
AN057 – uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X
Version 1.0

This application note describes how to use the uIP V1.0 TCP/IP Library with the eCOG1k and
eCOG1X microcontrollers.

28 January 2008 Cyan Technology Ltd.

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

Confidential and Proprietary Information
©Cyan Technology Ltd, 2008

This document contains confidential and proprietary information of Cyan Technology Ltd
and is protected by copyright laws. Its receipt or possession does not convey any rights to
reproduce, manufacture, use or sell anything based on information contained within this
document.

Cyan TechnologyTM, the Cyan Technology logo and Max-eICETM are trademarks of Cyan
Holdings Ltd. CyanIDE® and eCOG® are registered trademarks of Cyan Holdings Ltd. Cyan
Technology Ltd recognises other brand and product names as trademarks or registered
trademarks of their respective holders.

Any product described in this document is subject to continuous developments and
improvements. All particulars of the product and its use contained in this document are
given by Cyan Technology Ltd in good faith. However, all warranties implied or expressed,
including but not limited to implied warranties of merchantability, or fitness for purpose, are
excluded.

This document is intended only to assist the reader in the use of the product. Cyan
Technology Ltd shall not be liable for any loss or damage arising from the use of any
information in this guide, any error or omission in such information, or any incorrect use of
the product.

This product is not designed or intended to be used for on-line control of aircraft, aircraft
navigation or communications systems or in air traffic control applications or in the design,
construction, operation or maintenance of any nuclear facility, or for any medical use related
to either life support equipment or any other life-critical application. Cyan Technology Ltd
specifically disclaims any express or implied warranty of fitness for any or all of such uses.
Ask your sales representative for details.

28 January 2008 Cyan Technology Ltd. Page 2 of 16

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

28 January 2008 Cyan Technology Ltd. Page 3 of 16

Revision History
Version Date Notes

V1.0 05/07/2007 Initial Release

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

Contents
1 Introduction.. 6

2 Glossary .. 6

3 Requirements .. 7

4 Software Installation .. 7

5 uIP Configuration... 7
5.1 UIP_CONF_FIXEDADDR.. 7
5.2 UIP_CONF_PINGADDRCONF ... 7
5.3 UIP_CONF_UDP... 7
5.4 UIP_CONF_UDP_CONNS.. 8
5.5 UIP_CONF_ACTIVE_OPEN ... 8
5.6 UIP_CONF_MAX_CONNECTIONS.. 8
5.7 UIP_CONF_MAX_LISTENPORTS.. 8
5.8 UIP_CONF_BUFFER_SIZE .. 8
5.9 UIP_CONF_STATISTICS.. 8

6 uIP Callbacks... 8
6.1 network_device_init ... 8
6.2 network_device_read .. 8
6.3 network_device_send.. 9
6.4 uip_tcp_appcall.. 9
6.5 uip_udp_appcall .. 9
6.6 dhcpc_configured .. 9
6.7 resolv_found.. 9

7 uIP Application Data .. 10

8 uIP Timer ... 10
8.1 clock-arch.h ... 10
8.2 clock-arch.h ... 10

8.2.1 clock_time() .. 10
8.2.2 clock_init() .. 10

9 Example Applications .. 11
9.1 Hello World Example ... 11
9.2 Web Server (HTTP Daemon) .. 12
9.3 Web Server (HTTP Daemon) with DHCP.. 14
9.4 Telnet Server Example .. 14
9.5 DNS Resolver Example... 15

28 January 2008 Cyan Technology Ltd. Page 4 of 16

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

28 January 2008 Cyan Technology Ltd. Page 5 of 16

10 Building a New Application .. 16
10.1 Creating a Project.. 16
10.2 Include Directories... 16
10.3 Timer Functions... 16

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

1 Introduction

This application note describes the uIP V1.0 TCP/IP stack implementation for the eCOG1k and
eCOG1X microcontrollers. It also describes the following simple applications:

• Hello World example

• Telnet server (Telnet daemon).

• Web Server (HTTP daemon).

