CHEMICAL SUBSTANCE INDEX NAMES

```
NOTE: REPRINTS OF THIS APPENDIX ARE AVAILABLE
AT NO COST UNDER THE TITLE NAMING AND INDEXING
OF CHEMICAL SUBSTANCES FOR CHEMICAL ABSTRACTS.
INOUIRIES SHOULD BE ADDRESSED TO MARKETING
COMMUNICATIONS, CHEMICAL ABSTRACTS SERVICE,
P.O. BOX 3012, COLUMBUS, OHIO 43210-0012 USA.
```

101. Foreword. Although the account which follows describes in considerable detail the selection of substance names for Chemical Abstracts (CA) Indexes, it is not a nomenclature manual. It has the more restricted aim of enabling a user of $C A$ indexes to proceed from the structure of an individual chemical compound to the place in the current Chemical Substance Index where the particular index name and any associated index entries will be found. This is the identical operation performed by a $C A$ indexer when assigning an index name to a new or previously unnamed substance. What follows, in fact, is a comprehensive summary of $C A$ substance indexing policies, which cover not only conventional organic and inorganic compounds but other completely defined substances entered in the Chemical Substance Index and given Chemical Abstracts Service (CAS) Registry Numbers. These substances include specific chemical elements, alloys, minerals, mixtures, polymers, enzymes, polysaccharides, and elementary particles.

The chemical nomenclature used by CAS has developed in parallel and generally in accordance with the rules published by the International Union of Pure and Applied Chemistry (IUPAC). Although these rules provide unambiguous text equivalents for the great majority of substances, equally acceptable alternative rules within the present IUPAC system often lead to two or more unambiguous names. This causes no difficulty in normal scientific communication, but is totally unacceptable in a formal, rigidly controlled, alphabetic listing such as the CA Chemical Substance Index. Here the names must be not only unambiguous, unique, and totally reproducible, but selected so as to bring the names of structurally related substances into juxtaposition in the alphabetical listing. They must be equally derivable by index users searching for information about individual substances and by those who prepare the index. It is also desirable that both should be able to use mechanical aids in name generation and retrieval.

A major revision of CA index names was carried out in 1972 as the Ninth Collective Index period began. Most trivial names were dropped; exceptional treatment for various classes of substances was discontinued. Where, because of the stereochemical complexity of a natural product name, a trivial name was retained as a "stereoparent" (see II 202), diagrams were furnished in the Chemical Substance Index to aid interpretation of index entries. The 1972 nomenclature revision and the reasons for its adoption are set forth in greater detail in the Ninth Collective Index Guide and in a journal article (J. Chem. Doc. 1974, 14(1), 3-15).

The preferred $C A$ index names for most chemical substances have been continued unchanged since that date. Changes in name-selection policies for the Twelfth (1987-1991) and Thirteenth (1992-1996) Collective Index periods affect alloys, carbohydrates (lactams), coordination compounds, formazans, index name selection (multiplicative names), inorganic compounds (line formulas of clusters, intermetallic compounds), molecular addition compounds (common components; hydrates), nitrilimines, onium compounds (free radicals), peptides, phosphonium ylides, phosphoryl halides and halogenoids, polymers (block, graft, and hydrolytic), ring systems (list of common systems), salts (lists of common anions), stereochemistry (sign of optical rotation), and zwitterions (inner salts, sydnones). The changes for the Fourteenth (1997-
2001) Collective Index period affect coordination nomenclature, stereochemical practices, and stereoparents. These changes, as well as the changes made in 1972, and in the Tenth (1977-1981) and Eleventh (1982-1986) Collective Index periods, are reviewed in Section G (IIII 225-293) of this Appendix. The nomenclature of fullerenes is more fully documented in II 163A of Section B.

The main part of the Index Guide must be consulted before any search is conducted in the CA Chemical Substance and General Subject Indexes.

The arrangement of sections in "Chemical Substance Index Names" is as follows:
A. Nomenclature Systems and General Principles (IIII 103-139)
B. Molecular Skeletons (IIII 140-163A)

Principal Chemical Groups (Suffixes) (IIII 164-177)
Compound Classes (IIII 178-201)
Stereochemistry and Stereoparents (IIII 202-212)
Specialized Substances (IIII 213-224)
G. Chemical Substance Names for Retrospective Searches (IIII 225293A)
H. Illustrative List of Substituent Prefixes (If 294)
J. Selective Bibliography of Nomenclature of Chemical Substances (IIII 295-308)
K. Chemical Prefixes (IIII 309-311)
L. Chemical Structural Diagrams from CA Index Names (Iffl 312-318) M. Index

The arrangement within each of these sections is indicated by a key at the beginning of the section.

In the development of CAS policies for index names of chemical substances, no new nomenclature systems have been devised. Adaptation of current IUPAC rules to the specific needs of a highly ordered alphabetical index, not arbitrary coinage of new terms, has been the approach taken. It continues to be recognized by CAS that, while a unique name is needed for an index, and that this name, and the CAS Registry Number, are invaluable aids for substance identification, the use of this invariant index name for citation throughout every context in the scientific community is neither practicable nor desirable. But international agreement in chemical nomenclature, as embodied in the rules of IUPAC, IUB, and other organizations, continues to be of the greatest importance in restricting the arbitrary proliferation of substance names. References to individual rules which have formed the basis of CAS policies recorded in the sections that follow have not been cited, but the selective bibliography of the nomenclature of chemical substances which constitutes Section J contains a comprehensive list of current accepted rules.
102. Acknowledgement. Chemical Abstracts Service acknowledges the large contribution made by Cecil C. Langham in helping to develop and record CA name-selection policies for the Eighth Collective period (1967-1971) during the years immediately preceding his retirement in 1969. Dr. Langham's work constituted an invaluable starting point for the revised name-selection policies introduced in 1972.

A. NOMENCLATURE SYSTEMS AND GENERAL PRINCIPLES

Introduction	II 103
Inversion of names	104
Name selection principles	105
Order of precedence of compound classes	106
Spelling	107
Punctuation	108
Enclosing marks	109
Multiplicative prefixes	110
"Mono"	111
Functional derivatives	112

Introduction 4
Name selection principles 105
Spelling 107Enclosing marks109
"Mono" 11
Functional derivatives 112

Order of citation of derivative terms	II 113
Locants	114
for substituent suffixes	115
in substituent prefixes (radicals)	116
for substituents on parents and parent radicals	117
in multiplicative nomenclature	118
for functional derivatives	119
for indefinite compounds	120
Alphabetization	121

Tautomeric compounds
II 122
Additive nomenclature
123
Conjunctive nomenclature
Multiplicative nomenclature
Radiocofunctional nomenclature
Replacement ("a") nomenclature
Replacement prefixes
Replacement nomenclature for functions
Substitutive nomenclature

Substituent suffixes
Substituent prefixes
Compound radical names 133
Carbonyl radicals 3

Indicated hydrogen
Added hydrogen
Numbering of molecular skeletons 135

Index name selection 137

Subtractive nomenclature 89
(g) Amides, in the same order as the parent acids (see (e), above).
(h) Nitriles, in the same order as the parent acids (see (e), above).
(i) Aldehydes, Thials, Selenals, Tellurals.
(j) Ketones, Thiones, Selones, Tellones.
(k) Alcohols and Phenols (of equal rank), Thiols, Selenols, Tellurols.
(l) Hydroperoxides.
(m) Amines.
(n) Imines. (This is the lowest compound class expressed by a functional suffix; all the following classes are considered to be nonfunctional. For the ranking of nonfunctional cyclic and acyclic skeletons, see đI 138.)
(o) Nitrogen compounds: heterocyclic; acyclic (other than " a "-named chains; see ๆI 127), e.g., Triazane, Diazene, Hydrazine, Hydroxylamine, Thiohydroxylamine.
(p) Phosphorus compounds: heterocyclic, acyclic (other than "a"-named chains; see I[127), e.g., Diphosphine, Phosphine oxide, Phosphine sulfide, Phosphine imide, Phosphorane, Phosphine.
(q) Arsenic compounds (in similar order).
(r) Antimony compounds (in similar order).
(s) Bismuth compounds (in similar order).
(t) Boron compounds: carbapolyboranes, hetero polyboranes, polyboranes, heterocyclic, Borane.
(u) Silicon compounds: heterocyclic, acyclic (other than " a "-named chains; see II 127), e.g., Disiloxane, Disilathiane, Trisilane, Disilane, Silane. Note that the order is determined first by the total number of skeletal atoms, then by the presence of oxygen, sulfur, etc; see ๆI 128.
(v) Germanium compounds (in similar order).
(w) Tin compounds (in similar order).
(x) Lead compounds (in similar order).
(y) Oxygen compounds other than "a"-named chains (see ๆI 127): heterocyclic; acyclic polyoxides, e.g., Trioxide, Peroxide.
(z) Sulfur compounds: heterocyclic; acyclic polysulfides and their oxides, e.g., Trisulfone, Trisulfide, Disulfone, Disulfoxide, Disulfide.
(aa) Selenium and tellurium compounds (in similar order).
(bb) Carbon compounds: carbocyclic, acyclic hydrocarbons.
107. Spelling. CAS accepts Webster's New World Dictionary of American English ${ }^{2}$ as the primary authority for spelling; e.g. sulfur (not sulphur); aluminum (not aluminium). Webster's Third New International Dictionary (unabridged ${ }^{3}$ is used for words not found in the New World Dictionary. Elision of vowels is often practiced in combining the segments of names: e.g., in Butanone and disiloxanyl the final "e" of the basic skeleton name has been dropped; in Oxazepine an "a" has been omitted twice, after "oxa" and before "ep"; and "a" is often omitted before a multiplied "amine" or "one" suffix, as in Benzenetetramine and Cyclohexanehexone; the terminal " o " of acenaphtho, benzo, naphtho, and perylo, and the terminal "a" of cyclobuta, etc., are elided before vowels, e.g., Benz[$c d]$ indole, $\mathbf{5} \mathbf{H}$-Cyclobut $[f]$ indene. Other examples of elision are -imidic (not -imidoic) acids; -imidamides (not imidoamides); -thiones (not thioones); and -hydrazonamides (not -hydrazonoamides). Examples will be found in later paragraphs. In a few cases, the vowel "o" is added for euphony, e.g., Carbonothioic acid (not Carbonthioic acid).

Elision of entire syllables is now uncommon. Remaining examples include methoxy, ethoxy, propoxy, butoxy, phenoxy (not (methyloxy), etc.) radicals, and the thienyl (not thiophene-yl) radical. Carbamic acid is an elided form of Carbonamidic acid (II 183); Sulfamic acid is used in place of Sulfuramidic acid, and Sulfamide instead of Sulfuramide or Sulfuric diamide. The suffix "-carboxylic acid" undergoes various forms of elision in formation of replacement names, e.g., "-carbothioamide."
108. Punctuation in chemical names is frequently of great importance in removing ambiguities and in differentiating one substance from another. Lower case italic Roman letters are used in fusion prefixes (II 151) in ring system names, and in as- and s-Indacene; capital italics such as $N-, O-, P_{-}, S$-, are locants indicating substitution on these hetero atoms; H - denotes indicated or added hydrogen (III[135, 136); italic Arabic numerals are locants for atoms in abnormal valency states (II 158) and for "labeled" atoms (II 220); italic words and syllables are used in modifications to express isomeric oxides, e.g., thionooxide at a thio acid heading parent, and in stereochemical descriptors (II 203), e.g., erythro-, tetrahedro-. The small capitals D-, L-, and DL-, are configurational descriptors (II 203); like italic letters, they are disregarded in placing chemical names in order until Roman letters have been alphabetized.

The "comma of inversion" has been mentioned above (II 104). Other commas are used between individual locants in index heading parents, substituents, and modifications. Different types of functional derivatives are separated by commas in the text of the modification.

[^0]
Examples:

(a) hydrazone phenylhydrazone
(b) diethyl ester, sodium salt

(c) ethyl methyl ester, hydrochloride

Hyphens at the end of the set of substituents in the inverted part of a boldface heading signify that no space is intended when the name is uninverted for use in textual matter. Conversely, absence of a hyphen after substituents at headings such as Disulfide, Hydroperoxide, Peroxide, indicates that a space appears at that point in the uninverted name.

Examples:

Acetic acid, chloro-	(index name)
Chloroacetic acid	(uninverted name)
Disulfide, bis(2-chloroethyl)	(index name)
Bis(2-chloroethyl) disulfide	(uninverted name)

Hyphens separate locants from the words and syllables of a name; when used between locants, the intention is to indicate that such locants refer to different parts of the name; e.g., in Acetamide, N-2-naphthalenyl-, the " N-" places the 2-naphthalenyl substituent on the nitrogen of the heading parent, Acetamide.

Periods separate ring size descriptors in Von Baeyer and spiro names, e.g., Bicyclo[3.2.0]heptane. Colons separate sets of locants already related to one another; if a further step is called for, semicolons are employed.

Examples:

1,4:5,6-Dimethanonaphthalene
 Benzo[1", $\left.2^{\prime \prime}: 3,4 ; 5^{\prime \prime}, 4^{\prime \prime}: 3^{\prime}, 4^{\prime}\right]$ dicyclobuta[1,2-a:1', 2^{\prime} - a^{\prime}]diindene

109. Enclosing marks are placed around compound substituent radicals and around and within complex radicals (II 162). Their presence or absence frequently removes ambiguity, especially when locants are omitted through lack of precise structural information.

Examples:
Silane, chloromethyl-

Parentheses are placed around compound substituents like "(chloromethyl)", above; in a case like (chloromethylamino), it is to be understood that both the chlorine atom and the unsubstituted methyl group are substituents of the amino group, i.e., $\mathrm{Cl}\left(\mathrm{CH}_{3}\right) \mathrm{N}$-. The alternative structure, $\mathrm{ClCH}_{2} \mathrm{NH}$ - is named [(chloromethyl)amino], which is a complex substituent prefix. Parentheses are used around simple radicals when they are preceded by "bis," "tris," etc. (II 110), e.g., bis(methylene), tris(decyl). They are used also to separate locants of the same kind which would otherwise be separated only by hyphens, to indicate the second atom involved in double-bond formation when it is not the next in the numbered pathway, to enclose parts of a heading parent, to set off added hydrogen, and to enclose multiplied terms in modifications, ion terms that would otherwise be ambiguous, Ewens-Bassett numbers (II 215), descriptive terms and ratios, and parts of synonym line formulas.

Examples:
Benzoic acid, 4-(2-naphthalenyl)-
Bicyclo[4.2.0]oct-1(6)-ene
Butane(dithioic) acid (see II 165)
1(2H)-Naphthalenone
bis(inner salt)
(disulfate) (from Disulfuric acid)
iron(3+) salt
compd. with benzenamine (1:1)
acetate (salt)
Thioperoxydiphosphoric acid $\left(\left[(\mathbf{H O})_{2} \mathbf{P}(\mathbf{O})\right]_{2} \mathbf{S}_{2}\right)$
Brackets enclose complex substituent prefixes and derivative terms, as well as Von Baeyer and spiro ring size designations (already described above). They are also employed around a ring-assembly name when it is followed by a prin-cipal-group suffix or forms part of a radical name.

Examples:
[1,2'-Binaphthalene]-2-carboxylic acid [1,1'-biphenyl]-4-yl

Brackets enclose structural features of bridges or component rings when the enclosed locants are not applicable to the total system.

Examples:

4a,9a-[2]Butenoanthracene
(the " 2 " locates the double bond in the buteno bridge)

4H-[1,3]Oxathiolo [5,4-g]benzoxazole
(formed by fusion of 1,3-oxathio with benzoxazole; in the total ring system, the oxygen and sulfur atoms of the oxathiole ring are in the 6 - and 8 -positions respectively)

When a multiplicative index name is uninverted, brackets are placed around the heading parent.

Examples:

Acetic acid, 2,2'-oxybis-	(index name)
2,2'-Oxybis[acetic acid]	(uninverted name)
Benzoic acid, 4,4'-methylenebis[2-chloro-	(index name)
4,4'-Methylenebis[2-chlorobenzoic acid]	(uninverted name)

Brackets are sometimes needed for functional terms in modifications, especially following locants or multiplicative prefixes.

Examples:

$S-[($ dodecylthio)methyl $]$ ester

bis[(2,4-dinitrophenyl)hydrazone]
110. Multiplicative prefixes. Generally, prefixes derived from the Greek (di, tri-, etc.) are used, rather than the Latin (bi-, ter-, etc.); exceptions are nona(not ennea-) for nine, and undeca- (not hendeca-) for eleven. (For lists of Latin and Greek prefixes, see \mathbb{I} 309.) The Latin prefixes bi-, ter-, etc., are used for ring assemblies, and bi- is employed in the term "bimol. monoanhydride."

The prefixes bis-, tris-, tetrakis-, etc., are used for compound and complex radicals and functional derivatives, and to avoid misunderstanding in other cases, especially with names beginning with replacement terms like "aza" or "oxa", fusion prefixes like "benzo" or "naphtho," or compound fusion prefixes like "cyclopentapyrido." They are used always in multiplying a heading parent. Examples:

bis(methylene)	tetrakis(1-aziridinyl)
bis(2-aminoethyl)	bis(anhydrosulfide)
$[1,2$-ethanediylbis(oxymethylene)]	bis(benz[a]anthracen-1-yl)
bis(O-methyloxime)	Benzo[1,2- $\left.c: \mathbf{3 , 4 -} c^{\prime}\right]$ bis[1,2,5]
bis(cyclohexaneacetate)	oxadiazole
tris(dihydrogen phosphate)	Biscyclopenta[5,6]pyrido[4,3-
bis(aziridinyl)	b:3', $\left.\mathbf{4}^{\prime}-c\right]$ pyridine
bis(diazo)	Benzoic acid, 2,2'-silylenebis-
bis([1,1'-biphenyl]-4-yl)	Phosphonic acid, 1,4-phenyl-
bis(bicyclo[2.2.1]hept-2-yl)	enebis-
tris(decyl)	

111. "Mono" is only rarely employed in index heading parents (an example is Peroxymonosulfuric acid) but is needed to express functional derivatives of polyfunctional heading parents. It is not used if a locant is necessary, or when all functions are modified by the same class of derivative, or when only one functional group is present. The term "hydrogen" in an uninverted ester name precludes the use of "mono."

Examples:
$\mathrm{MeC}(=\mathrm{NOH}) \mathrm{Me}$
2-Propanone
oxime
$\mathrm{MeO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}$

Butanedioic acid monomethyl ester

1,2-Naphthalenediol

2-acetate

Phosphoric acid ethyl dimethyl ester

2,5-Cyclohexadiene-1,4-dione

mono(phenylhydrazone), oxime (note that the term "mono" is not repeated unless needed)
$\mathrm{EtOP}(\mathrm{O})(\mathrm{OH})_{2}$

Phosphoric acid
 monoethyl ester
 (index name)

Ethyl dihydrogen phosphate
(uninverted name)
112. Functional derivatives of the principal reactive chemical groups of systematically-named index heading parents are cited in the modification; these derivatives, as defined for indexing purposes, are restricted to acyclic anhydrides, esters, hydrazides, hydrazones, and oximes. Other derivatives, such as semicarbazones, azines, acetals, and cyclic esters, are named in other ways, e.g., substitutively at the highest functional heading parent, as substituted hydrazones, etc., or as heterocycles, as detailed in Section D, below.

Functional derivatives of subsidiary functions (those not expressed by the suffix of the heading parent) are cited in the main boldface heading as compound or complex substituents.

Examples:

Benzoic acid, 4-(1-oxopropoxy)methyl ester (not Benzoic acid, 4-hydroxy-, methyl ester, propanoate)

Butanal, 3-hydrazono- (not Butanal, 3-oxo-, 3-hydrazone)

Heptanedioic acid, 4-[2-(acetyloxy)-2-oxoethyl]-
dimethyl ester (not Heptanedioic acid, 4-(carboxymethyl)-, 4anhydride with acetic acid, dimethyl ester)

Ethanaminium, $\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethyl-2-(phosphonooxy)-
inner salt (not Ethanaminium, 2-hydroxy- N, N, N-trimethyl-, dihydrogen phosphate (ester), inner salt)

Benzoic acid, 4-fluoro-
2-(hydroxyimino)propyl ester (not Benzoic acid, 4-fluoro-, 2-oxopropyl ester, oxime)

Benzoic acid, 4-[(acetyloxy)-sulfonyl]-
methyl ester (not Benzoic acid, 4-sulfo-, S-anhydride with acetic acid, methyl ester)
113. Order of citation of derivative terms in modifications. The normal order is:
(a) ionic terms relating to the heading parent, e.g., "chloride" at an "aminium" heading;
(b) functional derivatives in the order: anhydrides, esters, hydrazides, hydrazones, oximes; multiplicative terms are cited before simple terms, e.g., 1,3-propanediyl dimethyl ester, otherwise alphabetic order is followed;
(c) additive terms describing fragments covalently attached to the index heading compound, e.g., N-oxide;
(d) ionic terms, e.g., ion(1-), radical ion(1-), then metal salts, followed by other salts alphabetically, e.g., acetate, hydrochloride;
(e) other additive terms describing portions of the molecular structure not covalently attached, e.g., compd. with..., hydrate, mixt. with..., polymer with....
114. Locants. When a choice is necessary, italic Roman letters are placed before Greek letters, and Arabic numerals are placed last, e.g., As, N, P, S, α, $\beta, \gamma, 1,2,3$. (For the Greek alphabet see $\mathbb{I}[310$.)

Unprimed locants are followed by primed locants, then by doubly primed locants, etc., e.g., $N, N^{\prime}, S, \alpha, 1^{\prime}, 2,2^{\prime}, 2^{\prime \prime}, 3$. Low numbering of indices (superscript Arabic numbers) and application of primes are not considered until regular numerical locants have been chosen.

Examples:
$\mathrm{MeP}(=\mathrm{NMe})\left(\mathrm{NHMe}_{2}\right.$
Phosphonimidic diamide, $N, N^{\prime}, N^{\prime \prime}, P$ -tetramethyl-

Benzenemethanamine, $N, \alpha, 4$-tri-methyl-

1,3-Benzenediamine, 4-chloro- N^{3} -
methyl- (not 1,3 - Benzenediamine, 6-chloro- N^{1}-methyl-)

$1,1^{\prime}: 4^{\prime}, 1^{\prime \prime}$-Terphenyl, $\mathbf{2}^{\prime}, 2^{\prime \prime}$-dichloro(not $1,1^{\prime}: 4^{\prime}, 1^{\prime \prime}$-Terphenyl, 2,3'-dichloro-)

Locants for unsaturation in compounds named as index heading parents are always cited when the compound contains three or more skeletal atoms, except for monocyclic hydrocarbons with one multiple bond and no suffix.

Examples:

$\underset{1}{\mathrm{HN}=\mathrm{NNH}_{2}}$	1-Triazene
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$	1,2-Propadiene
$\underset{1}{\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}=\underset{4}{\mathrm{CH}} \text {. }}$	1-Buten-3-yne
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	Ethene
	Cyclohexene
	1,3-Cyclopentadiene

Locants denoting ring junctions of ring assemblies are always cited except for two-component assemblies of cycloalkenes, cycloalkadienes, etc. Examples:

115. Locants for substituent suffixes of index heading parents are always cited if it is necessary to cite locants in the molecular skeleton for unsaturation, hetero atoms, indicated hydrogen, spiro or ring assembly junctions, bridges (in fused systems), or isotopic labeling. Locants for fusion sites, e.g., "[3,4-d]" (II 151), are disregarded in this connection. Locants are not cited for Geneva suffixes which terminate a chain, e.g., "-oic acid," "-dial," except when a monofunctional suffix is not at the 1-position of an "a"-named chain. Locants are always cited with cycloalkene names to which suffixes are attached.

Examples:

1,3-Butadiene-1,1,2,3,4,4-hexa-
carbonitrile
O

1,3,5-Triazine-2,4,6(1H,3H,5H)trione

$\mathrm{HO}_{2} \mathrm{CN}=\mathrm{NCO}_{2} \mathrm{H}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{H}$

Pyrazinecarboxylic acid

Diazenedicarboxylic acid
$\underset{1}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{34}} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCCH}_{7} \mathrm{OCH}_{8} \mathrm{CH}_{2} \mathrm{OCH}_{910} \mathrm{CH}_{11} \mathrm{OH}_{12} \mathrm{OCH}_{2} \mathrm{CH}_{14} \mathrm{CH}_{15} \mathrm{COOH}$

3,6,9,12-Tetraoxapentadecan-

15-oic acid

2-Cyclopropen-1-one

116. Locants in substituent prefixes (radicals). Locants are assigned for multiple bonds in all unsaturated radicals containing three or more skeletal atoms. Locants are always cited for free valencies involving more than one position of a skeleton, except for the trivial names hydrazo, azino, azo, azoxy (\mathbb{I} 193).

Examples:

$\underset{3}{\mathrm{HC}} \equiv \mathrm{CCH} \underset{1}{\mathrm{CH}}=$	2-propynylidene
$-\underset{1}{-\mathrm{N}=\mathrm{NNH}}-$	1-triazene-1,3-diyl
	2,4-cyclopentadien-1-ylidene
$-\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{C}-$	1,3-butadiyne-1,4-diyl
$-\mathrm{CH}_{2} \mathrm{CH}_{2}-$	1,2-ethanediyl
= $\mathrm{C}=\mathrm{C}=$	1,2-ethenediylidene
	1,2-cyclopropanediyl
	1,4-phenylene

Locants are not cited for free valencies of radicals which have lost hydrogen from only one skeletal atom of an acyclic, or saturated monocyclic, homogeneous molecular skeleton.

Examples:

MeCH2-	ethyl
$\mathrm{HN}=\mathrm{N}-$	diazenyl
$\begin{gathered} \mathrm{HP}-\mathrm{P}- \\ \mid \\ \mathrm{HP} \text { - PH } \end{gathered}$	tetraphosphetanyl
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}=$	3-butenylidene
$\underset{3}{\mathrm{HN}=\mathrm{NN}} \underset{1}{ }-$	2-triazenyl

Locants are cited for free valencies of radicals from unsaturated homogeneous monocyclic systems, and from saturated heterogeneous monocyclic systems with cyclo...ane, cyclo...ene, etc., names.

Examples:

2-cyclopenten-1-yl

Locants for free valencies are cited for monocyclic radicals which possess locants for indicated hydrogen, hetero atoms, unsaturation, spiro or ring assembly junctions or bridges (in fused systems).

