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Abstract. Eighty years ago, Ramanujan conjectured and proved some striking con-
gruences for the partition function modulo powers of 5, 7 and 11. Until recently, only a
handful of further such congruences were known. Here we report that such congruences
are much more widespread than was previously known, and we describe the theoretical
framework which appears to explain every known Ramanujan-type congruence.

1. Introduction and Statement of Results. Let p(n) denote the usual partition
function; p(n) is the number of ways to write a positive integer n as the sum of a
non-increasing sequence of positive integers. As usual, we agree that p(0) = 1 and
that p(t) = 0 if t 6∈ Z≥0. Many of the most interesting arithmetic properties of this
function were suggested (and often proved) by Ramanujan. Notice that if δ` is defined
by

(1.1) δ` := `2−1
24 ,

then the celebrated Ramanujan congruences may be written succinctly in the form

p(`n− δ`) ≡ 0 (mod `).

There have been countless papers on these three congruences and their extensions
(already conjectured, and in some cases proved, by Ramanujan) to arbitrary powers
of 5, 7 and 11 (see the fundamental works of Andrews, Atkin, Dyson, Garvan, Kim,
Ramanujan, Stanton and Swinnerton-Dyer [2, 3, 6, 9, 10, 11, 15, 16, 17, 18]). Each
of these extensions lies within the class −δ` (mod `). The important role which this
class plays in the theory is illustrated by the work of Kiming and Olsson [12, Thm. 1],
who proved that if ` ≥ 5 is prime and p(`n + β) ≡ 0 (mod `) for all n, then β ≡ −δ`

(mod `).
Work of Atkin, Newman, O’Brien, and Swinnerton-Dyer [4, 5, 7, 13] produced

further congruences modulo `m for primes ` ≤ 31 and small m. The examples discov-
ered by Atkin and Newman in [4, 13] show that not every congruence lies within the
progression −δ` (mod `). For example, we have

(1.2) p(17303n + 237) ≡ 0 (mod 13).

The current authors [1, 14] have shown that if ` ≥ 5 is prime and m is any positive
integer, then there are infinitely many congruences of the form

p(An + B) ≡ 0 (mod `m).

As in the case of Ramanujan’s congruences, all of these arithmetic progressions lie
within the class −δ` (mod `). To summarize, the current state of knowledge consists
of a systematic theory of congruences within the progressions −δ` (mod `), as well as
some sporadic examples of congruences which fall outside of this class. In view of this,
it is natural to wonder what role the class −δ` (mod `) truly plays.
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In this paper we show that in general this class is not as distinguished as might
have been expected. In fact, we prove that it is only one of (` + 1)/2 classes modulo
` in which the partition function enjoys similar congruence properties. The results
in this paper include the main results in [1] and [14] as special cases, and provide a
theoretical framework which (to our knowledge) explains every known congruence for
the partition function.

For each prime ` ≥ 5, define the integer ε` ∈ {±1} by

(1.3) ε` :=
(−6

`

)
,

and let S` denote the set of (` + 1)/2 integers

(1.4) S` :=
{

β ∈ {0, 1, . . . , `− 1} :
(

β+δ`

`

)
= 0 or − ε`

}
.

Theorem 1. If ` ≥ 5 is prime, m is a positive integer, and β ∈ S`, then a positive
proportion of the primes Q ≡ −1 (mod 24`) have the property that

p
(

Q3n+1
24

)
≡ 0 (mod `m)

for all n ≡ 1− 24β (mod 24`) with gcd(Q,n) = 1.

Note that the case when β ≡ −δ` (mod `) already contains the main results in [14]
and [1].

In general, there is no simple description of the set of primes Q occuring in Theo-
rem 1. However, as Atkin [4] showed, when ` = 5, 7, or 13, the situation can be made
quite explicit. For example, Atkin proved the following (see [4] for analogous results
when ` = 7 or 13).

Theorem 2 (Atkin [4]).
(1) Suppose that ` ≡ 4 (mod 5) is prime and that n is a positive integer with ` - n.

If n ≡ 23` (mod 120) or n ≡ 47` (mod 120), then

p
(

`3n+1
24

)
≡ 0 (mod 5).