• DNS Resolver example

The uIP TCP/IP stack is implemented as a library in the CyanIDE development tools, and is
suitable for both eCOG1k and eCOG1X. Included within the uIP library are the following clients
that are available for all applications to use:

• DHCP Client

• DNS Client

Additional services, protocols and application layer components will be added in future.

The open-source uIP package provides an implementation of the TCP/IP protocol stack for
embedded microcontrollers, without sacrificing interoperability or RFC standards compliance. It
provides the necessary protocols for Internet communication, with very small code and data
memory requirements.

uIP is developed by Adam Dunkels at the Swedish Institute of Computer Science. For more
information about uIP, please visit the uIP web site at http://www.sics.se/~adam/uip/. The uIP
reference manual is available at http://www.sics.se/~adam/download/uip-1.0-refman.pdf.

2 Glossary

DHCP Dynamic Host Configuration Protocol for allocating IP addresses
DNS Directory Name System for translating hostnames to IP addresses
eCOG1 Cyan Technology target micro controller
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
MAC Media Access Controller
TCP/IP Transmission Control Protocol / Internet Protocol
uIP A low memory implementation of the TCP/IP stack

28 January 2008 Cyan Technology Ltd. Page 6 of 16

http://www.sics.se/%7Eadam/uip/
http://www.sics.se/%7Eadam/download/uip-1.0-refman.pdf

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

3 Requirements

• PC running eCOG1 CyanIDE Version 1.4.1 or later.
• An eCOG1k development board (Iss. 2) or an eCOG1X development board (Rev. B)
• An Ethernet connection

A zip archive file named AN057LIB.zip contains the common uIP library code for this
application note, and an updated version of the eCOG1X EMAC peripheral support library. A
second zip archive file named AN057SW.zip contains the source code for use with this
application note as a number of example projects. These two zip files are available for
download from the Cyan Technology website www.cyantechnology.com.

4 Software Installation

Extract the library software file AN057LIB.zip to the CyanIDE install directory, usually
C:\Program Files\Cyan Technology\CyanIDE. This creates a new library directory uIP1.0
alongside the existing eCOG1k and eCOG1X library directories, and updates the files in the
eCOG1X EMAC peripheral library.

Extract the example software file AN057SW.zip to any convenient location, such as the
CyanIDE projects directory C:\Documents and Settings\<username>\My Documents\CyanIDE
Projects. This creates a new directory AN057SW with three further subdirectories. Two
directories contain the example projects for the eCOG1k development board V2.1 and for the
eCOG1X development board rev B. The third directory contains project templates suitable for
applications using uIP; to add these to the standard templates, simply copy them to the
CyanIDE templates directory C:\Program Files\Cyan Technology\CyanIDE\templates.

5 uIP Configuration

All uIP projects must contain a configuration file for the library software. This is included in the
project as uip-conf.h, and contains all the definitions used by uIP. The most significant of these
definitions are described below.

5.1 UIP_CONF_FIXEDADDR
Set this flag to True (non-zero) if the IP address of the uIP Stack is fixed at compile time. Set it
to False (zero) if the IP address can be assigned dynamically at run-time, for example when
using the DHCP client.

If the IP address is fixed, then the UIP_IPADDRn, UIP_NETMASKn and UIP_DRIPADDRn
symbols should be set in the header file to define the IP Address, the Net Mask and Default
Router respectively.

5.2 UIP_CONF_PINGADDRCONF
If this flag is set to True (non-zero), then the IP address of the uIP stack is defined by the
destination IP address of the first PING packet received by the stack after initialisation. Note
that if this is used then UIP_CONF_FIXEDADDR must be set to False.

5.3 UIP_CONF_UDP
Set this flag to True (non-zero) if the uIP stack should include the code to handle UDP
connections. This is required if either the DHCP or DNS clients are used by the application.

28 January 2008 Cyan Technology Ltd. Page 7 of 16

http://www.cyantechnology.com/

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

5.4 UIP_CONF_UDP_CONNS
This value defines the maximum number of UDP connections supported by the uIP stack at any
one time. The more connections supported, the more memory is required by the uIP stack.
Fourteen bytes of RAM are required by each connection.

