
Computer Science : Achievements and Challenges
circa 2000

Robert L. Constable

Cornell University

March 2000

Intro Remarks:

As we get older, we become more reflective; the same with
scientific fields as seen in book titles such as:

“the end of science”

“dreams of a final theory”

The organizers gave the speakers a topic that invites reflection.

Intro Remarks (Cont …)

The theme of reflecting on CS achievements and challenges is
timely world wide. In the US, the National Research Council is
about to conduct a national study of the nature of CS.

Why? Because NSF must explain why CS is getting so much new
research funding. Many traditional scientists scoff at the idea
that CS is more than a “technology” and hence dependent
mainly on physics, and is perhaps a passing fad, destined to
have few more birthdays.

I think otherwise. I will state my views to you and try to defend
them. But no “experiment” can decide. At one level, science is
philosophy.

Outline

The Nature of Computer Science

Achievements : behind the Information Revolution

Challenges : the unity of science, the scope of computer
science, and universities in the Information Age

The Nature of Computer Science

What is science?

Confusion about Computer Science

How to clarify the nature of CS?

What is science?

People use the word “science” in many ways

- content of what we know

- special method of discovery

- new ways of doing things - technology

Feynman from The Meaning of it all 1998.

“The work is not done for the sake of applications. It is
done for the excitement of what is found out.”

“all other aspects and characteristics of science can be
understood directly when we understand that observation
is the ultimate and final judge of the truth of an idea.”

“So what we call scientific knowledge today is a body of
statements of varying degrees of certainty.”

“Thus science is not a specialists business, it is completely
universal.”

Confusion about computer science.

- are there experiments?

- are there theories to test?

- is there a body of knowledge of varying degrees
of certainty?

- what are the exciting discoveries?

- how does CS relate to the other “universal”
sciences?

How to clarify the nature of computer science?

Look at its achievements

- its content landmarks

- its methods

- its research agenda

Articulate its challenges

- new dimension to science

- possible milestones

Achievements : behind the Information Revolution

There is an Information Revolution

- obvious manifestations

- government data

- role of technology exponentials

- historians’ viewpoint

Computer science is essential in the Revolution

Brookes/Sutherland study

our legendary figures

- Turing
- Church
- Chomsky

case studies

New world

Explosion of information on the Web: 5M domain
names, .5M servers, 30M computers connected, a
million new pages per day!

1 billion web pages

We are connected - live in cyberspace

We are not alone - “digital companions”

The Deep Blue machine is world chess champion

The Information Revolution - obvious manifestations

The Information Revolution - obvious manifestations

The new economy

Information corporations: Microsoft, Oracle, …

Information service industry: Amazon.com,
theGlobe.com

1/3 of US economic growth since 1992

7.4 million Americans at wages 60% above average

E-commerce is booming (expect $1.3 Trillion by 2003):
CISCO, Compaq

Israel as a second Silicon Valley

Scientific Basis - CIS is the intellectual core

The Internet
Packet communications
Protocols (TCP/IP)

Web/Mobile code
Java programming language
High-level PL’s research

Cryptography
Computational complexity theory
Intractable problems

E-business
Security
Cryptography

Multimedia
Data compression algorithms
Computational geometry

Search engines
Vector space model
Computational graph theory
Natural language technology

Computational Science
Parallel compilation
Cluster computing
Theory Center role

Cognitive Science
Computational theory of mind
Intelligent systems
Robots

Co
m
m
un

ica
tio

n
Co

m
pu

tat
ion

Da
ta

CIS lives in here, the
space is cyberspace. It is

essentially expanding – an
endless frontier.

Information
Technology

Software
technology

exponentials

Hardware
technology

exponentials

Relation to Technology

Pr
ot

oc
ols

Pr
og

. L
an

gu
ag

es

Da
ta

Ba
se

s

6

19701960 1980 1990

Workstations
Lisp machine, Stanford
Xerox Alto

Apollo, Sun

Networking
Arpanet, Internet
Ethernet, Pup, Datakit

DECnet, LANs, TCP/IP

Graphics
Sketchpad, Utah
GM/IBM, LucasFilm

E&S, SGI, PIXAR,..

