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Abstract. For more than 35 years, the fastest known method for integer multiplication has
been the Schönhage-Strassen algorithm running in time O(n log n log log n). Under certain restrictive
conditions, there is a corresponding Ω(n log n) lower bound. All this time, the prevailing conjecture
has been that the complexity of an optimal integer multiplication algorithm is Θ(n log n). We
present a major step towards closing the gap from above by presenting an algorithm running in time
n log n 2O(log∗ n). The running time bound holds for multitape Turing machines. The same bound
is valid for the size of boolean circuits.

1. Introduction. All known methods for integer multiplication (except the triv-
ial school method) are based on some version of the Chinese Remainder Theorem.
Schönhage [Sch66] computes modulo numbers of the form 2k + 1. Most methods
can be interpreted as schemes for the evaluation of polynomials, multiplication of
their values, followed by interpolation. The classical method of Karatsuba [KO62]
can be viewed as selecting the values of homogeneous linear forms at (0, 1), (1, 0),
and (1, 1) to achieve time T (n) = O(nlg 3) Toom [Too63] evaluates at small consec-
utive integer values to improve the circuit complexity to T (n) = O(n1+ε) for every
ε > 0. Cook [Coo66] presents a corresponding Turing machine implementation. Fi-
nally Schönhage and Strassen [SS71] use the usual fast Fourier transform (FFT) (i.e.,
evaluation and interpolation at 2mth roots of unity) to compute integer products in
time O(n log n log log n). They conjecture the optimal upper bound (for a yet un-
known algorithm) to be O(n log n), but their result has remained unchallenged.

Schönhage and Strassen [SS71] really propose two distinct methods. The first one
uses numerical approximation to complex arithmetic, and reduces multiplication of
length n to that of length O(log n). The complexity of this method is slightly higher.
Even as a one level recursive approach, with the next level of multiplications done by
a trivial algorithm, it is already very fast. The second method employs arithmetic
in rings of integers modulo numbers of the form Fm = 22m

+ 1 (Fermat numbers),
and reduces the length of the factors from n to O(

√
n). This second method is used

recursively with O(log log n) nested calls. In the ring ZFm
of integers modulo Fm, the

integer 2 is a particularly convenient root of unity for the FFT computation, because
all multiplications with this root of unity are just modified cyclic shifts.

On the other hand, the first method has the advantage of a significant length
reduction from n to O(log n) in one level of recursive calls. If this method is applied
recursively with lg∗n−O(1) nested calls1 (i.e., until the factors are of constant length),
then the running time is of order n log n log log n · · · 2O(lg∗n), because at level 0, time
O(n log n) is spent, and during the kth of the lg∗n−O(1) recursion levels, the amount
of time increases by a factor of O(log log . . . log n) (with the log iterated k + 1 times)
compared to the amount of time spent at the previous level k. The time spent at
level k refers to the time spent during k-fold nested recursive calls, excluding the time
spent during the deeper nested recursive calls.
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1lg refers to the logarithm to the base 2, and lg∗n = min{i ≥ 0 : lg(i) n ≤ 1} with lg(0) n = n

and lg(i+1) n = lg lg(i) n
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Note that for their second method, Schönhage and Strassen have succeeded with
the difficult task of keeping the time at each level basically fixed. Even just a constant
factor increase per level would have resulted in a factor of 2O(log logn) = (logn)O(1)

instead of O(log log n).
Our version of the FFT allows us to combine the main advantages of both meth-

ods of Schönhage and Strassen. The reduction is from length n to length O(log2 n),
and still most multiplications with roots of unity are just modified cyclic shifts. Un-
fortunately, we are not able to avoid the geometric increase over the lg∗n levels.

Relative to the conjectured optimal time of Θ(n log n), the first Schönhage and
Strassen method had an overhead factor of log log n log log log n . . . 2O(lg∗n), repre-
senting a doubly exponential improvement compared to previous methods. Their
second method with an overhead of O(log log n) constitutes another poly-logarithmic
decrease. Our new method reduces the overhead to 2O(lg∗n), and thus represents a
more than multiple exponential improvement of the overhead factor. Naturally, we
have to admit that for practical values of n, say in the millions or billions, it is not
immediately obvious how to benefit from this last improvement.

We use a divide-and-conquer approach to theN -point FFT. We are only interested
in the case ofN being a power of 2. Throughout this paper, integers denoted by capital
letters are usually powers of 2. It is well known and obvious that the JK-point FFT
graph (butterfly graph, Figure 1.1) can be composed of two stages, one containing K

Fig. 1.1. The butterfly graph of a 16 point FFT

copies of a J-point FFT graph, and the other containing J copies of a K-point FFT
graph. Clearly N = JK could be factored differently into N = J ′K ′ and the same
N -point FFT graph could be viewed as being composed of J ′-point and K ′-point FFT
graphs. The current author has been astonished that this is just true for the FFT
graph and not for the FFT computation. Every way of (recursively) partitioning N
produces another FFT algorithm. Multiplications with other powers of ω (twiddle
factors) appear when another recursive decomposition is used. Here ω is the principal
Nth root of unity used in the FFT.
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It seems that this fact has not been widely noticed within the algorithms com-
munity focusing on asymptotic complexity. On the other hand, there has been a long
history of reducing the number of floating point operations (real additions and mul-
tiplications) by modifying the decomposition of the FFT over C. Many papers have
successfully decreased the number of real multiplications by increasing the use of the
roots of unity ±i and to a lesser extent ±(1 ± i)/

√
2. The initial goal has been to

speed up the implementations by constant factors. But minimizing this number of
operations is also an interesting question in its own right.

Shortly after the publication of Cooley and Tukey [CT65], Gentleman and Sande
[GS66] noticed that a radix 4 FFT (decomposition of N into 4 ·N/4 instead of 2 ·N/2)
can save complex multiplications. They have shown that such an implementation
runs faster. Bergland [Ber68] has shown that more operations can be saved by radix
8 and radix 16 FFTs. Yavne [Yav68] followed by Duhamel and Hollman [DH84] have
discovered the split-radix implementation. This decomposition of an N -point FFT
into a N/2-point FFT and two N/4-point FFTs is particularly elegant and practical.
It has been thought of having an optimal operations count until Johnson and Frigo
[JF07] found an algorithm with an even lower number of floating point operations.
At this point, the operations count is no longer the most practical concern on modern
machines. Locality of data becomes more important than a complicated scheme of
saving operations. Vitter and Shriver [VS94] provide a useful complexity theory for
machines with a memory hierarchy (layers of memory with various speeds).

There seems to be only one previous attempt to decrease the asymptotic complex-
ity of any algorithm by more than a constant factor based on a different decomposition
of a 2m-point FFT. It was an earlier attempt to obtain a faster integer multiplication
algorithm [Für89]. In that paper, the following result has been shown. If there is
an integer k > 0 such that for every m, there is a prime number in the sequence
Fm+1, Fm+2, . . . , F2m+k of Fermat numbers (Fm = 22m

+ 1), then multiplication of
binary integers of length n can be done in time n log n 2O(lg∗n). Hence, the Fermat
primes could be extremely sparse and would still be sufficient for a faster integer mul-
tiplication algorithm. It turns out that the Fermat prime paper [Für89] provides some
of the key ingredients of the current faster integer multiplication algorithm. Never-
theless, that paper by itself was not so exciting, because it is conjectured — based
on probabilistic assumptions — that the number of Fermat primes is finite, and even
that F4 is the largest of them.

The FFT is often presented as an iterative process (see e.g., [SS71, AHU74]).
A vector of coefficients at level 0 is transformed level by level, until the Fourier
transformed vector at level lgN is reached. The operations at each level are additions,
subtractions, and multiplications with powers of an Nth root of unity ω. They are
usually done as if the N -point FFT were recursively decomposed into two N/2-point
FFTs followed by N/2 two-point FFTs or vice versa. The standard fast algorithm
design principle, divide-and-conquer, calls for a balanced partition, but in this case it
is not at all obvious that it will provide any significant benefit.

A balanced approach uses two stages. K J-point FFTs are followed by J K-point
FFTs, where J and K are roughly

√
N . If N = 2m, then one can choose J = 2dm/2e

and K = 2bm/2c. This can improve the FFT computation, because it turns out that
“odd” powers of ω are then used very seldom. Most multiplications with powers of
ω are then actually multiplications with powers of ωK . This key observation alone is
not sufficiently powerful to obtain a better asymptotic running time, because usually
1, −1, i, −i and to a lesser extent ±(1 ± i)/

√
2 are the only powers of ω that are
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easier to handle. We will achieve the desired speed-up by working over a ring with
many “easy” powers of ω. Hence, the new faster integer multiplication algorithm is
based on two key ideas.