(2) Suppose that ` ≡ 3 (mod 5) is a prime exceeding 3, and that n is a positive
integer with

(−n
`

)
= −1. If n ≡ 23 (mod 120) or n ≡ 47 (mod 120), then

p
(

`2n+1
24

)
≡ 0 (mod 5).

We should remark that Newman [13] discovered the simplest example of the con-
gruences described in the first part of Theorem 2 (i.e. the case where ` = 19). Notice
that in either part of Theorem 2, fixing n in an appropriate residue class modulo 120`
yields a Ramanujan-type congruence. For example, if ` = 13, then the second part of
Theorem 2 implies, for every integer n, that

(1.5) p(10985n + 2697) ≡ 0 (mod 5).

Arguing in this manner from Theorem 1, we obtain
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Theorem 3. If ` ≥ 5 is prime, m is a positive integer, and β ∈ S`, then there are
infinitely many non-nested arithmetic progressions {An+B} ⊆ {`n+β} such that for
every integer n we have

p(An + B) ≡ 0 (mod `m).

If M is an integer coprime to 6, then Theorem 3 and the Chinese Remainder The-
orem guarantee the existence of congruences modulo M . Although Theorem 3 shows
that congruences modulo ` often lie outside the progression `n− δ`, we speculate that
all congruences of the form p(An + B) ≡ 0 (mod M) have the property that An + B
is a subprogression of `n − δ` for some prime `. This is true, for example, of the
congruences (1.2) and (1.5).

In §2 we construct half integral weight cusp forms whose coefficients capture the
relevant values of the partition function, and in §3 we prove Theorem 1. The proof
requires certain facts arising from the theory of Galois representations associated to
modular forms and Shimura’s theory of half integral weight modular forms. In §4 we
consider those progressions `n + β for β 6∈ S`. We give heuristics which cast doubt on
the existence of congruences within these progressions.

2. Half integral weight cusp forms and the partition function. We assume
familiarity with standard notation and facts from the theory of integral and half inte-
gral weight modular forms. Throughout, we agree that q := e2πiz, and we identify a
modular form f(z) with its Fourier expansion f(z) =

∑∞
n=0 a(n)qn. Recall Dedekind’s

eta-function

(2.1) η(z) := q1/24
∞∏

n=1

(1− qn).

Theorem 2.1. Suppose that ` ≥ 5 is prime and that m is a positive integer. If β ∈ S`,
then there is an integer λ`,m and a modular form F`,m,β(z) ∈ S(2λ`,m+1)/2(Γ1(576`5))∩
Z[[q]] such that

F`,m,β(z) ≡
∞∑

n=0

p(`n + β)q24`n+24β−1 (mod `m).

Proof. If ` ≥ 5 is prime and t is a positive integer, then

(2.2) E`,t(z) :=
η`t

(z)
η(`tz)

∈ M(`t−1)/2

(
Γ0(`t), χ`,t

)
,

where χ`,t :=
((−1)(`t−1)/2`t

•
)
. Using standard facts, it can be shown that if ` - a and

0 ≤ b < t, then orda/`b(E`,t(z)) > 0. Hence, E`,t(z) vanishes at those cusps of Γ0(`t)
which are not equivalent to ∞. Also, since (1 − X)` ≡ (1 − X`) (mod `), for every
m > 0 we have

(2.3) E`m−1

`,t (z) ≡ 1 (mod `m).
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If ` ≥ 5 is prime, then define f`(z) =
∑∞

n=1 a`(n)qn by

(2.4) f`(z) =
∞∑

n=1

a`(n)qn :=
η`(`z)
η(z)

∈ M(`−1)/2

(
Γ0(`),

(•
`

))
.

Since
∑∞

n=0 p(n)qn =
∏∞

n=1(1− qn)−1, (2.1) and (2.4) imply that

(2.5)
∞∑

n=1

a`(n)qn =

( ∞∑
n=0

p(n)qn+δ`

)
·
∞∏

n=1

(1− q`n)`.

Define f̃`(z) by

(2.6) f̃`(z) :=
∞∑

n=1

(
1− ε`

(
n
`

))
a`(n)qn.