Examples:
1,4-dioxan-2-yl

pyrazinyl (not 2-pyrazinyl)
117. Locants for substituents on index heading parents and parent radicals are cited when the parent names possess locants for substituent suffixes, unsaturation, hetero atoms, indicated hydrogen, spiro or ring assembly junctions, or bridges (in fused systems). Locants are dispensed with for "hydro" prefixes in fully saturated ring systems unless ambiguity could result, e.g., because of a remaining etheno or other unsaturated bridge.

Examples:
$\mathrm{HO}{\underset{\mathrm{Cl}}{-}}_{\mathrm{O}_{\mathrm{Cl}}^{\mathrm{O}} \mathrm{OH}}^{\mathrm{O}}$
$\mathrm{Cl} \stackrel{\stackrel{\mathrm{O}}{\stackrel{ }{\sim}} \mathrm{OH}}{ }$
2,3-Oxiranediol, 2,3-dichloro-

Oxirenol, chloro-

MeCOCOCH 2 Cl
2,3-Butanedione, 1-chloro-
$\mathrm{H}_{2} \mathrm{NCONHMe} \quad$ Urea, methyl-

1,4-Dioxin, 2,3,5,6-tetramethyl-

$$
\underset{4}{\mathrm{PhC}} \equiv \mathrm{CC} \equiv \underset{1}{\mathrm{C}}-
$$

(4-phenyl-1,3-butadiynyl)

1,4-Naphthalenedione, octahydro-

When one or more locants are needed for substituents on a heading parent or parent radical, all are cited.

Examples:
$\mathrm{F}_{3} \mathrm{CCF}_{2} \mathrm{CF} \mathrm{I} \mathrm{CF}_{3}$
Butane, 1,1,1,2,2,3,4,4,4-nona-fluoro-3-iodo-

[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]
$\mathrm{HO}_{2} \mathrm{CCHCl} \mathrm{SCHCl} \mathrm{CO}_{2} \mathrm{H}$
Acetic acid, 2,2'-thiobis[2-chloro-
118. Locants in multiplicative nomenclature are cited for the positions of attachment on the heading parent if it consists of more than one skeletal atom, e.g., Benzene, Acetic acid, or contains an additional position for substitution, e.g., Silanamine, Phosphonamidic acid. Locants are otherwise not cited for heading parents which contain only one skeletal atom, e.g., Methane, Silane, Methanone, or for heading parents which are functional parent compounds (II 130), e.g., Phosphonic acid.

Examples:
PhOPh
Benzene, 1,1'-oxybis-

Benzene, 1,1'-oxybis[4-fluoro-
$\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{NHNHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{HO}_{2} \mathrm{CNHSiH}_{2} \mathrm{NHCO}_{2} \mathrm{H}$
MeSMe
$\mathrm{HOSiH} \mathrm{CH}_{2} \mathrm{SiH}_{2} \mathrm{OH}$
$\mathrm{H}_{2} \mathrm{NSiH}_{2} \mathrm{CH}_{2} \mathrm{SiH}_{2} \mathrm{NH}_{2}$

Acetic acid, 2, ${ }^{\prime}$

Carbamic acid, silylenebis-
Methane, thiobis-
Silanol, methylenebis-
Silanamine, 1,1'-methylenebis-
119. Locants for functional derivatives are used when needed to define the structure unambiguously. The terms "mono," "di," etc., are preferred to locants, but if a locant is necessary, "mono" is omitted.

Examples:

$\mathrm{MeOP}(\mathrm{O})(\mathrm{OH}) \mathrm{OP}(\mathrm{O})(\mathrm{OH}) \mathrm{OMe}$
$P \quad p^{\prime}$

1,2-Benzenedicarboxylic acid, 3-methyl-1-methyl ester

2,3-Furandimethanol, α^{3}-chloro-
α^{2}-acetate

Diphosphoric acid P, P^{\prime}-dimethyl ester

$$
\mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CONHNH}_{2}
$$

Butanedioic acid
monohydrazide
$\mathrm{MeC}(=\mathrm{NOH}) \mathrm{CMe}=\mathrm{NNHPh}$

Locants for all derivatives are cited if one or more are needed. Example:

1,3-Benzenediol, 4-chloro-
3-acetate 1-benzoate

Locants are used in modifications for index headings that express the same (or similar) functions in both the index parent and the substituents when the latter are not derivatized. This avoids confusion with former $C A$ index names.

Examples:

Benzoic acid, 3-sulfo-
1-ethyl ester

Benzoic acid, 3-(ethoxysulfonyl)(formerly Benzoic acid, 3-sulfo-,
$\mathrm{EtO}_{3} \mathrm{~S}$ 3-ethyl ester)

The locant for an additive term such as "oxide" is an Arabic number when a nitrogen, phosphorus, sulfur, etc., atom of a ring in the index heading parent is involved; otherwise a letter locant (N-, S-, etc.) is employed.

Locants are not employed for ionic modification terms, e.g., salts such as "monosodium salt," "hydrochloride."
120. Locants for indefinite compounds must often be omitted. In addition, such compounds can sometimes be named only by departing from the regular name selection policies, e.g., by citation of the principal group in the modification instead of as a suffix of the heading parent, citation of a functional derivative in the modification rather than as a substituent, use of "mono" instead of the (unknown) locant, replacement of a numerical locant by the indefinite aromatic locant "ar-," or inclusion of question marks in a set of otherwise known locants.

Examples:

Benzenediamine

Benzoic acid, dichloro-
Naphthalene, 2,2'-(1,4-phenylene)bis-
disulfo deriv.
Benzeneacetic acid, 2-carboxy-
monomethyl ester
1,2-Ethanediol, 1-phenyl-
monocarbamate
Naphthalene, ar-chloro-1,2,3,4-tetrahydro-
Benzenemethanol, $a r$-amino-
[1,1'-Biphenyl]-ar,ar'-dicarboxylic acid
Benzene, 1,2,?-trimethyl-

The italic word "or" is used with substituent prefixes (but never with index heading parents) when the number of alternative structures cannot be misinterpreted.

Examples:
Quinoline, 2-chloro-3(or 4)-methyl-
Naphthalene, 1 (or 2)-ethyl-2(or 1)-methyl-
When one or more substituent prefixes are in known positions and the remainder in unknown positions, lowest locants are used for the former.

Example:

Naphthalene, chloro-2-methyl-

An indefinite name like Piperidine, 2(or 4)-bromo-4 (or 2)-chloro- cannot be used because this name could be held to include the 2 -bromo-2-chloro- and 4-bromo-4-chloro-isomers; in such cases locants are usually omitted.
121. Alphabetization of substituent prefixes affects the position in the index where an inverted chemical substance name will be found (see Appendix II, II 10C). Simple prefixes are placed in alphabetic order according to their names; only then are multiplicative prefixes (di-, tri-, etc.) placed in front of each as required, and locants inserted; e.g., an index compound in which two nitro groups, three bromine atoms, and a chlorine atom are present receives the substituent name "tribromochlorodinitro," and the substituents so arranged will be found together with an appropriate index parent, such as Naphthalene, alphabetized in accordance with all the Roman letters in the complete name. The total name with locants, e.g., Naphthalene, 2,5,8-tribromo-3-chloro-1,6-dinitro-, will be preceded in the list of index entries by both Naphthalene, ni-tro- and Naphthalene, tetrachloro-.

Compound and complex substituent prefixes (radicals) are constructed on similar alphabetic principles and then arranged by their first letters (which may have been derived from multiplicative prefixes within the radicals) in the total name. This name is then placed in the index as described above, all letters being alphabetized. When the letters are all identical, arrangement depends on locants.

Examples:
Benzoic acid, 3,4,5-trichloro-2,6-
bis[2-(diethylamino)ethyl]-(letter
"c" is placed before "d", the initial
letter of the complex radical)
Naphthalene, 2-(2-nitrophenyl)- 7-
(3-nitrophenyl)- (the radicals are
placed in order, according to the lo-
cants they contain, before locants
relating to the heading parent are in-
serted)
122. Tautomeric compounds. Index names are normally based on the precise structures shown or described in the author's original document. Tautomerism (ready interconvertibility of isomers) in certain types of compounds causes a serious problem in index-name selection, the issue here being not which name to select for a given molecular structure but which diagram to name for a given tautomeric system if scattering at different names of information about what is essentially a single substance is to be avoided.

Common (trivial) names for most nitrogenous tautomeric systems are cross-referred to preferred systematic names.

Examples:

Adenine.
Barbituric acid.
Caffeine.
Carbostyril.
Cytosine.
Guanine.
Hydantoin.
Melamine.
Theophylline.
Uracil.
Uric acid.
Xanthine.

See $1 H$-Purin- 6 -amine
See 2,4,6(1H,3H,5H)-Pyrimidinetrione
See 1H-Purine-2,6-dione, 3,7-dihydro-1,3,7-tri-methyl-
See $2(1 H)$-Quinolinone
See 2(1H)-Pyrimidinone, 4-amino-
See 6H-Purin-6-one, 2-amino-1,7-dihydro-
See 2,4-Imidazolidinedione
See 1,3,5-Triazine-2,4,6-triamine
See 1H-Purine-2,6-dione, 3,7-dihydro-1,3-dimethyl-
See $2,4(1 H, 3 H)$-Pyrimidinedione
See $1 H$-Purine-2,6,8(3H)-trione, 7,9-dihydro-
See $1 H$-Purine-2,6-dione, 3,7-dihydro-

Unless a structure at variance with the index name selected for a particular tautomer, e.g., 2,4-Pyrimidinediol as the structure of Uracil, is emphasized by an author, information on tautomeric systems is collected in CA Chemical Substance Indexes at the preferred names to which the cross-references lead. Index names for related tautomers not possessing common names are selected by similar principles.

The necessity for many tautomeric structures to be redrawn to accord with selected CA index names is obviated by computer "normalization" algorithms in the CAS Registry System. In the normalization process, the different structural diagrams for a single tautomeric system (of one of the types expressed in the cross-references above) are recognized as equivalent and stored in identical machine-language representations. They share a single unique CAS Registry Number (see Appendix II, II 13) and CA Chemical Substance Index name.

When the author of an original document emphasizes a tautomeric structure different from that represented by the usual preferred index name, the normalization algorithm is bypassed and a different Registry Number and index name are assigned.

The structural requirements for the normalization process and the rules for selecting unique CA Chemical Substance Index names are as follows:
I. Requirements for normalization of structures. Tautomeric structures represented by the following equilibrium:

$$
\mathrm{M}=\mathrm{Q}-\mathrm{ZH} \quad \rightleftharpoons \quad \mathrm{HM}-\mathrm{Q}=\mathrm{Z}
$$

are normalized, i.e., recognized as equivalent in the CAS Registry System, when the following requirements are met:
(a) $\mathrm{Q}=\mathrm{C}, \mathrm{N}, \mathrm{S}, \mathrm{P}, \mathrm{Sb}, \mathrm{As}, \mathrm{Se}, \mathrm{Te}, \mathrm{Br}, \mathrm{Cl}$ or I with any acceptable valency for the individual elements.
(b) M and $\mathrm{Z}=$ any combination of trivalent N and/or bivalent O, S, Se or Te atoms.
(c) The bonds involved in tautomerization may be in an acyclic chain or in a ring system or partly in both.
(d) The end-points, M and Z, may be in adjacent rings of a fused ring system, but a nitrogen atom which occupies a fusion point in such a system cannot take part in tautomerization.
(e) The hydrogen atom of the tautomeric system may be replaced by deuterium or tritium.
(f) Two or more systems of the form shown above may be linked through a common atom, whereby a proton can be considered to migrate along the chain.

Example:

$$
\begin{aligned}
& -\mathrm{N}=\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{N}=\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{NH}-\mathrm{C}=\mathrm{N}-\quad \rightleftharpoons \quad \underset{\mathrm{N}=\mathrm{C}-\mathrm{N}=\mathrm{C}-\mathrm{N}=\mathrm{C}-\mathrm{NH}-1}{\rightleftharpoons}
\end{aligned}
$$

Replacement in the generalized formula above by specific elements affords normalized tautomeric systems such as the following:

$$
\begin{aligned}
& -\mathrm{NH}-\mathrm{C}=\mathrm{N}-\quad \rightleftharpoons \quad-\mathrm{N}=\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{NH}- \\
& \text { (amidine tautomerism) } \\
& -\mathrm{NH}-\mathrm{N}=\mathrm{N}-\quad \rightleftharpoons \quad-\mathrm{N}=\mathrm{N}-\mathrm{NH}- \\
& \text { (diazoamino tautomerism) } \\
& -\mathrm{NH}-\mathrm{C}=\mathrm{O}(\mathrm{~S}, \mathrm{Se}, \mathrm{Te}) \underset{\mathrm{C}}{\rightleftharpoons} \underset{\mathrm{C}}{\rightleftharpoons} \stackrel{\mathrm{O}}{(\mathrm{~S}, \mathrm{Se}, \mathrm{Te}) \mathrm{H}} \\
& \text { (lactam-lactim tautomerism) } \\
& -\mathrm{NH}-\mathrm{P}=\mathrm{N}-\quad \rightleftharpoons \quad-\mathrm{N}=\mathrm{P}-\mathrm{NH}-
\end{aligned}
$$

A unique CA Chemical Substance Index name is selected for each compound containing a normalized tautomeric structure by application first of the
structural rules which follow, and then of the nomenclature rules (see III, below). For tautomeric pyrazole derivatives and for tropolones, $C A$ selects a single preferred structure and index name, and assigns a single CAS Registry Number, even though these systems do not conform to the general equilibrium illustrated above and are not currently normalized by the CAS Registry System. Lowest locants are employed successively in index parents and substituents in these cases.

Examples

1H-Pyrazole-3-methanol, 5-

 methyl-NOT
(principle: lowest
locant for principal group)

2,4,6-Cycloheptatrien-
1-one, 3-bromo-2-
hydroxy-
NOT

2,4,6-Cycloheptatrien-1-one, 2-bromo-7-hy-
(principle: lowest
locants for sub-
stituents)
For phosphonic-phosphorous and phosphinic-phosphonous acid tautomers, see II 197.
II. Structural rules. These rules are used to select the particular structure of a tautomer from which the unique CA Chemical Substance Index name is then derived. They are applied before the nomenclature rules (see III, below) are considered.

1. The maximum number of oxygen (or other chalcogen) atoms are doubly bonded to the central atom Q. If it is necessary to make a choice, the descending order of precedence for double-bond formation is $\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}$.

Examples:

2. For a compound which contains a nitrogenous heterocycle bonded to one or more acyclic nitrogen atoms in such a way that a normalized tautomer results, the preferred structure is that which has the maximum number of single bonds between the heterocycle and the nitrogen atoms. This rule is not applied when the nitrogen atom is part of a hydrazone or oxime which is a derivative of the principal function (see nomenclature rule III, (a) below).

Examples:

When it is necessary to choose between amino and hydrazino, amino is preferred.

Example:

NOT

3. For a compound which contains a completely acyclic

$$
\mathrm{N}-\mathrm{C}=\mathrm{N}-\quad \text { or } \quad \stackrel{\mathrm{N}-\mathrm{\|}-\mathrm{C}, \mathrm{~N}^{\prime} /}{ }
$$

fragment which is capable of being structured with an unsubstituted imino $(=\mathrm{NH})$ group, that tautomeric form is preferred over any other, even when the fragment is bonded to an amino, hydrazino, or other nitrogen-containing radical.

Examples:

	NOT	
	NOT	

III. Nomenclature rules. When the structural rules, above, are insufficient to enable a choice of preferred tautomeric form to be made, the following nomenclature rules are successively applied until a decision is reached:
(a) The preferred index heading parent expresses the maximum number of the principal chemical functional group.

Examples:

(NOTE: Hydrazones and oximes of principal functional groups are exceptions to structural rule II. 2, above.)
(b) The lowest locant for indicated hydrogen (see \mathbb{I} 135) is expressed in the preferred index name for nitrogenous heterocycles which are normalized, whether such heterocycles are expressed in the index heading parent, substituent prefix, or index modification.

Examples:

(\rightleftharpoons	${ }^{l}$
1 H -Purine-8-methanamine, 2-amino-	NOT	7H-Purine-8-methanamine, 2-amino-
 Phosphonic acid, 1 H -pyrrolo [2,3-b]pyridin-3-yl-	\rightleftharpoons NOT	Phosphonic acid, 7 H -pyrrolo[2,3-b]pyridin-3-yl-
	\rightleftharpoons	
1H-1,3,2-Diazaphospholo $[4,5-d]$ pyrimidine	NOT	3H-1,3,2-Diazaphospholo $[4,5-d]$ pyrimidine

(c) Lowest locants are expressed for (i) suffixes, i.e., principal groups of index heading parents and free valencies of substituent radicals, and (ii) multiple bonds in parents and radicals.

Examples:

NOT
1 H -Imidazole-5-
carboxylic acid

| $\mathrm{Ph}-\mathrm{NH}-\mathrm{N}=\mathrm{N}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ |
| :--- | :---: | :---: |$\quad \rightleftharpoons \quad \mathrm{Ph}-\mathrm{N}=\mathrm{N}-\mathrm{NH}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

(d) The maximum number of substituents are cited as prefixes in the index heading.

Example:

NHNH_{2} \mid EtC=NNHPh	\rightleftharpoons	NNH_{2} UtC-NHNHPh
Propanehydrazonic acid, N-phenyl- hydrazide	NOT	

(e) Substituent prefixes and added hydrogen (see I[136) are assigned lowest locants (see I[137) to denote positions of attachment to an index heading parent or a substituent radical.

Examples:

4H-Imidazol-4-one,	NOT
2-amino-1,5-dihydro-	4 H -Imidazol-4-one,

4(1H)-Quinazolinone
NOT
4(3 H)-Quinazolinone

Benzenecarboximidamide, N-ethyl- N^{\prime} -

NOT
methyl-
Benzenecarboximidamide, N^{\prime}-ethyl- N -methyl-

(f) The index heading parent expresses the maximum number of occurrences by use of multiplicative nomenclature (see \mathbb{I} 125).

Example

(g) The preferred $C A$ index name is that which occurs earliest in the index arrangement as determined by the rules for ordering of Chemical Substance Index entries (see Appendix II, II 10C).

Examples:

$\rightleftharpoons \quad \stackrel{\text { NEt }}{\|} \quad \mathrm{MeNH}-\mathrm{C}-\mathrm{CO}_{2} \mathrm{H}$
Acetic acid, (ethyl-amino)(methylimino)-

NOT
Acetic acid, (ethyl-imino)(methylamino)-
123. Additive nomenclature embraces molecular structures whose several component parts are considered to be added together without replacement
(substitution) of atoms (usually hydrogen). It includes coordination names (II 215), conjunctive nomenclature (II 124) and binary names of inorganic compounds (II 219).

Examples:

Copper, dichlorobis(methanamine)
 Benzeneethanol
 Sodium chloride ($\mathbf{N a C l}$)

The construction of additive names often involves indicated or added hydrogen (IIII 135, 136) in that part of the molecule known as the heading parent, the addition of hydro "substituents", or the use of additive terms such as "oxide" or "sulfide" in the modification. In a few cases the additive term becomes a part of the heading parent.

Examples:
$9(10 \mathrm{H})$-Anthracenone
Naphthalene, 1,2,3,4-tetrahydro-
Pyridine
1-oxide
Phosphine imide
For salts and molecular addition compounds, see IIII 192, 198.
124. Conjunctive nomenclature allows a cyclic molecular skeleton to be included as a part of the heading parent name even though the principal chemical group is separated from the ring by an acyclic chain. Larger molecules may be named thereby as heading parents and more compounds of similar structure can be collected at a given ring system name. Moreover, the major requirement of substitutive nomenclature, that the principal group be expressed in the heading parent as a suffix, is fulfilled.

A conjunctive name is employed when any ring system (including a polyhedral borane) is attached by single bonds to one or more saturated acyclic hydrocarbon chains, each of which bears only one functional substituent corresponding to the principal chemical group of the compound. When a second or third such substituent is present on the chain, a conjunctive name may still sometimes be employed so long as the resulting index heading parent does not express more than a single function in each chain and other principles are not violated (see the final example below). It is always implied that the chemical functional group is at one end of the acyclic chain and the ring system is at the other.

Examples
$\mathrm{PhCH}_{2} \mathrm{OH}$

Benzenemethanol

1,3-Dithiolane-2-butanamide, γ-chloro

1,3-Benzenediacetic acid

 α, α^{\prime}-dichloro-

1 H-Pyrrole-2-methanol, α-(2-phenylethyl)- (the heading parent which expresses the preferred ring system, not the preferred acyclic chain, is chosen)

Bicyclo[4.3.1]dec-7-ene-3,4-diacetaldehyde, α^{3}-(2-oxoethyl) (not Bicy-clo[4.3.1]dec-7-ene-3-propanol, β -formyl-4-(2-oxoethyl)-; the preferred heading parent expresses the maximum number of principal groups and, because it also expresses a ring system, is preferred to $\mathbf{B u}$ tanedial)

A conjunctive name is not permissible under the following conditions and the regular rules of substitutive nomenclature apply: 1) when a double bond joins the ring to the functional acyclic chain; 2) when a conjunctive index parent would express two or more functional groups in a single acyclic chain; 3) when the acyclic chain is unsaturated, or contains hetero atoms; and 4) when a conjunctive name would fail to express the maximum number of principal chemical groups.

Examples
$>=\mathrm{CHCO}_{2} \mathrm{H}$
Acetic acid, cyclopropylidene-

Methanediol, 2-furanyl-

2-Propen-1-amine, 3-(2-benzo-furanyl)-
$>\quad \mathrm{NHCO}_{2} \mathrm{H}$
Carbamic acid, cyclopropyl-

OH

1,4-Naphthalenediol, 2-(hy-droxymethyl)-
125. Multiplicative nomenclature employs polyvalent radicals by which a multiplicity of occurrences of an index heading parent in a compound may be expressed.

Example:

Benzoic acid, 2,2'-thiobis-

In the example above, a simple one-part polyvalent radical, thio, was employed as a multiplier; other such radicals are oxy, -O-; methylene, $-\mathrm{CH}_{2}-; 1,4-$ phenylene, 1,4-C $\mathrm{C}_{6} \mathrm{H}_{4}=$; imino, -NH -; nitrilo, $-\mathrm{N}=$; and 1,3-disiloxanediyl, Si$\mathrm{H}_{2} \mathrm{OSiH}_{2}$ - In general, any simple multivalent radical may be used as a multiplicative radical, and may itself be substituted; e.g., (methylimino), $-\mathrm{N}\left(\mathrm{CH}_{3}\right)$-; (1-methyl-1,3-propanediyl), $-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}$ -

Multicomponent radicals may be used as multipliers if they contain a central one-part multivalent radical (simple, compound, or complex) around which all other multivalent radicals are so arranged that the sequence of atoms and bonds in each path is identical as one proceeds outwards. There is no restriction in the number of components that may comprise the total multiplying radical, so long as their use results in an unambiguous total name.

Examples of permissible multiplying radicals:

$$
-\mathrm{CH}_{2} \mathrm{OCH}_{2}-
$$

[oxybis(methylene)]

$$
\begin{gathered}
\mathrm{CH}_{2}-\mathrm{CHCl}- \\
-\mathrm{CHCl}-\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CHCl}-
\end{gathered}
$$

[nitrilotris(1-chloro-2,1ethanediyl)]

$$
\begin{aligned}
& -\mathrm{OCH}_{2} \mathrm{CHClO}- \\
& -\mathrm{SiH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }_{\mathrm{C}}^{\mathrm{C}}-\mathrm{SiH}_{2}-
\end{aligned}
$$

[(1-chloro-1,2-ethanediyl)bis(oxy)]
(1-propanyl-3-ylidynetetrasilylene)

([1,1'-biphenyl]-2,4'-diyldiimino)

The requirement for total symmetry in multiplication allows the use of "ylidene" in combination with other bivalent radicals.

(cyclobutylidenemethylene)

(methylenesilylene)

Enclosing marks are used to distinguish certain combinations of multivalent radicals which would otherwise be ambiguous.

[oxybis(cyclopropylidenemethylene)]

[oxybis[(cyclopropylidene)(methylene)]]

Examples of combinations of multivalent radicals which are not used as multipliers:

The naming of multiplying radicals is accomplished by citing first the central unit. This is followed by a prefix, e.g., "di" or "bis", denoting the number of "radial" series generated by the central unit. The remaining terms of the name, in the form of radicals, are cited in appropriate enclosing marks as necessary. The entire multiplying radical is set off by further enclosing marks, which are preceded by locants "placing" the radical at the proper point of attachment on each index heading parent. Multivalent radicals other than central units are numbered (if there is a choice) from the heading parents towards the center of the complete radicals, and the locant relating to the position closest to the heading parent is cited last.

Examples:
[oxybis(1-chloro-2,1-ethanediyl)]
(dithiodi-4,1-phenylene)
(selenodi-2-propene-3,1-diyl)

methylenebis(1,3,5-triazine-6,2,4-
triyl)] (the 2- and 4-positions are
equally close to the heading par-
ent and are therefore cited in nor-
mal sequence)

Carbonyl groups which are part of carbon chains are expressed as oxo substituents; chalcogen, imino, and hydrazono analogs are expressed as thioxo, selenoxo, telluroxo, imino, and hydrazono substituents.

Examples:

$-\mathrm{CH}_{2} \mathrm{NHCOCH}_{1} \underset{3}{\mathrm{CONHCH}_{2}}-$	[(1,3-dioxo-1,3-propanediyl)bis(iminomethylene)]
- $\mathrm{COCO}-$	(1,2-dioxo-1,2-ethanediyl)
	$\begin{aligned} & \mathrm{H}_{2}- \\ & {[1,4 \text {-phenylenebis(2-imino-2,1- }} \\ & \quad \text { ethanediyl) }] \end{aligned}$

When carbonyl groups and their analogs are not part of an acyclic carbon chain, the names carbonyl, carbonothioyl, carbonimidoyl, etc., are employed. Examples:

Valid multiplying radicals are used only when the entire compound is symmetrical around the central unit of such a radical; i.e., the radical must be attached to the heading parent by bonds of the same type (single, double, or triple) and at equivalent positions, and this parent must be identical with regard to positions of principal groups (and their functional derivatives) and other substituents. Whether or not such other substituents are present, the terms "bis," "tris," etc., are employed after the multiplying radical, not "di," "tri," etc. If other substituents are present, they are cited as regular substitutive radicals after an opening bracket (which, perforce, is left unclosed).