• An FFT version is used with the property that most occurring roots of unity
are of low order.

• The computation is done over a ring where multiplications with many low
order roots of unity are very simple and can be implemented as a kind of
cyclic shifts. At the same time, this ring also contains high order roots of
unity.

It is immediately clear that integers modulo a Fermat prime Fm form such a ring. For
N = Fm − 1 = 22m

, the number 2 is a nice low order (2 lgN)th root of unity, while
3 is an Nth root of unity. Instead of 3, it is computationally easy to find a number
ω ∈ ZFm such that ωN/(2 lgN) = 2. These properties form the basis of the Fermat
prime result [Für89] mentioned above. The additional main accomplishment of the
current paper is to provide a ring having similar properties as the field ZFm

.
The question remains whether the optimal running time for integer multiplication

is indeed of the form n log n 2O(lg∗n). Already, Schönhage and Strassen [SS71] have
conjectured that the more elegant expression O(n log n) was optimal as we mentioned
before. It would indeed be strange if such a natural operation as integer multiplication
had such a complicated expression for its running time. But even for O(n log n) there
is no unconditional corresponding lower bound. Still, long ago there have been some
remarkable attempts. In the algebraic model, Morgenstern [Mor73] has shown that
every N -point Fourier transform—done by just using linear combinations ax + by
with |a| + |b| ≤ c for inputs or previously computed values x and y—requires at
least (n lg n)/(2(1 + lg c)) operations. More recently, Bürgisser and Lotz [BL04] have
extended this result to multiplying complex polynomials.

Under different assumptions on the computation graph, Papadimitriou [Pap79]
and Pan [Pan86] have shown conditional lower bounds of Ω(n log n) for the FFT. Both
are for the interesting case of n being a power of 2. Cook and Anderaa [CA69] have
developed a method for proving non-linear lower bounds for on-line computations of
integer products and related functions. Based on this method, Paterson, Fischer and
Meyer [PFM74] have improved the lower bound for on-line integer multiplication to
Ω(n log n). Naturally, one would like to see unconditional lower bounds, as the on-line
requirement is a very severe restriction. On-line means that starting with the least
significant bit, the kth bit of the product is written before the k + 1st bits of the
factors are read.

With the lack of tight lower bounds, it may be tempting to experiment with
variations of our new algorithm with the goal of improving the running time or better
understand the difficulties in trying to improve it. Indeed, after the publication of
the conference version of our algorithm [Für07], a more discrete algorithm based on
the same ideas has been obtained by De, Kurur, Saha, and Saptharishi [DKSS08].
Its running time is still n log n 2O(lg∗n), but it is based on p-adic numbers instead of
complex numbers. This might be a useful ingredient in the quest to decrease the
constant factor blow-up from one recursion level to the next. The ambitious goal is
to obtain a blow-up factor of 1 + o(1).

In Section 2, we present the basics about roots of unity in rings, the Chinese
Remainder Theorem for rings, and the discrete Fourier transform. In Section 3,
we review the FFT in a way that shows which twiddle factors (powers of ω) are
used for any Cooley and Tukey type recursive decomposition of the algorithm. In
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Section 4, we present a ring with many nice roots of unity allowing our faster FFT
computation. In Section 5, we describe the new method of using this FFT for integer
multiplication. It would be helpful for the reader to be familiar with the Schönhage-
Strassen integer multiplication algorithm, e.g., as described in the original paper, or
in Aho, Hopcroft and Ullman [AHU74], but this is not a prerequisite. In Section 6,
we study the precision requirements for the numerical approximations used in the
Fourier transforms. Finally, in Section 7, we state the complexity results, followed by
open problems in Section 8.

2. The Discrete Fourier Transform. Throughout this paper all rings are
commutative rings with 1. Primitive roots of unity are well known objects in algebra.
An element ω in a ring R is a primitive Nth root of unity if it has the following
properties.

1. ωN = 1
2. ωk 6= 1 for 1 ≤ k < N

Closely related is the notion of a principal root of unity. An element ω in a ring
R is a principal Nth root of unity if it has the following properties.

1. ωN = 1

2.
N−1∑
j=0

ωjk = 0 for 1 ≤ k < N

The two notions coincide in fields of characteristic 0, but for the discrete Fourier
transform over rings, we need the stronger principal roots of unity. A principal Nth
root of unity is also a primitive Nth root of unity unless the characteristic of the ring
R is a divisor of N . For integral domains (commutative rings with 1 and without zero
divisors), every primitive root of unity is also a principal root of unity.

The definition of principal roots of unity immediately implies the following result.
If ω is a principal Nth root of unity, then ωJ is a principal (N/ gcd(N, J))th root of
unity.

Example 1. In C×C the element (1, i) is a primitive 4th root of unity, but not
a principal 4th root of unity.

Lemma 2.1. If N is a power of 2, and ωN/2 = −1 in an arbitrary ring, then ω
is a principal N th root of unity.

Proof. Property 1 of principal roots of unity is trivial. Property 2 is shown as
follows.

Let 0 < k = (2u + 1)2v < N , trivially implying that k/2v = 2u + 1 is an odd
integer and 2v+1 ≤ N .

N−1∑
j=0

ωjk =
2v+1−1∑
i=0

N/2v+1−1∑
j=0

ω(iN/2v+1+j)k

=
N/2v+1−1∑

j=0

ωjk
2v+1−1∑
i=0

ω(iN/2v+1)(2u+1)2v︸ ︷︷ ︸
(−1)i︸ ︷︷ ︸

0

= 0

Definition 2.2. The N -point discrete Fourier transform (DFT) over a ring R
is the linear function, mapping the vector a = (a0, . . . , aN−1)T to b = (b0, . . . , bN−1)T

5



by

b = Ωa, where Ω = (ωjk)0≤j, k≤N−1

for a given principal N th root of unity ω.
In other words,

bj =
N−1∑
k=0

ωjkak (2.1)

Hence, the discrete Fourier transform maps the vector of coefficients (a0, . . . , aN−1)T

of a polynomial

p(x) =
N−1∑
k=0

akx
k

of degree N − 1 to the vector

(b0, . . . , bN−1)T = (p(1), p(ω), p(ω2), . . . , p(ωN−1))T

of values at the N powers of ω.
Every Nth root of unity ω has an inverse ω−1 = ωN−1. If N also has an inverse

in the ring R, and ω is a principal root of unity, then ω−1 is also a principal root of
unity, and the matrix Ω has an inverse Ω−1. The former is shown as follows

N−1∑
j=0

ω−jk =
N−1∑
j=0

ωNkω−jk =
N−1∑
j=0

ω(N−j)k =
N∑
j=1

ωjk = 0

for 0 < k < N . The inverse of the discrete Fourier transform is 1/N times the discrete
Fourier transform with the principal Nth root of unity ω−1, because

N−1∑
j=0

ω−ijωjk =
N−1∑
j=0

ω(k−i)j =

{
N if i = k

0 if i 6= k

If the Fourier transform operates over the field C, then ω−1 = ω̄, the complex con-
jugate of ω. Therefore, the discrete Fourier transform scaled by 1/

√
N is a unitary

transformation, and 1√
N

Ω is a unitary matrix, i.e., Ω̄TΩ = NI, where I is the unit
matrix.

Closely related to the N -point DFT, we also consider what we call the N -point
half discrete Fourier transform (Half-DFT) in the case of N being a power of 2. Here
the evaluations are done at the N odd powers of ζ, where ζ is a principal 2Nth root of
unity. The Half-DFT could be computed by extending a with aN = · · · = a2N−1 = 0
and doing a 2N -point DFT, but actually only about half the work is needed.

Definition 2.3. The N -point half discrete Fourier transform (Half-DFT) is the
linear function, mapping the vector a = (a0, . . . , aN−1)T to b = (b0, . . . , bN−1)T by

b = Za, where Z = (ζj(2k+1))0≤j, k≤N−1

for a given principal 2N th root of unity ζ.
6



Hence, the Half-DFT maps the vector of coefficients (a0, . . . , aN−1)T of a polyno-
mial

p(x) =
N−1∑
j=0

ajx
j

of degree N − 1 to the vector

b = (p(ζ), p(ζ3), p(ζ5), . . . , p(ζ2N−1))T

of values at the N odd powers of ζ. Thus

bj =
N−1∑
k=0

ζ(2j+1)kak =
N−1∑
k=0

ωjkζkak (0 ≤ j < N)

for ω = ζ2.
As usual, let Ω = (ωjk)0≤j, k≤N−1. Define diag(z), for z = (ζ0, ζ1, . . . , ζN−1)T as

the diagonal matrix with z in its diagonal. Then we have Z = Ω diag(z) or

Z =


ζ1·0 ζ1·1 · · · ζ1(N−1)

ζ3·0 ζ3·1 · · · ζ3(N−1)

...
...

