the following affine control 

system expressed in the target’s body fixed frame as: 

?x f(x)+G(x)u%                                       (2) 

where is a 12·6 matrix, is a 6[ T?G(x) 0,L(x)] L(x) ·6 matrix 

and  is the vector of control inputs which is assumed to 

be bounded ( u u

6Œu R

min maxi , ).  The initial state of 

the system is assumed to be . 

1,...,6i ?

0(0) ?x x

i i u~ ~

C. Control Objective 

System (2) will be the basic model for studying the 

rendezvous problem. For this system, the objective of 

rendezvousing is defined as the control objective of achieving 

zero relative motion between the target and the chaser and 

then maintaining such a state of zero relative motion for the 

subsequent capturing process. More precisely, the control 

objective may be stated as: for some , 

where , and >0, 

12[ , ]T Œ1c= c 0 R

6
1 Œc R dt

( )t ?x c ,  [ , )dt tŒ ¢

Here,  is the rendezvous time and c is the constant position 

vector of the chaser in the target’s body-fixed frame signifying 

zero relative motion between the two satellites. 

dt

To realize this control objective, we divide the problem into 

two stages. In the first stage,  and we seek a 

controller u* (t) which will move the system from the initial 

point 

[0, ]dt tŒ

0?x x  to the final point  in phase space in an 

optimal manner subject to the bounded constraints on u.  The 

method of obtaining u* (t), by applying optimal control theory, 

will be discussed in the next section. 

?x c

Throughout the second stage, ),[ ¢Œ dtt , ?x c . 

Therefore, from (2), the controller (t) for the second stage 

satisfies 

u**

= (c) (c) ( )t0 f +G u** ,                            (3) 

and these equations can be inverted to solve for u* (t). Thus, 

the feed-forward controller u (t) for this problem can be 

obtained as: u(t)= (t),  and u(t)= (t), 

*

u* [0, ]dt tŒ u**

),[ ¢Œ dtt .  The key step in designing this control law is to 

obtain (t), which will be discussed in the next section. u*

III. OPTIMAL CONTROL 

Different optimal controls can be designed for different 

optimality criteria, such as ‘time optimal’, ‘fuel-consumption 

optimal’, etc. In this section, we discuss time-optimal control. 

Achieving rendezvous between the two satellites in the 

shortest time (i.e. a minimal ) is very meaningful and 

appropriate for a docking mission in space. In order to find 

(t), 

dt

u* [0, ]dt tŒ , techniques in time-optimal control theory 



will be applied, in particular the Maximum Principle of 

Pontryagin [14]. 

Pontryagin’s Maximum Principle provides necessary 

conditions for a controller to optimize a given cost functional 

[14]. The principle does not provide sufficient conditions in 

general and thus satisfying the necessary conditions of the 

principle provides only “good candidates” for the optimal 

controller. The choice of the “best candidate” will have to be 

made based on further analysis, typically numerical, or by 

exploiting particular features of the problem. 

In a time-optimal problem, such as system (2), the cost 

functional is 0
0

dt

J f dt? Ð , where , and J, or equivalently 

, has to be minimized for the system evolution from a given 

initial condition  to a given final condition 

0 1f ?

dt

0(0) ?x x ( )dt ?x c . 

The Maximum Principle states that a necessary condition for 

an optimal controller u* (t) is that it maximizes the Pontryagin 

Hamiltonian 
6

0 0

1

( , , ) ( ) ( )T T
i i

i

H u fn
?

? - -Âx そ u そ f x そ g x             (4) 

with respect to u, during . In other words, 
[0, ]dt tŒ

H•
•u =0 for 

u=  in this time interval.  Moreover, H should also be a 

constant during this time interval.  In (4),  is called the 

adjoint vector,  is a negative constant, 

u*

12Œそ R

0n ( )ig x
corresponds to 

the -th column vector of the matrix , and  

corresponds to the i -th component of u . The components of 

the adjoint vector そ  and the state variable vector x  form a 

canonical Hamiltonian system: 

i G(x) iu

i

i

H
x

n•
•

?% ,  

i

i
x

H

•
•

/?n% ,    for           (5) 1,...,12i ?

where the latter set of equations is called adjoint equations.   

The optimal controller is obtained as u* (t)= (x(t),そ(t)). 