5.5 UIP_CONF_ACTIVE_OPEN
Set this flag to True (non-zero) if the uIP stack should include the code to allow the application
to open connections to other devices. Set it to False (zero) if the application only receives
connections from other devices.

5.6 UIP_CONF_MAX_CONNECTIONS
This value defines the maximum number of TCP connections supported by the uIP stack at any
one time. The more connections supported, the more memory is required by the uIP stack.
Thirty-two bytes of RAM are required by each connection.

5.7 UIP_CONF_MAX_LISTENPORTS
This value defines the maximum number of TCP ports on which the uIP stack can listen for
connections. This differs from the maximum number of connections, as a single TCP port may
have multiple connections.

5.8 UIP_CONF_BUFFER_SIZE
This value defines the size of the packet buffer used by uIP. The uIP stack uses one buffer to
handle all its IP transactions. The maximum useful size for this is equal to the maximum size of
an Ethernet packet, 1518 bytes.

In applications running on the eCOG1k (which has less internal RAM available than the
eCOG1X), this value can be reduced to keep more memory available for other uses.

5.9 UIP_CONF_STATISTICS
Set this flag to True (non-zero) if the uIP stack should include support for network packet
statistics. This requires an extra 44bytes of RAM, or 52bytes of RAM if the UDP support is also
included in the uIP stack.

6 uIP Callbacks

The uIP stack makes use of callback functions to interact with the application. These are
described below.

6.1 network_device_init
void network_device_init(void)

This is called by the initialisation of the uIP stack. It should initialise the Ethernet hardware
interface, set the MAC address in the Ethernet interface and inform the uIP stack of the MAC
address using the uip_setethaddr() function.

6.2 network_device_read
u16_t network_device_read(void)

This is called by the uIP stack to check whether an Ethernet packet has been received by the
interface. If a packet has been received, then it should be copied into uip_buf and the number
of bytes in the packet returned. If no data has been received, then zero should be returned.

28 January 2008 Cyan Technology Ltd. Page 8 of 16

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

6.3 network_device_send
void network_device_send(void)

This is called by the uIP stack to send an Ethernet packet. The Ethernet header and IP header
are contained in uip_buf and the data is pointed to by uip_appdata (which may or may not
point to uip_buf). The function should return once the data has been copied from the buffers
and they are available for use again.

6.4 uip_tcp_appcall
void uip_tcp_appcall(void)

This is called by the uIP stack to inform the application of a TCP event. The application should
use the connection information pointed to by uip_conn to determine which port and what type
of event has occurred.

6.5 uip_udp_appcall
void uip_udp_appcall(void)

This is called by the uIP stack to inform the application of a UDP event. The application should
use the connection information pointed to by uip_udp_conn to determine which port and what
type of event has occurred.

If the DHCP client is used by the application, this callback should include a call to the
dhcpc_appcall() function.

If the DNS client is used by the application, this callback should include a call to the
resolv_appcall() function.

6.6 dhcpc_configured
void dhcpc_configured(const struct dhcpc_state *s)

This callback function is called by the DHCP client (if used by the application) to inform the
application that an IP address has been acquired by the client. The dhcpc_state structure
contains the IP addresses assigned, the netmask and default router IP address. It also contains
the IP address of the DNS server that can be passed on to the DNS client.

If DHCP is not used, then these parameters must be configured by the application in some
other way.

6.7 resolv_found
void resolv_found(char *name, uip_ipaddr_t *ipaddr)

This callback function is called by the DNS client to inform the application of success or failure
in resolving a name queried by the resolv_lookup() function. If the ipaddr pointer is
NULL then the lookup failed, otherwise it points to the IP address.

28 January 2008 Cyan Technology Ltd. Page 9 of 16

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

7 uIP Application Data

If the application is providing a server function (such as the Web Server example), then the
application has to store some information on a per connection basis.

To facilitate this, the uip_conns[] data structure array (for TCP connections) and
uip_udp_conns[] data structure array (for UDP connections) contain an element which is a
void pointer appdata that can be used to link a connection with application specific data.