...
ζ(2N−1)0 ζ(2N−1)1 · · · ζ(2N−1)(N−1)



=


ω0·0 ω0·1 · · · ω0(N−1)

ω1·0 ω1·1 · · · ω1(N−1)

...
...

...
ω(N−1)0 ω(N−1)1 · · · ω(N−1)(N−1)



ζ0 0 · · · 0
0 ζ1 · · · 0
...

. . .
...

0 0 · · · ζN−1


Thus for N a power of 2, and ζ a principal 2Nth root of unity in a ring, an

N -point half discrete Fourier transform (Half-DFT) is a scaling operation followed by
a standard N -point DFT with ω = ζ2. The Half-DFT is invertible if and only if the
corresponding DFT is invertible, which is the case if and only if 2 has an inverse in
the ring.

Over the field C, the DFT as well as the Half-DFT are scaled unitary transfor-
mations, as the matrices 1√

N
Ω and diag(z) are both unitary.

The DFT and the Half-DFT perform a ring isomorphism as determined by the
Chinese Remainder Theorem, which we copy from Bürgisser et al. [BCS97, p. 75].

Theorem 2.4. (Chinese Remainder Theorem) Let R be a commutative ring,
I1, . . . , IN ideals in R which are pairwise coprime, i.e., Ii + Ij = R for all i 6= j.
Then the ring homomorphism

R 3 z 7→ (z + I1, . . . , z + IN ) ∈
∏
j

R/Ij

is surjective with kernel I =
⋂N
j=1 Ij. This induces a ring isomorphism

R/I → R/I1 × · · · × R/IN
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Consider a polynomial ring R = R′[x] over a ring R′. We want to apply the
Chinese Remainder Theorem to two cases. In the first case, the ideal Ij is the ideal
(x − ωj) generated by x − ωj for a principal Nth root of unity ω. In this case, the
induced ring isomorphism is the DFT. In the second case, the ideal Ij is (x− ζ2j+1)
for a principal 2Nth root of unity ζ. In this case, the induced ring isomorphism is the
half-DFT. In the former case, we want to prove the intersection of ideals I =

⋂N
j=1 Ij

to be (xN − 1) and in the latter case, we want to show I = (xN + 1). These results
are easily obtained if R is the ring of polynomials F [x] over some field F . We will
need much more effort to prove these results for some cases where R is just a ring.

In order to apply the Chinese Remainder Theorem, we have to show that the
ideals (x− ζi) and (x− ζj) are coprime for i 6= j, or equivalently that ζi− ζj is a unit
(i.e., an invertible element) in R. For this purpose, we first show an auxiliary result.

Lemma 2.5. Let N be a unit, and let ζ be a principal 2N th root of unity in a
ring. Then ζN = −1.

Proof.

0 =
1
N

2N−1∑
j=0

ζjN =
1
N

2N−1∑
j=0

ζ2(j/2−bj/2c)N = 1 + ζN

Here, the first term (1) is obtained as the sum over all even values of j, while the
second term (ζN ) is obtained as the sum over all odd values of j.

Lemma 2.6. For N a power of 2, let ω be a principal N th root of unity in a ring
R. Let 2 be a unit. Then 1−ωk is a unit for 1 ≤ k < N , and the ideals (x−ωi) and
(x− ωj) are coprime for i 6≡ j (mod N).

Proof. Let k = (2u+ 1)2v. Then

(1− ωk)
N2−v−1−1∑

j=0

ωjk = 1− ωN2−v−1k = 1− ω(N/2)(2u+1) = 1− (−1)2u+1 = 2

Let 0 ≤ i < j < N . Then ωi − ωj = ωi(1− ωj−i) is in the ideal (x− ωi, x− ωj). As
both, ωi and 1− ωj−i are units, so is ωi − ωj , implying (x− ωi, x− ωj) = R[x], i.e.,
(x− ωi) and (x− ωj) are coprime.

3. The Fast Fourier Transform. Now let N = JK. Then ωJK = 1. We
want to represent the N-point DFT as a set of K parallel J-point DFTs (inner DFTs),
followed by scalar multiplications and a set of J parallel K-point DFTs (outer DFTs).
The inner DFTs employ the principal Jth root of unity ωK , while the outer DFTs
work with the principal Kth root of unity ωJ . Hence, most powers of ω (twiddle
factors) used during the transformation are powers of ωJ or ωK . Only the scalar
multiplications in the middle are by “odd” powers of ω. This simple recursive de-
composition of the DFT has in fact been presented in the original paper of Cooley
and Tukey [CT65]. Any such recursive decomposition (even for J = 2 or K = 2)
results in a fast algorithm for the DFT and is called Fast Fourier Transform (FFT).
At one time, the FFT has been fully credited to Cooley and Tukey, but the FFT
has appeared earlier. For the older history of the FFT back to Gauss, the reader is
referred to [HJB84].

Here, we are only interested in the usual case of N being a power of 2. Instead of
using j and k ranging from 0 to N−1, we use j′J+j and k′K+k with 0 ≤ j, k′ ≤ J−1
and 0 ≤ j′, k ≤ K − 1. Almost any textbook presenting the Fourier transformation
recursively would use either K = 2 or J = 2.
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For 0 ≤ j ≤ J − 1 and 0 ≤ j′ ≤ K − 1, Equation 2.1 transforms into the
following equation, which after minor manipulations exhibits an arbitrary recursive
decomposition of the Fourier transform.

bj′J+j =
K−1∑
k=0

J−1∑
k′=0

ω(j′J+j)(k′K+k)ak′K+k

=
K−1∑
k=0

ωJj
′k ωjk

J−1∑
k′=0

ωKjk
′
ak′K+k︸ ︷︷ ︸

inner (first ) DFTs︸ ︷︷ ︸
coefficients of outer DFTs︸ ︷︷ ︸

outer (second) DFTs

For N being a power of 2, the fast Fourier transforms (FFTs) are obtained by
recursive application of this method until N = 2.

We could apply a balanced FFT with J = K =
√
N or J = 2K =

√
2N depending

on N being an even or odd power of 2. But actually, we just require the partition not
to be extremely unbalanced.

4. The Ring R = C[x]/(xP +1). We consider the ring of polynomials R[y] over
the ring R = C[x]/(xP + 1). In all applications, we will assume P to be a power of 2.
For a primitive 2P th root of unity η in C, e.g., η = eiπ/P , we have

R = C[x]/(xP + 1)

= C[x]/
P−1∏
j=0

(x− η2j+1)

∼=
P−1∏
j=0

C[x]/(x− η2j+1)

∼= CP

The first isomorphism is provided by an easy version of the Chinese Remainder The-
orem for fields.

We want to do Half-DFTs over the ring R. We notice that polynomials over R
decompose into products of polynomials over C.

R[y] = C[x]/(xP + 1)[y] ∼= CP [y] ∼= C[y]P

Each component C[y] is a principal ideal domain and therefore it is factorial, i.e.,
it has unique factorization. The isomorphic image (ζ0, ζ1, . . . , ζP−1)T in CP of a
principal 2Nth root of unity ζ in R is a principal 2Nth root of unity. Thus each
of its components ζk is a principal 2Nth root of unity in the field C, implying that
(y − ζ2j+1

k ) divides (yN + 1) and gcd(y − ζ2i+1
k , y − ζ2j+1

k ) = ζ2i+1
k − ζ2j+1

k are units
in C for all i 6= j with 0 ≤ i, j < N . As a consequence of unique factorization in C[y],
not only each (y − ζ2j+1

k ), but also
∏N−1
j=0 (y − ζ2j+1

k ) divides yN − 1. Just looking at
the coefficient of yN , we see that

∏N−1
j=0 (y − ζ2j+1

k ) = yN + 1.
We apply the Chinese Remainder Theorem for Ij = (y − ζ2j+1

k ). We have seen
that Ij = (y − ζ2j+1

k ) divides (yN + 1) for all j, implying (yN + 1) ⊆
⋂N−1
j=0 Ij = I.
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The opposite containment is nontrivial. Every element of I is not only a multiple
of y − ζ2j+1

k for each j, but because of unique factorization also a multiple of their
product

∏N−1
j=0 (y − ζ2j+1

k ), i.e., I ⊆ (yN + 1). Thus we obtain the following result.
Lemma 4.1. R[y]/(yN +1) ∼=

∏N−1
j=0 R[y]/(y−ζ2j+1) and the Half-DFT produces

this isomorphism.
R contains an interesting principal 2P th root of unity, namely x. This follows

from Lemma 2.1, because xP = −1 in R. Alternatively, because R is isomorphic to
CP , a ζ ∈ R is a principal mth root of unity, if and only if it is a principal mth root
of unity in every factor C[x]/(x − η2j+1) of R. But x mod (x − η2j+1) is just η2j+1,
which is a principal 2P th root of unity in C. Thus we obtain the following lemma.