Substituting this in (5) and solving for x(t) and そ(t) then gives 

us, in principle, the optimal trajectory of the system. 

u*

Define a triple ( ,  as an extremal if it satisfies the 

maximum principle.  The objective now is to find these 

extremals. However, obtaining them from the necessary 

condition on the Pontryagin Hamiltonian alone is not 

straightforward.  Indeed for affine control systems it is 

obvious that (4) can be maximized by boundary values of u. 

This leads to the idea of a “bang-bang” control in which the 

optimal controller is piecewise constant, i.e.  will be either 

 or , during . Even without the 

complication of bang-bang controllers, finding solution for 

controllers satisfying the Maximum Principle can be quite a 

challenge due to the nonlinearity and high dimensions of the 

system. Further, finding extremals can sometimes be 

hampered due to lack of initial conditions of 

, )x u

iu

miniu maxiu [0, ]dt tŒ

そ. 

Chaser   

Thus, besides analyzing the optimal control problem by 

using theoretical approaches, such as theorems due to Sontag 

and Sussmann [15] for examining the existence of singular 

extremals, we also consider numerical simulation methods 

since these can provide more direct information, such as 

generating actual trajectories. Sakawa-Shindo’s (SS) algorithm 

[10, 16], because of its Maximum Principle based nature, 

simple structure, and good convergence performance, has been 

chosen for numerical simulations in this paper. In the next 

section, a planar example of the rendezvous problem will be 

discussed in which both the theoretical and numerical methods 

due to the above authors will be applied. 

IV.  EXAMPLE 

D. Dynamic Model of the Relative Motion Between Target 

and Chaser 

In the planar example shown in Fig. 3, the mass center of 

the target O1 is assumed to be moving along a straight line at a 

constant speed. A translating reference frame XY is fixed to 

point O1. Consider also a body-fixed frame X1Y1, attached to 

the target also at O1. The two frames are assumed to be 

initially coincident.  The target with its body fixed frame X1Y1 

is rotating at a constant angular velocity Y  about the axis 

through O1 perpendicular to the plane.  A body fixed frame 

X2Y2 is attached to the chaser at its mass center O2, whose 

cooridnates in the XY frame are (x, y).  The orienataion of the 

chaser is denoted by s , which is defined as the angle between 

the X2 and X axes. There are two external forces u1 and u2, 

respectively in X2 and Y2 directions, and one external torque u3, 

in the direction perpendicular to the plane, working as control 

inputs to the chaser. The motion of the chaser with respect to 

the XY frame can then be descrbied as 
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           (6) 

where m is the mass of the chaser, IZ is the polar moment of 

inertia of the chaser about the point O2, (x, y) are the 

coordinates of O2 in the XY frame, dot means time derivative 

and ,  and xv yv y  represent the tranlstional and rotating 

velocities of the chaser observed in the XY frame.  
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Fig. 3 Chaser and Target’s motions in a plane 



The position vector with respect to the XY frame, , 

can be expressed in the X

Tyx ][

1Y1  frame as  by using the 

orthogonal transformation  where   

T
rr yx ][

TT
rr yxyx ][][ A?

cos sin
=

sin cos

t t

t t

Y YÇ ×
È Ù/ Y YÉ Ú

A  

in which t represents time. System (6) can then be rewritten in 

the target’s body-fixed frame X1Y1 in the form of an affine 

control system:  

+r r r?x f(x ) G(x )u%         (7) 

where subscript ‘r’ indicates the relative motion of the chaser 

with respect to the target, observed from the target’s body-

fixed frame X1-Y1. The state-variable vector in (7) is defined 

as  , the  f and G are ] _Tryrxrrrrr vvzyx y?x
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and the normalized control input vector u is defined in the 

following way:  If the physical control input is 

, then   Tuuu ]ˆˆˆ[ˆ
321?u

] TT Iumumuuuu /ˆ/ˆ/ˆ][ 321321 ??u _

_
_

. 

With such a definition the theoretical design and analysis of 

the control system can be performed without considering 

specific mass and inertia distribution of the staellite.   

    Note that  and .  As defined in 

Section III, the control objective is to transfer the state 

variable from its initial state (when t=0) 

r ts ? s/Y ry ? y/Y

rx

] T
ryrxrrrrr vvzyx 0000000 y?x  

to a final state  in minimum 

time with the control inputs bounded ( , 

).   

] T
rfrfrfrf zyx 000?x

min max( )i i iu u t u~ ~
1,...,3i ?