Examples:

The principles of multiplicative nomenclature are applied only after the index heading parent has been chosen, and after other principles, e.g., centrality (II 138), have been applied. When more than one multiplicative name is possible, that one is used which multiplies the greatest number of index heading parents, and then, if a choice is still necessary, that one which appears earliest in the alphabetic sequence of index entries. The number of occurrences of the parent is not increased by arbitrary breaking of the skeleton from which the multiplying radical is derived.

Example:
$\mathrm{HOCH}_{2} \stackrel{I}{\mathrm{C}}_{\mathrm{CH}_{2}}^{\mathrm{O}^{\prime}} \mathrm{OCH}_{2}$ Si H_{2} OSi HOSi $\mathrm{H}_{2} \mathrm{CH}_{2} \stackrel{2}{\mathrm{OCH}_{2}} \stackrel{l}{\mathrm{C}} \mathrm{H}_{2} \mathrm{OH}$
$\mathrm{OSi} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

Ethanol, 2,2'-[[3-[[[[(2-hydroxethoxy) methyl]silyl]oxy]-1,5-trisiloxane-diyl]bis(methyleneoxy)]-bis- (not Ethanol, 2, 2', $2^{\prime \prime}$-[silylidynetris(oxy-silylenemethyleneoxy)]tris-)

126. Radicofunctional nomenclature is used by $C A$ in only a few cases, for disulfides, hydroperoxides, and peroxides (IIII 200, 196). Radicofunctional names express the compound type, e.g., "peroxide," usually as a separate word. When inverted, the substituents are not followed by a hyphen unless multiplicative nomenclature (II 125) is used with Hydroperoxide; e.g., Disulfide, ethyl methyl; Hydroperoxide, 1-methylethyl; Hydroperoxide, cyclohexylid-enebis-.
127. Replacement nomenclature ("a" nomenclature) is used for certain heterocyclic ring systems (II 146) and also, sometimes, for heteroorganic acyclic compounds. This nomenclature is limited to cases in which carbon atoms have been replaced in chains and rings by nonmetals and/or elements of which the hydrides are $C A$ index heading parents, i.e., $\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{B}$.
Requirements for its use in expressing acyclic chains are as follows:
(a) A minimum of four hetero units must be present, none of which may be all or a part of a functional chemical group to be expressed in the index heading parent as the preferred functional compound class (i.e., as a functional suffix or as a functional index compound such as Carbonic or Phosphonic acid). A hetero unit is defined as an isolated hetero atom or a series of consecutive hetero atoms, alike or different, that may be expressed as a unit, such as by a bivalent radical name. Examples: -S- (thio); -S-S- (dithio); -N=N- (azo); - SiH_{2} -$\mathrm{O}-\mathrm{SiH}_{2}$-(1,3-disiloxanediyl); - $\mathrm{SiH}_{2}-\mathrm{NH}-\mathrm{SiH}_{2}$-(1,3-disilazanediyl). The above are all single hetero units, but -HP-NH-, $-\mathrm{S}-\mathrm{O}-$, and $-\mathrm{O}-\mathrm{SiH}_{2}-\mathrm{O}-$, are not.
(b) The "a" name must not be lower in order of precedence than the name obtained by regular substitutive nomenclature, i.e., it must express at least as many principal functions of at least equal rank.
(c) All hetero atoms must be in their standard valency state, or else the abnormal valency must be expressible unambiguously by use of "oxide," etc., terms.
(d) The chain may be terminated only by C, P, As, $\mathrm{Sb}, \mathrm{Bi}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}$, or B.

Acyclic "a" nomenclature is employed for organic chains containing silicon or metal atoms, polyesters, anhydrides, amides, polyamides, polyalkylene glycols, and condensed carbonic acid derivatives. It is not used for peptides or polymers, or (if it can be avoided) for chains containing no carbon atoms. Otherwise, if the above criteria are met, an "a" name is always selected.
128. Replacement prefixes for the elements most frequently found in carbon chains are set out in descending order of precedence in Table I. (The order is the reverse of that shown in II 215 for coordinated elements.)

TABLE I
 REPLACEMENT PREFIXES IN DESCENDING ORDER OF PRECEDENCE

Element	Substitutive Valence	Prefix
Oxygen	II	Oxa
Sulfur	II	Thia
Selenium	II	Selena
Tellurium	II	Tellura
Nitrogen	III	Aza
Phosphorus	III	Phospha
Arsenic	III	Arsa
Antimony	III	Stiba
Bismuth	III	Bisma
Silicon	IV	Sila
Germanium	IV	Germa
Tin	IV	Stanna
Lead	IV	Plumba
Boron	III	Bora

The replacement prefixes are placed in descending order of precedence ahead of the name of the carbon skeleton with locants to indicate the positions of the atoms replaced. Lowest locants are assigned to the hetero atoms, not to functional groups or unsaturation.

Replacement nomenclature is also employed for acyclic substituent prefixes (radicals) when the above requirements are fulfilled. In this case, lowest locants are assigned to free valency positions; i.e., the "a" names are based on the carbon chain radical names, but the free valency locant ("1") is always cited.

Examples:

4,12,20-Trioxa-8,16-dithiatricos-22-ene-1-thiol

3,6,9,12-Tetraazatetradecane-1,14-diamine, $\mathbf{N}, \mathrm{N}^{\prime}$-dimethyl-

3,6,9,12-Tetraoxapentadecanoic acid, 14-hydroxy-2,5,8,11-tetramethyl-4,7,10,13-tetraoxo-

Quinolinium, $\mathbf{2 , 2}^{\prime}$-(2,4,6,8-tetra-azanonane-1,9-diyl)bis[1-methyl-, diiodide

5-Oxa-8-thia-2,11-diazadodeca-noic acid, 12-oxo-12-phenyl-

Benzoic acid, 4-(3,5,7,9-tetraoxa-dec-1-yloxy)-

Phosphonic acid, (8-methylene-3,7,10,14-tetraoxo-4,6,11,13-tetraazahexadecane-1,16-diyl)-bis-, tetramethyl ester
129. Replacement nomenclature for functions is a method of describing the replacement of hydroxyl and oxo functional groups by nitrogen, chalcogens, halogens, or halogenoids such as isocyanato. The replacement may be carried out in substituent suffixes, e.g., -thioic acid from -oic acid; in substituent prefixes, e.g., carbonimidoyl (II 134) from carbonyl, and phosphinothioyl from phosphinyl (II 197); and in functional parent compounds (II 130), e.g., Phosphonimidodithioic acid from Phosphonic acid.

Replacement of hydroxyl in compounds and radicals is denoted by the following affixes (the final " o " is often elided): amido (for $-\mathrm{NH}_{2}$), azido (for $-\mathrm{N}_{3}$), chlorido (for - Cl) (and similarly for other halo atoms), cyanatido (for -OCN), hydrazido (for - NHNH_{2}), isocyanatido (for -NCO), (isothiocyanatido) (for NCS), and (thiocyanatido) (for -SCN). Seleno and telluro analogs are named analogously.

Replacement of oxo is denoted by the affixes hydrazono (for $=\mathrm{NNH}_{2}$), imido (for $=\mathrm{NH}$), thio (for $=\mathrm{S}$), etc. Replacement of a hydroxyl and an oxo together by $\equiv \mathrm{N}$ is denoted by nitrido. Peroxy acids are named by use of the affixes peroxo, (thioperoxo), and (dithioperoxo).

These affixes are combined, in alphabetical order, with the functional suffix of compound names based on molecular skeletons. The systematic names Benzenecarboxylic, Ethanoic, and Methanoic acids, not the trivial names Benzoic, Acetic, and Formic acids, are used as the parents for functional replacement nomenclature.

Examples:

$$
\mathrm{MeCS}_{2} \mathrm{H}
$$

Ethane(dithioic) acid (not Acetic acid, dithio-)
$\mathrm{PhC}(=\mathrm{NH}) \mathrm{OH}$
Benzenecarboximidic acid (the tautomeric Benzamide is preferred, except for esters and anhydrides; see II 122)

Benzenemethanesulfonohydrazonimidic acid (derived from the conjunctive name Benzenemethanesulfonic acid)

Ethane(dithioperoxoic) acid
In replacement names from phosphorus and arsenic functional parent compounds (II 197), all the affixes except hydrazono may be employed as part of the suffix. For Carbonic acid and its relatives (II 183) all but hydrazido and nitrido may be used.

Examples:

$\mathrm{ClP}(\mathrm{O})(\mathrm{OH})_{2}$	Phosphorochloridic acid
$\mathrm{MeAs}\left(\mathrm{NH}_{2}\right) \mathrm{OH}$	Arsonamidous acid, As-methyl-
$\mathrm{P}(\mathrm{S})\left(\mathrm{NH}_{2}\right)_{3}$	Phosphorothioic triamide
$(\mathrm{HO})_{2} \mathrm{C}=\mathrm{NNH}_{2}$	Carbonohydrazonic acid
$(\mathrm{HOO})_{2} \mathrm{CO}$	Carbonodiperoxoic acid

In replacement names from other mononuclear acids and from condensed nuclear acids (anhydrides), the affixes are used as nondetachable prefixes cited at the beginning of the heading parents. Because multiplicative prefixes are rarely used for thio and other chalcogen prefixes, ambiguity is resolved by synonym line formulas in the boldface index headings.

Examples:

$\mathrm{HO}_{2} \mathrm{CNHCO}_{2} \mathrm{H}$	Imidodicarbonic acid
	Selenosulfuric acid ($\mathrm{H}_{2} \mathrm{SO}_{3} \mathrm{Se}$)
	Thiodicarbonic acid([(HS)C(S)] $\left.{ }_{2} \mathbf{S}\right)$

Nondetachable prefixes are used in a few other cases.
Examples:

$\mathrm{ClSO}_{3} \mathrm{H}$	Chlorosulfuric acid
$\mathrm{S}(\mathrm{O})(=\mathrm{NH})\left(\mathrm{NH}_{2}\right)_{2}$	Imidosulfamide
$\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CS}$	Thiourea
$\mathrm{H}_{2} \mathrm{NSH}$	Thiohydroxylamine
AcOSAc	Thioperoxide, diacetyl
EtOSH	Thiohydroperoxide, O-ethyl

130. Substitutive nomenclature, in which hydrogen atoms are replaced by other atoms or chemical groups, is of paramount importance among nomenclature systems because of its versatility. Substitutive parent compounds, which are real or hypothetical compounds whose names imply the presence of replaceable hydrogen atoms, are of two kinds:
(a) Functional parent compounds have names which express a chemical function but are not based on a molecular skeleton. Substitutive examples include Arsonic acid, Imidodicarbonic acid, Carbamic acid and Phosphonamidic chloride. Their substituents are always expressed as prefixes, never as suffixes.
(b) Molecular-skeleton parent compounds are nonfunctional. They are chains or rings of atoms with only hydrogen atoms attached and possessing names which express or imply the substitutive valency and bonding of the skeletal atoms. (Methane and monoatomic hydrides of the Group IVA elements and the Group VA elements (except nitrogen) are treated as molecular skeletons.) Examples include Ethane, Distannane, Diazene, 3,6,9,12,15-Pentaoxaheptadecane, Cyclohexane, Morpholine, Phosphine, Stannane. They are transformed into index heading parents by appending, as a suffix, the substituent which represents the principal functional group of the compound; other substituents are expressed as prefixes.
131. Substituent suffixes of molecular-skeleton parent compounds are chosen to represent the principal chemical functional group (or groups) in accordance with the order of precedence of compound classes (II 106). When no suffix is available to represent the preferred compound class, either a substitutive functional parent compound ($(\mathbb{I} 130)$ is used as a heading parent, or another system of nomenclature, e.g., coordination or radicofunctional, is adopted.

Examples:

$\operatorname{EtP}(\mathrm{O})(\mathrm{OH})_{2}$	Phosphonic acid, ethyl-(Phospho- nic acid is a functional parent compound.)
PhSF_{3}	Sulfur, trifluorophenyl-, (T-4)- (a coordination name)
$\mathrm{F}_{3} \mathrm{COOCF}_{3}$	Peroxide, bis(trifluoromethyl) (a radicofunctional name)

The particular suffixes used for various classes of compounds in descending order of precedence from acids through imines (II 106) are described in the sections of this Guide dealing with these classes. Only one class may be expressed as a suffix in a single index heading parent; less preferred classes are denoted by prefixes. Multiplicative prefixes are employed to indicate the number of principal groups present.

Examples (in descending order of compound classes):

$\mathrm{CO}_{2} \mathrm{H}$ COCl

Benzoic acid, 2-(chlorocarbonyl)-
$\mathrm{EtCO}_{2} \mathrm{H}$

Propanoic acid

$\mathrm{MeCOCH}_{2} \mathrm{CSMe}_{5}$	2-Pentanone, 4-thioxo-
$\mathrm{HOSiMe}_{2} \mathrm{OSiMe}_{2} \mathrm{OH}$	1,3-Disiloxanediol, 1,1,3,3-tetra- methyl-
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$	Benzenemethanol, 2-hydroxy-
$\mathrm{CH}_{2} \mathrm{OH}$	Ethanamine

132. Substituent prefixes (commonly called "radicals") are employed to denote atoms and chemical groups attached to an index heading parent. The following substituents are never expressed as suffixes; they may be termed "compulsory" or "mandatory" prefixes: astato (At-), astatyl ($\mathrm{AtO}_{2^{-}}$), azido $\left(\mathrm{N}_{3}-\right)$, bromo (Br-), chloro (Cl-), chlorosyl (OCl-), chloryl ($\left.\mathrm{O}_{2} \mathrm{Cl}-\right)$, diazo $\left(\mathrm{N}_{2}-\right.$), fluoro (F-), iodo (I-), iodosyl (OI-), iodyl ($\mathrm{O}_{2} \mathrm{I}-$), isocyanato ($\mathrm{OCN}-$), isocyano $(\mathrm{CN}-)$, nitro $\left(\mathrm{O}_{2} \mathrm{~N}-\right)$, aci-nitro $((\mathrm{HO})(\mathrm{O}) \mathrm{N}=)$, nitroso ($\mathrm{ON}-$), perchloryl $\left(\mathrm{O}_{3} \mathrm{Cl}-\right)$. In addition, all thio, sulfinyl, and sulfonyl radicals, (RS-), (RS(O)-), and $\left(\mathrm{RS}(\mathrm{O})_{2^{-}}\right.$), and their seleno and telluro analogs, are mandatory substituent prefixes; so are hydrocarbon radicals and other radicals derived from molecular skeletons, e.g., ethyl, furanyl, disiloxanediyl, when attached to a more preferred heading parent.

Radicals may be simple, compound, or complex. A compound radical is made up of two or more simple radicals, e.g., (chlorothio), (diaminomethyl). A complex radical is composed of a simple radical to which at least one compound radical is attached; e.g., [(chloromethyl)amino], [1-(trichloromethyl)-2butenyl]. In these examples, amino and 2-butenyl are parent radicals, and methyl (in both cases) is a subsidiary radical. This procedure may be repeated indefinitely. (Chlorothio) is obtained by addition of the two components, (aminomethyl) by substitution of methyl by amino. Substitution is the preferred method when a substitutive simple radical is available; e.g., (aminomethylene) is $\left(\mathrm{NH}_{2} \mathrm{CH}=\right)$, not $\left(\mathrm{NH}_{2} \mathrm{CH}_{2}-\right)$. Substitution in certain radicals, including the following, is not permitted: hydroxy, mercapto, selenyl, telluryl, hydroperoxy, sulfeno, diazenyl, formyl, carboxy, sulfo, phosphono, and carbonothioyl.

Examples:

$\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}-$	(pentyloxy)	NOT (pentylhydroxy)
$\mathrm{PhN}=\mathrm{N}-$	(phenylazo)	NOT (phenyldiazenyl)
$\mathrm{ClCO}-$	(chlorocarbonyl)	NOT (chloroformyl)
$\mathrm{PhO}_{2} \mathrm{C}-$	(phenoxycarbonyl)	NOT (phenylcarboxy)

$(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O})-($ dimethoxyphosphinyl) NOT (dimethylphosphono)
MeOCS - (methoxythioxomethyl) NOT (methoxycarbonothioyl)
All compound radicals are enclosed in parentheses. Simple radicals are so enclosed when two locants of like type fall together; e.g., Benzoic acid, 3-(4-pyridinyl)-; for clarity, when one locant has been omitted in the name of an indefinite compound; e.g., 1,2-Propanediol, 3-(thienyl)-; and when "bis" or "tris" has been employed to remove ambiguity (see II 110); e.g., tris(decyl), bis(benzanthracenyl), bis(azepinyl). Brackets are used in complex radicals, e.g., [2-(dimethylamino)ethoxy]. Spaces in a name often permit the dropping of one set of enclosing marks around radicals in substituents and modifications; e.g., Disulfide, 2-chloroethyl ethyl; Propanoic acid, 2-ethylbutyl ester.
133. Compound radicals. Selection of names for compound radicals is usually simple, but, when chain branching is present, can sometimes become perplexing. The following rules are successively applied; ((a) through (e) lead to selection of the preferred parent radical, (f) through (h) to a particular occurrence of this radical).
(a) Greatest number of acyclic hetero atoms.
(b) Greatest number of skeletal atoms.
(c) Greatest number of most preferred acyclic hetero atoms (see Table I, II 128).
(d) Greatest number of multiple bonds.
(e) Lowest locants in the simple radical for replacement atoms in "a" names, then for multiple bonds of any kind, and finally for double bonds.
(f) Greatest number of substituents attached to the simple radical.
(g) Lowest locants for such substituents.
(h) Earliest index position of the total radical as it appears within the index name.

Examples (the italic letters on the left indicate the particular rule (above) that is exemplified):
(a)

(10-propyl-3,6,9,11-tetraoxadodec-1-yl)
$\underset{1}{\mathrm{MeC}} \underset{2}{\mathrm{C}} \mathrm{HMeSO}_{3} \mathrm{H}$
2-Propanesulfonic acid
(a)

(b)

(b)

(b)

(b)

(b)

(b)

 phenyl)carbonyl])
(b)

[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl]-5'-yl
(c)

$\mathrm{H}_{3} \mathrm{Si}-\mathrm{O}-\mathrm{SiH}-$
[1-(silylthio)disiloxanyl]
(c)

(d)

(d)
[1-(1-hexen-3-ynyl)-3,5-heptadienyl]
(double bonds are preferred over
an equal number of triple bonds)
(e)

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{SiH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \\
{ }_{11}^{\mathrm{CH}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{O}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH} \\
7
\end{gathered}
$$

(e)

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH} \\
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{7}-\mathrm{CH}=\mathrm{C}_{5}^{\mathrm{CH}}-\mathrm{C} \equiv \underset{3}{\mathrm{C}}-\underset{2}{\mathrm{CH}}-\mathrm{CH}_{2}-
\end{gathered}
$$

2-(1-hepten-4-ynyl)-5-nonen-3-ynyl]

$$
\begin{aligned}
\mathrm{CH}_{2} & =\mathrm{CH}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \\
\underset{6}{\mathrm{HC}} \equiv \underset{5}{\mathrm{C}}-\mathrm{CH} & =\mathrm{CH}-\mathrm{C}_{2} \mathrm{C}_{2}-\mathrm{CH}
\end{aligned}
$$

(f)

1-(4-penten-2-ynyl)-3-hexen-5ynyl]
(f)

(g)

(g)

(h)

(1-acetyl-2-methylpropyl)(not[1- (1-
methylethyl)-2-oxopropyl])
134. Carbonyl radicals which form part of a carbon chain are expressed by oxo substituents on the chain; the only exceptions are carboxy $(-\mathrm{C}(\mathrm{O}) \mathrm{OH})$ and acetyl $\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$ radicals. The latter is used whenever (1-oxoethy) would otherwise be called for. All chalcogen, imido and hydrazono analogs of carbonyl in a chain are treated similarly by use of thioxo, selenoxo, telluroxo, imido, and hydrazono radicals, except for chalcogen analogs (but not imido, etc., analogs) of carboxy; e.g., (HS(S)C-) is named (dithiocarboxy). Replacement analogs of acetyl are named (1-iminoethyl), (1-thioxoethyl),etc. Acyl radical names other than acetyl and benzoyl, e.g., propanoyl, are not used for substituents; neither are amido radicals, e.g., acetamido.

Examples:

$\mathrm{HO}_{2} \mathrm{CCH}_{2}-$	(carboxymethyl)
$\mathrm{HCOCH}_{2}-$	(2-oxoethyl)(not (formylmethyl))
EtCO-	(1-oxopropyl)
ClCOCH_{2}	(2-chloro-2-oxoethyl)
$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}-$	(aminoacetyl)(glycyl is permitted in peptide nomenclature)
ClCOCO-	(chlorooxoacetyl)
AcNH-	(acetylamino)
EtCONH-	[(1-oxopropyl)amino]
$\underset{4}{\mathrm{PhC}(=\mathrm{NH})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CSS}_{1}-}$	(4-imino-4-phenyl-1-thioxobutyl)
$\mathrm{MeC}(=\mathrm{NH}) \mathrm{NH}-$	[(1-iminoethyl)amino]

Isolated carbonyl radicals, other than carboxy, are expressed as carbonyl (as a doubling radical, or when both free valencies are attached to a single atom), formyl (if unsubstituted), benzoyl (if attached to a phenyl group which is not itself attached to another phenyl), or as a compound radical in which carbonyl is the parent.

Examples:

$\mathrm{HO}_{2} \mathrm{CCO}-$	(carboxycarbonyl)
(aminocarbonyl)(not carbamoyl)	
(chlorocarbonyl)(not chloroformyl)	
$\mathrm{ClCO}-$	(carbonyldiimino)
(4-formylbenzoyl)	
(3-carbonylcyclohexyl)	

Replacement analogs of isolated carbonyl groups (other than chalcogen analogs of carboxy) are named as thioxo, imino, etc., derivatives of methyl, unless both free valencies are attached to a single atom, or the radical is being used multiplicatively (II 125), in which case carbonimidoyl, carbonohydrazonoyl, carbonothioyl, etc., are employed.

Examples:

[(dithiocarboxy)amino]	
$\mathrm{HOC}(=\mathrm{NH})-$	(4ydroxyiminomethyl)
$\mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH}) \mathrm{NH}-$	[(aminoxomethyl)benzoyl]
$\mathrm{HN}=\mathrm{C}=\mathrm{N}-$	(carbonimidoylamino)

135. Indicated hydrogen is a designation comprising a locant followed immediately by an italic capital H placed before a ring system name to express the position of each of the saturated atoms necessary for formation of a definable, stable ring system. Thus, Pyrrole always has one saturated atom (an atom not connected to either of its neighbors by a double bond) and, according to the position of this atom, the compound is named as follows:

In the Chemical Substance Index only a single illustrative structural diagram is provided for each ring system, viz., the diagram which shows the saturated center(s) in the lowest-numbered nonangular position(s).

Tetrahydropyrrole has the trivial name Pyrrolidine: dihydropyrroles are named as derivatives of that pyrrole which has indicated hydrogen at the lowest numbered position consistent with the structure. Other monocyclic hetero systems are named in the same way. Hydrogen on a single ring atom between two bivalent hetero atoms is not indicated in the name.

Examples:

1H-Pyrrole, 2,5-dihydro- (not 2 H -Pyrrole, 1,5-dihydro-)

2H-Pyran, tetrahydro- (not 4HPyran, tetrahydro-)

The lowest locants for nonangular positions of fused ring systems are normally cited for indicated hydrogen.

Example:

4H-Indene, 3a,5-dihydro- (not 3a H -Indene, 4,5-dihydro- or 5H-Indene, 3a,4-dihydro-)

Indicated hydrogen is assigned to angular or nonangular positions when needed to accommodate structural features, e.g., a bridge, spiro junction or ring-assembly junction, if that form of the ring system can exist.

Examples:

3a,6-Methano-3a H-indole, 1,4,5,6-tetrahydro-

Spiro $[7 H$-benz $[d e]$ anthracene-7,1'-cyclohexane], 4,5,6,6a-tetrahydro-

2,2'-Bi-2H-indazole, $1,1^{\prime}, 3,3^{\prime}$ -tetrahydro-

When a bridge requires hydrogen to be added, but indicated hydrogen of the parent system cannot be used for that purpose, the lowest locant, or a locant to accommodate a principal function, is chosen for the parent ring, and additional indicated hydrogen is cited in the name ahead of the bridge designation.

Example:
4H-3a,6-Methano-3H-1,2-benzoxathiole, tetrahydro- ($3 \mathrm{a} \mathrm{H}-1,2-$
 Benzoxathiole cannot exist; the lowest available locant is therefore cited and the "extra" hydrogen for the bridge cited as additional indicated hydrogen, not in the "added" hydrogen form (see below), $3 \mathrm{a}(4 H), 6-$ Methano....)

After structural requirements have been met, indicated hydrogen is chosen to accommodate principal functions or (in a cyclic radical) free valencies, so long as the number of indicated hydrogens cited equals or exceeds the number of principal groups or free valencies that must be accommodated. For the usual case of a ring which requires a single indicated hydrogen for its existence, a single principal function or free valency is accommodated, but a polyfunctional
compound is named at the ring system with lowest nonangular indicated hydrogen. (Functions on bridges are disregarded in applying this rule.) Examples:

2H-1-Benzopyran-4,5,8(3H)-trione, 6,7-dihydro- (not $4 H$-1-Benzo-pyran-4,5,8-trione, 2,3,6,7-tetra-hydro-)
136. Added hydrogen is hydrogen which is added to a ring system in the same operation as, but in a position different from, hydrogen added to accommodate structural features of a ring system, e.g., bridges, or spiro or ring-assembly junctions, or principal groups of a heading parent, or free valencies of a parent radical, when indicated hydrogen (II 135) is either not needed for the ring system itself or cannot be chosen to accommodate them. It differs from indicated hydrogen in being expressed as a locant and capital italic H in parentheses immediately following the locant for the principal function or other accommodated structural feature, e.g., " $2(1 H)$-." Use of added hydrogen permits expression of a principal function, etc., in a heading parent instead of as a substituent. Thus, 1-Naphthalenone cannot exist without partial hydrogenation of the naphthalene ring system; a name such as Naphthalene, 1,2-dihy-dro-1-0xo- violates the rule that the principal function be expressed as a suffix. Therefore, two hydrogen atoms are added in one operation to provide the name $\mathbf{1}(\mathbf{2 H})$-Naphthalenone, in which the "added" (or "extra") hydrogen is at the 2position.