By standard facts, we have f̃`(z) ∈ M(`−1)/2

(
Γ0(`3),

(•
`

))
. By (2.3) and (2.6), if m′ is

sufficiently large, then f`,m′(z) := E`m′

`,3 (z)f̃`(z) is a cusp form on Γ0(`3) with character
χ`,t ·

(•
`

)
for which

(2.7) f`,m′(z) ≡ f̃`(z) (mod `m),

and

(2.8) ord∞(f`,m′(z)) ≥ δ` + 1.

By (2.5) and (2.7), we have

(2.9)
f`,m′(z)
η`(`z)

≡
∑

n≡0 (mod `)

p(n− δ`)qn− `2
24 + 2

∑
(n

`)=−ε`

p(n− δ`)qn− `2
24 (mod `m).

Now (2.8) shows that
(

f`,m′ (z)

η`(`z)

)24

vanishes at ∞. Therefore if m′ is sufficiently large,

then this form vanishes at every cusp. It follows that f`,m′(24z)/η`(24`z) is a cusp form
on Γ0(576`3). We have the general fact that if f(z) =

∑∞
n=1 a(n)qn ∈ Sλ+ 1

2
(Γ1(N)),

and r and t are positive integers, then
∑

n≡r (mod t) a(n)qn ∈ Sλ+ 1
2
(Γ1(Nt2)). Theo-

rem 2.1 follows by applying this fact to f`,m′(24z)/η`(24`z). �

3. Proof of Theorems 1 and 2. We begin with some general facts. Suppose that
λ ∈ Z, and that f(z) =

∑∞
n=1 a(n)qn ∈ Sλ+ 1

2
(Γ1(N)) has algebraic coefficients. We

have a decomposition

(3.1) Sλ+ 1
2
(Γ1(N)) =

⊕
χ even

Sλ+ 1
2
(Γ0(N), χ);



6

further, we may write f(z) =
∑

χ even αfχfχ(z), where each αfχ is algebraic, and
each form fχ(z) ∈ Sλ+ 1

2
(Γ0(N), χ) has algebraic integer coefficients. Suppose that the

Fourier expansion of such a form is given by fχ(z) =
∑∞

n=1 aχ(n)qn. If p is prime,
then the action of the usual Hecke operator Tχ(p2) on fχ is described by
(3.2)

fχ | Tχ(p2) =
∞∑

n=1

(
aχ(p2n) + χ(p)( (−1)λn

p )pλ−1aχ(n) + χ(p2)p2λ−1aχ(n/p2)
)

qn.

Using (3.1) and (3.2), we define the operator T (p2) on Sλ+ 1
2
(Γ1(N)) via linearity. In

particular, if f(z) =
∑∞

n=1 a(n)qn ∈ Sλ+ 1
2
(Γ1(N)) and p ≡ −1 (mod N) is prime,

then

(3.3) f | T (p2) =
∞∑

n=1

(
a(p2n) + pλ−1( (−1)λn

p )a(n) + p2λ−1a(n/p2)
)

qn.

Lemma 3.1. Suppose that f(z) =
∑∞

n=1 a(n)qn ∈ Sλ+ 1
2
(Γ1(N)) has algebraic integer

coefficients. If M is a positive integer, then a positive proportion of the primes p ≡ −1
(mod MN) have the property that f(z) | T (p2) ≡ 0 (mod M).

Proof. Write f(z) =
∑

χ even αfχ
fχ(z) as above, and choose a positive integer D such

that each Dαfχ
is an algebraic integer. After replacing M by DM , we see that it will

suffice to prove that a positive proportion of the primes p ≡ −1 (mod MN) have the
property that fχ(z) | T (p2) ≡ 0 (mod M) for every character χ.

Fix a number field K such that the coefficients of each form fχ and the values of
each character χ belong to the ring of integers OK . If t is an integer, then let χt

denote the usual Kronecker character for Q(
√

t). For each form fχ, and for every
positive squarefree integer t, we have the Shimura lift [20]

(3.4) St(fχ)(z) ∈ S2λ(Γ0(N), χ2) ⊆ S2λ(Γ1(N))

defined by St(fχ)(z) :=
∑∞

n=1 Aχ,t(n)qn, where the Aχ,t(n) are given by

(3.5)
∞∑

n=1

Aχ,t(n)
ns

= L(s− λ + 1, χχtχ
λ
−1)

∞∑
n=1

aχ(tn2)
ns

.