The main application initialises these pointers to a union of all the application data structures. A
union is used as each connection can only be used by one application at a time.

When an application receives a callback from the uIP stack for connection (via the
uip_tcp_appcall() callback for TCP connections or via uip_udp_appcall() callback for
UDP connections), it can then cast the appdata pointer (uip_conn->appdata for TCP
connections and uip_udp_conn->appdata for UDP connections) to the correct type for the
appropriate connection. It can then maintain the per connection information for that connection.

Application code that acts as a client does not need to store any per connection data and so
these unions do not require initialisation.

8 uIP Timer

The uIP Stack requires a timer to allow it to implement timeouts on transactions. This is
implemented by the application project, as it is hardware-specific, and is contained in the files
clock-arch.c and clock-arch.h.

8.1 clock-arch.h
This defines the type of the clock timer (usually type u16_t), as well as prototypes for the
functions clock_time() and clock_init(). It also contains a symbol definition
CLOCK_CONF_SECOND that defines the number of clock ticks in one second. For example, if the
clock timer is incremented every millisecond, then CLOCK_CONF_SECOND is defined as 1000.

Applications should use CLOCK_CONF_SECOND to scale any time based measurements they
perform using the uIP timer, rather than assuming the time base of the uIP timer.

8.2 clock-arch.h
This contains the definitions of the clock_time() and clock_init() functions.

8.2.1 clock_time()
clock_time_t clock_time(void)

This returns the current clock time in clock ticks.

8.2.2 clock_init()
void clock_init(void)

This function initialises the clock timer and starts it running. It is called from the uIP initialisation
functions and does not need to be called explicitly.

28 January 2008 Cyan Technology Ltd. Page 10 of 16

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

9 Example Applications

All the example applications are provided for both the eCOG1k and eCOG1X development
boards.

The eCOG1k development board uses an external SMSC LAN91C111 integrated Ethernet
MAC and PHY device for its Ethernet interface.

The eCOG1X development board uses the EMAC peripheral integrated into the eCOG1X
together with an external PHY device for its Ethernet interface.

All projects have three build configurations. These are:

Release – Release build with minimal debug information.

Debug – Debug build with most of the debug information. The RS232 serial port is used to
display the debug information, which consists of a ‘.’ whenever the uIP stack performs its
periodic functions every half a second, an ‘R’ when the uIP stack receives data and a ‘T’ when
the uIP stack transmits data. On the eCOG1k development board, status is also indicated on
the LEDs (LED0-3). The colour code is as follows:

• Green LED An Ethernet frame has arrived
• Blue LED An Ethernet frame was transmitted
• Red LED An Ethernet frame could not be transmitted and was discarded
• Yellow LED Incoming frames arrive faster than they can be processed

Full Debug – The full debug information is provided, which includes printing the contents of all
transmitted and received packets.

9.1 Hello World Example
The ‘Hello World’ example is a demonstration of how to write uIP applications with
protosockets, a feature introduced to uIP in the V1.0 release. Protosockets provide a sequential
programming interface to uIP that makes application programming with uIP easier. In addition,
protosockets add a very small memory overhead: about 1Kbytes of extra code and 26 bytes of
extra data per TCP connection. For more information, see
http://www.sics.se/~adam/uip/protosockets.html

This application uses a fixed IP address, so UIP_CONF_FIXEDADDR is set to 1 (true) and the
UIP_IPADDRn, UIP_NETMASKn and UIP_DRIPADDRn values should be set appropriately for
the network.

To test the application build it and run it, then open a Windows command shell by choosing
Start->Run. Enter cmd and select OK. At the command line, enter:
telnet ipaddress 1000 (where ipaddress is UIP_IPADDRn defined in uip-conf.h)

The following message is then displayed:
Hello. What is your name ?

Enter your name. The application responds and then terminates the connection:
Hello. What is your name ? John
Hello John

Connection to host lost.