Lemma 4.2. For P a power of 2, the variable x is a principal 2P th root of unity
in the ring R = C[x]/(xP + 1).

The variable x is a very desirable root of unity, because multiplication by x can
be done very efficiently. As xP = −1, multiplication by x is just a cyclic shift of the
polynomial coefficients with a sign change on wrap around.

There are many principal 2Nth roots of unity in

R = C[x]/(xP + 1)

One can choose an arbitrary primitive 2Nth root of unity in every factor

C[x]/(x− η2j+1)

independently. We want to pick one such 2Nth root of unity

ρ ∈ R = C[x]/(xP + 1)

with the convenient property

ρN/P = x

We write ρ(x) for ρ to emphasize that it is represented by a polynomial in x. Let σ
be a primitive 2Nth root of unity in C, with

σN/P = η

e.g.,

σ = eiπ/N

Now we select the polynomial

ρ(x) =
P−1∑
j=0

rjx
j

such that

ρ(x) ≡ σ2k+1 (mod x− η2k+1) for k = 0, 1, . . . , P − 1

i.e., σ2k+1 is the value of the polynomial ρ(x) at η2k+1. Then

ρ(x)N/P ≡ σ(2k+1)N/P = η2k+1 ≡ x (mod x− η2k+1)
10



for 0 ≤ k < P , implying

ρ(x)N/P ≡ x (mod xP + 1)

For the FFT algorithm, the coefficients of ρ(x) could be computed from Lagrange’s
interpolation formula

ρ(x) =
P−1∑
k=0

σ2k+1

∏
j 6=k(x− η2j+1)∏

j 6=k(η2k+1 − η2j+1)

without affecting the asymptotic running time, because P = O(logN) is small.
In both products, j ranges over {0, . . . , P−1}\{k}. The numerator in the previous

expression is

xP + 1
x− η2k+1

= −
P−1∑
j=0

η−(j+1)(2k+1)xj

This implies that in our case, all coefficients of each of the additive terms in Lagrange’s
formula have the same absolute value. We also want to show that all coefficients of
ρ(x) have an absolute value of at most 1.

Definition 4.3. The l2-norm of a polynomial p(x) =
∑
akx

k is ||p(x)|| =√∑
|ak|2.

Our FFT will be done with the principal root of unity ρ(x) defined above. In order
to control the required numerical accuracy of our computations, we need a bound on
the absolute value of the coefficients of ρ(x). Such a bound is provided by the l2-norm
||ρ(x)|| of ρ(x).

Lemma 4.4. The l2-norm of ρ(x) is ||ρ(x)|| = 1.
Proof. Note that the values of the polynomial ρ(x) at all the primitive 2P th roots

of unity are also roots of unity, in particular complex numbers with absolute value
1. Thus the vector b of these values has l2-norm

√
P . The coefficients of ρ(x) are

obtained by an inverse half discrete Fourier transform Z ′−1b. As
√
PZ ′−1 is a unitary

matrix, the vector of coefficients has norm 1.
Corollary 4.5. The absolute value of every coefficient of ρ(x) is at most 1.

5. The Algorithm. In order to multiply two non-negative integers modulo 2n+
1, we encode them as polynomials of R[y], where R = C[x]/(xP +1), and we multiply
these polynomials with the help of the Fourier transform as follows. Let P = Θ(log n)
be rounded to a power of 2. The binary integers to be multiplied are decomposed into
(large) pieces of length P 2/2. Again, each such piece is decomposed into small pieces
of length P . If ai P/2−1, . . . , ai0 are the small pieces belonging to a common big piece
ai, then they are encoded as

ãi =
P−1∑
j=0

aijx
j ∈ R = C[x]/(xP + 1)

with

ai P−1 = ai P−2 = · · · = ai P/2 = 0

Thus each large piece is encoded as an element of R, which is a coefficient of a
polynomial in y.

11



These elements of R are themselves polynomials in x. Their coefficients are inte-
gers at the beginning and at the end of the algorithm. The intermediate results, as well
as the roots of unity are polynomials with complex coefficients, which themselves are
represented by pairs of reals that have to be approximated numerically. In Section 6,
we will show that it is sufficient to use fixed-point arithmetic with O(P ) = O(log n)
bits in the integer and fraction part.

Now every factor
∑N−1
i=0 ãi2iP

2/2 is represented by a polynomial
∑N−1
i=0 aiy

i ∈
R[y]. A Half-FFT computes the values of such a polynomial at those roots of unity
which are odd powers of the 2Nth root of unity ρ(x) ∈ R, defined in the previous
section. The values are multiplied and an inverse Half-FFT produces another poly-
nomial of R[y]. From this polynomial the resulting integer product can be recovered
by just doing some simple additions. The relevant parts of the coefficients have now
grown to some length O(P ) from the initial length of P . (The constant factor growth
could actually be decreased to a factor 2 + o(1) by increasing the parameter P from
Θ(log n) to Θ(log2 n), but this would only affect the constant factor in front of lg∗ in
the exponent of the running time.)

Thus the algorithm runs pretty much like that of Schönhage and Strassen [SS71]
except that the field C or the ring of integers modulo the mth Fermat prime Fm has
been replaced by the ringR = C[x]/(xP +1), and the FFT is decomposed more evenly.
The standard decomposition of the N -point FFT into two N/2-point FFTs and many
2-point FFTs would not allow such an improvement. Nevertheless, there is no need
for balancing completely. Instead of recursively decomposing the N = Θ( n

log2 n
)-point

FFT in the middle (in a divide-and-conquer fashion), we decompose into 2P -point
FFTs and N/(2P )-point FFTs. This is mainly done for simplicity. Both versions are
efficient (even though with different constant factors in front of lg∗ in the exponent), as
only about every logP th level of the overall FFT requires complicated multiplications
with difficult roots of unity (twiddle factors). At all the other levels, the twiddle factors
are powers of x. Multiplications with these twiddle factors are just cyclic rotations of
the P -tuple of coefficients of elements of R, with a sign change on wrap around.

We use the auxiliary functions Decompose (Figure 5.1) and Compose (Figure 5.2).

Procedure Decompose:
Input: Integer a of length at most n = NP 2/2 in binary; N , P (powers of 2)
Output: a ∈ RN (or α ∈ R[y]) encoding the integer a
Comment: The integer a is the concatenation of the aij for 0 ≤ i < N and 0 ≤

j < P/2 as binary integers of length P defined by Equations (5.1), (5.2) and
(5.4), and Inequalities (5.3). ai0, ai1, . . . , ai P−1 are the coefficients of αi ∈ R.
α0, α1, . . . , αN−1 are the components of a ∈ RN as defined by Equation (5.5).

for i = 0 to N − 1 do
for j = 0 to P/2− 1 do

aij = a mod 2P

a = ba/2P c
for j = P/2 to P − 1 do

aij = 0
αi = ai0 + ai1x+ ai2x

2 + · · ·+ ai P−1x
P−1

Return a = (α0, . . . , αN−1)

Fig. 5.1. The procedure Decompose
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Procedure Compose:
Input: a ∈ RN , N , P (powers of 2)
Output: Integer a encoded by a
Comment: α0, α1, . . . , αN−1 are the components of a vector a ∈ RN . For all i, j, aij

is the coefficient of xj in αi. The integer a is obtained from the rounded aij as
defined in Equation (5.2).

round all aij to the nearest integer
a = 0
for j = P − 1 downto P/2 do

a = a · 2P + aN−1 j

for i = N − 1 downto 1 do
for j = P/2− 1 downto 0 do

a = a · 2P + aij + ai−1 j+P/2

for j = P/2− 1 downto 0 do
a = a · 2P + a0j

Return a mod (2n + 1)