When principal functions or free valencies require added hydrogen, it is assigned to the lowest-numbered available angular or nonangular position; e.g., 1(2H)-Naphthalenone, 3,4-dihydro- (not 1(4H)-Naphthalenone, 2,3-dihydro-); 2(4a H)-Naphthalenone, 5,6,7,8-tetrahydro-. When the ring system requires indicated hydrogen and it cannot be assigned to accommodate a principal group or free radical, it has preference over added hydrogen for lowest locants. When a pair of principal groups, e.g., "-dione," are expressed by a heading parent, added hydrogen is not cited unless necessary, it being understood that only sufficient hydrogen has been added to accommodate the functions.

Examples:

$4 \mathrm{a}(2 \mathrm{H})$-Naphthalenecarboxylic acid, $1,3,4,5$-tetrahydro(a $4 \mathrm{a}(1 \mathrm{H})$-isomer cannot exist)

1 H -Benz[e]indene-1,2(3 H)-dione (not 3 H -Benz[e]indene-1,2-dione) (low numbering of indicated hydrogen is observed, even if added hydrogen must then be cited)
(2,3-dihydro-1,4-pyrazinediyl) (not (1,4(2H,3H)-pyrazinediyl))

Added hydrogen cited when hydrogen is required elsewhere for spiro and ring-assembly junctions is assigned (in descending order of preference) (a) to accommodate another spiro or ring-assembly junction, (b) to accommodate principal groups or free valencies, or (c) to lowest-numbered available positions.
137. Numbering of molecular skeletons. Lowest locants for a set of principal groups, substituents, etc., are always preferred. The set, e.g., 5,6,1,2,1 is compared with another (alternative) set, e.g., 1,2,5,6,5, by rearranging them both in ascending numerical sequence: $1,1,2,5,6$ and $1,2,5,5,6$. The set which contains the lowest locant at the first point of difference when all sets are compared term by term is the lowest, i.e., $1,1,2,5,6$ is lower than $1,2,5,5,6$.

Example:

Naphthalene, 5-bromo-6-chloro-1,2-dihydro-1-nitro- (not Naphthalene, 1 -bromo-2-chloro-5,6-dihy-dro-5-nitro-)

Lowest locants for various kinds of structural features in cyclic and acyclic molecular skeletons are assigned, in order, to:
(a) hetero atoms (except for "a"-named radicals, see TIII 127, 161);
(b) indicated hydrogen;
(c) principal groups or (for radicals) free valencies;
(d) multiple bonds;
(e) substituent prefixes;
(f) the substituent prefix cited earliest in the name.

Examples

138. Index name selection. Most organic compounds have names based on molecular skeletons, e.g., Propanoic acid (from propane); 1,3-Dioxan-2amine (from 1,3-dioxane). Procedures for selecting the preferred name of this kind for index use are described in this section (see also II 105).

Selection of a heading parent name based on a molecular skeleton is made by successive application of the following principles until a decision is reached.
(a) Greatest number of the principal chemical functional group.
(b) Preferred atomic content of the molecular skeleton in accordance with the order of precedence of compound classes (II 106). The heading parent should express at least one occurrence of an atom appearing earliest in the following list: N, P, As, $\mathrm{Sb}, \mathrm{Bi}, \mathrm{B}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}$. (This principle is used to decide between a cyclic and an acyclic parent, but is not applied to choices between ring systems. When acyclic and cyclic skeletons of the same compound class are present, a cyclic parent is preferred.)
(c) Preferred ring system. The choice between ring systems for use as heading parents is based on the following criteria, applied successively until a decision is reached. The senior ring system should:
(1) be a nitrogenous heterocycle;
(2) be a heterocycle;
(3) contain the largest number of rings;
(4) be a cyclic system occurring earliest in the following list of systems; spiro, bridged fused, bridged nonfused (Von Baeyer), fused;
(5) contain the largest individual ring (applies to fused carbocyclic systems);
(6) contain the greatest number of ring atoms;
(7) contain the greater number of ring atoms common to two or more rings (applies to Von Baeyer ring systems); thus

(8) contain lowest locants for bridges;
(9) contain the largest number of hetero atoms;
(10) contain the most preferred hetero atom other than nitrogen, according to the order in Table I, \mathbb{I} 128, i.e., $\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}, \mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}$, Pb, B.
(11) possess the most linear arrangement of rings (thus, Anthracene is senior to Phenanthrene);
(12) possess the lowest locants for hetero atoms assigned according to the rules (IIII 146, 152);
(13) express the lowest state of hydrogenation; thus, Benzene is preferred over Cyclohexane, Pyridine over Piperidine;
(14) express the lowest locant for indicated hydrogen.

Note: These criteria differ from those employed in selecting base components for fused systems (II 150).
(d) Greatest number of acyclic hetero atoms.
(e) Largest index heading parent.
(f) Greatest number of most preferred acyclic hetero atoms, according to the order of precedence in $\mathbb{I} 128$, above; i.e., $\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}, \mathrm{N}, \mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$, $\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{B}$.
(g) Greatest number of multiple bonds.
(h) Lowest locants in the heading parent successively for hetero atoms, principal groups (suffixes), all multiple bonds, double bonds.

If the preferred heading parent occurs more than once in the total compound, further principles must be applied, as follows:
(i) Centrality. For three or more occurrences of the heading parent, at least one of which must be nonterminal, the basis of the name is the central occurrence (or one of the central pair-both, when multiplicative nomenclature is permitted-if the total number is even) in the linear arrangement which comprises all or part of the maximum number of occurrences.
(j) Maximum number of substituent prefixes.
(k) Lowest locants for substituents on the heading parent.
(l) Multiplication of heading parents; when there is a choice of multiplicative names, that one is chosen which multiplies the largest number of occurrences of the index heading parent.
(m) Earliest index position of the total name.

Examples (the italic letters on the left indicate the particular rules (above) that are exemplified):
(a)

1,3-Butanediol, 2-pentyl-
(a)
$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{CH}_{2} \mathrm{COH}$
Butanedioic acid, (4-carboxy-phenyl)-
(b)

Hydrazinecarboxylic acid, 2-(4-carboxyphenyl)-
(b)

(b) $\mathrm{PhN}=\mathrm{NH}$
(b)

(b)

Disilane, 2-furanyl-

Diazene, phenyl- (not Benzenamine, N -imino-) (homogeneous hetero chains are never broken to obtain a higher function or more preferred parent)

Benzeneacetic acid, α-heptyl(not Nonanoic acid, 2-phenyl-)

2-Pyridinecarboxylic acid, 5-(2-carboxyhydrazino)- (the number of preferred hetero atoms in the cyclic and acyclic chains is disregarded)
(b)

2,5,8-Trioxa-11,12-diazapentadecane, 9-(2-ethoxyethoxy)-
(c)

3-Quinolinol, 2-(1,2-dihydro-2-hydroxy-5-pyrimidinyl)-
(d)

2,4,6,8,10-Pentaoxaundecane, 3-propyl-
(e)

Benzenenonanal, 4-formyl- (not
Benzaldehyde, 4-(9-oxononyl)-)
(e)

3-Nonene-1,9-diol, 5-(3-hydroxy-1-propenyl)-(not 2,5-Octadiene-1,8-diol, 5-(4-hydroxybutyl-)
(e)

Hexane, 3-methylene- (not 1-Pentene, 2-ethyl-)
(e)
(
(f)
$\mathrm{H}_{3} \mathrm{Si}_{3} \underset{2}{ } \mathrm{OSiH}_{2} \mathrm{SiH}_{2} \mathrm{SSiH}_{3}$
Disiloxane, disilathianyl-
(g)

1,3-Butadiene, 2-methyl-
(g)

2,7-Nonadiene-1,9-diol, 5-(4-hy-droxy-1-butynyl)- (double bonds are preferred over an equal number of triple bonds)

2,5,7,9-Tetraoxadodecan-12-oic acid, 4-ethoxy- (not 3,5,7,9-Tet-raoxadodecan-12-oic acid, 4-(methoxymethyl)-

1,7-Octanediol, 5-(3-hydroxy-propyl)- (not 1,8-Octanediol, 4-(2-hydroxypropyl)-)
(h)
(i)

Benzene, 1,4-bis(phenylmethyl)-

Ethane, 1-(2-chloroethoxy)-2-(2,2-dichloroethoxy)-
(i)

1,4-Benzenediamine, N, N-bis(4aminophenyl) $-N^{\prime}$-[4-[(4-amino-phenyl)amino]phenyl]-
(i,j)
(i,l)

Benzene, 1,1'-methylenebis[4-[(4-chlorophenyl)methyl]-
(i,l)

Benzene, $1, \mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}$-methylidyne-tris[4-(phenylmethyl)- (when multiplication of the heading parent is permitted, occurrences directly attached to the central connecting radical are included in the same operation if possible)
(j)

Benzenepropanoic acid, 4-amino-β-phenyl-
(j)

Propanoic acid, 3,3,3-trichloro-2-methyl-2-(trichloromethyl)(not Propanoic acid, 2,2-bis(trichloromethyl)-) (like treatment of like groups is discontinued (II 255))
(k)

Benzenamine, 2-methyl- N -(4-methylphenyl)-
(k)

Benzoic acid, 3-(4-carboxy-2-chlorophenoxy)-2-chloro-
(l)

Benzene, 1,1'-[(phenylmethyl-ene)bis(oxymethylene)]bis(note that all occurrences of benzene are terminal and that the principle of centrality is therefore not applicable)
(l,m)

Benzene, 1,1', $1^{\prime \prime}$-[[[diphenyl(triphenylmethoxy)methyl] thio]methylidyne]tris- (not Benzene, 1, 1', $1^{\prime \prime}$-[[diphe-nyl[(triphenylmethyl)thio]meth-oxy]methyldynetris-)
(m)

Propanoic acid, 2,3,3,3-tetrafluo-ro- 2-(trichloromethyl)- (not Propanoic acid, 3,3,3-trichloro-2-fluoro-2-(trifluoromethyl)-)
(m)

Cyclohexanone, 2-[2-(2-oxocyclo-hexyl)ethylidene]- (not Cyclohexanone, 2-[2-(2-oxocyclo-hexylidene)ethyl]-)
139. Subtractive nomenclature employs the suffixes "-ene" and "-yne" to signify removal of hydrogen pairs from saturated molecular skeletons; removal of hydrogen atoms from an aromatic system is denoted by "dehydro."

Examples:

Bicyclo[2.2.1]hepta-2,5-diene

Pyridine, 2,3-didehydro- (not Pyridyne)

Functional class names such as "anhydride," "ester," "oxime," imply loss of water and may strictly be regarded as subtractive terms. Prefixes such as "deoxy," "nor," and "anhydro," are sometimes employed in names for classes of stereoparents (see Section E), but never in general index nomenclature.

B. MOLECULAR SKELETONS

Introduction	II 140
Acyclic hydrocarbons	141
Organic hetero chains	142
Homogeneous hetero chains	143
Heterogeneous hetero chains	144
Monocyclic hydrocarbons	145
Monocyclic hetero systems	147
Polycyclic systems	148
Fundamentas fused carbocycles	149
Fundamental fused heterocycles	150
Selection of a base component	151
Index names for fused systems	152

140. Introduction. A molecular skeleton is defined for purposes of name selection as a chain or ring of atoms in which the number of hydrogen atoms attached to each skeletal atom is (usually) implied or (occasionally) explicitly stated by citation of the substitutive valency and bonding of the skeletal atoms. Monoatomic hydrides of Group IVA and VA elements (except nitrogen) are also treated as molecular skeletons; so are boron hydrides, but because of their unusual nature these are discussed separately (II 159).

Examples:

CH_{4}	Methane
AsH_{5}	Arsorane
$\mathrm{H}_{3} \mathrm{SiOSiH}_{2} \mathrm{OSiH}_{2}$	Trisiloxane
$\mathrm{H}_{3} \mathrm{SnSnH}_{3}$	Distannane
$\underset{14}{\mathrm{CH}_{3}-\mathrm{CH}_{13}-\mathrm{OO}_{12}-\mathrm{CH}_{2}-\mathrm{C}}$	$\underset{6}{-\mathrm{O}} \underset{5}{-\mathrm{C}} \mathrm{CH}_{2}-\underset{4}{\mathrm{CH}}$

3,6,9,12-Tetraoxatetradecane

Benzene

Pyrrolidine

Bicyclo[2.2.1]hept-2-ene

$7 \lambda^{4}-[1,2]$ Dithiolo $[1,5-b][1,2]$ dithiole

Molecular skeletons are nonfunctional substitutive parent compounds. Substituents denoting a preferred compound class are generally cited as suffixes and other substituents as prefixes. Molecular skeletons, alone or in combination with a substituent suffix, are index heading parents.

This part of the manual deals with the formation of index names for structures that consist solely of one or more molecular skeletons.
141. Acyclic hydrocarbons. Saturated unbranched alkanes containing one through four carbon atoms are named Methane, Ethane, Propane, and Butane. Higher members of the class are named by adding the termination "-ane" to the appropriate multiplicative term, as, Nonane for $\mathrm{C}_{9} \mathrm{H}_{20}$, Hexadecane for $\mathrm{C}_{16} \mathrm{H}_{34}$, Eicosane for $\mathrm{C}_{20} \mathrm{H}_{42}$, Heneicosane for $\mathrm{C}_{21} \mathrm{H}_{44}$, and Tritriacontane for $\mathrm{C}_{33} \mathrm{H}_{68}$.

Unsaturated unbranched acyclic hydrocarbons (unbranched alkenes, alkadienes, alkynes, etc.) are named by replacing the ending "-ane" by "-ene" (for a single double bond), "-adiene" for two double bonds, "-yne" for a single triple bond, etc. Combinations, e.g., "-enyne," "-trienediyne," are employed when both bond types are present. Low numbering (II 137) is employed for the

Replacement ("a") nomenclature for fused systems	II 153
Bridged fused systems	154
Von Baeyer nomenclature	155
Spiro systems	156
Ring assemblies	157
Hetero atoms with abnormal valencies	158
Boron molecular skeletons	159
"Hetero" polyboranes	160
Substituent prefixes from molecular skeletons	161
Compound and complex radicals	162
Molecular skeletons as index heading parents	163
Fullerenes	163 A

set of multiple bonds; when there is a choice, double bonds are preferred over triple bonds. When principal groups (functional suffixes) are present, these and not the multiple bonds are preferred for low numbering.

Examples:
$\mathrm{MeCH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \quad$ 1,4-Hexadiene (not 2,5-Hexadiene)

$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$	1,2-Propadiene
$\underset{\sigma}{\mathrm{MeCH}}{ }_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \underset{l}{\mathrm{Me}}$	3-Hexyne
$\underset{1}{\mathrm{HC}} \equiv \mathrm{CC} \equiv \underset{4}{\mathrm{CH}}$	1,3-Butadiyne
$\underset{5}{\mathrm{HC}} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{1}$	1-Penten-4-yne
$\mathrm{MeCH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C} \equiv \underset{l}{\mathrm{CH}}$	6-Octen-1-yne (not 2-Octen-7-yne)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{OH}$	2-Propen-1-ol (not 1-Propen-3-ol)

142. Organic hetero chains containing at least four hetero units (II 127) are given "a" names, i.e., replacement names based on the hydrocarbon skeleton by use of "oxa," "thia," etc., prefixes. Lowest locants (II 137) are assigned to all hetero atoms regardless of type and then to preferred hetero atoms (Table I, II 128). These locants are not affected by the presence of a principal chemical group. Unsaturation is indicated as for the hydrocarbon chain, with lowest locants compatible with the low numbering of the hetero atoms.

Examples:

	2,5,8,11-Tetraoxatridecane
$\underset{1}{\mathrm{CH}_{3}}-\underset{2}{\mathrm{O}}-\underset{3}{\mathrm{SiH}_{2}}-\underset{4}{\mathrm{CH}_{2}}-\underset{5}{\mathrm{C}} \mathrm{H}_{2}-{\underset{6}{-S i H_{2}}-\underset{7}{\mathrm{~S}}-\mathrm{CH}_{3}}^{\mathrm{CH}_{3}}$	
	2-Oxa-7-thia-3,6-disilaoctane (not 7-Oxa-2-thia-3,6-disilaoctane)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{SiH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SiH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SiH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SiH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$	
	8309010
	3,6,9,12-Tetrasilatetradecane
$\underset{14}{\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{12}}\left[\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right]_{3}{ }_{2}^{\mathrm{OMe}}$	2,5,8,11-Tetraoxatetradec-13-ene
$\underset{14}{\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}(\mathrm{OCH}=\mathrm{CH})_{3} \mathrm{OCH}=\mathrm{CH}_{3}}$	3,6,9,12-Tetraoxatetradeca- 1,4,7,10,13-pentaene

143. Homogeneous hetero chains are considered to include the mononuclear hydrides Phosphine $\left(\mathrm{PH}_{3}\right)$, Phosphorane $\left(\mathrm{PH}_{5}\right)$, Arsine $\left(\mathrm{AsH}_{3}\right)$, Arsorane $\left(\mathrm{AsH}_{5}\right)$, Stibine $\left(\mathrm{SbH}_{3}\right)$, Bismuthine $\left(\mathrm{BiH}_{3}\right)$, Silane $\left(\mathrm{SiH}_{4}\right)$, Germane $\left(\mathrm{GeH}_{4}\right)$, Stannane $\left(\mathrm{SnH}_{4}\right)$, and Plumbane $\left(\mathrm{PbH}_{4}\right)$. Chains composed of two or more of these hydride residues are named by prefixing the hydride name with "Di," "Tri," etc.

Examples:

$\mathrm{H}_{2} \mathrm{BiBiH}_{2}$	Dibismuthine
$\mathrm{H}_{4} \mathrm{PPH}_{4}$	Diphosphorane
$\mathrm{H}_{3} \mathrm{SnSnH}_{2} \mathrm{SnH}_{3}$	Tristannane

$\mathrm{H}_{3} \mathrm{Si}\left(\mathrm{SiH}_{2}\right)_{3} \mathrm{SiH}_{3}$

Pentasilane

Saturated nitrogen chains are named Hydrazine (not Diazane) for $\mathrm{H}_{2} \mathrm{NNH}_{2}$, Triazane for $\mathrm{H}_{2} \mathrm{NNHNH}_{2}$, Tetrazane for $\mathrm{H}_{2} \mathrm{NNHNHNH}_{2}$, etc.
Unsaturation is denoted by use of the subtractive suffixes "-ene" and "-yne." Locants are employed as for hydrocarbon chains (IIII 114, 141).

Examples:

$\mathrm{HAs}=\mathrm{AsH}$	Diarsene
$\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}$	Disilene
$\mathrm{H}_{2} \mathrm{NN}=\mathrm{NNH}_{2}$	2-Tetrazene
$\mathrm{HN}=\mathrm{NN}=\mathrm{NH}$	1,3-Tetrazadiene

144. Heterogeneous hetero chains in which any one of the Group IVA elements (silicon, germanium, tin, or lead) alternates with chalcogen are given "oxane," "thiane," etc. names.

Examples:

$\underset{123}{\mathrm{H}_{3} \mathrm{SiOSiH}_{2} \mathrm{OSiH}_{3}}$	Trisiloxane
$\underset{1}{\mathrm{H}_{3} \mathrm{GeSeGeH}_{3}}$	Digermaselenane
$\underset{1}{\mathrm{H}_{3} \mathrm{SnSSnH}_{2}} \mathrm{Sn}_{5} \mathrm{SSnH}_{3}$	Tristannathiane

Chains of alternating atoms of a Group IVA element and nitrogen, e.g., $\mathrm{SiH}_{3} \mathrm{NHSiH}_{3}, \mathrm{SnH}_{3} \mathrm{NHSnH}_{3}$, are not named Disilazane, Distannazane, etc. Instead, the amine function is recognized; thus, Disilazane is indexed at Silanamine, N-silyl-. However, substituent radicals derived from such heterogeneous chains containing nitrogen, e.g., disilazanyl for $\mathrm{SiH}_{3} \mathrm{NHSiH}_{2}$, are employed in the presence of higher functions (see G[161).
"A" names for hetero chains are avoided unless carbon substituents can be included in the chain. Otherwise the preferred parent is a homogeneous hetero chain, hydride, or element name.

Examples:

$\mathrm{H}_{3} \mathrm{GeOSiH}_{2} \mathrm{SPbH}_{3}$	Silane, (germyloxy)(plumbylthio)-
$\mathrm{H}_{3} \mathrm{GeOOPbH}_{2} \underset{2}{\mathrm{GeO}_{2}} \underset{4}{\mathrm{SeMe}}$	2-Oxa-4-selena-1-germa-3plumbapentane

145. Monocyclic hydrocarbons (cycloalkanes, cycloalkenes, etc.) are named by attaching the prefix "cyclo" to the name of the acyclic hydrocarbon with the same number of carbon atoms. Unsaturation is expressed by use of "-ene" and "-yne" in place of "-ane" as for the acyclic analogs. No locant is employed for a single multiple bond; lowest locants (II 137) are cited when two or more multiple bonds are present. The trivial name Benzene is used for 1,3,5Cyclohexatriene.

Examples:

1,3-Cyclopentadiene

Cyclohexene

1,3-Cyclohexadien-5-yne (not Benzyne)
146. Monocyclic hetero systems.
(a) Rings of three through ten members containing nonmetallic hetero atoms (except silicon) are named systematically by the (extended) HantzschWidman system or at trivial names. Table II supplies the stems for the systematic names, which are completed by adding replacement prefixes for the hetero atoms in the order set out in Table I, ๆI128, e.g., oxa, thia, aza, together with locants and multiplicative prefixes denoting the position and number of each. A locant for a single hetero atom is not cited. The preferred hetero atom is numbered "1." This means the set of locants may not be the lowest possible, as defined in ๆI137. The letter "a" of replacement prefixes is elided before another vowel in Hantzsch-Widman names; e.g., Dioxazole, not Dioxaazole.

Examples: remaining hetero atoms.) (The " $2 H$ " signifies indicated hydrogen (see I[135)).

HANTZSCH-WIDMAN STEMS FOR MONOCYCLIC HETERO

 SYSTEMS OF THREE THROUGH TEN MEMBERS ${ }^{1}$No. of
members in
the ring
3
4
4
5
6
7

Cyclohexane

1,2-Oxathiolane (all locants are placed ahead of the name; cf. T[146(c), below)

2H-1,5,2-Dithiazine (not $1 \mathrm{H}-2,4,1-$ Dithiazine; not $6 \mathrm{H}-1,3,6$-Dithiazine; not $4 H-1,5,4$-Dithiazine) (The numbering must begin with a sulfur atom and proceed in the direction that gives lowest numbers to the

Oxirene

Phosphorin

Oxazole (not 1,3-Oxazole, because the 1,2 -isomer has the trivial name Isoxazole)

Aziridine

Rings containing no nitrogen

Unsaturated 2	Saturated -irene
-irane	
-ete	-etane
-ole	-olane
-in 3	-ane,
-epin	-epane
-ocin	-ocane
-onin	-onane
-ecin	-ecane

[^1][^2]Table II indicates those cases in which special endings are employed for fully saturated monocyclic hetero systems: e.g., Azetidine, not Azete, tetrahydro-. Special names for partially saturated ring systems are discontinued.

Example:

Azete, 1,2-dihydro- (not 2-Azetine)

Certain five- and six-membered monocyclic hetero systems, both saturated and unsaturated, are indexed at trivial names. These names are set out in Table III in the order of the corresponding Hantzsch-Widman names, which are not used for indexing. Fully hydrogenated five-membered rings are given "-olidine" names, as for systematically named systems. Special names for partially hydrogenated five-membered rings e.g., 2-Pyrroline, were discontinued in 1972; they are now named as dihydro derivatives of the fully unsaturated rings. Indicated hydrogen (see 9135) is necessary in some rings to describe the location of the saturated skeletal atom, e.g., $\mathbf{1 H}$-Pyrrole, $\mathbf{2 H}$-Pyrrole, $\mathbf{3} \mathrm{H}$-Pyrrole. Presence of a triple bond in addition to the maximum number of noncumulative double bonds is expressed by the subtractive prefix "didehydro."

Example:

Pyridine, 2,3-didehydro-

TABLE III

MONOCYCLIC HETERO SYSTEMS WITH TRIVIAL NAMES

Hantzsch-Widman name	Index name
Azine	Pyridine
Azine, hexahydro-	Piperidine
Azole	Pyrrole ($1 \mathrm{H}-, 2 \mathrm{H}-$, or $\mathbf{3 H -}$)
Azolidine	Pyrrolidine
1,2-Diazine	Pyridazine
1,3-Diazine	Pyrimidine
1,4-Diazine	Pyrazine
1,4-Diazine, hexahydro-	Piperazine
1,2-Diazole	Pyrazole ($1 \mathrm{H}-\mathbf{3} \mathbf{3 H -}$, or $4 \mathrm{H}-$)
1,3-Diazole	Imidazole ($1 \mathrm{H}-2 \mathrm{2H}$-, or 4 H -)
1,2-Diazolidine	Pyrazolidine
1,3-Diazolidine	Imidazolidine
$2 \mathrm{H}-1,4$-Oxazine, tetrahydro-	Morpholine
1,2-Oxazole	Isoxazole
Oxin	Pyran (2 H - or $\mathbf{4 H -}$)
Oxole	Furan
1,2-Selenazole	Isoselenazole
Selenole	Selenophene
Tellurole	Tellurophene
$2 \mathrm{H}-1,4$-Thiazine, tetrahydro-	Thiomorpholine
1,2-Thiazole	Isothiazole
Thiole	Thiophene
1,3,5,2,4,6-Triazatriborine, hexahydro-	Borazine
1,3,5,2,4,6-Trioxatriborinane	Boroxin
1,3,5,2,4,6-Trithiatriborinane	Borthiin

(b) Rings of three through ten members containing antimony, tin, lead, germanium or bismuth atoms in addition to carbon atoms are indexed at Hantzsch-Widman names. Partially saturated and fully saturated six-membered ring systems of this type containing germanium, lead or tin are named on the basis of the unsaturated rings. Heterocycles containing metallic atoms other than the above five are indexed by coordination nomenclature (II 215).

Examples:

4H-1,3,2-Dioxastannin, dihydro-

Oxatetragermolane

(c) Rings of more than ten members not containing silicon atoms are indexed at organic replacement ("a") names. Unsaturation is indicated by "-ene" and "-yne" suffixes.

Examples:

Azacycloundecane

1,3,5,7,9,11-Hexaaza-2,4,6,8,10,12hexaphosphacyclododecane

1,6-Dioxacyclododec-3-yne

(d) Rings containing silicon in general are indexed at replacement ("a") names based on the cyclic hydrocarbons. Systems comprising only silicon atoms or silicon atoms alternating with nitrogen or one of the chalcogens are given "Cyclosila-" names.