Windows
Englebart, Rochester
Alto, Smalltalk

Star, Mac, Microsoft

Research Investments Pay Off
CSTB –NRC Evolving the High-Performance Computing and Communications Imitative to Support the nations Information Infrastructure, NA Press, Washington DC, 1995.

Time-sharing CTSS, Multics, SSD
Unix

SDS 940, 360/67 VMS

Government funded
Industrial

Billion Dollar/year Industry

1970 1980 1990 2000

Relational Data Bases
Berkeley, Wisc,…
IBM

Oracle, IBM,…

Parallel DBs Tokyo,Wisconsin, UCLA
ICL, IBM

ICL, Teradata, Tandem

Research Investments Pay Off

Data Mining
(complex queries)

Wisc, Stanford, …
IBM, Arbor,…

IRI, Arbor, Plato, …

Alan Turing

Perhaps computer science started with him; he is one of
the most influential figures. He wrote:

On computable numbers, with an application to the
entscheidungsproblem Proc. London Math Soc. 1937

starts with a bad definition in first sentence, BUT …

Turing machines and compelling model of sequential
string to string computation.

“a universal computing machine” (section 6)
diagonal method explored halting problem (circle-free
problem)

Alan Turing – Computing machinery and intelligence Mind 1950

Can machines think?

Turing’s operational test – the imitation game

Turing’s belief – in 50 years his test will be passed at 70%
level among average judges.

Turing’s role in COLOSSUS project 1943 at Bletchley Park

role of cryptography in WWII

contemporary significance of Turing’s work

Alonzo Church – The calculi of lambda conversion
Annals of Math studies 1951

His lambda calculus inspired the programming

language Lisp (1962) and provided the semantic

model for Algol; for sequential computation over

discrete data.

Alonzo Church – unsolvable problems and logic

Church also discovered one of the first unsolvable

problems in logic (the entscheidungsproblem) and

defined a simple theory of types, now used in

program verification in HOL, Isabelle and PVS.

These provers all integrate model checking based

on temporal logic from A. Pnueli.

Functional programming

fun(x.body) denotes a function, Church’s λ x. body,

for example fun(x. x+5) is also written as:

x → x+5 or λ x. x+5

the fix operator (or Y combinator) is a way to define

functions recursively, instead of writing

define f(x) = body[f] or

define f = fun(x. body[f]) we write

fix(fun(f. fun(x. body[f]))

Silly example of fix

define f = fun(x. f(x)) (this is equivalent to define f(x) = f(x))

f is a diverging recursive definition,

we call it bottom, ⊥.

fix(f. fun(x. f(x))) is the fix form of this.

Unsolvability by fixed points *

Think of N = N ∪ {⊥} where ⊥ diverges,
say ⊥ = fix(λx. x)(0). Call these partial numbers.

If f is a function from N into N then fix(f) ∈ N.

Is there a function h : N → B such that
h(t) = true iff t halts?

* Computational foundations of basic recursive function
theory, with Scott Smith, TCS, 1993.

There is no computable halting function like h.

If h existed, we could define d in N as

d = fix(λx. if h(x) then ⊥ else 1)

By this fix rule

d = if h(d) then ⊥ else 1

If h(d) then d halts, but d = ⊥, a contradiction to def of h.

If not h(d) then d diverges, but d = 1, a contradiction to
def of h.

Noam Chomsky – Syntactic structures 1957

He introduced the notion of phrase structure

grammars to study the structure of natural

language. Grammars became the basis for a

systematic study of the syntax of programming

languages as well.

Compiler development

Compiler development is based on Chomsky’s work.
Context free languages, context sensitive language, etc. In
this area Jeff Ullman has been one of the leaders in both
theory and practice.

The notion of nondeterministic computation matches the
generation process in grammars. CS made sense of this
and came up with the complexity class NP. This has led to
the deep question

P = NP

Fusion of Turing, Hartmanis, Chomsky.

?

Explaining natural language

Consider the rules governing compound words in English.

Compound words, like “workman” or “overshoot”; are two
or more words put together to form one. There is a
pattern, word structure pattern.

The right most noun is the head.

P V

V

N N

N

work man over shoot

There is peculiar behavior here that many native speakers
comment on. Let’s see how plurals and past tense are
formed.

workman workmen

horseshoe horseshoes

overshoot overshot

Plural is derived from the head.