Fig. 5.2. The procedure Compose

“Decompose” takes a binary number a of length n = NP 2/2. First a is de-
composed into N pieces aN−1, aN−2, . . . , a0 of length P 2/2 each. Then every ai is
decomposed into P/2 pieces ai P/2−1, ai, P/2−2, . . . , ai 0 of length P each. The remain-
ing aij (for 0 ≤ i < N and P/2 ≤ j < P ) are defined to be 0. This padding allows to
properly recover the integer product from the product of the polynomials. In other
words, we have

a =
N−1∑
i=0

ai2iP
2/2 and ai =

P−1∑
j=0

aij2jP (5.1)

implying

a =
N−1∑
i=0

P−1∑
j=0

aij2i(P
2/2)+jP (5.2)

with

0 ≤ aij < 2P for all i, j (5.3)

and

aij = 0 for 0 ≤ i < N and P/2 ≤ j < P (5.4)

We use Greek letters to denote elements of the ring R = C[x]/(xP + 1). The
number ai is encoded as an element αi ∈ R and a is encoded as a polynomial

α =
N−1∑
i=0

αiy
i ∈ R[y]

represented by its vector of coefficients a = (α0, . . . , αN−1)T ∈ RN , with

αi =
P−1∑
j=0

aijx
j = ai0 + ai1x+ ai2x

2 + · · ·+ ai P−1x
P−1 (5.5)
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We say that a represents the integer a, when (5.1) and (5.2) hold. Typically
an integer a (0 ≤ a < 2NP

2/2) has many representations. “Decompose” selects the
unique representation in normal form, defined by (5.3) and (5.4).

In normal form, the padding (defined by (5.4)) is designed to avoid any wrap
around modulo xP + 1 when doing multiplication in R. “Compose” not only reverses
the effect of “Decompose”, but it works just as well for arbitrary representations not
in normal form, which are produced during the computation.

To be precise, no wrap around modulo xP + 1 would occur, if the product of
polynomials were computed with the standard school multiplication. During the
actual computation of the product using FFT, wrap around happens frequently. But
naturally the final result is just the product of the polynomials, i.e., the same as if it
were computed with school multiplication.

Procedure Select:
Input: N ≥ 4 (a power of 2), P (a power of 2)
Output: J ≥ 2 (a power of 2 dividing N/2)
Comment: The procedure selects J such that the N -point FFT is decomposed into J

point FFTs followed by K = N/J-point FFTs.

if N ≤ 2P then Return 2 else Return 2P

Fig. 5.3. The procedure Select determining the recursive decomposition

The procedure Select(N) (Figure 5.3) determines how the FFT is broken down re-
cursively, corresponding to a factorization N = JK. Schönhage has used Select(N) =
2, Aho, Hopcroft and Ullman use Select(N) = N/2, a balanced approach corresponds
to Select(N) = 2b(lgN)/2c. We choose Select(N) = 2P , which is slightly better than a
balanced solution (only by a constant factor in front of lg∗n), because with our choice
of Select(N) only every 2P th level (instead of every ith for some P < i ≤ 2P ) requires
expensive multiplications with twiddle factors.

With the help of these auxiliary procedures, we can now give an overview of
the whole integer multiplication algorithm in Figure 5.4. A more detailed descrip-
tion of the various procedures follows. Integer-Multiplication and Modular-Integer-
Multiplication also use the auxiliary functions of Figure 5.5.

The previously presented procedures Decompose and Compose are simple for-
mat conversions. The three major parts of Modular-Integer-Multiplication are Half-
FFT (Figure 5.8) for both factors, Componentwise-Multiplication (Figure 5.10), and
Inverse-Half-FFT (Figure 5.11). The crucial part, FFT (Figure 5.9), is presented as
a recursive algorithm for simplicity and clarity. It uses the auxiliary procedure Select
(Figure 5.3). The algorithms FFT and Componentwise-Multiplication, use the oper-
ation ∗ (Figure 5.12), which is the multiplication in the ring R. This operation is
implemented by modular integer multiplication, which is executed by recursive calls
to the procedure Modular-Integer-Multiplication (Figure 5.7).

We compute the product of two complex polynomials (elements of R) by first
writing each as a sum of a real and an imaginary polynomial, and then computing
four products of real polynomials. Alternatively, we could achieve the same result
with three real polynomial multiplications based on the basic idea of [KO62]. Real
polynomials (with coefficients given in fixed point representation) are multiplied by
multiplying their values at a good power of 2 as proposed by Schönhage [Sch82]. A
good power of 2 makes the values not too big, but still allows the coefficients of the
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The Structure of the Complete Algorithm:
Comment: Lower level (indented) algorithms are called from the higher level algo-

rithms. In addition, the algorithm FFT calls itself recursively, and it calls the aux-
iliary procedure Select. Furthermore, in FFT and Componentwise-Multiplication,
the Operation ∗ calls Modular-Integer-Multiplication recursively.

Integer-Multiplication
Modular-Integer-Multiplication

Decompose
Half-FFT

FFT
Componentwise-Multiplication
Half-Inverse-FFT

FFT
Compose

Fig. 5.4. Overall structure of the multiplication algorithm

Various functions:
lg: the log to the base 2
length: the length in binary
round: rounded up to the next power of 2

Fig. 5.5. Various functions

product polynomial to be easily recovered from the binary representation of the integer
product. The case of positive integer coefficients is particularly intuitive. A binary
integer is formed by concatenating the coefficients after padding them with leading
zeros such that all have equal length and the non-zero parts are well separated.

Schönhage [Sch82] has shown that such an encoding can easily be achieved with
a constant factor blow-up. Actually, he proposes an even better method for handling
complex polynomials. He does integer multiplication modulo 2N + 1 and notices that
2N/2 can serve as the imaginary unit i. We don’t further elaborate on this method,
as it only affects the constant factor in front of lg∗n in the exponent of the running
time. An even better method has been suggested by Bernstein [Ber]. In the definition
of the ring R, the field C could be replaced by R, as xP/2 could be viewed as the
imaginary unit i.

Algorithm Integer-Multiplication:
Input: Integers a and b in binary
Output: Product d = ab
Comment: The product d = ab is computed with Modular-Integer-Multiplication. The

length n is chosen to be a power of 2 sufficiently large to avoid any warp around.

n = round(length(a) + length(b))
Return Modular-Integer-Multiplication(n, a, b)

Fig. 5.6. The Algorithm Integer-Multiplication
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Algorithm Modular-Integer-Multiplication:
Input: Integer n, Integers a and b modulo 2n + 1 in binary
Output: Product d = ab mod 2n + 1
Comment: n is a power of 2. The product d = ab mod 2n + 1 is computed with

half Fourier transforms over R. Let ζ be the 2N th root of unity in R with
value eiπ(2k+1)/N at eiπ(2k+1)/P (for k = 0, . . . , P − 1). Let n0 ≥ 16 be some
constant. For n ≤ n0, a trivial multiplication algorithm is used.

if n ≤ n0 then Return ab mod 2n + 1
P = round(lg n)
N = 2n/P 2

a = Half-FFT(Decompose(a), ζ,N, P )
b = Half-FFT(Decompose(b), ζ,N, P )
c = Componentwise-Multiplication(a, b, N, P )
d = Inverse-Half-FFT(c, ζ,N, P )
Return Compose(d)

Fig. 5.7. The Algorithm Modular-Integer-Multiplication

Algorithm Half-FFT:
Input: a = (α0, . . . , αN−1)T ∈ RN , ζ ∈ R = C[x]/(xP + 1) (ζ is a principal 2N th

root of unity in R with ζN/P = x), N , P (powers of 2),
Output: b ∈ RN the N -point half DFT of the input
Comment: The N -point half DFT is the evaluation of the polynomial with coefficient

vector a at the odd powers of ζ, i.e., in those powers of ζ that are principal 2N th
roots of unity in R.

for k = 0 to N − 1 do
αk = αk ∗ ζk

ω = ζ2

Return FFT(a, ω,N, P )

Fig. 5.8. The algorithm half-FFT

6. Precision for the FFT over R. We compute Fourier transforms over the
ring R. Elements of R are polynomials over C modulo xP + 1. The coefficients are
represented by pairs of reals with fixed precision for the real and imaginary part. We
want to know the numerical precision needed for the coefficients of these polynomials.
We start with integer coefficients. After doing two Half-FFTs in parallel, and multi-
plying the corresponding values followed by an inverse Half-FFT, we know that the
result has again integer coefficients. Therefore, the precision has to be such that at
the end the absolute errors are less than 1

2 . Hence, a set of final rounding operations
provably produces the correct result.