If M , k, and N are positive integers, then let Sk(Γ1(N))OK/M (resp. Sk(Γ0(N), χ)OK/M )
denote the reductions modulo M of those forms in Sk(Γ1(N)) (resp. Sk(Γ0(N), χ))
with coefficients in OK , and let T (p) (resp. Tχ(p)) denote the usual integral-weight
Hecke operator. Serre [19, 6.4] proved that a positive proportion of the primes p ≡ −1
(mod MN) have

Fχ(z) | Tχ(p) ≡ 0 (mod M) for all Fχ ∈ Sk(Γ0(N), χ)OK/M .
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Using a straightforward modification of the same argument, one can show that a
positive proportion of the primes p ≡ −1 (mod MN) have

F (z) | T (p) ≡ 0 (mod M) for all F ∈ Sk(Γ1(N))OK/M .

After (3.4), we conclude that a positive proportion of the primes p ≡ −1 (mod MN)
have

St(fχ) | T (p) ≡ 0 (mod M) for all χ and t.

Since the Shimura correspondence commutes with the action of the Hecke algebra, it
follows that if p is such a prime, then

(3.6) St(fχ | T (p2)) ≡ 0 (mod M) for all χ and t.

Lemma 3.1 follows from (3.5) and (3.6). �

Proof of Theorem 1. We apply Lemma 3.1 to the forms F`,m,β(z) given in Theorem
2.1. Fix a prime ` and an integer β ∈ S`, and write

F`,m,β(z) =
∞∑

n=1

a`,m,β(n)qn ≡
∑

n≡24β−1 (mod 24`)

p
(

n+1
24

)
qn (mod `m).

By Lemma 3.1, a positive proportion of the primes Q ≡ −1 (mod 24`) have the
property that F`,m,β(z) | T (Q2) ≡ 0 (mod `m). After replacing n by Qn in the
definition (3.3), we see that if n ≡ 1− 24β (mod 24`) and gcd(Q,n) = 1, then

0 ≡ a`,m,β(Q3n) ≡ p
(

Q3n+1
24

)
(mod `m),

since Q3n ≡ 24β − 1 (mod 24`). Theorem 1 follows. �

4. Final Remarks. One naturally questions whether Theorem 1 can be extended to
the remaining residue classes modulo `. Suppose that β ∈ {0, . . . , `− 1}. If we could
produce a cusp form F`,m,β(z) as in Theorem 2.1, then we would obtain the statement
of Theorem 1 for β. Since F`,m,0(z) would necessarily have a pole at infinity, this
approach seems hopeless when β = 0. The situation, however, is less clear when
β 6= 0. For every prime ` ≥ 5 and every m, it is straightforward to show that there
exists an integral weight modular form H`,m(z) such that∑

n 6≡δ` (mod `)

p(n− δ`)q24n−`2 ≡ H`,m(24z)/η`(24`z) (mod `m).

However, to construct H`,m(z) requires the twists of f`(z) by all of the Dirichlet
characters modulo `; it results that H`,m(z) is a form on Γ1(`3). By contrast, the form
which we constructed in (2.6) required only a single quadratic twist, and so remained
on Γ0(`3).
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It is clear that if we had the analog for Γ1(`t) of the form E`,t(z) used in the proof
of Theorem 2.1, then we could prove Theorem 1 for all non-zero β. Using the work of
Hecke, it is possible to construct an Eisenstein series on Γ1(`t) which has the proper
cusp conditions (in fact, up to scalar multiplication, exactly one such series exists).
It remains to determine if this series can be defined over the algebraic numbers, and,
if so, to determine the `-adic nature of its coefficients. Unfortunately, the answers to
both of these problems seems to depend on the arithmetic of certain unknown values
of Dirichlet L–functions at positive integral arguments. Although many of these values
can be described in terms of generalized Bernoulli numbers, the remaining values are
(up to unknown algebraic factors) values of certain regulators defined via canonical
maps from higher K-groups into Minkowski-type spaces [8].

We conclude by remarking that computer calculations seem to cast some doubt on
whether such forms exist in general. If they did, this evidence suggests a contradiction
to Serre’s famous result [19, Thm. 4.7] that if M is any given integer, then almost
all of the coefficients of an integral weight modular form with integer coefficients are
multiples of M .
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