Examples:

Silacyclopropane

1,2,4-Triaza-3-silacyclopent-2-ene

Silabenzene

Cyclopentasilane

$$
\mathrm{H}_{2} \mathrm{Si}_{4}-\mathrm{Si}_{3} \mathrm{H}_{2}
$$

Cyclodisilazane

Cyclohexasiloxane
147. Polycyclic systems may be subdivided into four classes as follows: (a) Fused systems contain at least two rings of five or more members and only "ortho-" or "ortho- and peri-" fusions (see below).
(b) Bridged systems are monocyclic or fused systems with valence bonds, atoms, or chains connecting different parts of the structure.
(c) Spiro systems have pairs of rings (or ring systems) with only one common atom.
(d) Ring assemblies have pairs of rings (or ring systems) connected by single bonds.

In the following sections, methods of naming ring systems of all these types will be described. The names of more complicated cases are built up from base components which may be described as "fundamental" systems.
148. Fundamental fused carbocycles with ortho-fusions only, e.g., Naphthalene, have adjoining rings with only two atoms in common; they thus have n common faces and $2 n$ common atoms. An ortho- and peri-fused system contains a ring which has two, and only two, atoms in common with each of two or more rings, the total system containing n common faces and fewer than $2 n$ common atoms.

Examples:

An ortho-fused system
An ortho-fused system
$(3$ common faces; 6 common atoms) $)$$\quad \begin{gathered}\text { An ortho- and peri-fused system } \\ \text { (5 common faces; } 6 \text { common atoms) }\end{gathered}$

Systems of five or more ortho-fused benzene rings are named by the "acene" system if the arrangement is linear, by the "phene" system if one central angular site is present.

Examples:

Pentacene

Octaphene

Names ending in "-alene" are employed for bicyclic fused systems, and in "-phenylene" for systems built up from benzene rings fused to alternate sides of a monocyclic hydrocarbon. (Analogous "-naphthylene" names have been used for corresponding 2,3-fusion systems of naphthalene.)

Examples:

Pentalene

Triphenylene

Table IV lists the names of trivially-named fundamental fused carbocycles in ascending order of preference for adoption as base components in the naming of more complex fused hydrocarbon systems. Also included are some of the names discussed immediately above. (The order is based on the rules described in $\mathbb{I T I I} 138,150$.) The ring analyses describe the number of component rings and the number of atoms each ring contains. Diagrams of these rings, which show the preferred orientation and numbering, are displayed in the Ring Systems Handbook. Diagrams justified by current entries are also provided in the semiannual and collective Chemical Substance Indexes.

The following ring systems require citation of indicated hydrogen (II 135) to complete the name: Indene, Fluorene, Phenalene, Trindene.

TABLE IV
FUNDAMENTAL FUSED CARBOCYCLES IN ASCENDING ORDER OF PRECEDENCE FOR USE AS BASE COMPONENTS IN FUSED SYSTEMS

\quad Name	Ring analysis
Pentalene	$\mathrm{C}_{5}-\mathrm{C}_{5}$
Indene	$\mathrm{C}_{5}-\mathrm{C}_{6}$
Naphthalene	$\mathrm{C}_{6}-\mathrm{C}_{6}$
Azulene	$\mathrm{C}_{5}-\mathrm{C}_{7}$
Heptalene	$\mathrm{C}_{7}-\mathrm{C}_{7}$
Biphenylene	$\mathrm{C}_{4}-\mathrm{C}_{6}-\mathrm{C}_{6}$
as-Indacene	$\mathrm{C}_{5}-\mathrm{C}_{5}-\mathrm{C}_{6}$
s-Indacene	$\mathrm{C}_{5}-\mathrm{C}_{5}-\mathrm{C}_{6}$
Acenaphthylene	$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Fluorene	$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenalene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenanthrene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Anthracene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Trindene	$\mathrm{C}_{5}-\mathrm{C}_{5}-\mathrm{C}_{5}-\mathrm{C}_{6}$
Fluoranthene	$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Acephenanthrylene	$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Aceanthrylene	$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Triphenylene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Pyrene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Chrysene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Naphthacene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Pleiadene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{7}$
Picene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Perylene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Pentaphene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Pentacene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Tetraphenylene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{8}$
Hexaphene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Hexacene	$\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$

149. Fundamental fused heterocycles often have trivial names, e.g., Cinnoline, Xanthene. Others belong to one or another semisystematic system. A linear set of three fused six-membered rings with the same hetero element in both unfused positions of the central ring are given "-anthrene" names.

Example:

Boranthrene

A similar set with different hetero elements in these positions is given a "Pheno-" name containing the organic replacement terms in the usual order (Table I, Y[128) and the ending "-in" (or "-ine" if nitrogen, phosphorus or arsenic is included).

Example:

1H-Phenoxasilin

An exception is Phenazine for the analog that contains nitrogen in both central positions.

Arsenic and phosphorus analogs of fused nitrogen heterocycles (Indole, Quinoline, etc.) are named as follows: Arsindole, Isoarsindole, Arsinoline, Isoarsinoline, Phosphindole, Isophosphindole, Phosphinoline, Isophosphinoline, Arsanthridine, Acridarsine, Acridophosphine, Phenarsazine, Phenophosphazine.

The replacement of the oxygen in Xanthene by sulfur or selenium has been denoted by the appropriate chalcogen functional replacement prefix: Thioxanthene, Selenoxanthene.

In the "benzo" system, bicyclic fused heterocyclic systems containing a benzene ring and a ring named by the Hantzsch-Widman system are indexed by prefixing the latter name by "Benz-" or "Benzo-." Indicated hydrogen, if necessary, and locants are placed in front of the complete name. Similar names are used when benzene is fused to a monocycle with a trivial name (unless the bicyclic system itself has a trivial name).

Examples:

4H-3,1-Benzoxazine (not 4H-Benz[d]oxazine)

Benzoxazole (locants are not cited; the isomers are named 1,2- and 2,1Benzisoxazole)

Benzofuran (the isomer is named Isobenzofuran)

Such "benzo" names are not usually adopted as base components of fused systems when only hydrocarbon rings are fused to the benzene portion.

When benzene is fused to a heterocyclic ring containing more than ten skeletal atoms, "Benzo-" or "Benz-" is placed ahead of the replacement ("a") name of the saturated ring and the ending changed to "-in" (or "-ine" if nitrogenous) to indicate the maximum number of noncumulative double bonds. (Saturated positions other than those occupied by indicated hydrogen are denoted by hydro substituents.)

Example:

2H-1,11-Benzodioxacyclotridecin, 5,6-dihydro-

Trivially named fundamental fused hetero systems are listed in Table V. Also included are some of the systems discussed immediately above, as well as a selection of monocyclic hetero systems to help illustrate the ascending order of priority for adoption as base components in complex fused systems

Fused systems containing only silicon and carbon skeletal atoms are indexed at "Sila-" replacement names if the corresponding hydrocarbon has a fundamental name (Table IV, §I148).

TABLE V
FUNDAMENTAL HETEROCYCLES IN ASCENDING ORDER OF PRECEDENCE FOR USE AS BASE COMPONENTS IN FUSED SYSTEMS ${ }^{1}$

Index Name	Ring Analysis
Isoarsindole ${ }^{2}$	$\mathrm{C}_{4} \mathrm{As}-\mathrm{C}_{6}$
Arsindole ${ }^{2}$	$\mathrm{C}_{4} \mathrm{As}^{\text {- }} \mathrm{C}_{6}$
Isoarsinoline	$\mathrm{C}_{5} \mathrm{As}-\mathrm{C}_{6}$
Arsinoline	$\mathrm{C}_{5}{\mathrm{As}-\mathrm{C}_{6}}$
Arsanthridine	$\mathrm{C}_{5}{\mathrm{As}-\mathrm{C}_{6}-\mathrm{C}_{6}}$
Acridarsine	$\mathrm{C}_{5} \mathrm{As}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Arsanthrene	$\mathrm{C}_{4} \mathrm{As}_{2}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Isophosphindole ${ }^{2}$	$\mathrm{C}_{4} \mathrm{P}-\mathrm{C}_{6}$
Phosphindole ${ }^{2}$	$\mathrm{C}_{4} \mathrm{P}-\mathrm{C}_{6}$
Isophosphinoline	$\mathrm{C}_{5} \mathrm{P}-\mathrm{C}_{6}$
Phosphinoline	$\mathrm{C}_{5} \mathrm{P}-\mathrm{C}_{6}$
Tellurophene	$\mathrm{C}_{4} \mathrm{Te}$
Selenophene	$\mathrm{C}_{5} \mathrm{Se}$
Selenanthrene	$\mathrm{C}_{4} \mathrm{Se}_{2}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Thiophene	$\mathrm{C}_{4} \mathrm{~S}$
Thianthrene	$\mathrm{C}_{4} \mathrm{~S}_{2}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Furan	$\mathrm{C}_{4} \mathrm{O}$
Pyran ${ }^{2}$	$\mathrm{C}_{5} \mathrm{O}$
Isobenzofuran	$\mathrm{C}_{4} \mathrm{O}-\mathrm{C}_{6}$
Xanthene ${ }^{2}$	$\mathrm{C}_{5} \mathrm{O}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenoxastibinin	$\mathrm{C}_{4} \mathrm{OSb}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenoxarsine ${ }^{2}$	$\mathrm{C}_{4} \mathrm{AsO}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenoxaphosphine ${ }^{2}$	$\mathrm{C}_{4} \mathrm{OP}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenoxatellurin	$\mathrm{C}_{4} \mathrm{OTe}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenoxaselenin	$\mathrm{C}_{4} \mathrm{OSe}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenoxathiin	$\mathrm{C}_{4} \mathrm{OS}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Pyrrole ${ }^{2}$	$\mathrm{C}_{4} \mathrm{~N}$
Imidazole ${ }^{2}$	$\mathrm{C}_{2} \mathrm{~N}_{2}$
Pyrazole ${ }^{2}$	$\mathrm{C}_{3} \mathrm{~N}_{2}$
Isothiazole	$\mathrm{C}_{3} \mathrm{NS}$
Isoxazole	$\mathrm{C}_{3} \mathrm{NO}$
Pyridine	$\mathrm{C}_{5} \mathrm{~N}$
Pyrazine	$\mathrm{C}_{4} \mathrm{~N}_{2}$
Pyridazine	$\mathrm{C}_{4} \mathrm{~N}_{2}$
Pyrrolizine ${ }^{2}$	$\mathrm{C}_{4} \mathrm{~N}-\mathrm{C}_{4} \mathrm{~N}$
Indolizine	$\mathrm{C}_{4} \mathrm{~N}-\mathrm{C}_{5} \mathrm{~N}$
Isoindole ${ }^{2}$	$\mathrm{C}_{4} \mathrm{~N}-\mathrm{C}_{6}$
Indole ${ }^{2}$	$\mathrm{C}_{4} \mathrm{~N}-\mathrm{C}_{6}$
Indazole ${ }^{2}$	$\mathrm{C}_{3} \mathrm{~N}_{2}-\mathrm{C}_{6}$
Purine ${ }^{2}$	$\mathrm{C}_{3} \mathrm{~N}_{2}-\mathrm{C}_{4} \mathrm{~N}_{2}$
Isoquinoline ${ }^{3}$	$\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{6}$
Quinoline ${ }^{3}$	$\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{6}$
Quinolizine ${ }^{3}$	$\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{5} \mathrm{~N}$
Phthalazine	$\mathrm{C}_{4} \mathrm{~N}_{2}-\mathrm{C}_{6}$
Naphthyridine ${ }^{4}$	$\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{5} \mathrm{~N}$
Quinoxaline	$\mathrm{C}_{4} \mathrm{~N}_{2}-\mathrm{C}_{6}$
Quinazoline	$\mathrm{C}_{4} \mathrm{~N}_{2}-\mathrm{C}_{6}$
Cinnoline	$\mathrm{C}_{4} \mathrm{~N}_{2}-\mathrm{C}_{6}$
Pteridine	$\mathrm{C}_{4} \mathrm{~N}_{2}-\mathrm{C}_{4} \mathrm{~N}_{2}$
Carbazole ${ }^{2}$	$\mathrm{C}_{4} \mathrm{~N}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenanthridine	$\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Acridine	$\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Perimidine ${ }^{2}$	$\mathrm{C}_{4} \mathrm{~N}_{2}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenanthroline ${ }^{5}$	$\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{6}$
Phenazine	$\mathrm{C}_{4} \mathrm{~N}_{2}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Anthyridine	$\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{5} \mathrm{~N}$
Phenarsazine	$\mathrm{C}_{4} \mathrm{AsN}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenophosphazine	$\mathrm{C}_{4} \mathrm{NP}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenotellurazine ${ }^{2}$	$\mathrm{C}_{4} \mathrm{NTe}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenoselenazine ${ }^{2}$	$\mathrm{C}_{4} \mathrm{NSe}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenothiazine ${ }^{2}$	$\mathrm{C}_{4} \mathrm{NS}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phenoxazine ${ }^{2}$	$\mathrm{C}_{4} \mathrm{NO}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Thebenidine	$\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Quindoline ${ }^{2}$	$\mathrm{C}_{4} \mathrm{~N}-\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Quinindoline ${ }^{2}$	$\mathrm{C}_{4} \mathrm{~N}-\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Phthaloperine ${ }^{2}$	$\mathrm{C}_{5}-\mathrm{C}_{4} \mathrm{~N}_{2}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Acrindoline ${ }^{2}$	$\mathrm{C}_{4} \mathrm{~N}-\mathrm{C}_{5} \mathrm{~N}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
Triphenodithiazine	$\mathrm{C}_{4} \mathrm{NS}-\mathrm{C}_{4} \mathrm{NS}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$

Triphenodioxazine
Phenanthrazine
Anthrazine
$\mathrm{C}_{4} \mathrm{NO}-\mathrm{C}_{4} \mathrm{NO}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
$\mathrm{C}_{4} \mathrm{~N}_{2}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
$\mathrm{C}_{4} \mathrm{~N}_{2}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}$
${ }^{1}$ The order of precedence is based first on the presence or absence of nitrogen, then upon the nature of the (other) hetero atoms (see Table I, I[128). For fused heterocycles, this order (for base-component selection) is distinct from that used to determine seniority of a total ring system in an index name (II 138).
${ }^{2}$ Citation of indicated hydrogen (II 135), e.g., $\mathbf{1} H$-Pyrrole, $\mathbf{2 H}$-Pyrrole, is necessary when these component names are used alone.
${ }^{3}$ Because of established usage, Quinolizine is favored over Isoquinoline and Quinoline as a base component.
${ }^{4}$ Naphthyridine requires the locants $\mathbf{1 , 5}$-, 1,6-, 1,7-, 1,8-, 2,6- or 2,7- to define the position of the nitrogen atoms.
${ }^{5}$ Phenanthroline requires the locants $\mathbf{1 , 7}-\mathbf{1 , 8}-\mathbf{1 , 9}-, \mathbf{1 , 1 0}-, 2,7-, 2,8-$ or 2,9- to define the positions of the nitrogen atoms.
150. Selection of a base component is facilitated by use of Tables IV, II 148 and V, $\mathbb{I} 149$; the appropriate component listed latest in these Tables is used. The system must contain at least two rings of five or more atoms, although such rings need not be directly fused to one another; i.e., they may be joined by a smaller ring, as in Cyclobutadicyclopentene. The criteria for base components differ markedly (in the case of heterocyclic systems) from those described (II 138) for a preferred ring system in a compound containing more than one. A base component of lower preference is used if the fusion procedure is not possible on the preferred component; as a last resource, an organic replacement ("a") name based on the fused hydrocarbon is employed.

The preferred base component should:
(a) be a heterocycle;
(b) be a nitrogenous heterocycle;
(c) be a nonnitrogenous heterocycle containing a hetero atom of highest precedence (see Table I, I[128);
(d) contain the greatest number of rings;
(e) contain the largest individual ring; Benzindene (not Cyclopentanaphthalene) is an exception based on established usage;
(f) contain the greatest total number of hetero atoms;
(g) contain the greatest variety of hetero atoms, e.g., one nitrogen and one oxygen rather than two nitrogens;
(h) contain the greatest number of hetero atoms of highest precedence;
(i) possess the most linear structure;
(j) have the lowest locants for hetero atoms (before fusion).
151. Index names for fused systems, other than fundamental systems which possess their own names (Tables IV, II 148 and V, II149), are formulated from the names of the components. Cycloalkanes may be adopted as base components by invariant use of the "-ene" suffix. This denotes a maximum number of noncumulative double bonds; e.g., Cyclooctene as part of a fused system is not meant to imply the presence of a single double bond; instead, saturated carbon atoms are indicated by "hydro" prefixes. Fusion locants for the base component comprise lower case italic letters assigned sequentially to all sides, beginning with the side " 1,2 " as denoted by the usual peripheral locants. (See the Ring Systems Handbook for a complete set of ring system diagrams, including base components, complete with such locants.) If more than twenty-six letters are required, subsequent alphabets of the form a_{1}, b_{1}, c_{1}, \ldots etc., are adopted. Locants for the fusion prefixes (derived from the less preferred fundamental ring systems) comprise the normal peripheral numerical locants. When a choice is possible, lowest alphabetic and numerical locants are cited. When one or both types of locants are unnecessary they are usually omitted. Numerical and letter locants are separated by a hyphen, and the locant set is bracketed.

Example:

In this example, a locant defining the fusion site on Benzene is unnecessary. The " 1,2 " side of Anthracene is lettered "a" and the lettering proceeds around every side back to the 1-position. The fused system is then oriented (II 152) and renumbered.

Angular positions of base components involved in fusion are not cited.
Example:

When a hetero atom is shared by two or more rings, it is expressed in all the components. When the order of lettering of the base component proceeds in the direction opposite to numbering in the fusion-prefix component, numerical locants for the latter are reversed.

Example:

Isoindolo [2,1-a]quinoxaline (not " $[2,3-a]$ "; not " $[1,2-c]$ ")

Fusion prefixes are placed in alphabetical order and the earliest cited prefix is given preference for lowest letter locant. When two or more fusion prefixes are identical, as in "Dibenzo-" systems, the letter locants are separated by commas, e.g., " $[a, j]$."

Example:

Benzo[a]cyclopent $[j]$ anthracene

A form of multiplicative name is employed for fused systems different from that described for general substitutive nomenclature. Multiplication proceeds in steps, with "di," "tri"" repeated as necessary (not "bis," "tris," etc., except to avoid ambiguity). Serially primed letters are used for fusion sites on the second, third, etc., base components and the locant sets are separated by colons. When a base component is fused to a central component and to another component, lowest letters (when a choice must be made) relate to the central fusion site.

Examples:

Benzo[1,2-c:3,4-c':5,6-c $\left.c^{\prime \prime}\right]$ trifuran

Dinaphtho [1,2- $\left.d: \mathbf{1}^{\prime}, \mathbf{2}^{\prime}-d^{\prime}\right]$ benzo-[1,2-b:5,4-b']dithiophene (not Dinaphtho[2,1-b:2', $\left.1^{\prime}-b^{\prime}\right]$ benzo-[1,2- $d: 5,4-d^{\prime}$]dithiophene)

Ring systems fused to base components are designated primary components; a ring system (other than a base component) fused only to a primary component is a secondary component, and primed numerical locants are used to denote its fusion sites. Primed and unprimed locant sets are separated by colons. Lowest locants are used for the site closest to (or fused directly to) the base component. Doubly primed locants are needed (a) when the secondary component is centrally located with identical primary and base components on both sides, and (b) when tertiary components are present.

Examples:

Pyrido[1', 2': 1,2]imidazo[4,5-b]quinoxaline

152. Orientation and numbering of fused systems.
(a) Hydrocarbons. The component rings are normally drawn as regular polygons. The cyclopropane ring may point left or right, and cyclopentane and cycloheptane rings may point up or down. The total system is oriented so that (a) a maximum number of rings are in a horizontal row, and (b) a maximum number are above and to the right. If further choice is necessary, then (c) a minimum number of rings should be in the lower left quadrant. Numbering begins at an atom not engaged in fusion in the most counterclockwise position of the uppermost ring furthest to the right. Angular positions are not counted; their locants, when needed, are derived from those of the preceding nonangular positions by addition of the lower-case Roman letters, "a," "b," etc. Interior atoms are numbered last by addition of letters to the highest available numerical locant in a continuous pathway, a clockwise route being followed whenever a choice presents itself; any remaining interior atoms are then numbered similarly from the next highest available numerical locant.

Examples:

Naphthacene

NOT

Pyrene

Naphtho[$\left.1^{\prime}, \mathbf{8}^{\prime}: 3,4,5\right]$ cyclohepta[1,2-c $]$ phenanthrene
When a further choice is needed for orientation and numbering, carbon atoms at angular positions are assigned lowest numbers.

Examples:

NOT

Acenaphthylene (Note: $2 \mathrm{a}, 5 \mathrm{a}, 8 \mathrm{a}, 8 \mathrm{~b}$ is lower than 3a,5a, 8a, 8b)

Indicated hydrogen is assigned the lowest locant.
Example:

1 H -Indene (not $3 H$-Indene)

The following fused carbocyclic compounds have special numbering systems: Anthracene, Phenanthrene, Cyclopenta[a]phenanthrene (steroid numbering) and the Cyclopropacyclopenta $[a]$ phenanthrenes.
(b) Heterocycles. The ring systems are oriented as for hydrocarbons. When a choice is necessary, lowest locants are assigned to (a) all hetero atoms; (b) most preferred hetero atom (Table I, II 128); (c) carbon atoms common to two or more rings; (d) positions bearing indicated hydrogen; (e) an angular rather than a nonangular atom of the same hetero element. The ring is then numbered as for hydrocarbons, except that hetero atoms common to two or more rings are counted. Interior atoms are numbered last, following the shortest path from the highest previous number.

Examples:

Pyrrolo[1,2-a:5,4- b^{\prime}]diindole

Furo[3,4-a]pyrrolo[2,1,5-cd]indolizine

The following heterocyclic systems have special numbering systems: Acridine, Carbazole, Purine, Xanthene, and Epoxy- and Epithiocyclopen$\mathrm{ta}[a]$ phenanthrenes (steroid numbering).

Indicated hydrogen for fused carbocyclic and heterocyclic systems is normally cited, if there is a choice, at the lowest nonangular position, unless a saturated angular atom is required to accommodate a principal function or free valency (see \mathbb{I} 135). Indicated hydrogen of component systems is ignored in constructing a fused ring name, and is reassigned if it is still needed in the final system.

Example:

5H-[2]Benzopyrano[3,4-b][1,4]-
benzodioxin (Note: The locants " 2 " and " 1,4 ," which relate to the components, are bracketed to indicate that they do not conform to the peripheral numbering of the total system)
153. Replacement ("a") nomenclature for fused systems is employed when fusion names fail to express all interfaces (fusion sites) between component systems. This occurs when two or more components that are expressed as prefixes are fused to one another as well as to the base component. "A" names are also used for silicon replacement in a carbocycle that has a trivial name. Indicated hydrogen of the parent carbocycle is ignored, but is cited, if needed for the " a " name, ahead of the replacement prefixes.

Examples:

6H-1,7-Dioxacyclopent $[c d]$ indene (not 1,7-Dioxa-6H-cyclopent[$[d]$ indene)

9b-Boraphenalene

1-Silanaphthalene, 3,4-dihydro-

Saturation of double bonds in fused systems is denoted by hydro prefixes which are given lowest locants; e.g., Naphthalene, 1,2,3,4(not 5,6,7,8)-tetrahydro-. Triple bonds are indicated by "didehydro."
154. Bridged fused systems are fused ring systems that possess atomic bridges or valence bonds which connect two or more parts of the system without creating or extending a fused system. They are named by adding bridge prefixes (in alphabetical order if different types are present) to the fused system names.

Simple bivalent bridges include methano $\left(-\mathrm{CH}_{2}-\right)$, ethano $\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)$, etheno ($-\mathrm{CH}=\mathrm{CH}-$), propano ($-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$), 2-buteno ($-\mathrm{CH}_{2} \mathrm{CH}=-$ $\mathrm{CHCH}_{2}-$), and benzeno ($-\mathrm{C}_{6} \mathrm{H}_{4}-$). Trivalent bridges, e.g., metheno ($-\mathrm{CH}=$), 1-propanyl-3-ylidene ($-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=$), and tetravalent bridges are also employed; locants for positions of attachment on the fused system are cited in the same order as free-valency locants of the radicals. Bridges from monocyclic hydrocarbons other than benzene are named as for the fusion prefixes, except that "endo-" is used with them to avoid ambiguity, e.g., "endo-cyclopenta." Simple hetero bridges include epoxy ($-\mathrm{O}-$), epithio ($-\mathrm{S}-$), imino ($-\mathrm{NH}-$), epidioxy ($-\mathrm{O}-\mathrm{O}-$), and -silano- $\left(-\mathrm{SiH}_{2}-\right.$). Heterocyclic rings may also be used as bridges.

Example:

3,4-furano (cf. "furo" for the fusion prefix)

When locants are used for the bridge itself, e.g., 2-buteno, 3,4-furano-, they are placed in brackets within the bridged system name.

Compound bridges are named by combination of simple bridges beginning at the terminal position which gives the preferred (a) cyclic bridge (II 138), (b) hetero atom (Table I, I[128), (c) chain, (d) alphabetic order.

Examples:

$$
-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}-
$$

(iminoethano)
-oso-
(epoxythioxy)

(epoxy[1,2]benzeno)

Indicated hydrogen of a fused system is cited, if possible, to accommodate a bridge. When this is unnecessary or impossible, the lowest-numbered nonangular indicated hydrogen is cited for the fused system, and additional indicated hydrogen, when needed, is cited ahead of the bridge locants.

Examples:

1,4-Methanopentalene, 1,4-dihydro-

6,1,3-Ethanylylidenecyclopenta $[c d]$ pentalene

6,13[2', $\left.3^{\prime}\right]$-Naphthalenopentacene
$9,10\left[1^{\prime}, 2^{\prime}\right]$-endo-Cyclobutanthracene

3,2,6-(Epoxyethanylylidene)furo-[3,2-b]furan

7, 10 -Ethenocyclohepta[de]naphthalene

5H-4a,7-Ethano-2H-1-benzopyran (4aH-1-Benzopyran cannot exist)

Numbering of bridged fused systems is based on the regular numbering of the parent fused system. Lowest locants are assigned to bridgehead positions and the bridge atoms are numbered from the end nearest the highest numbered position of the parent fused system. In cyclic bridges, e.g., benzeno, endocyclobuta, the shorter bridge is first numbered, and then the rest of the ring in the same direction. If possible, hetero atoms in bridges are numbered low.