We do all computations with at least S bits of precision, where S is fixed (as a
function of n) and will be determined later. We use at least S bits for the real as
well as the imaginary part of each complex number occurring in the FFT algorithms.
In addition, there is a sign to be stored with each number. Of the S bits, we use at
least V bits before the binary point and at least S − V bits after the binary point.
V varies throughout the algorithm. We are very generous with V and S, meaning
that the bits in the integer part might include many leading zeros and the number
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Algorithm FFT:
Input: a = (α0, . . . , αN−1)T ∈ RN , ω ∈ R = C[x]/(xP + 1) (ω is an N th root of

unity in R with ωN/2P = x; ω = x2P/N for N < 2P ), N , P (powers of 2),
Output: b ∈ RN the N -point DFT of the input
Comment: The N -point FFT is the composition of J-point inner FFTs and K-point

outer FFTs. We use the vectors a, b ∈ RN , ck = (γk0 , . . . , γ
k
J−1)T ∈ RJ

(k = 0, . . . ,K − 1), and dj = (δj0, . . . , δ
j
K−1)T ∈ RK (j = 0, . . . , J − 1).

if N = 1 then Return a
if N = 2 then {β0 = α0 + α1; β1 = α0 − α1; Return b = (β0, . . . , βN−1)T}
J = Select(N,P );K = N/J
for k = 0 to K − 1 do

for k′ = 0 to J − 1 do
γkk′ = αk′K+k

ck = FFT(ck, ωK , J) //inner FFTs
for j = 0 to J − 1 do

for k = 0 to K − 1 do
δjk = γkj ∗ ωjk

dj = FFT(dj , ωJ ,K) //outer FFTs
for j′ = 0 to K − 1 do

βj′J+j = δjj′

Return b = (β0, . . . , βN−1)T

Fig. 5.9. The algorithm FFT

Algorithm Componentwise-Multiplication:
Input: a = (α0, . . . , αN−1)T, b = (β0, . . . , βN−1)T ∈ RN , N , P (powers of 2)
Output: c ∈ RN (the componentwise product of a and b)

for j = 0 to N − 1 do
γj = αj ∗ βj

Return c = (γ0. . . . , γN−1)T

Fig. 5.10. The algorithm Componentwise-Multiplication

Algorithm Inverse-Half-FFT:
Input: a = (α0, . . . , αN−1)T ∈ RN , ζ ∈ R (a principal 2N th root of unity in R), N ,

P (powers of 2)
Output: b ∈ RN (the inverse of the half N -point DFT applied to the input)

ω = ζ2

b = 1
N FFT(a, ω−1, N, P )

for k = 0 to N − 1 do
βk = βk ∗ ζ−k

Return b = (β0, . . . , βN−1)T

Fig. 5.11. The algorithm Inverse-FFT

of bits in the fractional part might be unnecessarily high. The main purpose is to
prove correctness. Tighter bounds would improve the constant factor hidden by the
O-notation in the running time.
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Operation * (= Multiplication in R):
Input: α, β ∈ R, P (a power of 2)
Output: γ (the product α · β ∈ R)
Comment: If the second factor β is a power of x, then obtain γ as a cyclic shift of α

with sign change on wrap around. Otherwise, start by writing each of the two
polynomials as a sum of a real and an imaginary polynomial. Then compute the
4 products of real polynomials by multiplying their values at a good power of 2,
which pads the space between the coefficients nicely such that the coefficients of
the product polynomial can easily be recovered from the binary representation of
the integer product.
The details can easily be filled in, as the coefficients are presented in fixed-point
arithmetic. Precise bounds on the lengths of the integer and fractional parts are
given in Section 6.

Fig. 5.12. The multiplication in R (= operation *)

In a practical implementation, one can either use floating point arithmetic with
at least S bits in the mantissa, or one could always scale with the known appropriate
power of 2 and use integer arithmetic.

For the initial call to Half-FFT, the fractional part after the binary point is 0,
and we use V = P bits in the integer part in front of the binary point. In each level
of the FFT, we do everywhere an addition or subtraction and a multiplication with a
twiddle factor (which might be 1). We generously increase V by 1 for each addition
or subtraction. Most multiplications with twiddle factors are handled by cyclic shifts
producing no errors. At every level divisible by lgP+1, the multiplications by twiddle
factors are general multiplications in R.

We first investigate the growth of the value and error bounds during these mul-
tiplications. Elements of R are represented by polynomials in x of degree P − 1.

Notation 1. We refer to the real or imaginary part of any coefficient of an
element of R simply as a part.

Let r be a part of any element of R occurring in an idealized infinite precision
algorithm. In reality, a finite precision algorithm uses an approximation r+εr instead
of r.

We say that at some stage of an algorithm, we have a value bound v and an error
bound e, if we have the following bounds for all parts r.

|r| ≤ v, |εr| ≤ e

Our bounds are always powers of 2. Whenever we have a value bound v, we do all
computations with V = lg v bits before the binary point. For twiddle factors (which
are also elements of R), we have the following stricter requirements for all its parts t.

|t+ εt| ≤ 1, |εt| ≤ 2−S

Lemma 6.1. Let vc be a value bound and ec an error bound on the parts of an
element of R before a multiplication with a twiddle factor. Then

vd = 2Pvc
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is a value bound and

ed = 2Pec + vd2−S+1

= 2P (ec + vc2−S+1)

is an error bound after the multiplication.
Proof. All parts (real and imaginary parts of coefficients) t of twiddle factors have

an absolute value of at most 1. Therefore, the value bound on |rt| is the same as the
bound on |r|. All multiplications of parts are of the form (r+ εr)(t+ εt), where r+ εr
is the current approximation to a part r, and t+ εt is the approximation to a part t
of a twiddle factor. Using the bounds |r| ≤ vc, |εr| ≤ ec, |t+ εt| ≤ 1, and |εt| ≤ 2−S ,
where vc and ec are the current value and error bounds respectively, associated with
parts r, we see that the error after an exact multiplication of the approximated parts
is

|εrt| = |(t+ εt)εr + rεt| ≤ ec + vc2−S

Thus the absolute value of the old error |εr| ≤ ec does not increase during this
multiplication of parts, but due to the error εt in a part of the twiddle factor, a new
error of at most vc2−S is created.

Every coefficient of the product in R is the sum of P products of coefficients of
the two factors. As these coefficients are complex numbers, each part of the product
of two coefficients involves two products of real numbers. Thus, we obtain a trivial
upper bound vd on the absolute values of the parts of the product if we multiply the
upper bound on products of parts vc by 2P .

Similarly, the error bound of ec +vc2−S for the product of two parts is multiplied
by 2P to obtain the error bound ed for the parts of the product. Note that non-trivial
multiplication in R is done by reduction to integer multiplication. Thus, starting from
the representations with S bits per part, initially all multiplications and additions are
done exactly, i.e., without any rounding in between. But finally all parts are rounded,
creating an additional new error of at most vd2−S . Thus the total new error for
multiplication with roots of unity in R is at most 4Pvc2−S , resulting in a total error
bound as claimed by the lemma.

The proof of the following lemma shows value and error bounds by induction
based on the recursive structure of the FFT algorithm. For any vector a over R, let
va be a bound on the absolute values of the parts (real and imaginary parts of any
coefficient) of any component of a, and let ea be a bound on the absolute values of
the error in the parts of any component of a. Note that the following lemma considers
an arbitrary error bound at the start, because FFT as a recursive procedure is also
called in the middle of other FFT computations.

Lemma 6.2. Let N , P be powers of 2 with N ≥ 2 and P ≥ 1. Let L =
d(lgN)/ lg(2P )e − 1 be the number of levels with computationally intensive twiddle
factors. If the input a of an N -point FFT has a value bound va and an error bound
ea, then the output b has a value bound

vb = N(2P )Lva ≤ N2va

and an error bound

eb = N(2P )Lea + vb2−S (lgN + 2L)
= N(2P )L

(
ea + va2−S (lgN + 2L)

)
≤ N2(ea + va2−S+1 lgN)
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Proof. (2P )L ≤ N immediately follows from the definition of L implying both
inequalities. We show the other bounds by induction on N . We note that L = 0 for
N ≤ 2P .

For N = 2, the algorithm does one addition or subtraction at most doubling the
previous values (bounded by va) and the previous errors (bounded by ea). Further-
more, the result is rounded in the last position, creating a new error of at most vb2−S .
Thus vb = 2va is a value bound and eb = 2ea + vb2−S is an error bound.