Explaining natural language (Cont…)

Anomolous plurals

But why Toronto Maple Leafs not Maple Leaves ?

Why past tense of flys out is flied out not flew out ?

One plurals, Maple Leaf is a name, not a noun. It is
headless, so its plural defaults to normal inflection.

For flied out, the word fly out is a verb based on a
word that is not a verb.

Natural language processing

Linguistic and cognitive concepts can explain the strange
behavior of compounds formed from irregular plurals as in

mice-infested vs rat-infested instead of rats-infested

men-bashing vs gay-bashing not gays-bashing

Peter Gordon confirmed that 3 to 5yr old children know this
rule.

Cognitive explanation based on linguistic theory

Irregular plurals are stored in our mental dictionary

whereas regular plurals are assembled as needed

from inflection rules. Those rules apply too late in

assembly process to help in forming compound

words.

How people parse English

Evidence from garden path sentences

The horse raced past the barn fell.

Fat people eat accumulates.

The prime number few.

The tycoon sold the offshore oil tracts for a lot of
money wanted to kill JR.

We parse depth-first using most likely alternative as our
gamble. When it fails we must backup and try again.

Backtracking

The horse that raced past the barn fell.

The prime are few in number.

Linguistics and computer science

Linguistics and computer science are tightly linked,

As can be seen in my project with two BGU graduates:

Eli and Regina Barzilay.

Eli is studying reflection mechanisms in languages and

logics and Regina is working on translating formal

mathematical proofs into natural language.

Ann Treisman visual experiments

Green 0 in sea of blue.

0
0
0
0
0
0
0
0
0

Ann Treisman visual experiments

One 0 in sea of X’s.

X
X
X X X X X 0 X X X X X X X X X X X X X X
X
X
X
X
X
X

Ann Treisman visual experiments

Green and 0.

X 0 0 X 0 X 0 X 0 X 0 0 X X 0 0 X 0 0 X X
0 0 0 0 X 0 0 0 X 0 0 0 0 X X 0 X X X 0 0
0 X 0 0 0 0 0 0 0 X 0 0 0 0 X X 0 0 0 0 0
0 0 X X X 0 X 0 0 X 0 0 0 X 0 0 0 0 0 X 0
0 X 0 X X 0 0 X 0 X 0 0 0 0 0 0 0 0 0 0 0
X X 0 X 0 0 X 0 0 X 0 0 X 0 0 0 0 0 X X X
X X 0 X 0 X 0 0 X 0 X X X 0 X 0 0 X 0 0 0
0 0 0 0 X X 0 0 0 0 0 X 0 0 0 0 X 0 0 0 0
0 0 0 X X 0 X 0 0 0 X 0 0 0 0 0 0 X X 0 0

Talking about computer systems

Why isn’t my computer printing? Because the OS does not
know that you replaced your dot-matrix printer with a laser
printer; it still thinks it’s talking to a dot-matrix printer and
is waiting for an acknowledgement from the printer.

But the printer is ignoring the message; it does not
understand it, because it expects it to begin with a %.

You need to get the attention of the OS.

Nuprl as an intelligent agent

It’s successes embolden us to talk about “how Nuprl thinks.”

Example 1.

My gosh, it realized that x:A.B was decidable and
performed a case analysis, how did it know that?

E

Mentalese and Nuprlese

Example 2.
Did Nuprl prove all the other subgoals? No, it doesn’t believe
that E is an equivalence relation, so it asked a lot of questions
I didn’t expect.

What is it asking about? It wants to know why certain values
are in range? What values? Only those that change the
security level.

It should know that, the value is in range. That is a require-
ment of the decryption function. That’s part of the contract for
that process.

Example 2. (cont …)

Yes, but Nuprl claims that the argument to the decryption
function is not of the right type. But that can’t be, ask it to
explain why it is not of the right type.

It reports that if process Q sent its message M with
the decrypt argument just before monitor M failed, then Q
could have used an undetected modular equivalence to
generate the message value.

Well I’ll be darned. We all missed that.