E. Analysis of the Time-Optimal Control Problem 

By Pontryagin’s Maximum Principle applied to the planar 

example, the Hamiltonian needed to be maximized during the 

whole time interval is 
3

0 0

1

( , , ) ( ) ( )T T
r r i r i

i

H u

?

? - - nÂx そ u そ f x そ g x f           (8) 

where =1 and 0f 0n  is a negative constant. The corresponding 

adjoint equations are  
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               (9) 

where 

4 1 2 5 1 2

1
[ ( sin cos ) ( cos sin )]r r ra u u u u

m
r? n s - s /n s / s . 

      In an optimal control problem, if there exists a nonempty 

time interval such that the switching function 

, is identically zero in it, the 

corresponding extremal ( ,  is called u

( ) ( ) ( ( ))T
i it t th ? g x

, )rx u i-singular.  It is 

totally singular if it is ui-singular for all I [17]. For system (7) 

of the planar example, computation of the following Lie 

brackets shows that 

1)   [gi, gj]=0 for , {1,2,3}i jŒ ; 

2)  {g1,  g2,  g3, [f, g1], [f, g2], [f, g3]} are linearly independent. 

 Thus, by the theorems due to Sontag and Sussmann [15] 

(Lemma 3.1 and Corollary 3.2) for time-optimal control,  it is 

concluded that there is no totally singular extremal.  That is, if 

an extremal is ui, uj–singular for  then it is not 

u

, {1, 2,3},i jŒ

k–singular for ,k i j”  and thus uk must be bang-bang.  This 

result implies that in a time-optimal control candidate 

at least one element changes in a bang-bang  

manner with time.  In the next subsection we will see the 

numerical counterpart of this conclusion. 

Tuuu ][ 321?,
u

 C. Numerical Simulation and Results Analysis 

The SS algorithm [10, 16] was developed for searching 

continuous optimal-control candidates satisfying Pontryagin’s 

Maximum Principle. In particular, it can solve the fuel 

consumption optimal control problem with specified initial 

and final conditions in a fixed time interval [10].  Firstly, a 

fixed initial time t1 is chosen. For the system (7), in the time 

interval [0, t1], a fuel consumption optimal controller should 

minimize the cost functional   

12
1 1 2 3

0

1
( ) || ( ) || (| ( ) | | ( ) | | ( ) | / )

2

t

r rfJ t u t u t u t? / -i - -Ðu x xu R dt (10) 

where the first term representing the deviation of the 

computed final state from the given final state condition is 



added here to guarantee that the simulation result satisfies the 

final state condition,  and the second term represents the fuel 

consumption during the time interval. Here R is a normalizing 

parameter for the torque control. Without loss of generality, R 

is assumed to be 1 for the following discussion. The 

corresponding Hamiltonian is                    

                    i

3

1

( , , ) ( ) ( )T T
r r i  r

i

H u

?

? -Âx そ u そ f x そ g x

         1 2 3(| ( ) | | ( ) | | ( ) |)u t u t u t- i - -  (11) 

Clearly the adjoint equations are still in the form of (9). 

With the formulation we can apply SS algorithm to solve the 

fuel consumption optimal control problem in the time interval 

[0, t1].  The numerical simulation starts with an initial guess of 

the optimal controller, , and then iteratively finds an 

extremal  that satisfies the Pontryagin’s 

Maximum Principle and the final state condition. The 

iterations will stop at the i-th time if both conditions  

( )tu

( ( ), ( ), ( ))r t t tx u

2
1

1
|| ( ) ||

2

i
r rft /x x < 1g 

g

                       (12) 

and 

1 1 2
2

0
|| ( ) ( ) || d

t
i it t t//Ð u u  <         (13) 

are satisfied. In the above conditions and are given small 

positive numbers as thresholds to judge the convergence of the 

iteration.  Due to the space limitations, the detailed procedure 

of Sakawa-Shindo algorithm will not be presented here.  

1g 2g

    In the planar example, the angular velocity of the target is 

assumed to be .  The initial condition is taken as 0.1 /rad sY ?

0 (10 10 / 2 1 1 1)T
r ? rx  

and the desired final state is . The 

normalized control input are assumed to be 

(1 0 0 0 0 0)T
rf ?x

121 ?? uu  N/kg 

and 13 ?u  N/(kğm2). All computational parameters are 

taken as the same values as in [10], in which 

and . The Heun 

method is applied for solving differential equations (7) and (9).  