28 January 2008 Cyan Technology Ltd. Page 11 of 16

http://www.sics.se/%7Eadam/uip/protosockets.html

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

9.2 Web Server (HTTP Daemon)
This example demonstrates a simple embedded web server application.

This application uses a fixed IP address, so UIP_CONF_FIXEDADDR is set to 1 (true) and the
UIP_IPADDRn, UIP_NETMASKn and UIP_DRIPADDRn values should be set appropriately for
the network.

The HTML files that are served by the webserver application are located in a subdirectory of the
project <httpd-fs>. The application includes these files as fixed binary data. To change the web
page content, modify the HTML source files as required and convert them from HTML to C
source data using the PERL script <DOSMakeFS.pl>. The PERL script converts the HTML files
into a C source file httpd-fsdata.c. The generated file httpd-fsdata.c is included in the web
server project via the file httpd-fs.c. A suitable PERL script interpreter is ActivePERL, available
as a free download from ActiveState at www.activestate.com for AIX, HP-UX, Linux, Mac OS X,
Solaris and Windows.

Note that the HTML files are stored as constant data in the eCOG1's flash memory. On the
eCOG1k this is configured to hold up to a total of 8Kwords (16Kbytes) of constant data. The
total size of the HTML content, including HTTP headers as well as all the constant variables
used in your code, should not exceed that size. If it does, then the following warning is given
when the project is compiled:
Warning : Some of the program data was not written to a ROM file.
Description : starting at address H'2000

It is possible to find out the exact size of the static file system by using a text editor to count the
number of occurrences of “0x” in httpd-fsdata.c. Alternatively, the file <out\project.sec> lists the
sizes and start addresses of all the code, constant and static data segments in the project.

On the eCOG1X, 32Kwords (64Kbytes) of constant data are allocated and it is much less likely
that this will be filled by a simple web site.

To test the application, build it and run it, then open a web browser application and enter the IP
address defined in uip-conf.h. If the embedded server is running correctly and the network
connection is ok, the following web page should be seen in the browser:

28 January 2008 Cyan Technology Ltd. Page 12 of 16

http://www.activestate.com/

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

Figure 1. eGOG1X Example Web Site

Figure 2. eCOG1k Example Web Site

28 January 2008 Cyan Technology Ltd. Page 13 of 16

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

9.3 Web Server (HTTP Daemon) with DHCP
This example is the same as the Web Server example, except that that it is combined with the
DHCP Client that is provided with the uIP stack library.

In the include file uip-conf.h, UIP_CONF_FIXEDADDR is set to zero (false) and
UIP_CONF_UDP is set to 1 (true) to enable UDP support, as required for the DHCP client.

The main() function contains a call to the function dhcpc_init() to initialise the DHCP
client with the Ethernet MAC address of the board.

In the file main.c, the dhcpc_configured() callback function is provided to configure the uIP
stack with the IP address, net mask and default router IP addresses when the DHCP client
acquires this information. The uip_udp_appcall() callback function includes a call to
dhcpc_appcall().

Once the application is built and running, it attempts to acquire an IP address with DHCP.
When it does, it prints the message “IP Address a.b.c.d acquired OK”. Connecting to this IP
address with a web browser then brings up the demo web pages as before.

Note that the Network Statistics page now includes the UDP statistics.

9.4 Telnet Server Example
This example demonstrates a simple Telnet server application, in combination with the DHCP
client.

Once the application is built and running, it waits for a connection on Port 23.

Open a windows command shell by choosing Start->Run. Enter cmd and select OK.
At the command line, enter:
telnet ipaddress

where ipaddress is the IP address acquired by the DHCP client.

The following message is then displayed:
Cyan Command Shell
Type HELP and return for help

CMD>

Enter ‘HELP‘ at the prompt to display a list of available commands:
CMD> HELP
QUIT - Quit the shell
HELP - Display this information
BINARY - Select binary as current base
HEX - Select hexadecimal as current base
DECIMAL - Select decimal as current base
. - Pop and print top of stack
CMD>

28 January 2008 Cyan Technology Ltd. Page 14 of 16

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

9.5 DNS Resolver Example
This example demonstrates the DNS client included in the uIP library.

Once the application is built and running, DNS queries can be entered through the serial
interface. The interface is based on a cut down version of the Command Line Interface
described in Application Note AN020.