Examples:

1,4-Ethenonaphthacene

8a,4a-(Iminomethano)naphthalene (not 4a, 8a-(Iminomethano)naphthalene)

11H-5,10[1', $\left.\mathbf{2}^{\prime}\right]$-endo-Cyclopent-5H-oxazolo[3,2-b]isoquinoline

The exceptional numbering employed for bridged cyclopenta $[a]$ phenanthrenes is shown in the following example. Steroid numbering is used for positions 1 through 17 . When the methyl groups normally numbered 18 and 19 are transformed into methano bridges, their locants are retained. Other bridges are numbered 20 and upward.

Criteria for the naming of bridged fused systems are applied successively as follows:
(a) The unbridged system contains the maximum number of (i) rings, (ii) skeletal atoms.
(b) The bridges are as simple as possible; e.g., two simple bridges are preferred to one compound bridge, and saturated bridges are preferred to unsaturated ones.
(c) The unbridged system has the highest precedence according to II 138(c). Examples:

1,4-Methanonaphthalene, $1,2,3,4$ -tetrahydro- (not 1,3-Ethano-1H-indene, 2,3-dihydro-)

NOT
1,7-Ethano-1 H -pyrano[3,2-c]pyridazine, octahydro- (not 4,6(Epoxymethano) - $1 H$ pyrido[1,2 b]pyridazine, octahydro-)(The fused ring system Pyranopyridazine is preferred to Pyridopyridazine; see पI 138.)

Fused carbocyclic and nonnitrogenous heterocyclic systems with simple imino bridges are named by use of the termination "-imine" with appropriate locants. Such a name requires addition of a regular functional suffix when appropriate. (Nitrogen heterocycles with imine bridges are named as bridged fused heterocycles in the usual manner.)

Example:

> Naphthalen-4a,8a-imine-9carboxylic acid, 2,3-dibromooctahydro-
155. Von Baeyer nomenclature. This was first developed to name alicyclic hydrocarbons containing two rings. It has been extended to all bridged systems which cannot be treated as fused or bridged fused systems. Von Baeyer names for hydrocarbons are formed by prefixing to the name of the acyclic hydrocarbon with the same number of carbon atoms "Bicyclo-," "Tricyclo-," etc., terms, followed by a set of numerals, separated by periods and bracketed, which describes in descending sequence the number of atoms in each bridge. The system is numbered from one bridgehead via the other bridgehead(s) and back, always choosing the longest route. The system is numbered along the same route, ending with the smallest bridge, numbered from the bridgehead with the highest locant.

Example:

Bicyclo[4.3.2]undecane

For tricyclo- and higher hydrocarbon systems, superscripts are employed to indicate the positions of secondary bridges.

Example:

Tricyclo[5.3.1.1 ${ }^{2,6}$]dodecane

When more than one Von Baeyer name is possible for a hydrocarbon, the choice is determined by the following principles, applied successively until a decision is reached.
(a) The main ring contains the maximum number of atoms, two of which must serve as bridgeheads for the main bridge.
(b) The main bridge is as large as possible.
(c) The main ring is divided as symmetrically as possible by the main bridge.
(d) Lowest superscripts (regardless of order of citation) are cited.

Examples:

Tricyclo $\left[\right.$ 3.2.2.0 $\left.\mathbf{0}^{2,4}\right]$ nonane (not Tricyclo[2.2.2.1 $\left.{ }^{2,3}\right]$ nonane)

Tricyclo $\left[3.2 .1 .0^{2,7}\right]$ octane (not Tricyclo[2.2.2.0 ${ }^{2,6}$]octane)

Tricyclo[12.2.2.1 ${ }^{1,14}$]nonadecane
(2)

Tricyclo[4.4.1.1 ${ }^{1,5}$]dodecane (not Tricyclo[5.3.1.1 ${ }^{1,6}$]dodecane)

Pentacyclo[4.4.0.0 $\left.{ }^{2,3} \cdot 0^{3,8} .0^{4, /}\right]$ decane (not Pentacyclo[4.4.0.0.0 $0^{4,9} .0^{5,8} .0^{7,10}$]
decane; not Pentacyclo[4.4.0.0 ${ }^{2,5} \cdot 0^{3,10} .0^{4,9}$]decane; not Pentacyclo[4.4.0.0 $\left.0^{2,9} \cdot 0^{3,8} .0^{7,10}\right]$ decane)

Unsaturation is denoted by "-ene" and "-yne" suffixes. A second locant in parentheses is cited for a double bond at a bridgehead when it does not proceed to the next atom in the numbered path. Multiple-bond locants are determined by the following criteria applied successively:
(a) The numbering proceeds in a clockwise sequence.
(b) The cases in which both locants for a double bond are cited are minimized.
(c) Lowest locants are employed.

Examples:

Tricyclo $\left[3.3 .2 .0^{2,8}\right]$ deca-3,6-diene

Bicyclo[4.2.0]oct-6-ene (not Bicy-clo[4.2.0]oct-1(8)-ene)

Tricyclo[9.3.1.1 ${ }^{4,8}$]hexadeca-1-(15),4,6,8(16),11,13-hexaene (not Tricyclo[9.3.1.1 ${ }^{4,8}$]hexadeca-4,6,8-(16),11(15),12,14-hexaene)

Von Baeyer names for heterocyclic systems are formed from the hydrocarbon names by use of replacement (oxa, thia, aza, etc.) prefixes and lowest locants for hetero atoms in the order of Table I, II 128. Unsaturation is denoted as for hydrocarbons.

Examples:

3-Oxatricyclo[2.2.1.0 ${ }^{2,6}$]heptane (not 5-Oxatricyclo[2.2.1.0 ${ }^{2,6}$] heptane; (not 2-Oxatricyclo[2.2.1.0 ${ }^{3,5}$]heptane) (low numbering for bridge takes precedence over hetero atom)

6-Oxa-2-thia-4-azabicyclo[3.1.0]-
hexane (not 6-Oxa-4-thia-2azabicyclo[3.1.0]hexane)

2,4-Dithia-3-stibabicyclo[3.3.1]-
nona-1(9),5,7-triene (not 2,4-
Dithia-3-stibabicyclo[3.3.1]nona-1(8),5(9),6-triene)

Saturated bridged systems containing only silicon atoms, or silicon atoms alternating with nitrogen or one of the chalcogens, are given Bicyclosilazane, Tricyclosiloxane, etc., names. Regular Von Baeyer numbering is employed. Examples:

Bicyclo[4.4.0]decasilane

Bicyclo[3.3.1]tetrasilazane

Pentacyclo[9.5.1.1 ${ }^{3,9} \cdot 1^{5,15} \cdot \mathbf{1}^{7,13}$]octasiloxane
156. Spiro systems contain pairs of rings or ring systems having only one atom (a "spiro atom") in common. In the simplest monospiro systems, in which two alicyclic rings share an atom, the name is formed by prefixing to the acyclic hydrocarbon name the term "Spiro" and numerals (separated by periods) in ascending sequence to define the number of atoms in each ring linked to the spiro atom. The numbering begins at the atom next to the spiro atom in the smaller ring and proceeds around that ring, through the spiro atom and around the larger ring.

Example:

Spiro[3.4]octane

This system is extended to dispiro and higher systems. Numbering begins next to a terminal spiro atom and proceeds in such a way as to give the spiro atoms lowest locants.

Example:

Dispiro[5.1.7.2]heptadecane (note that the numbering path corresponds to the bracketed sequence)

Heterocyclic analogs are named by "a" nomenclature. The hetero atoms are given locants as low as are compatible with the ring numbering.

Example:

6-Oxaspiro[4.5]decane

Unsaturation is expressed by "-ene" and "-yne" suffixes.
Example:

5,10-Dioxa-12-azadispiro[3.1.3.3]-dodec-11-ene

Saturated spiro systems containing only silicon atoms or silicon atoms alternating with nitrogen or one of the chalcogens are given Spirosilazane, Spirosiloxane, etc., names.

Example:

Spiro[5.7]hexasiloxane

Monospiro systems containing at least one fused or bridged component are named by placing the component names in brackets in alphabetical order and prefacing them with "Spiro." The position of the spiro atom is denoted by two locants, separated by a comma, related to the two components. Primes are used for the component cited second. Indicated hydrogen (II 135) is assigned, where possible, to accommodate the spiro unions. Locants related to the components but not to the total spiro system are bracketed to avoid ambiguity.

Example:

Spiro[cyclopentane-1, $\mathbf{1}^{\prime}$-[1H]indene] (not Spiro[cyclopentane-$1,1^{\prime}-1^{\prime} H$-indene])

Spiro[9H-fluorene-9, 3^{\prime}-[2]thiabicyclo[2.2.2]oct[5]ene]

Added hydrogen (II 136) is cited in parentheses in the usual way, but with a primed locant if it does not relate to the component cited first. It is assigned the lowest available locant unless a different one can be used to accommodate a principal group.

Example:

Spiro[imidazolidine-4, $\mathbf{2}^{\prime}\left(1^{\prime} H\right)$ quinoxaline]

Monospiro systems containing identical fused components are given "Spirobi-" names. The component name is bracketed if it is preceded by locants or is itself made up of fusion components. Added hydrogen is cited in parentheses following the spiro locants.

Examples:

3, 3^{\prime}-Spirobi[3 H -indole]
$\mathbf{2 , 2}\left(\mathbf{1} H, \mathbf{1}^{\prime} H\right)$-Spirobinaphthalene

Di-, tri-, etc., spiro systems containing at least one fused or bridged component are named by extension of these policies. If terminal components are identical, citation is determined by earliest index position of the complete name. Serially primed locants are used for successive components.
"Branched" polyspiro systems in which a single component is surrounded by three or more identical components are named by citing the central component (which is assigned plain locants) first and multiplying the identical (terminal) components. When two terminal components of a "branched" spiro system are identical, and one different, they are cited in alphabetical order (as usual) and the term "bis" is applied as appropriate.

Examples:

Dispiro[bicyclo[3.3.1]nonane-$3,1^{\prime}$-cyclobutane $-3^{\prime}, 1^{\prime \prime}$-cyclobutane]

Trispiro[cyclohexane-1,1'cyclo-pentane- $3^{\prime}, 3^{\prime \prime}\left(2^{\prime \prime} H\right)$-cyclopenta[b]pyran- $\mathbf{6}^{\prime \prime}\left(\mathbf{4}^{\prime \prime} H\right), 1^{\prime \prime \prime}$-cyclohexane]

Trispiro[cyclopropane-1,2':2,2":3,$\mathbf{2}^{\prime \prime \prime}$-tris[1,3]benzodioxole]

Trispiro[1,3-benzodioxole-2, $\mathbf{1}^{\prime}$ -cyclohexane- $2^{\prime}, 2^{\prime \prime}: 4^{\prime}, 2^{\prime \prime \prime}$-bis[1,3]dioxolane]
157. Ring assemblies contain a multiplicity of the same cyclic system joined by single bonds, not necessarily in equivalent positions. They are treated as molecular skeletons in substitutive nomenclature and rank just above the component ring. Except for assemblies of benzene, and two-component assemblies of cycloalkanes, cycloalkenes, and hetero systems with "cyclo" names (see below), they are named by prefixing the component names with the terms Bi-, Ter-, Quater-, Quinque-, Sexi-, Septi-, Octi-, Novi-, Deci-, Undeci-, etc.

Locants are placed ahead of the name to define the points of attachment. These locants are as low as possible, compatible with fixed numbering (expressed or implied) of the components, including "-ene" and "-yne" suffixes.

Examples:

2,2'-Binaphthalene
5,5'-Bibicyclo[2.2.1]hept-2-ene (not 2,2'-Bibicyclo[2.2.1]hept-5-ene)
$1,1^{\prime}: 2^{\prime}, 1^{\prime \prime}$-Tercyclopropane
4,4': $4^{\prime}, 4^{\prime \prime}$-Terpyrazolidine
$3,3^{\prime}: 5^{\prime}, 3^{\prime \prime}: 5^{\prime \prime}, 3^{\prime \prime \prime}$-Quatercyclopentene

Indicated hydrogen (II135) is assigned, where possible, to points of attachment. When indicated hydrogen is cited in different positions for different components, a ring-assembly name is not used. Added hydrogen (II 135) is cited immediately after the locant to which it relates.

Example:

2,2'-Bi-2H-1,2,3-triazole

1 H -Benzotriazole, 1-(1,3-dihydro2 H -benzotriazol-2-yl)-2,3-di-hydro- (not $1 H$-Benzotriazole, 2-(2,3-dihydro-1 H -benzotriazol-1-yl)-2,3-dihydro-; not $1(3 \mathrm{H}), 2^{\prime}$ -$\mathrm{Bi}-2 H$-benzotriazole, $1^{\prime}, 3^{\prime}-$ dihydro-)

2(1H), $\mathbf{4}^{\prime}$-Biisoquinoline

Linear benzene assemblies (polyphenyls) are named by prefacing "phenyl" with the appropriate term (Bi-, Ter-, etc.). Arabic numeral locants are cited in all cases for points of attachment. Two-component assemblies of monocyclic hydrocarbons and of hetero systems with "cyclo" names, e.g., Cyclopentastannane, Cyclotrisiloxane, and monocycles with one silicon using "sila" names, are named from the radicals, and locants for the points of attachment are cited only when the radical has no locant for the free valency. Two-component ring-assembly names from unsaturated ("-enyl") radicals are formed only when the unsaturation is symmetrical with respect to the points of attachment. Examples:

1,1'-Biphenyl

$\underset{\text { phenyl }}{1,1^{\prime}: 4^{\prime}, 1^{\prime \prime}: 4^{\prime \prime}, 1^{\prime \prime \prime}: 4^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-\text { Quinque- }-2 .}$ phenyl

Bi-2-cyclohexen-1-yl (not 1, 1^{\prime}-Bi-
2-cyclohexen-1-yl)

Bicyclotetrasiloxan-2-yl

Cyclohexene, 1-(3-cyclohexen-1-yl)-(not Cyclohexene, 4-(1-cyclohexen-1-yl)- (lowest locant for the substituent prefix is preferred (II 138))
158. Neutral hetero atoms with abnormal valencies in ring systems are expressed (a) by additive terms, e.g., "oxide," "sulfide," in the modification; (b) by the greek letter " λ " followed by a superscript numeric (c) by the prefix "hydro" (in molecular skeletons not treated normally in substitutive nomenclature); (d) by superscript Roman numerals attached to the italicized element symbol, e.g. SIV; (e) by substituent prefixes, e.g. "oxido"; (f) by a combination of methods a, b, c, d or e above.

Examples:

Benzo $[b]$ thiophene, 3,5-dimethyl-1,1-dioxide

Acetic acid [(1-oxido-2-pyridinyl) thio]-
(former modification N -oxide)

3H-1 λ^{4}-1,2-Benzisothiazole

Thiophene, 1,1,2,3-tetrahydro-5-methyl-2-(1-methylethyl)-1-[[(4-methylphenyl)sulfonyl]im-ino]- (because the abnormal valency cannot be expressed in a substituent by an approved method, the higher (sulfonamide) function is "overstepped")

1,3,5,2,4,6-Triazatriphosphorine, 2,2,4,4,6,6-hexachloro-2,2,4,4,-6,6-hexahydro-

1,2,3-Thia($\left.S^{\text {IV }}\right)$ diazole
$7 \lambda^{4}-[1,2]$ Dithiolo $[5,1-e][1,2]$ thiase-
lenole

Spiro[5H-dibenzophosphole5,1' λ^{5}-phosphorin]

In a few cases, abnormal valency is implied rather than expressed, e.g. cyclic iodine systems, in which iodine is usually trivalent.

Example:

3H-1,2-Benziodoxin
159. Boron molecular skeletons. Because the number of hydrogen atoms in neutral and anionic boron hydrides often bears no simple relationship to the number of boron atoms, borane names must express the number of both. (The
single exception is Borane itself, which represents BH_{3}.) The Ring Systems Handbook should be consulted for structural diagrams of the neutral polyboranes of established structure. Diagrams justified by current index entries are displayed in the Chemical Substance Indexes. (In these diagrams, the lines do not represent electron-pair bonds but indicate the geometry of the structures.) Neutral boron hydrides, real or hypothetical, are treated as molecular skeletons in substitutive nomenclature, Borane and the diboranes as heteroacyclic compounds, the higher hydrides as heterocyclic compounds. Borane (1) is BH, Borane (2) is BH_{2}. In higher boranes, the number of boron atoms is expressed by multiplicative prefixes.

Examples:

$\mathrm{B}_{2} \mathrm{H}_{4}$	Diborane(4)
$\mathrm{B}_{2} \mathrm{H}_{6}$	Diborane(6)
$\mathrm{B}_{3} \mathrm{H}_{7}$	Triborane(7)
$\mathrm{B}_{4} \mathrm{H}_{10}$	Tetraborane(10)
$\mathrm{B}_{5} \mathrm{H}_{9}$	Pentaborane(9)
$\mathrm{B}_{6} \mathrm{H}_{10}$	Hexaborane(10)
$\mathrm{B}_{10} \mathrm{H}_{14}$	Decaborane(14)

Until structures have been determined, author terms such as "iso" and "neo" are cited in index modifications to differentiate isomers.

Numbering of polyboranes in CA indexing is based on "Nomenclature of Boron Compounds" adopted by the American Chemical Society, and "Nomenclature of Inorganic Boron Compounds", published by the International Union of Pure and Applied Chemistry, ${ }^{1}$ which may be consulted for further details. For "closed" polyboranes (those whose boron skeletons are polyhedra with triangular faces throughout) the numbering begins with the boron atom at the head of the largest axis of highest order, then proceeds sequentially to the planes which intersect this axis. Boron atoms in each plane are numbered clockwise unless lowest locants for substituents demand anticlockwise numbering. On succeeding planes, numbering begins at the boron atom immediately "below" the lowest-numbered one on the previous plane, or the one nearest to it in the direction of numbering.

Example:

(Note that atom " 6 " (in the lower plane) is nearest to atom " 2 " in the direction of numbering.)

For "open" polyboranes (those with incomplete polyhedral boron skeletons) the rules are more complex. A planar projection, as viewed from the open side, is numbered so that interior boron atoms have lowest locants, beginning at the "center" or "apex." Each atom set is numbered in the same direction.

Examples:

Diborane(6)

planar projection

[^3]

Hexaborane(10)

planar projection

Some polyboranes can be named as derivatives of simpler polyboranes. Thus, a bimolecular polyborane, i.e., a two-component "ring" assembly in which both skeletons are identical, can be named as follows:

1,1'-Bipentaborane(9)

When the various parts of the structure are not identical, the general principles of substitutive nomenclature are applied, and a polyborane radical is used for the less preferred skeleton, e.g., Decaborane(10), 2-octaboran(8)-1-yl-.

Polyboranes joined along an edge, or with a triangular face in common, are named like fused ring systems; e.g., Decaborano(14)[5 $\left.\mathbf{5}^{\prime}, \mathbf{6}^{\prime}: 5,6\right]$ decaborane(14), Undecaborano $\left[2^{\prime}, 7^{\prime}, 11^{\prime}: 1,2,3\right]$ dodecaborane(17).
160. "Hetero" polyboranes are boron hydride skeletons in which boron atoms have been replaced by those of other elements, notably carbon. Replacement prefixes, e.g., "carba," "phospha," are employed with the polyborane name, and the number of hydrogen atoms attached to the skeleton expressed in parentheses after the name. Structural diagrams for compounds of established structure can be found in the Ring Systems Handbook and, when justified by current entries, in the Chemical Substance Index. Numbering is as for the parent polyboranes, with lowest compatible locants assigned to the replacement atoms.

Examples:

161. Substituent prefixes (radicals) derived from molecular skeletons are used very frequently in substitutive nomenclature. Their names are based on the skeleton names and may be classified accordingly as radicals from (a) monoatomic skeletons, (b) hydrocarbon chains, (c) organic hetero ("a"-named) chains, (d) homogeneous hetero chains, (e) heterogeneous hetero chains, (f) carbocycles, (g) heterocycles, (h) ring assemblies, (i) polyboranes. Combination of simple radicals to form compound and complex radicals is performed by application of principles described earlier (II 133). (See also "Illustrative List of Substituent Prefixes," which constitutes Section H (If 294).
(a) Monoatomic radicals from borane, methane, silane, germane, stannane, and plumbane are named by replacing "-ane" by "-yl," "-ylene," and "-ylidyne" to denote the loss of one, two, or three hydrogen atoms. The final "e" of the hydrides arsorane and phosphorane may be replaced by "-yl," "-ylidene," and "-ylidyne." Stibine and bismuthine may have the "-ine" ending replaced by "-ino," "-ylene," and "-ylidyne." Phosphine and arsine may have the "-ine" replaced by "-ino," "-inidene," and "-inidyne." The -tetrayl suffixes indicate loss of all hydrogen from Group IVA monoatomic hydrides.

Examples:

$\mathrm{H}_{2} \mathrm{~B}-$	boryl	$\mathrm{HC} \equiv$	methylidyne
$\mathrm{H}_{2} \mathrm{C}=$	methylene	$\mathrm{HSi} \equiv$	silylidyne

$\mathrm{H}=$	stannanetetrayl	$\mathrm{HAs}=$	arsinidene
$\mathrm{H}_{2} \mathrm{P}-$	phosphino	$\mathrm{As} \equiv$	arsinidyne
$\mathrm{HP}=$	phosphinidene	$\mathrm{H}_{2} \mathrm{Sb}-$	stibino
$\mathrm{P} \equiv$	phosphinidyne	$\mathrm{HSb}=$	stibylene
$\mathrm{H}_{4} \mathrm{P}-$	phosphoranyl	$\mathrm{Sb} \equiv$	stibylidyne
$\mathrm{H}_{3} \mathrm{P}=$	phosphoranylidene	$\mathrm{H}_{2} \mathrm{Bi}-$	bismuthino
$\mathrm{H}_{2} \mathrm{P} \equiv$	phosphoranylidyne	$\mathrm{HBi}=$	bismuthylene
$\mathrm{H}_{2} \mathrm{As}-$	arsino	$\mathrm{Bi} \equiv$	bismuthylidyne

(b) Acyclic hydrocarbon radicals are named from the skeletons by replacing "-ane," "-ene," and "-yne" suffixes by "-yl," "-enyl," and "-ynyl," (for monovalent radicals); by "-diyl," "-triyl," "-enediyl," "-ynediyl," etc., for divalent radicals with hydrogen removed at more than one position; and by "-ylidene" and "-ylidyne" to indicate two or three atoms lost at one position. (Methylene is an exception.) Locants are not cited for monovalent radicals (the free valency position is always " 1 "), but unsaturated positions are always indicated for chains of three or more atoms. Free valencies (single or multiple) in one or two positions of an acyclic chain are always terminal, otherwise a compound radical name is employed. When three or more positions have free valencies, two of them must be terminal.

Examples:

$\mathrm{MeCH}_{2}{ }^{-}$	ethyl	
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}{ }^{-}$	2-propenyl (not allyl)	
$\mathrm{EtCH}=$	propylidene	
$\operatorname{PrC} \equiv$	butylidyne	
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=$	ethenylidene	
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}=$	2-propenylidene	
$\mathrm{MeC} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CHCH}=$	2-hepten-5-ynylidene	
$-\left(\mathrm{CH}_{2}\right)_{2}{ }^{-}$	1,2-ethanediyl	
$-\mathrm{CH}_{2} \mathrm{CH}=$	1-ethanyl-2-ylidene	
$-\mathrm{CH}=\mathrm{CH}-$	1,2-ethenediyl	
$-\left(\mathrm{CH}_{2}\right)_{3}{ }^{-}$	1,3-propanediyl	
= $\mathrm{C}=\mathrm{C}=\mathrm{C}=$	1,2-propadiene-1,3-diylidene	
$\begin{gathered} \mathrm{l} \\ -\mathrm{CH}_{2} \mathrm{CHCH}_{2}- \end{gathered}$	1,2,3-propanetriyl	
$\underset{-\mathrm{CH}_{2} \mathrm{CCH}_{2}-}{\\|}$	1,3-propanediyl-2-ylidene	

(c) Organic heteroacyclic ("a") radicals are used when the requirements (I|127) are met. The numbering of the parent radical (not necessarily that of the molecular skeleton) is retained. A single free valency is hence always in the 1 position, and this locant is always cited. When there is still a choice, lowest locants are assigned to hetero atoms, then to most preferred hetero atoms (Table I, II 128), then to unsaturation (with double bonds preferred).

Examples:

$$
\mathrm{Me}\left[\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right] \mathrm{OCH}_{2} \mathrm{CH}_{2}-
$$

3,6,9,12-tetraoxatridec-1-yl (not [2-[2-[2-(2-methoxyethoxy)ethoxyl]ethoxy]ethyl])

$$
\begin{aligned}
& \underset{10}{\mathrm{MeSiH}} \mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{SiH}_{7} \mathrm{CH}=\underset{4}{\mathrm{CHSiH}_{2} \mathrm{CH}_{2} \mathrm{SiH}_{2} \mathrm{CH}=} \\
& \text { 2,4,7,9-tetrasiladec-5-en-1-ylidene } \\
& \begin{array}{c}
-\underset{1}{\mathrm{CH}_{2} \mathrm{CH}_{2}} \mathrm{CH}_{2}\left[\mathrm{~S}\left(\mathrm{CH}_{2}\right)_{2} 2_{2} \mathrm{SCH}=\mathrm{CHNHCH}_{2} \mathrm{CH}_{12} \mathrm{CH}_{2}-\right. \\
\text { 3,6,9-trithia-12-azatetradec-10-ene- } \\
\text { 1,14-diyl }
\end{array}
\end{aligned}
$$

(d) Homogeneous heteroacyclic radicals are named analogously to acyclic hydrocarbon radicals, except that only the "e" of "ane" suffixes of heteroacyclic skeleton names is replaced by "-yl."