[0, t

1,u ? 0.005,i ? 1 0.001,g ? 2 0.001g ?

1] is divided into 200 segments for numerical integration.   

      The accompanying plots show results for the value of 

t1=8.14s. The corresponding value of the cost function J in 

equation (10) is 0.0788. Fig.4 shows the optimal trajectories 

starting from  and ending at . The chaser’s 

corresponding optimal moving path in the target’s body fixed 

frame X

0rx rfx

1Y1   is shown in Fig. 5. Fig. 6 shows the profiles of 

the optimal controls u1(t) and u2(t). The accuracy of the 

simulation results depends on the convergence property of the 

algorithm, the values of those control parameters (including 

the values of thresholds and ), the numerical integration 

method, and the number of division of the time interval [0, t

1g 2g

1]. 

It should be remarked that in applying the SS algorithm in 

the time interval [0, t1] to find a corresponding fuel 

consumption optimal control candidate, the leverage one has 

in choosing t1 allows one to optimize, to a certain extent, the 

time of the trajectory as well. That is, the algorithm can be 

iteratively implemented for smaller values of t1: Once the fuel 

optimal control candidate for a chosen time interval [0, t1] is 

found, the value of t1 can then be decreased and the computing 

process repeated until it converges to a minimal value. Indeed 

for the above plots, the initial choice for t1 was taken as 12s.  

Over repeated runs of the numerical optimization process, t1 

was succesively decreased till a smallest value of t1=8.14s was 

obtained. The plots even exhibit some characteristics of ‘bang-

bang’ type of control as we have expected from the theoritical 

analysis of the time-optimal control problem. Strictly speaking, 

this result cannot be regarded as a candidate of time-optimal 

control, for it is obtained from a numerical algorithm for 

searching fuel consumption optimal control. But it can be 

regarded as a reasonable candidate for the combined time and 

fuel consumption optimal control problem.  
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Fig. 4 Optimal trajectories  
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Fig. 5 Optimal trajectory of the Chaser in X1-Y1 plane 

Finally, as to the computational cost for running the 

simulations, we compared, with a fixed t1, the computational 

cost of running the SS algorithm for a particular fuel-optimal 



control problem with those of several other algorithms 

presented in [18]. The SS algorithm proved efficient in the 

sense that convergence to the final solution was obtained with 

a not large number of iterations. Moreover, since at each step 

the Pontryagin’s Maximum Principle is satisfied, the SS 

algorithm is based on a more solid theoretical base than many 

‘direct methods’ based on nonlinear programming 

optimization methods  (see [19]).  In our planar example, the 

simulation for a fixed t1 case does not cost much 

computational time though it is not real-time yet. To solve our 

time-optimal control problem, we need to reduce t1 step by 

step until it converges to minimum.  This is therefore an 

‘iteration of iteration’ process and costs more time for 

computation. However, with a reasonable initial guess of t1 

(such as taking the initial t1 as 12s in our example), the 

computational cost is still not high. A typical case run using 

Matlab 6.5 on a 1-GHz Pentium IV PC takes several minutes. 

The computational efficiency is not our major focus at this 

stage because the optimal control problem is used only for 

optimal trajectory planning (feedforward control). 
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Fig. 6 Optimal control force and torque profiles 

 

V. CONCLUSIONS 

In this paper, the optimal closed-range rendezvous problem 

for a servicing spacecraft to approach a tumbling satellite for 

capture is formulated and analyzed. Pontryagin’s Maximum 

Principle is applied to investigate the optimal control 

candidate  that minimizes the cost function along the 

trajectory of the chaser as it moves from its initial state to a 

given final state. When the control goal is achieved, the chaser 

is at a fixed distance and has zero relative motion with respect 

to the rotating target. The control inputs are normalized and 

thus the analysis results will be applicable to spacecraft of 

different mass and inertia values. A planar example is 

presented to demonstrate the proposed optimal control method. 

The theoretical analysis shows that for time-optimal control in 

the example at least one control input must be bang-bang 

during the time interval. Numerical simulation results based 

on Sakawa-Shindo algorithm are then performed for the fuel 

consumption optimal control with the same example. In the 

future, we will extend these techniques and perform 

computations using a more realistic example of a three-

dimensional rendezvous problem. 

*( )tu
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