Once the application has acquired an IP address using the DHCP Client, lookup requests may
be entered at the command line in the following way:

LOOKUP <name>

The application then searches its local name cache, and if the name is not in the local cache
then it sends a request to the DNS Server.
uIP DNS Resolver demo for eCOG1X
CMD>
eCOG1X Ethernet MAC initialised
IP Address a.b.c.d acquired OK
CMD>LOOKUP google.com
Failed to resolve GOOGLE.COM, so adding it to the list
CMD>
Resolved GOOGLE.COM as 72.14.207.99

28 January 2008 Cyan Technology Ltd. Page 15 of 16

AN057 uIP V1.0 TCP/IP Stack for eCOG1k and eCOG1X Version 1.0

28 January 2008 Cyan Technology Ltd. Page 16 of 16

10 Building a New Application

This section describes briefly how to create a new application project that uses the uIP stack
library, and discusses file locations and include directories.

10.1 Creating a Project
Included with the AN057SW.zip file are two template files for use with CyanIDE to help create
new uIP applications for the eCOG1k and eCOG1X Development Boards. If these are placed in
the templates folders, then they can be used as the starting point for new uIP applications.

Select Project->New from the main menu, select the project type from one of the available
templates, enter a name for the new project and set the project directory to a suitable location
within the CyanIDE projects directory.

10.2 Include Directories
When adding the uIP library to an application project, the directories used for various library
files need to be added to the compiler and linker search paths within the CyanIDE project
environment. Select Project->Properties from the main menu. Select the Compiler->Directories
item in the left pane of the dialogue to display the current list of include directories for the
project. Click in the value field in the right pane, and set the list of include directories as follows:

${PERIPHERAL_LIBRARY_PATH}/uIP1.0;${PROJECT_PATH}

Note that the project path is included here, so that the library can find the header file uip-conf.h.

Select the Linker->Directories item in the left pane, and set the list of library directories as
follows:

${PERIPHERAL_LIBRARY_PATH}/uIP1.0

It should now be possible to compile and build the project successfully, provided all the file
dependencies are correct and the code and data segment sizes are not exceeded.

10.3 Timer Functions
The uIP stack contains within it a mechanism for measuring time. This can be used by any
application using the uIP stack.

Create a variable of type struct timer, and initialise it with the function timer_set(). The
timer can then be tested with the function timer_expired(). To restart or reset the timer,
use the timer_restart() and timer_reset() functions.

	1 Introduction
	2 Glossary
	3 Requirements
	4 Software Installation
	5 uIP Configuration
	5.1 UIP_CONF_FIXEDADDR
	5.2 UIP_CONF_PINGADDRCONF
	5.3 UIP_CONF_UDP
	5.4 UIP_CONF_UDP_CONNS
	5.5 UIP_CONF_ACTIVE_OPEN
	5.6 UIP_CONF_MAX_CONNECTIONS
	5.7 UIP_CONF_MAX_LISTENPORTS
	5.8 UIP_CONF_BUFFER_SIZE
	5.9 UIP_CONF_STATISTICS

	6 uIP Callbacks
	6.1 network_device_init
	6.2 network_device_read
	6.3 network_device_send
	6.4 uip_tcp_appcall
	6.5 uip_udp_appcall
	6.6 dhcpc_configured
	6.7 resolv_found

	7 uIP Application Data
	8 uIP Timer
	8.1 clock-arch.h
	8.2 clock-arch.h
	8.2.1 clock_time()
	8.2.2 clock_init()

	9 Example Applications
	9.1 Hello World Example
	9.2 Web Server (HTTP Daemon)
	9.3 Web Server (HTTP Daemon) with DHCP
	9.4 Telnet Server Example
	9.5 DNS Resolver Example

	10 Building a New Application
	10.1 Creating a Project
	10.2 Include Directories
	10.3 Timer Functions