For N > 2, the FFT is a composition of inner FFTs (computing c from a), mul-
tiplications with twiddle factors (computing d from c), and outer FFTs (computing
b from d). We use the inductive hypotheses for the inner and outer FFTs.

For 2 < N ≤ 2P , after the inner 2-point FFTs, we have a value bound of vc = 2va

and an error bound ec = 2ea+vc2−S . The multiplications with twiddle factors are just
cyclic shifts without any new errors or bound increases, i.e., vd = vc and ed = ec are
value and error bounds respectively. After the outer N/2-point FFTs, the inductive
hypothesis implies a value bound of

vb = (N/2)vd = Nva

and the error bound of

eb = (N/2)ed + vb2−S lg(N/2)
= (N/2)(2ea + vd2−S) + vb2−S lg(N/2)
= Nea + vb2−S lgN
= N(ea + va2−S lgN)

For N > 2P , after the inner 2P -point FFT,

vc = 2Pva

is a value bound, and

ec = 2Pea + vc2−S lg(2P ) = 2P (ea + va2−S lg(2P ))

is an error bound.
Multiplication with the twiddle factors increases the value and the previous error

by at most a factor of 2P and introduces a new rounding error of at most vd2−S as
well as an error with the same bound due to the inaccuracy in the twiddle factor as
shown in Lemma 6.1. Thus

vd = 2Pvc = (2P )2va

is a value bound and

ed = 2Pec + vd2−S+1

= (2P )2(ea + va2−S lg(2P )) + (2P )2va2−S+1

= (2P )2(ea + va2−S(lg(2P ) + 2))

is an error bound.
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Finally, after the outer (lgN − lg(2P ))-point FFT, the inductive hypothesis pro-
vides a value bound of

vb =
N

2P
(2P )L−1vd = N(2P )Lva

and an error bound of

eb =
N

2P
(2P )L−1ed + vb2−S

(
lg
N

2P
+ 2(L− 1)

)
= N(2P )L−2(2P )2(ea + va2−S(lg(2P ) + 2)) + vb2−S

(
lg
N

2P
+ 2(L− 1)

)
= N(2P )Lea + vb2−S(lg(2P ) + 2) + vb2−S

(
lg
N

2P
+ 2(L− 1)

)
= N(2P )Lea + vb2−S(lgN + 2L)
= N(2P )L(ea + va2−S(lgN + 2L))

After having computed the FFTs of both factors, we compute products of corre-
sponding values. These are elements of R. The following lemma controls the value
and error bound for these multiplications. Let vc and ec refer to the value and error
bounds of parts, i.e., real or imaginary parts of coefficients of the vectors c and c′

representing the two factors.
Lemma 6.3. If vc is a value bound and ec with 2−S ≤ ec ≤ vc is an error bound

for c and c′ before the multiplications of the values, then vd = 2Pv2
c is a value bound

and ed = 8Pvcec is an error bound afterwards.
Proof. As vc is a value bound on the parts of the factors in c and c′, obviously v2

c

is a value bound for their products. Because every part of a product in R is the sum of
2P products of parts, vd = 2Pv2

c is a value bound for the result. The multiplications
are of the form (r+εr)(r′+εr′), where r+εr and r′+εr′ are the current approximations
to parts of c and c′. Using the fact that |r|, |r′| ≤ vc and |εr|, |ε′r| ≤ ec, where ec

is the current error bound, we see that the error after an exact multiplication of the
approximated parts has a bound of |rεr′ + r′εr + εrεr′ |, which is generously bounded
by 3vcec. During the additions, the error bound increases by a factor 2P , and an
additional error of at most vd2−S = 2Pv2

c2−S occurs due to rounding. Therefore,
using the condition that vc2−S ≤ ec the rounded product has an error bound of

ed ≤ 2P3vcec + vd2−S ≤ 6Pvcec + 2Pv2
c2−S ≤ 8Pvcec

Lemma 6.4. For P = round(lg n) ≥ 2 and N = round(2n/P 2), where round is
rounding to the next power of 2, precision S ≥ 5 lgN + lg lg(2N) + 2P + 4 lgP + 9 is
sufficient for the multiplication of integers of length n.

Proof. We start with a value bound of 2P and an error bound of 0. The initial
multiplication of the Half-FFT with twiddle factors is analyzed in Lemma 6.1. Thus
for the subsequent FFT, the value bound is va = 2P 2P and the error bound is
ea = va2−S+1 = 2P 2P 2−S+1. By Lemma 6.2, the bounds after the N -point FFT are

vc ≤ N2va = 2P2PN2

and

ec ≤ N2(ea + va2−S+1 lgN) = N2va2−S+1 lg(2N) = 2P 2PN2 lg(2N) 2−S+1
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By Lemma 6.3, the bounds after the multiplication of values stage are

vd = 2Pv2
c ≤ (2P )322PN4

and

ed = 8Pvcec ≤ 8P (2P )222PN4 lg(2N) 2−S+1 = 32P 322PN4 lg(2N) 2−S+1

The inverse N -point FFT obeys the bounds of Lemma 6.2 followed by a scaling by
1/N of the value and error bounds. Thus after the inverse FFT, we have the following
bounds.

vb ≤
1
N
N2vd ≤ (2P )322PN5

eb ≤
1
N
N2(ed + vd 2−S+1 lgN)

= N(32P 322PN4 lg(2N) 2−S+1 + 8P 322PN4 lgN 2−S+1)
≤ 40P 322PN5 lg(2N) 2−S+1

The final part of Inverse-Half-FFT consists of multiplications with twiddle factors. It
results in a value bound of

2Pvb ≤ (2P )422PN5

and an error bound of

2P (eb + vb2−S+1) < 96P 422PN5 lg(2N) 2−S+1

which is less than 1/2 if

7 + 4 lgP + 5 lgN + 2P + lg lg(2N)− S + 1 ≤ −1

proving the claim.
The bounds of the previous proof are summarized in Table 6.1. As an immediate

Position in Algorithm Value bound Absolute error bound
Start 2P 0
After first level of Half-FFT 2P 2P 2P 2P 2−S+1

After N -point FFT 2P 2PN2 2P 2PN2 lg(2N) 2−S+1

After multiplication of values (2P )3 22PN4 32P 3 22PN4 lg(2N) 2−S+1

After inverse FFT (2P )3 22PN5 40P 3 22PN5 lg(2N) 2−S+1

After last level of inverse Half-FFT (2P )4 22PN5 96P 4 22PN5 lg(2N) 2−S+1

Table 6.1
Bounds on absolute values and errors

implication of Lemma 6.4, we obtain the following result.
Theorem 6.5. For some S = Θ(lg n), doing Half-FFT with precision S is

sufficient for the Algorithm Modular-Integer-Multiplication.
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7. Complexity. Independently of how an N -point Fourier transform is recur-
sively decomposed, the computation can always be visualized by the well known but-
terfly graph with lgN + 1 rows. Every row represents N elements of the ring R.
Row 0 represents the input, row N represents the output, and every entry of row
j + 1 is obtained from row j (0 ≤ j < N) by an addition or subtraction and possibly
a multiplication with a power of ω. When investigating the complexity of perform-
ing the multiplications in R recursively, it is best to still think in terms of the same
lgN + 1 rows. At the next level of recursion, non-trivial multiplications are done for
every lgP + 1st row. It is important to observe that the sum of the lengths of the
representations of all entries in such a row grows just by a constant factor from each
level of recursion to the next. The blow-up by a constant factor is due to the padding
with 0’s, and due to the precision needed to represent numerical approximations of
complex roots of unity. Padding with 0’s occurs when reducing multiplication in R
to modular integer multiplication and during the procedure Decompose.

We do O(lg∗n) levels of recursive calls to Modular-Integer-Multiplication. As the
total length of a row grows by a constant factor from level to level, we obtain the
factor 2O(lg∗n) in the running time. From a practical point of view, one should not
worry too much about this factor. The function lg∗n in the exponent of the running
time actually represents lg∗n − 4 or lg∗n − 3, which for all practical purposes could
be thought as being 1 or 2, because at a low recursion level, one would switch to a
more traditional multiplication method.

The crucial advantage of our new FFT algorithm is the fact that most multiplica-
tions with twiddle factors can be done in linear time, as each of them only involves a
cyclic shift (with sign change on wrap around) of a vector of coefficients representing
an element of R. Indeed, only every O(log logN)th row of the FFT requires recur-
sive calls for non-trivial multiplications with roots of unity. We recall that our Fourier
transform is over the ring R, whose elements are represented by polynomials of degree
P − 1 with coefficients of length O(P ) = O(logN).