Examples:
$\mathrm{HN}=\mathrm{N}-$
diazenyl (the substituted radical is named azo)
$\mathrm{H}_{2} \mathrm{NNHNH}-$
triazanyl
$\mathrm{HN}=\mathrm{NNH}-$
2-triazenyl

$\mathrm{H}_{2} \mathrm{NN}=\mathrm{NN}=\mathrm{N}-$	1,3-pentazadienyl
$\mathrm{H}_{2} \mathrm{PPH}-$	diphosphinyl
-PHPH-	1,2-diphosphinediyl
=AsAs=	1,2-diarsinediylidene
$-\mathrm{Sb}=\mathrm{Sb}-$	1,2-distibenediyl
$\mathrm{H}_{2} \mathrm{NNH}-$	hydrazino
$\mathrm{H}_{2} \mathrm{NN}=$	hydrazono
$-\mathrm{NHN}=$	1-hydrazinyl-2-ylidene
$-\mathrm{NHNH}-$	hydrazo (to different atoms) hydrazi (to the same atom)
$-\mathrm{N}=\mathrm{N}-$	azo (to different atoms) azi (to the same atom)
$=\mathrm{NN}=$	azino

(e) Heterogeneous heteroacyclic radicals are named analogously to hydrocarbon radicals.

Examples:

$\mathrm{H}_{3} \mathrm{SiOSiH}_{2}-$	disiloxanyl
$\mathrm{H}_{3} \mathrm{SiOSiH}=$	disiloxanylidene
$\mathrm{H}_{3} \mathrm{SnOSn} \equiv$	distannoxanylidyne
$-\mathrm{SiH}_{2} \mathrm{NHSiH}_{2}-$	1,3 -disilazanediyl
\mid	
$-\mathrm{SiH}_{2} \mathrm{OSiHOSiH}_{2}-$	$1,3,5$-trisiloxanetriyl

(f) Cyclic hydrocarbon radicals. Loss of one or two hydrogen atoms from a single cycloalkane carbon atom is denoted by replacement of "ane" of the ring name by "-yl" and "-ylidene," respectively. The implied locant (" 1 " in all cases) is not expressed. In radicals from cycloalkenes, cycloalkadienes, etc., only the final " e " is replaced by the radical suffix, and locants for unsaturation and the free valency (always " 1 ") are all cited. Loss of hydrogen at more than one position is expressed by the suffixes "-diyl" (not "-ylene"), "-diylidene," "-enylylidene," etc. All locants are cited, and locants for free valencies are assigned lowest locants.

Examples:

cyclohexyl

2-cyclopropen-1-yl

1,5-cyclohexadien-3-yn-1-yl

1,3-cyclopentanediyl (not 1,3-cyclopentylene)

2,4-cyclohexadien-1-ylidene

1-cyclohexanyl-2-ylidene (not 1-cyclohexyl-2-ylidene)

6-cyclohexen-1-yl-2-ylidene

Radicals from benzene are named phenyl $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right), 1,2-, 1,3$-, and 1,4phenylene ($-\mathrm{C}_{6} \mathrm{H}_{4}$), 1,2,3-benzenetriyl, 1,2,3,4-benzenetetrayl, etc.

Fused hydrocarbon radicals are assigned the lowest locants compatible with the fixed numbering of the ring system. Indicated hydrogen (II 135) necessary for the existence of the ring is assigned to the lowest nonangular position unless it can be located to accommodate a monovalent radical in an angular position or an "ylidene" radical in a nonangular position. Added hydrogen (II 136) is cited immediately after the radical locant and is assigned the lowest available angular or nonangular position.

Examples:

2-naphthalenyl (not 2-naphthyl)

1H-inden-2-yl

3 aH -inden-3a-yl (a hydro derivative would be named, e.g., 2,3-dihydro3 aH -inden-3a-yl, not 2 H -inden-3a(3H)-yl)

$5 H$-dibenzo $[a, d]$ cyclohepten- 5 -ylid-
ene

2,7-phenanthrenediyl

3-naphthalenyl-1 $(4 \mathrm{H})$-ylidene (not 2-naphthalenyl-4(1 H)-ylidene)

Von Baeyer and spiro radicals follow similar principles. Free valency locants are assigned lowest locants compatible with ring-system numbering and are preferred over locants for unsaturation.

Examples:

bicyclo[2.2.2]oct-5-en-2-yl (not bi-cyclo[2.2.2]oct-2-en-5-yl)

bicyclo[3.3.1]nonane-2,3-diyl-4ylidene

dispiro[4.1.4.1]dodec-2-yl

spiro[bicyclo[2.2.1]hept-5-ene-2,1'-[3,5]cyclohexadien]-2'-yl (note: lowest locants are assigned, in order, to spiro atoms, free valencies all multiple bonds, double bonds)
(g) Heterocyclic radicals from ring systems not named by organic replacement ("a") nomenclature are named analogously to fused-hydrocarbon radicals (above). Radicals involving free valencies at hetero atoms in abnormal valency states are not normally employed, unless the valency is expressed by indicated hydrogen (II 158). Instead, the compound is named at the abnormal-
valency parent (see last example below). The shortened form thienyl is used for thiophene radicals and all their fused derivatives; selenophene-yl (not selenophenyl) is the name of the seleno analog.

Examples:

3-pyridinyl (not 3-pyridyl)

4-morpholinyl (not morpholino)

3H-indol-3-ylidene (a hydro derivative would be named, e.g., 1,2-dihydro3 H -indol-3-ylidene, not 1 H -indol$3(2 \mathrm{H})$-ylidene)

2,5-furandiylidene

2 H -benzimidazol-5-yl-2-ylidene

2H-1,3,2-Diazaphosphole, 4,5-di-ethoxy-2,2-dihydro-2-phenyl-2-[(phenylsulfonyl)imino]- (not Benzenesulfonamide, N -(4,5-di-ethoxy-2-phenyl-2H-1,3,2-diaza-phosphol-2(2H)-ylidene)-)
"A"-named cyclic radicals are named like the hydrocarbon parents from which they have been derived by atom replacement. The hetero atoms receive lowest locants (cited or implied), then the free valencies (cited just ahead of the radical suffix).

Examples:

silacyclohex-2-yl (not 2-silacyclohexyl)

3-oxabicyclo[3.1.0]hex-6-ylidene
(h) Ring-assembly radicals are derived by bracketing the assembly name, eliding a final "e" if " y " is to follow, and appending the radical endings "-yl," "-ylidene," "-diyl," etc., as appropriate. The free valencies need not be on the terminal rings of the assembly.

Examples:

[1,1'-biphenyl]-4-yl (not 4-biphenylyl)

[1,1'-biphenyl]-3,4-diyl (not (4-phenyl-1,2-phenylene))
[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl]-4,4'-diyl (not (2-phenyl[1,1'-biphenyl]-4,4-diyl))

[1,2'-binaphthalene]-4',5-diyl

[5,5'-bithiazol]-2-yl (not [5-(5-thia-zolyl)-2-thiazolyl])

[bi-2,5-cyclohexadien-1-yl]-4,4'diylidene

(i) Polyborane radicals are formed from polyborane and hetero polyborane names by citing the usual radical suffixes after the parenthetical designation of the number of hydrogen atoms, with elision of the final "e" before " y." Requirements for locant citation with diborane radicals are the same as for the analogous acyclic hydrocarbon radicals.

Examples:

diboran(4)yl	1-pentaboran(9)yl
diboran(6)yl	1,2-dicarbadodecaboran(12)-1-yl
diboran(4)ylidene	6,9-decaborane(10)diyl

1,2-diborane(4)diyl
162. Compound and complex radicals from molecular skeletons are named by principles described earlier (II 133).

Examples:
$\begin{array}{ll}\mathrm{Me}_{2} \mathrm{CH}- & \text { (1-methylethyl) } \\ \mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}- & \text { (1-methylethenyl) (the unsaturated }\end{array}$ parent radical is preferred)
$\underset{11}{C \mathrm{CH}=\mathrm{CH}-\mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}}$
[6-(1-penten-3-ynyl)-2,4,7,9-undecatetraenyl]
$\mathrm{PhCH}=\mathrm{CH}-$
(2-phenylethenyl) (not styryl)
$\mathrm{PhC} \equiv \quad$ (phenylmethylidyne) (not benzylidyne)

Me
(2-methylphenyl) (not o-tolyl)

4-methyl-1,2-phenylene) (not 4-methyl-o-phenylene)

Radicals from branched polyphenyls are chosen by application of the following principles successively until a decision is reached:
(a) longest chain of rings containing all of the free valencies, which need not be on terminal rings;
(b) lowest locants in the radical name for (1) ring junctions, and (2) free valencies;
(c) maximum number of substituent prefixes;
(d) lowest locants for substituent prefixes;
(e) earliest index position of the radical name.

Examples (the letters on the left refer to the principles above):

(3", $6^{\prime \prime}$-diphenyl $\left[1,1^{\prime}: 4^{\prime}, 1^{\prime \prime}: 2^{\prime \prime}, 1^{\prime \prime \prime}:-\right.$ $4^{\prime \prime \prime \prime}, 1^{\prime \prime \prime \prime}$-quinquephenyl]-4", 5"-diyl)

(4", 5^{\prime}-diphenyl $\left[1,1^{\prime}: 2^{\prime}, 1^{\prime \prime}: 2^{\prime \prime}, 1^{\prime \prime \prime}-\right.$ quaterphenyl]-3'-yl)

[6'-(4-methylphenyl)-4', 5' ${ }^{\prime}$ diphenyl$\left[1,1^{\prime}: 2^{\prime}, 1^{\prime \prime}\right.$-terphenyl $]-3^{\prime}$-yl]

[6'-(2-bromophenyl)-4-(3-chloro-phenyl)-2'", $4^{\prime \prime}$-diiodo $1,1^{\prime}: 2^{\prime}, 1^{\prime \prime}$ -terphenyl]-4-yl]

163. Molecular skeletons as index heading parents. These two entities coincide when no suffix, expressing a principal group, is added to the skeleton name, either because such a group is absent, or because it is attached to a hetero atom of the skeleton which changes it from a functional into a nonfunctional group.

Examples:
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$
Ethane

Benzene, nitro- ("nitro" is a mandatory prefix (II 132))

Piperidine, 1-hydroxy- ("hydroxy" is considered nonfunctional when attached to a hetero atom other than silicon)

Silane, acetyltrimethyl- (not Ethanone, 1-(trimethylsilyl)-: an acyclic ketone function is not recognized unless it has two carbonlinkages)

Choice of a preferred index heading parent has already been described (II 138). In the case of a branched polyphenyl, the criteria are the same as for the derived radicals (II 162), except that principal groups replace free valencies. Example:

[1,1': $2^{\prime}, 1^{\prime \prime}$-Terphenyl]-3'-carboxylic acid, $4^{\prime \prime}$-bromo-3-fluoro-4', 6^{\prime} -diphenyl- (a decision is reached by choosing lowest locants for the Terphenyl skeleton and then for the principal group)

163A. Fullerenes. The even-numbered, closed spheroidal structures of 20 or more carbon atoms, in which every atom is bonded to three other atoms and of which the C_{60} "buckminsterfullerene" is the prime example, as known generically as "fullerenes". ${ }^{2,3}$ "Fullerene" has been adopted as the class name and to it are added ring sizes, number of carbon atoms, and point group symmetries to name specific members of the class. For example, in the name [5,6]Fullerene- $\mathbf{C}_{60} \mathbf{I}_{\boldsymbol{h}}$, "[5,6]" indicates the presence of ring sized 5 and 6 , " C_{60} " the number of carbon atoms, and " I_{h} " the point group symmetry. ${ }^{4}$ When a fullerene is modified (e.g., by addition, replacement, or deletion of atoms), the ring sizes, the number of carbon atoms, and the point group symmetry remain those of the patent fullerene. Incompletely described fullerenes, i.e., where ring sizes and/or point group symmetries are not know or disclosed are named with only the number of carbon atoms, e.g., Fullerene- \mathbf{C}_{60}. Existing nomenclature practices are followed as closely as possible when naming derivatives. Anions, cations, protonated fullerenes, and free radicals are named as follows:

[5,6]Fulleride(3-)- $\mathrm{C}_{60}-\boldsymbol{I}_{\boldsymbol{h}}$
 [5,6]Fullerene- $\mathrm{C}_{60}-\boldsymbol{I}_{\boldsymbol{h}}$ ion(1+)

[5,6]Fulleren- $\mathrm{C}_{60}-\mathrm{I}_{\boldsymbol{h}}-\mathbf{1 (2 H)}$-ylium
[5,6\}Fulleren- $\mathrm{C}_{60}-\mathrm{I}_{\boldsymbol{h}} \mathbf{- 1 (2 H) - y l}$
Metallofullerenes are compounds in which one or more metals are either trapped inside the fullerene or located outside without bonding directly to it. They are given fullerene names, with the metals cited by name in alphabetical order

Example:
[5,6]Fullerene- $\mathrm{C}_{60}-\boldsymbol{I}_{\boldsymbol{h}}$ compd. with potassium (1:1), ion(1+)

[^4]Partial hydrogenation of a fullerene is described by terms such as "hexatriacontahydro-", while full saturation is implied by the name "fullerane", e.g., $[5,6]$ Fullerane- $\mathbf{C}_{60}-\mathbf{I}_{\boldsymbol{h}}$.

Fullerenes containing substituents require that hydrogen be added before the substituents can be named. ${ }^{5}$ For example, $\mathrm{C}_{60} \mathrm{~F}_{60}$ is named $[\mathbf{5 , 6}]$ Fullerane-$\mathbf{C}_{60}-\boldsymbol{I}_{\boldsymbol{h}}$, hexacontafluoro- (the hydrogen being part of the parent name). $\mathrm{C}_{60} \mathrm{Br}_{2}$ is named as a dibromodihydrofullerene, and $\mathrm{C}_{60} \mathrm{H}_{6} \mathrm{Ph}_{6}$ is named as a dodecahydrohexaphenylfullerene.

Addition of hydrogen is not necessary when a fullerene contains two functional groups, as in $[5,6]$ Fullerene- $\mathrm{C}_{60}-\boldsymbol{I}_{\boldsymbol{h}} \mathbf{- 1 , 6 0}$-diamine.

Modification of the fullerene network such that some carbon atoms no longer have a connectivity of 3 are named by using "homo", "nor", and "seco", e.g., $1,2(2 a)$-Homo[5,6]fullerene- $\mathbf{C}_{\mathbf{6} 0} \mathbf{I}_{\boldsymbol{h}}$-2a-carboxylic acid.

Replacement of a carbon atom by a trivalent hetero atom such as boron or nitrogen results in a free radical, e.g., 1-Bora[5,6]fulleren- $\mathbf{C}_{\mathbf{6 0}}-\boldsymbol{I}_{\boldsymbol{h}}-\mathbf{2 -} \mathbf{y l} .{ }^{5}$

[^5]
C. PRINCIPAL CHEMICAL GROUPS (SUFFIXES)

Introduction	II 164	Amides	II 171
Acids expressed as substituent suffixes	165	Nitriles	172
Acyclic acids with cyclic substituents	166	Aldehydes	173
Order of precedence of acids	167	Ketones	174
Acid radicals	168	Alcohols (and phenols)	175
Functional derivatives of acids	169	Amines	176
Acid halides	170	Imines	177

164. Introduction. In substitutive nomenclature, a principal chemical group is that substituent of a molecular skeleton which is selected for expression as a suffix. Only one kind of substituent may be cited as a suffix, viz., the most senior one as determined by the Order of Precedence of Compound Classes (II 106); all other substituents are expressed as prefixes (radicals) which may be simple, compound, or complex (IIII 132, 133). For functional compounds, the molecular skeleton name together with its suffix constitutes an index heading parent. The locants for suffixes are placed in front of the heading parent name unless locants for indicated hydrogen, hetero atoms (in "a" names), unsaturation, fusion sites, etc., are present, in which case they are placed just before the suffix

In the following paragraphs, compound classes expressed as substituent suffixes are discussed in descending order of precedence.
165. Acids expressed as substituent suffixes on molecular skeletons include carboxylic, sulfonic, sulfinic, selenonic, and telluronic acids and their functional replacement analogs, such as peroxy, imidic and thio acids. For Carbonic acid and its relatives (including Carbamic acid and Formic acid) see II 183.
(a) Carboxylic acids are named by the Geneva ("-oic") or "-carboxylic" system. The "-oic acid" suffix is employed for acyclic mono- and dicarboxylic acids of carbon chains, including "a"-named acids; the "-carboxylic acid" suffix is used for acyclic polycarboxylic acids and compounds in which the carboxyl group is attached to a ring, a monoatomic hydride, or a heteroacyclic chain. The trivial names Acetic acid and Benzoic acid are retained for these two acids and their substituted derivatives. (The amides, acid chlorides, etc., are named similarly, but organic replacement analogs are named systematically, e.g., Benzenecarboximidic acid (not Benzimidic acid.)

Examples:

$\mathrm{MeCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	Propanoic acid (not Propionic acid)
$\underset{5}{\mathrm{Me}}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{1} \mathrm{CO}_{2} \mathrm{H}$	Pentanoic acid (not Valeric acid)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCO}_{3} \mathrm{H}$	2-Propenoic acid (not Acrylic acid)
$\underset{18}{\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4}{ }_{13}^{\mathrm{CH}}=\mathrm{CHCH}_{2} \mathrm{CH}=\underset{9}{\mathrm{CH}}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}_{1} \mathrm{C}_{2} \mathrm{H}, ~}$	
	9,12-Octadecadienoic acid
$\mathrm{HO}_{2} \mathrm{CCO}_{12} \mathrm{H}$	Ethanedioic acid (not Oxalic acid)
$\mathrm{HO}_{2} \underset{1}{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{5} \mathrm{CO}_{2} \mathrm{H}$	Pentanedioic acid (not Glutaric acid)

3,6,9,12-Tetraoxatricos-14-en-23-oic acid (The hetero atoms are given preference for lowest locants; the locant for the "-oic acid" suffix is cited if it is not " 1. ")
$\underset{\substack{\mathrm{COOH} \\ \mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{C} \\ 2}}{\substack{\mathrm{C}}} \mathrm{CH}_{2}-\mathrm{COOH}$

1,2,3-Propanetricarboxylic acid (numbering excludes the carboxyl groups)
$\left(\mathrm{HO}_{2} \mathrm{C}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$

Ethenetetracarboxylic acid

$\mathrm{HO}_{2} \mathrm{CNHNHCO}_{2} \mathrm{H}$
1,2-Hydrazinedicarboxylic acid (not Bicarbamic acid)

(b) Sulfonic, sulfinic and sulfenic acids and their selenium and tellurium analogs are expressed by appending the appropriate suffix to the name of the molecular skeleton. Mono- and diacids of these series, unlike "-oic acids," above, do not need to occupy terminal positions on a chain.

Examples:
$\mathrm{EtSO}_{3} \mathrm{H}$
Ethanesulfonic acid

$$
\underset{5}{\mathrm{CH}_{3}-\mathrm{CH}_{4}-\mathrm{CH}_{3} \mathrm{CH}_{3}-\underset{2}{\mathrm{C}} \underset{2}{ }-\underset{1}{\mathrm{C}} \mathrm{CH}_{3}}
$$

2-Pentanesulfonic acid

(c) Imidic and hydrazonic acids. Names for these are formed from the parent carboxylic, sulfonic, sulfinic, selenonic, etc., acid names by functional replacement nomenclature ($\mathbb{I} 129$). Some modification of the formal endings is made; thus, an "-oic acid" becomes an "imidic acid", not an "-imidoic acid". Acetic acid affords systematically named Ethanoic acid replacement analogs, while Benzoic acid is treated as Benzenecarboxylic acid in a similar manner. The suffixes appended to the molecular skeleton name in each case are as follows:
Parent Acid
-oic
-carboxylic
-sulfonic
-sulfinic
Imidic acid
-imidic
-carboximidic
-sulfonimidic
-sulfinimidic
Hydrazonic acid
-hydrazonic
-carbohydrazonic
-sulfonohydrazonic
-sulfinohydrazonic

The group $-\mathrm{S}(: \mathrm{NH})_{2} \mathrm{OH}$ is named by the suffix "-sulfonodiimidic acid," and $-\mathrm{S}(: \mathrm{NH})\left(: \mathrm{NNH}_{2}\right) \mathrm{OH}$ by "-sulfonohydrazonimidic acid." Selenium and tellurium acids are named analogously.

Note: Imidic acids are tautomeric with amides; except for derivatives in which an acid proton has been replaced, e.g., esters and anhydrides, amides are preferred for index entries; see $\mathbb{\llbracket} 122$. Hydrazonic acids are tautomeric with hydrazides, which are preferred as index entries.

Examples:

$\mathrm{MeC}(=\mathrm{NH}) \mathrm{OH}$	Ethanimidic acid (not Acetimidic acid)
$\mathrm{PhC}(=\mathrm{NH}) \mathrm{OH}$	Benzenecarboximidic acid (not Benzimidic acid)
$\underset{6}{\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \underset{1}{\mathrm{C}}(=\mathrm{NH}) \mathrm{OH}}$	Hexanimidic acid

1H-Pyrrole-2-carboximidic acid
$\mathrm{HOC}(=\mathrm{NH})\left(\mathrm{CH}_{2}\right)_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{OH} \quad$ Hexanediimidic acid
$\mathrm{H}_{2} \mathrm{NNHC}(=\mathrm{NH}) \mathrm{OH} \quad$ Hydrazinecarboximidic acid

3-Pyridinecarbohydrazonic acid

1,4-Benzenedicarboximidic acid

2-Naphthalenesulfonimidic acid
$\mathrm{EtS}(=\mathrm{NH})_{2} \mathrm{OH}$
Ethanesulfonodiimidic acid

$\mathrm{EtS}(=\mathrm{NH}) \mathrm{OH}$
 Ethanesulfinimidic acid
 $\mathrm{PhSe}(=\mathrm{NH}) \mathrm{O}_{2} \mathrm{H}$
 Benzeneselenonimidic acid

(d) Peroxy acids are named by use of the suffixes "-peroxoic acid" (from "-oic acid") and "-carboperoxoic acid" (from "-carboxylic acid"). Acetic acid and Benzoic acid afford systematically named peroxy acids. Sulfonic, sulfinic, and sulfenic acids and their selenium and tellurium analogs are named by use of the suffixes "-sulfonoperoxoic acid", etc. Combinations with imidic and hydrazonic suffixes are made, in alphabetic order, by the normal rules

Examples:

$\mathrm{HO}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{3} \mathrm{H}$
$\mathrm{MeC}(=\mathrm{NH}) \mathrm{OOH}$
$\mathrm{PhC}(=\mathrm{NH}) \mathrm{OOH}$

Ethaneperoxoic acid (not
Peroxyacetic acid)

Cyclohexanecarboperoxoic acid

Butanediperoxoic acid

Ethanimidoperoxoic acid (not Peroxyacetimidic acid)

Benzenecarboximidoperoxoic acid (not Peroxybenzimidic acid)

Peroxy analogs of acids expressed as heading parents, e.g., Carbonoperoxoic acid (IT 183), Phosphoroperoxoic acid (IT 197), are ranked with the acids, e.g., Carbonic acid, Phosphoric acid, from which they are derived.
(e) Thio acids derived from carboxylic, sulfonic, sulfinic, and sulfenic acids and their imidic, hydrazonic, and peroxy replacement analogs are named by incorporating "thio" (or "dithio") into the suffixes of the oxygenated acid names. The terms "seleno" and "telluro" are used similarly when appropriate Selenonic, telluronic, etc., acids are handled like sulfonic acids. The names do not distinguish between replacement of oxygen in $=\mathrm{O}$ and -OH groups in the unesterified acids. This information is usually given in the ester name, or by a substituent prefix.

Examples:

Benzenecarbothioic acid, S-methyl ester

Butanoic acid, 4-ethoxy-4-thioxo- (for order of precedence of acid groups, see I[167)

When a specific name for a single form is imperative, an italicized element symbol is used in the heading parent, e.g., Ethanethioic O-acid for $\mathrm{CH}_{3} \mathrm{C}(\mathrm{S})$ OH .

Replacement by two sulfur atoms in a monocarboxylic acid named by the suffix "-oic acid" is denoted by the suffix "-(dithioic) acid" and by one sulfur atom in each of the two groups in a "-dioic acid" by "-bis(thioic) acid." Ambiguity is absent from "-carboxylic" names, and parentheses are therefore not employed for the analogous "-carbodithioic acid" and "-dicarbothioic acid" suffixes.

When different numbers of sulfur atoms replace oxygen in the functional groups of polyacids, the groups of higher sulfur content are expressed as substituent prefixes.

Examples:
$\mathrm{HOSCCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
Propanoic acid, 3-(thiocarboxy)-

$\mathrm{EtOSCCO}_{2} \mathrm{H}$

Acetic acid, ethoxythioxo-
Thio peroxy acids are named by similar principles; the replacement affixes "(thioperoxo)" and "(dithioperoxo)" are placed, in alphabetic order with other terms such as "imido" and "hydrazono," in the "-oic," "carboxylic," "sulfonic," etc., suffixes of the appropriate parent acids.

Examples:

MeCOSSH	Ethane(dithioperoxoic) acid
$\mathrm{PhC}(=\mathrm{NH}) \mathrm{OSH}$	Benzenecarboximido(thioperoxoic) acid
	1,4-Piperazinedicarbo(dithioperoxo)thioic acid
$\mathrm{PhSO}_{2} \mathrm{SSH}$	Benzenesulfono(dithioperoxoic) acid
	1-Piperidinesulfeno(dithioperoxic) acid
$\underset{1}{\mathrm{MeCHMeSSOH}}$	2-Propanesulfeno(thioperoxoic) acid
MeCSeOH	Ethaneselenoic acid
PhCSeSH	Benzenecarboselenothioic acid

166. Acyclic acids with cyclic substituents may usually be named by conjunctive nomenclature (II 124).

Examples:

$$
\underset{\beta}{\mathrm{PhCH}_{2}} \underset{\alpha}{\mathrm{CH}_{2}} \mathrm{CO}_{2} \mathrm{H}
$$

Benzenepropanoic acid (not
Hydrocinnamic acid)

Benzeneacetic acid, α-methylene- (not Atropic acid)

Benzeneacetic acid, α-(phenylmethyl-ene)- (not Benzene-2-propenoic acid, α-phenyl-; conjunctive nomenclature is not used with unsaturated acyclic acids (II 124))

Benzeneethanesulfonic acid, α-methyl-
$\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{H}$

1-Naphthalenemethanesulfinic acid

9-Anthracenepropaneperoxoic acid

1,4-Benzenedipropanoic acid

When conjunctive names are impermissible, e.g., for unsaturated and polyfunctional acyclic acids, acids attached to rings by a double bond, and acids of noncarbon chains, the cyclic group is expressed as a substituent.