Mentalese and Nuprlese (cont …)

Distributed computing

K. Birman, J. Gray, C. A. R. Hoare, L. Lamport, B. Lampson,
B. Liskov, N. Lynch, R. Milner, F, Schneider.

A new model of computing – event-driven, reactive
communicating sequential processes.

We see it on the Internet, in the mind.

a ring

1

2

3

4

5

6

Example – asynchronous leader election (in a ring)

LCR algorithm (Le Lann, Chang, Roberts)

each process sends its identifier around ring

when pi gets a j<i, discard
pi gets a j>i, forward
pi gets j=i, declare itself the leader

How to reason about such processes?

Pnuelli gave us methods.

Group Communication Systems

Reliable and secure networking in safety-critical applications

Ensemble/Nuprl

Isis

Horus

Ensemble

Technology for securing networked applications
- widely used: NY Stock Exchange, French Air Traffic Control …

Added flexibility through protocol stacking
- reconfigurable to specific needs of applications

Reference implementation in Ocaml
- small protocol layers, easy to check and modify
- portable to a variety of platforms
- highest performance due to fast-track reconfiguration

Logical development tools for network security
- verification of critical properties (beyond type checking)
- formal documentation / logical debugging
- automated and verified fast-track reconfiguration

BOTTOM LAYER

LAYER

LAYER

LAYER

LAYER

BOTTOM LAYER

LAYER

LAYER

LAYER

LAYER

LAYER

F
IF

O
 Q

ue
ue

s

LAYER

MessageEvent

Protocol Stack Protocol Stack

SENDER RECEIVER

Header

NET

Architecture of Ensemble

TOT

MBR

FRG

NAK

Network

Application

CAU

FRG

STB

Network

Application

Configurations

Cost of modularity

Poor performance

- redundant code

- abstraction enforcement

Difficult to verify complete systems

- combinatorial number of
configurations

Ensemble Implementation

GMP

SYNC

HEAL

MIG

Application

TRANS

…

23 layers

Virtual
synchrony

Layered protocol stacks

Each layer implements a property

Protocols are
- small (-300 lines ML)
- roughly orthogonal

Configuration is application-specific

About 50 layers; thousands of
protocols

Fast path

VS

FIF

STB

SUM

Application

F
A
S
T

P
A
T
H

P’ ¬P’

P ¬P

Extract common path
from the protocol

Speedups of x2-x50

Common Case
Predicate

Verification - How do we bridge the gap?

?
Total

View

MsgView

FIFO

token

cons

fail

FIFO
frag

stable

process group

Labeled Transition Systems
(Nondeterministic Automata)

Signature A : Type x S : Type x I : (S → Prop) x T : (S → A → S → Prop)

<A, S, I, T> is a system

Can consider these as unlabeled if we take the state space to be S x A.

s4

s1

s2

s3

s6
s0

s5

b

a

a

a

a

b

b

c

d

a

Sample Formal IOA
state x:T1
state y:T2

initially R0(x,y)
action a:T3

precondition a(v) ⇒ R1(x,y,v)

effect a(v) ⇒ x: = f(x,y,v)
a(v) ⇒ y: = g(x,y,v)

only [a] affects x
only [a] affects y

Note: inputs never have preconditions.

Establishing Invariants

Let A be a formal IOA, our goal is to prove theorems of
the form (safety properties):

[[A]]ρ e always s. [[I]]ρ e •

We formalize a method for doing this.

=

Let A be the sample IOA and let I be

{ R3(x,y) }.

ioa_inv_vc(A, I) ==

{R0(x,y) ⇒ R3(x,y) } ∪

a: { R3(x,y) ∧ R1(x,y,v) ⇒ R3(f(x,y,v),g(x,y,v)) }

If we know ioa_inv_vc(A, I) at any state, then we can
prove that I is an invariant by induction. We prove this
formally at the metalevel.

Method of proving invariants
by induction (“VCG method”)

S vc_correctness
∀ A:Ioa. ∀ I:Fmla. ∀ rho:Decl. ∀ de:Sig. ∀ e:{[[de]] rho}.