Based on these arguments, one obtains the following recurrence equations for
the boolean circuit complexity T (n) of Modular-Integer-Multiplication and T ′(N) of
FFT.

T (n) = O(T ′(n/ log2 n))

T ′(N) = O

(
N log3N +

N logN
log logN

T (O(log2N))
)

These recurrence equations have the following solutions.

T (n) = n log n 2O(lg∗n)

T ′(N) = N log3N 2O(lg∗N)

A reader convinced by these intuitive arguments may jump directly to Theorem 7.5.
We are more formal here, producing the recurrence equations step by step based on
the recursive structure of the algorithms.

First we count the number of additions Add(N) and the number of multiplications
Mult(N) of the N -point FFT. The counts refer to operations in R. As always, we
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assume J , K and N to be powers of 2 with JK = N .

Add(N) =


0 if N = 1
2 if N = 2
K Add(J) + J Add(K) otherwise

The solution Add(N) = N lgN is immediate.

Mult(N) =

{
0 if N ≤ 2
K Mult(J) + J Mult(K) +KJ otherwise

Induction on N verifies the solution

Mult(N) =

{
0 if N = 1
N(lgN − 1) if N ≥ 2

One should note that more than half of the multiplications counted by Mult(N) are
actually multiplications by 1. For the sake of simplicity of the presentation, we did
not do the corresponding obvious optimization (for j = 0 and k = 0 ) in the algorithm
FFT.

More interesting than the total number of multiplications Mult(N), is the number
of expensive multiplications EMult(N). Multiplications with (low order) 2P th roots
of unity are inexpensive, as they are done by cyclic shifts (with sign changes on wrap
around). The recurrence equations for Mult and EMult differ in the start conditions.

EMult(N) =

{
0 if N ≤ 2P
K EMult(J) + J EMult(K) +KJ otherwise

Note that for N > 2P , the procedure Select chooses J = 2P and K = N/(2P ),
implying EMult(J) = 0 simplifying the recurrence equation.

EMult(N) =

{
0 if N ≤ 2P
2P EMult(N/(2P )) +N otherwise

Lemma 7.1. This recurrence equation has the solution

EMult(N) = N(dlog2P Ne − 1) ≤ N lgN
lg(2P )

Proof. Only the case N > 2P is non-trivial.

EMult(N) = 2PEMult(N/(2P )) +N

= 2P
N

2P
(dlog2P (N/(2P ))e − 1) +N

= N(dlog2P Ne − 2) +N

= N(dlog2P Ne − 1)

Lemma 7.2. The number of expensive multiplications is
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(a) N(dlog2P Ne − 1) for FFT
(b) Ndlog2P Ne for Half-FFT
(c) N(3dlog2P Ne+ 1) for Modular-Integer-Multiplication
Proof. The number of expensive multiplications for FFT is EMult(N). The other

results immediately follow from the definitions of the algorithms.
Let T (n) be the boolean circuit complexity of Modular-Integer-Multiplication.

T (n) + O(n) is then also the circuit complexity of Integer Multiplication with 0 ≤
product ≤ 2n.

Lemma 7.3. Let n0 and N be the positive integers from the algorithm Modular-
Integer-Multiplication. n0 ≥ 16 is a constant, and 1

2n/ lg2 n ≤ N ≤ 2n/ lg2 n ≤ n for
all n ≥ n0. For some real constants c, c′ > 1, T(n) satisfies the following recurrence

T (n) ≤ N(3dlog2P Ne+ 1) · T (c lg2N) + c′N lgN · lg2N for n ≥ n0

Proof. This recurrence is based on the counts of additions, multiplications and
expensive multiplications, and on the following facts. Binary integers are chopped
into N = O(n/ log2 n) pieces, which are represented by elements of R encoded by
strings of length O(log2N). In this encoding, additions, easy multiplications and all
bookkeeping operations are done in linear time. Expensive multiplications in R are
done recursively after encoding the elements of R as modular integers, which causes
a constant factor blow-up .

Now we can claim

T (n) ≤ n lg n 2O(lg∗n)

but such a claim resists a direct induction proof, because lg∗n is not continuous. Even
though there are only O(lg∗n) recursion levels, lg∗n does not decrease at each level
due to the reduction from n to O(log2 n) not lg n. As a trick, we use the fact that
lg∗ 4
√
n decreases at each level.
Lemma 7.4.

T (n) ≤ n lg n (2d lg∗ 4√n − d′)

for some d, d′ > 0 and all n ≥ 2.
Proof. From the algorithm Modular-Integer-Multiplication, recall the definitions,

P = round(lg n) and N = 2n/P 2. The implications N ≤ min(n, 2n/ lg2 n) for n ≥ 2,
and dlog2P Ne < log2P n for n ≥ 16 are used in Ineq. 7.3 below.

First we do the inductive step. d, d′ and a constant n′0 will be determined later.
Let n ≥ n′0 ≥ n0 ≥ 16. Assume the claim of the lemma holds for all n′ with 2 ≤ n′ < n.

T (n) ≤ N(3dlog2P Ne+ 1)T (c lg2N) + c′N lg3N (7.1)

≤ 4Ndlog2P Ne c lg2N lg(c lg2N) (2d lg∗ 4
√
c lg2N − d′) + c′N lg3N (7.2)

≤ 8
n

lg2 n
log2P n c lg2 n 2 lg lg n (2d lg∗( 1

4 lgn) − d′) + 2c′n lg n (7.3)

= 16cn lg n
lg lg n
lg 2P

(2d(lg
∗ 4√n−1) − d′) + 2c′n lg n (7.4)

≤ n lg n(2d lg∗ 4√n − d′) (7.5)

Ineq. 7.1 is the recurrence from Lemma 7.3. The inductive hypothesis is used in
Ineq. 7.2. For Ineq. 7.3, we use the definitions of P and N , and we select n′0 sufficiently
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big such that 4
√
c lg2N ≤ 1

4 lg n for all n ≥ n′0. Finally, for Ineq. 7.5, we use lg lg n ≤
lg 2P ≤ lg lg n + 2 ≤ 2 lg lg n, and we just choose d and d′ sufficiently big such that
16c ≤ 2d and −8cd′+ 2c′ ≤ −d′. Furthermore, we make sure d is big enough that the
claim of the lemma holds for all n with 2 ≤ n < n′0.

Lemma 7.4 implies our main results for circuit complexity and (except for the
organizational details) for multitape Turing machines.

Theorem 7.5. Multiplication of binary integers of length n can be done by a
boolean circuit of size n log n 2O(lg∗n).

Theorem 7.6. Multiplication of binary integers of length n can be done in time
n log n 2O(lg∗n) on a 2-tape Turing machine.

A detailed proof of Theorem 7.6 would be quite tedious. Nevertheless, it should
be obvious that due to the relatively simple structure of the algorithms, there is no
principle problem to implement them on Turing machines.

As an important application of integer multiplication, we obtain corresponding
bounds for the multiplication of polynomials by boolean circuits or Turing machines.
We are looking at bit complexity, not assuming that products of coefficients can be
obtained in one step.

Corollary 7.7. Products of polynomials of degree less than n, with a 2O(m)

upper bound on the absolute values of their real or complex coefficients, can be ap-
proximated in time mn logmn 2O(log∗mn) with an absolute error bound of 2−m, for a
given m = Ω(log n).

Proof. Schönhage [Sch82] has shown how to reduce the multiplication of polyno-
mials with complex coefficients to integer multiplication with only a constant factor
in time increase.

Indeed, multiplying polynomials with real or complex coefficients is a major area
where long integer multiplication is very useful. Long integer multiplication is used
extensively for finding large prime numbers. Another application is the computation
of billions of digits of π to study patterns. A very practical application is the testing
computational hardware.

8. Open Problem. Besides the obvious question whether integer multiplica-
tion is in O(n log n), a multiplication algorithm running in time O(n log n lg∗n) would
also be very desirable. It could be achieved, if one could avoid the constant fac-
tor cost increase from one recursion level to the next. Furthermore, it would be
nice to have an implementation that compares favorably with current implementa-
tions of the algorithm of Schönhage and Strassen. The asymptotic improvement from
O(n log n log log n) to n log n 2O(log∗ n) might suggest that an actual speed-up only
shows up for astronomically large numbers. Indeed, the expressions are not very
helpful to judge the performance for reasonable values of n. But one should notice
that lg∗n in the exponent really just represents an upper bound on the nesting of
recursive calls to integer multiplication. For any practical purposes, one would nest
these calls at most twofold.
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