(tc_ioa(A;de)
⇒ tc_pred(I;A.ds;<>;de)
⇒ covers_pred(A;I)
⇒ closed_pred(I)
⇒ single_valued_decls(A.ds)
⇒ (∀ s:{[[A.ds]] rho}

(reachable([[A]] rho de e;s)) [[VCs(A;I)]](rho,A.ds,A.da,de) e s))
⇒ [[A]] rho de e |= always s.(pred_mng(I;rho;A.ds;<>;de;e;s;)))

The proof of the vc-correctness theorem is by induction over the reachable states. The
base case of the induction is proved by using the meaning of the initial vc.

In the induction step, we must show that for any (reachable) state s, and any action a
and state s', if I holds in state s and the triple (s, a, s') is in the transition relation of A,
then I holds in state s'.

We must first argue that it is enough to assume that action a is declared in A. Using
classical reasoning, we can split into two cases. In case action a is not declared in A, the
covers_pred(A,I) hypothesis lets us conclude that the meaning of I is the same in states s
and s' because no variable mentioned in I is affected by action a.

Thus we are left with only the case where action a is a declared action of automaton A.

VCG Theorem

Lessons from achievements

are there experiments?

- we create theories that can be tested in other fields,
theories of language, mind, protein folding, gene
expression, …

- we explore computational phenomena – phase
transition in SAT, algorithms in practice

- we fail at some automation, succeed at others
(speech recognition vs compilers)

Lessons from achievements (Cont …)

are there theories to test?

- theories and models are implemented, tested and
demonstrated e.g., compilers, theorem provers,
pattern recognizers

- semantic theories – guiding consistent design
(Von Neuman machine, distributed computing)

- complexity theory – predicting algorithmic behavior

there are dynamic artifacts that survive and those that
do not (type checkers, model checkers, theorem provers,
spell checkers vs hand writing analyzers, speech
understanding system, go-players, natural language
database queries)

Lessons from achievements (Cont …)

there is a large body of knowledge !
a widely taught body of knowledge

some statements are mathematical facts

are beliefs (P = NP)

are conjectures

a unifying framework for diverse discoveries

What are the exciting discoveries in CS?

we can define computability

there are unsolvable and intractable problems

constructive abstraction is key aspect of intelligent
systems

common sense is hard

some abstract mathematics and games are easy

we can formalize arguments about code, hence software
is both an artifact and mathematical object

we can build mathematical assistants

Is CS part of the universal fabric of science?

CS has extended science into a new dimension – cyberspace

results in that dimension unify those projected into ordinary
space/time

we see this in Linguistics, Psychology and Biology – perhaps
in Physics as well.

“Quantum computation is the nexus at which "software" concepts like
information, randomness and order tangle with "hardware" concepts
such as matter and force. I am convinced that in the search for a
unified theory of nature, in which the deepest level of reality would be
exposed, the study of quantum computation will mark the beginning of
a new era.” Paul Davies

Challenges

Can we unify our major theories?

semantics and complexity
(reason about complexity as well as correctness)
processes and hueristics

Can our formalisms capture our design practice and
help us automate it further?

(how far will constructive abstraction carry us,
e.g., modules, theories and aspects)

Can we build a self reproducing system?

Can we discover deeper unity in our basic concepts?

- generation and nondeterministic acceptance
are the same

- types and propositions are the same

- constructive proofs define data and programs

Reactive agents using formal mathematical
database help us design, build and maintain
systems. They explain design invariants and
monitor them; they help find errors and restore
invariants. They increase system reliability
dramatically and increase programmer
productivity and code performance. But they
also embody a theory of intelligence and treat
systems as mathematical objects – well defined
objects in cyberspace.

A vision for designing, building and supporting systems

Challenges for Universities in Information Age

CIS is emerging as one of the major intellectual
disciplines of the next century. Its scope in university
terms will be at the scale of colleges not departments or
centers.

CIS as a body of knowledge occurs early in the “tree of
knowledge” with consequences for nearly all other
subjects and disciplines.

CIS has the character of science, quantitative mathematical,
predictive; the character of technology, practical, constructive,
with an engineering component and the character of art,
shaped by elegance and beauty and loosely constrained by
laws limited largely by imagination.

CIS is a bridge between the humanities and arts and the
sciences as we see most clearly in the computational
theory of mind.

Challenges for Universities in Information Age (Cont…)