Examples:

Hydrazinecarboxylic acid, 2-(2-pyridinyl)-

Butanedioic acid, 9H-fluoren-9-yl-

Epoxy derivatives of acids are named as oxirane and oxetane derivatives. Example:

2,3-Oxiranedicarboxylic acid (not Butanedioic acid, epoxy-)
167. Order of precedence of acids. Acid suffixes are the most preferred of all non-cationic substituent suffixes as principal groups (II 106), but only one type of acid suffix may be expressed in a heading parent. Less preferred acid functions are cited as substituent prefixes. The choice is made in accordance with the following hierarchy, listed in order of descending precedence:
(a) Peroxy acids. (Among peroxy acids, the choice depends on the nature of the parent acid as described in (b) through (i), below.) (See also the separate ranking of peroxy carbonic and peroxy phosphorus acids at TIIf 183, 197.)
(b) Carboxylic acids, followed by thio, seleno, and telluro analogs, in that order. The preferred acid group contains the maximum number of preferred chalcogens, oxygen being the most preferred. (For Carbonic acid, Formic acid, etc., see II 183.)
(c) Carbohydrazonic acids, followed by chalcogen analogs (see (b)).
(d) Carboximidic acids, likewise.
(e) Sulfonic acids, followed by chalcogen and nitrogen analogs in the order of (b), (c), and (d).
(f) Sulfinic acids, likewise.
(g) Sulfenic acids, likewise.
(h) Selenonic, seleninic, and selenenic acids, as for sulfonic acids.
(i) Telluronic, tellurinic, and tellurenic acids, likewise.

Examples:

Benzenesulfonoperoxoic acid, 4-carboxy-

Propanethioic acid, 3-(dithiocarboxy)-

Benzoic acid, 3,4-disulfo-

Propanoic acid, 3-imino-3-phenoxy-

When two or more like acid groups are attached to different molecular skeletons, or when one or more are attached to a branched skeleton, the preferred index name is selected according to the usual rules (II 138).

Examples:

Propanedioic acid, (4-carboxyphe-nyl)- (principle: maximum number of the principal group)

Hydrazinecarboxylic acid, 2-(3-car-boxyphenyl)- (principle: hetero acyclic parent preferred)

Benzeneacetic acid, α-(cyclopentyl-methyl)- (principle: preferred ring system)

Propanoic acid, 3,3,3-trifluoro-2-me-thyl-2-(trifluoromethyl)principle: maximum number of substituent prefixes)

Aldehydic, amic, anilic, hydroxamic, hydroximic, nitrolic, and nitrosolic acids are indexed as compounds of mixed function (see I[228). So are trivially named hydroxy and oxo acids, e.g., Glycolic acid, Acetoacetic acid, and amino acids, e.g., Sulfanilic acid, other than those which are of biological significance (II 205).
168. Acid radicals derived, by removal of hydroxyl groups, from acids expressed as suffixes are named as compound and complex radicals. Acyl radicals, e.g., propionyl, naphthoyl, acetimidoyl, are no longer used as substituent prefixes; the only exceptions in general index nomenclature are acetyl $\left(\mathrm{CH}_{3} \mathrm{CO}-\right)$ and benzoyl ($\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}-\right)$. Amino acid radicals, e.g., glycyl, L-alanyl, are restricted to use in peptide and depsipeptide names (II 206).

Radicals derived from monocarboxylic acids are in general named as (1oxoalkyl) or (arylcarbonyl); carboximidic acids afford (1-iminoalkyl) and (aryliminomethyl) radicals; carbothioic acids give (1-thioxoalkyl) and (arylthioxomethyl) radicals (carbonimidoyl and carbonothioyl are used only as multiplicative radicals (${ }^{(I 25}$) and in cases where both bonds are attached to the same atom); sulfonic, sulfinic, and sulfenic acid radical names are based on the parent radicals "sulfonyl," "sulfinyl," and "thio."

Examples:

$\mathrm{EtCO}-$	(1-oxopropyl)
$\mathrm{MeCS}-$	(1-thioxoethyl)(not thioacetyl)
$\mathrm{HN}=\mathrm{CH}-$	(iminomethyl)(not formimidoyl)
$-\mathrm{COCOCO}-$	$(1,2,3$-trioxo-1,3-propanediyl)
$\mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$	(3-carboxy-1-oxopropyl)

HOC($=\mathrm{NH}$) $\mathrm{C}(=\mathrm{NH})-$	(2-hydroxy-1,2-diiminoethyl)
	(2-naphthalenylcarbonyl)
	(1,2-phenylenedicarbonyl)
	([1, 1'-biphenyl]-4-ylcarbonyl) (not (4-phenylbenzoyl) (see đโ 133))
	(1,4-phenylenedicarbonothioyl)
	(3,5-pyridinediyldicarbonimidoyl)
$\mathrm{PhSO}_{2}-$	(phenylsulfonyl)
PhSO-	(phenylsulfinyl)
PhS $(=\mathrm{NH})-$	(S-phenylsulfinimidoyl)
PhS-	(phenylthio)

169. Functional derivatives of acids. In the absence of higher functions or more preferred compound classes (II 106), esters are indexed in the modification, usually at the acid name, sometimes at the alcohol (see If 185). Hydrazides are likewise indexed at the acid name (II 189). Hydrazones, azines, and semicarbazones are named at hydrazonic acid parents ($\mathrm{RC}\left(\mathrm{OH}\right.$): NNH_{2}) (II 165). Oximes of carboxylic acids are given N-hydroxy imidic acid names; hydrates and acetals (ortho carboxylic acids and their diesters) are indexed as alcohols (or thiols).

Examples:
$\mathrm{MeC}(\mathrm{OH})_{3}$
1,1,1-Ethanetriol (not Orthoacetic acid)
$\mathrm{MeC}(\mathrm{OMe})_{2} \mathrm{OH}$

Ethanol, 1,1-dimethoxy-

170. Acid halides. In this category are now included the halogenides, in which the hydroxyl groups of acids are replaced by -NC, -NCO, -NCS, -NCTe, $-\mathrm{N}_{3}$, and (in acids other than carbon acids) - CN groups. They are named by placing the halide (etc.) term in the heading as a separate word following an acid term which ends as follows for various acid classes:

Acid suffix	Acid halide suffix
-carboxylic	-carbonyl
-carbohydrazonic	-carbohydrazonoyl
-carbothioic	-carbothioyl
-carboximidic	-carboximidoyl
-oic	-oyl
-hydrazonic	-hydrazonoyl
-thioic	-thioyl
-imidic	-imidoyl
-sulfonic	-sulfonyl
-sulfonimidic	-sulfonimidoyl

Examples:
$\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CONCS}$
Pentanoyl isothiocyanate

3,6,9,12-Tetraoxatetradecanoyl
fluoride

$\operatorname{PhC}(=\mathrm{NH}) \mathrm{Br}$
Benzoyl isocyanide

Benzenecarboximidoyl bromide

PhCSCl	Benzenecarbothioyl chloride
${ }_{4}^{\mathrm{CH}_{3}-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SO}_{2}-\mathrm{NCO}}$	1-Butanesulfonyl isocyanate
$\mathrm{PhS}(\mathrm{O})(=\mathrm{NH}) \mathrm{Cl}$	Benzenesulfonimidoyl chloride
$\mathrm{ClCO}\left(\mathrm{CH}_{2}\right)_{2}{ }_{4}^{\mathrm{COCl}}$	Butanedioyl dichloride (not Butanedioyl chloride)
$\mathrm{OCNSO}_{2}{ }_{1}^{\mathrm{CH}_{2}}\left(\mathrm{CH}_{2}\right)_{4}{\underset{6}{C}}_{2}^{\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{NCO}}$	1,6-Hexanedisulfonyl diisocyanate
$\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CON}_{3}$	Benzenepropanoyl azide

Halides, etc., of peroxy acids are generally indexed as anhydrides, anhydrosulfides, etc., with halogen or halogenoid "oxo" acids such as Hypochlorous or Thiocyanic acid. Halides, etc., of (thioperoxy)sulfenic acids are indexed at Disulfide.

Examples:

When more than one acid halide residue is present in a compound, only one type is named in the heading parent. This is chosen by consideration first of the hierarchy of the parent acids (II 167) and then, if a further choice is necessary, of the following list of halides and halogenides (in descending order of precedence): -F, -Cl, -Br, -I, - ${ }_{3}$, -NCO, -NCS, $-\mathrm{NCSe},-\mathrm{NCTe},-\mathrm{NC},-\mathrm{CN}$.

Examples:

$\mathrm{FCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COI}$

Benzoyl chloride, 3,5-bis(fluoro-sulfonyl)-

Functional derivatives of acid chlorides are indexed similarly to those of the
parent acids (II 169).

171. Amides are named by modification of the parent acid suffixes, thus:		
-oic acid	becomes	-amide
-carboxylic acid	becomes	-carboxamide
-carbohydrazonic acid	becomes	-carbohydrazonamide
-carbothioic acid	becomes	-carbothioamide
-carboximidic acid	becomes	-carboximidamide
-sulfonic acid	becomes	-sulfonamide

Secondary and tertiary amides are named as primary amides with N -substituents. Anilides, toluidides, etc., are indexed as N-aryl amides.

Examples:	
$\underset{2}{\mathrm{MeCONH}} \underset{1}{ }$	Acetamide
$\mathrm{HN}=\mathrm{NHCONH}_{2}$	Diazenecarboxamide
MeCSNH_{2}	Ethanethioamide
$\mathrm{H}_{2} \mathrm{NCS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CSN}_{6}^{\mathrm{CSN}} 2$	Hexanedithioamide
$\mathrm{H}_{2} \underset{N I}{\mathrm{NC}}\left(=\underset{N^{\prime}}{ } \mathrm{NH}\right) \underset{2}{\mathrm{C}} \mathrm{CH}_{2} \underset{3}{\mathrm{C}}\left(=\underset{N^{\prime \prime \prime}}{(N H}\right) \mathrm{N}^{\prime \prime} \mathrm{N}_{2}$	Propanediimidamide
$\operatorname{PhC}\left(=\mathrm{NN}_{N^{\prime}} \mathrm{H}_{2}\right){\underset{N}{N}}_{\mathrm{N}_{2}}$	Benzenecarbohydrazonamide
$\mathrm{MeS}(=\mathrm{NH})_{2} \mathrm{NH}_{2}$	Methanesulfonodiimidamide
	1,5-Naphthalenedisulfonamide, N, N^{\prime}-dimethyl-
PhCSNHPh	Benzenecarbothioamide, N-phenyl-
	1 H -Indole-3-ethanimidamide
$\underset{2}{\mathrm{MeCONHCOMe}} \underset{N}{ }$	Acetamide, N-acetyl- (not Diacetamide)
$\mathrm{PhSO}_{2} \mathrm{NHSO}_{2} \mathrm{Ph}$	Benzenesulfonamide, N-(phenyl-sulfonyl)- (not Dibenzenesulfonamide)

Amides of peroxy acids and thio peroxy acids are indexed as O-acyl derivatives of Hydroxylamine and Thiohydroxylamine (II 193).

Amide radicals are named as compound or complex radicals based on "amino" or "imino," with acid radicals (II 168) as substituents.

Examples:
AcNH-
(acetylamino)(not acetamido)
(benzoylimino)
$\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CONH}-$
[(1-oxohexyl)amino](not hexanamido)
$\mathrm{PhSO}_{2} \mathrm{NH}-$
[(phenylsulfonyl)amino](not benzenesulfonamido)

PhC($=\mathrm{NH}$) NH—
[(iminophenylmethyl)amino]

The radicals above are employed as substituents when a more preferred amide or a higher function, e.g., an acid or acid chloride, is present in part of the molecule attached to the amide by way of the nitrogen atom. Other attachments call for use of amino and oxo, or (aminocarbonyl), (aminosulfonyl), etc., radicals.

Examples:
$\mathrm{H}_{2} \mathrm{NC} \underset{4}{ }\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{1} \mathrm{O}_{2} \mathrm{H}$
Butanoic acid, 4-amino-4-oxo-

Benzoic acid, 2-(aminocarbonyl)-

$$
\mathrm{CONH}_{2}
$$

Benzoyl azide, 4-(aminosulfonyl)-

Amides of which only the nitrogen atom forms part of a ring system are indexed as N-acyl derivatives at the ring name. They are regarded as "unexpressed amides" and rank just below an "expressed amide" of the same type of acid. Lower functions are disregarded unless they can be expressed as suffixes at the name of the ring of which the amide nitrogen is part. Residues of formic acid, carbonic acid and related compounds are expressed at the nitrogen heterocycle by such suffixes as "-carboxaldehyde," "-carboxylic acid," "carboxamide," etc., and the compounds are ranked accordingly.

Examples:

1H-Pyrrole, 3-[4-(aminosulfonyl)phe-nyl]-1-(1-oxopropyl)-(unexpressed carboxamide is favored over expressed sulfonamide)

Amides of amino acids with trivial names are named systematically except in peptide nomenclature (\mathbb{I} 206).

Example:

$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CONH}_{2}$

Acetamide, 2-amino- (not Glycinamide)

Oximes of amides (amidoximes) (R-C(:NOH) NH_{2}) are tautomeric with N hydroxy carboximidamides ($\mathrm{R}-\mathrm{C}(: \mathrm{NH}) \mathrm{NHOH})$ and are indexed at imidamide names:

Example:
172. Nitriles $(\mathrm{RC} \equiv \mathrm{N})$ are indexed at names derived from "-carboxylic" and "-oic" acid names by use of "-carbonitrile" and "-nitrile" suffixes, respectively. The zwitterionic nitrilimines ($\mathrm{RC} \equiv \mathrm{N}-\mathrm{N}^{-} \mathrm{R}^{\prime}$) are named as substituted hydrazinium hydroxide inner salts (IIII 201, 267).

Examples
MeCN Acetonitrile
$\mathrm{HC}_{5} \equiv \mathrm{CCH}=\mathrm{CHCN}$ 2-Penten-4-ynenitrile

NCCN
Ethanedinitrile (not Cyanogen)
$\mathrm{H}_{3} \mathrm{GeCN}$
Germanecarbonitrile
H_{2} NNHCN
Hydrazinecarbonitrile
$(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$
Ethenetetracarbonitrile

PhCN
Benzonitrile

Benzeneacetonitrile, α-propyl-

In the presence of higher functions, nitriles are always expressed as cyano radicals.

Examples:
$\mathrm{NCCH}_{2} \mathrm{CONH}_{2}$
Acetamide, 2-cyano- (not
Propanamide, 3-nitrilo-)
$\mathrm{MeCH}(\mathrm{CN}) \mathrm{COC}$
Propanoyl chloride, 2-cyano-

Benzoic acid, 2-cyano-
173. Aldehydes, RCHO , are named from "-carboxylic" and "-oic" acids by use of "-carboxaldehyde" and "-al" suffixes, respectively.

Examples:
$\mathrm{AcH}(\mathrm{MeCHO})$
Acetaldehyde
$\mathrm{MeCH}=\mathrm{CHCHO}$
2-Butenal
$\mathrm{HCOCH}_{2} \underset{3}{\mathrm{C}} \mathrm{H}=\mathrm{CHC} \underset{5}{\mathrm{C}} \equiv \mathrm{CCH}_{2} \mathrm{C}_{8} \mathrm{HO}$
3-Octen-5-ynedial
$\mathrm{H}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHO}$
Phosphinecarboxaldehyde oxide

Benzaldehyde, 4-methyl-

1,2-Benzenedicarboxaldehyde
$\mathrm{PhCH}_{2} \mathrm{CHO}$
Benzeneacetaldehyde
Chalcogen analogs of aldehydes are given "-thial," "-selenal," "-carbothioaldehyde," etc., names.

In the presence of more highly ranked compound classes (II 106) or more preferred aldehydes, the - CHO group is expressed by formyl (if it does not form part of an acyclic carbon chain) or by a terminal oxo radical. For thio aldehydes, the equivalent radicals are (thioxomethyl) and a terminal thioxo radical.

Examples:

$\mathrm{TeCH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHS}$

Benzenepropanal, 3-formyl(principle: largest heading parent)

Benzonitrile, 2-(thioxomethyl)-

Butanethial, 4-telluroxo-
Substitution of the aldehydic hydrogen atom by radicals derived from molecular skeletons is avoided; but radicals such as nitro and nitroso (or, for Formaldehyde and its chalcogen analogs only, a single sulfonyl or sulfinyl) are permitted.

Examples:
$\mathrm{MeC}(=\mathrm{NOH}) \mathrm{NO}$

BzNO 2
Benzaldehyde, α-nitro-
174. Ketones, $\mathrm{RC}(: O) \mathrm{R}^{\prime}$, and their chalcogen analogs are named by use of the characteristic suffixes -one, -thione, -selone, and -tellone. (The last two classes must be differentiated from selenones and tellurones, which contain the noncarbon groups $-\mathrm{SeO}_{2^{-}}$and $-\mathrm{TeO}_{2^{-}}$, respectively.) In acyclic ketones the group must generally be in a nonterminal position of a carbon or "a"-named chain and have two carbon attachments. Ketenes, in which a terminal unsaturated carbon bears a chalcogen atom, are exceptions; they are named by use of the same suffixes as ketones. Conjunctive names are not employed for acyclic ketones attached to ring systems; instead, the cyclic portion is expressed as a substituent of the acyclic ketone parent (in which the oxo group may occupy the 1-position). When an acyclic ketone with two cyclic substituents (attached at carbon atoms) consists only of a single carbon atom with a chalcogen attached, the heading parents Methanone, Methanethione, Methaneselone and Methanetellone are employed.

Examples:

$\underset{1}{\mathrm{MeCOM}}{ }_{2}^{\mathrm{CO}}$	2-Propanone (not Acetone)
$\underset{l}{\mathrm{MeCH}_{2}} \underset{3}{\mathrm{OSi}}$	${ }_{11}^{\mathrm{OCH}_{2} \mathrm{Me}}$

3,11-Dioxa-4,10-disilatridecan-7one
$\underset{1}{\mathrm{MeCOCH}}{ }_{2} \mathrm{COCH}=\underset{6}{\mathrm{CH}_{2}}$
5-Hexene-2,4-dione (not 1-Hex-ene-3,5-dione)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}$

$\underset{6}{\mathrm{Me}}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\underset{1}{\mathrm{C}=\mathrm{O}}$	1-Hexen-1-one
$\mathrm{MeCSeCH}_{2} \mathrm{Me}$	2-Butaneselone

$\underset{4}{\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COM}} \underset{1}{ }$

1-Hexanone, 1-phenyl- (not Hexanal, 1-phenyl-)

$\mathrm{Ph}_{2} \mathrm{CO}$

Methanone, [2,2'-bipyridine]-5,5'-diylbis[phenyl- (a multiplicative name (II 125))

Cyclic ketones (including those with neighboring hetero atoms) are named by appending "-one," "-thione," etc., suffixes to the ring names. Indicated hydrogen (required to form the ring system itself) is often chosen (where possible) to accommodate a single ketone group (II 135). In other cases, added hydrogen (II 136) is introduced at some other position of the ring system when the ketone suffix is attached.

Examples:

3-Cyclohexen-1-one
4H-Thiopyran-4-one, 2,3-dihydro-
(not $2 H$-Thiopyran-4(3H)-one)

1,9,10(2H)-Anthracenetrione, 3,4-dihydro- (the added hydrogen is cited in the lowest-numbered available position)

In the presence of higher functions or more preferred ketones, oxo, thioxo, selenoxo, and telluroxo radicals, are used. The = CO group, when not part of an acyclic chain or a ring, is expressed as carbonyl; the chalcogen analogs (carbonothioyl, carbonoselenoyl, and carbonotelluroyl) are used when they are not part of a chain, and when, in addition, they are either bonded to a single atom or used as multiplicative radicals. The trivially named radicals benzoyl, for (oxophenylmethyl), and acetyl, for (1-oxoethyl), are used when appropriate.

Examples:
$\mathrm{MeCOCH}_{2} \mathrm{COBr}^{2}$
Butanoyl bromide, 3-oxo(not Acetyl bromide, acetyl-)

1-Propanone, 1-(4-acetylphenyl)-

2H-Thiopyran-3-carboxylic acid, 3,4-dihydro-4-thioxo-

Butanoic acid, 2,4-dioxo- (not Propanoic acid, 3-formyl-2-oxo-)
$D \quad \underset{4}{\mathrm{CONHNHCO}}{ }_{2} \mathrm{H}$
Hydrazinecarboxylic acid, 2-(cyclo-propylcarbonyl)-

Benzonitrile, 3-(2-pyridinylthioxo-methyl)- (not Benzonitrile, 3-(2-pyridinylcarbonothioyl)-)

Cyclopentanecarboxylic acid, 3-carbonothioyl-

1,3-Butanedione, 4-(4-oxo-3(4H)-quinazolinyl)-1-phenyl- (principle: maximum number of the principal chemical functional group (II 138))

Carbonyl groups and their chalcogen analogs in heterocycles are named and ranked as ketones, thiones, etc., even when a neighboring ring atom is not carbon (see above), but acyclic carbonyl (etc.) groups attached to cyclic or acyclic hetero atoms (including silicon) are not recognized as ketones, and the functionality of the group is disregarded. It is expressed, not as a suffix, but as an appropriate substituent prefix (acetyl, oxo, carbonyl, (thioxomethyl), etc.) of a heading parent.

Examples:
$\mathrm{AcN}=\mathrm{NNH}$
1-Triazene, 1-acetyl- (not Ethanone, 1-(1-triazenyl)-)

Phosphine, benzoyl-

$\mathrm{EtCOSiH}_{2} \mathrm{OH}$
Silanol, (1-oxopropyl)-
$\mathrm{H}_{2} \mathrm{P}(\mathrm{S}) \mathrm{CSPh}$
Phosphine sulfide, (phenylthi-oxomethyl)-
175. Alcohols (and phenols) and their chalcogen analogs (thiols, selenols, and tellurols) are expressed by the suffixes -ol, -thiol, -selenol, and -tellurol, attached to a carbon or silicon atom of a molecular skeleton name. The only trivial name employed in $C A$ indexes for a compound of this class is Phenol (for Benzenol). Phenols as a class are treated precisely like alcohols, the choice of index name for a compond containing alcoholic and phenolic groups depending on the usual rules (II 138). Alcoholic groups and their analogs are expressed as hydroxy, mercapto, selenyl, and telluryl prefixes on more preferred heading parents.

Ethanol (not Ethyl alcohol)

2-Propen-1-ol (not Allyl alcohol)

2-Propanol (not Isopropyl alcohol)

5-Hexene-3-thiol
$\mathrm{MeSiH}_{2} \mathrm{OH}$
Silanol, methyl-

$\underset{4}{\mathrm{Me}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{TeH}$	1-Butanetellurol
$\underset{24}{\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{11}-\mathrm{S}_{12}-\mathrm{CH}_{2}}$	- $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}$

3,6,9-Trioxa-12-thiatetracosan-1-ol

PhSeH
Benzeneseleno

1-Naphthalenol (not 1-Naphthol)

$\begin{gathered} \mathrm{SH} \underset{\mid}{\mathrm{SH}} \\ \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{3} \end{gathered}$

HO- $\mathrm{SiH}_{2}-\mathrm{SiH}_{2}-\mathrm{OH}$
1,2-Disilanediol

Benzenemethanol, 2-hydroxy(not Phenol, 2-(hydroxymethyl)-) (principle: largest parent)

Phenol, 2-(3-hydroxy-1-propenyl)not 2-Propen-1-ol, 3-(2-hydroxyphenyl)-)

Phenol, 2-[(9-hydroxynonyl)oxy](principle: a cyclic parent is preferred (4] 138))
$\underset{2}{\mathrm{HSCH}} \mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{OH}$
Ethanol, 2-mercapto

Hydroxy derivatives of thiophene, selenophene, and tellurophene are indexed at Thiophene-ol, etc., (the final "e" of the parents being left unelided to avoid confusion with chalcogen analogs of Phenol). The locant is placed immediately before the suffix.

Example:

Thiophene-3-ol, 5-telluryl-

Hydroxy, mercapto, selenyl, and telluryl groups attached to hetero atoms other than silicon are always expressed as prefixes (unless they form part of an acid functional parent compound ($([130)$). "Esters" of such groups are also expressed as prefixes.

Examples:
H_{2} NNHSH

${ }_{1}{ }^{6} \mathrm{NOAc}$
NOAc
Hydrazine, mercapto-

Borinic acid, dimethyl-

3-Quinolinethiol, 1,2-dihydro-1-hydroxy-

10 H -Phenoxarsine, 10-[(phenyl-sulfonyl)thio]-

Propanoic acid, 3-[(1,3-dihydro-1,3-dioxo-2 H-isoindol-2-yl)-оху]-3-oxo-

176. Amines are always named as primary amines, RNH_{2}, or their N -derivatives, by attaching the suffix "-amine" to the name of a molecular skeleton, cyclic or acyclic. Attachment may be at a carbon or hetero atom. Trivial names, e.g., Aniline, and radicofunctional names, e.g., Methylamine, are not used. Conjunctive names ($\$[124$) are employed for monoamines where appropriate. Examples:

MeNH2	Methanamine (not Methylamine)
$\underset{1}{\mathrm{MeC}} \underset{2}{ } \mathrm{H}\left(\mathrm{NH}_{2}\right) \mathrm{Me}_{3}^{\mathrm{Me}}$	2-Propanamine (not Isopropylamine)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH} \underset{2}{\mathrm{CH}} \mathrm{H}\left(\mathrm{NH}_{2}\right) \underset{1}{\mathrm{Me}}$	3-Buten-2-amine
$\mathrm{H}_{3} \mathrm{PbNH}_{2}$	Plumbanamine

$\mathrm{H}_{2} \mathrm{PPHNH}_{2}$	Diphosphinamine
PhNH2	Benzenamine (not Aniline)
	Bicyclo[2.2.1]hept-5-en-2-amine
$\mathrm{H}_{2} \mathrm{NBiHNH}_{2}$	Bismuthinediamine
	1,3,2-Dioxarsolan-2-amine
	1H-Pyrrol-2-amine
$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	1,2-Ethanediamine (not Ethylenediamine)
$\mathrm{H}_{2} \mathrm{NCH}_{I} \mathrm{H}_{2} \underset{2}{\mathrm{C}} \mathrm{H}\left(\mathrm{NH}_{2}\right) \mathrm{Me}_{3}$	1,2-Propanediamine
	1,2-Benzenediamine (not 1,2-Phenylenediamine)
$\underset{\beta}{\mathrm{PhCH}_{2} \mathrm{C}_{\alpha}^{\mathrm{C}}} \mathrm{HMeNH} \mathrm{NH}_{2}$	Benzeneethanamine, α-methyl-
	5-Pyrimidinemethanamine

When higher functions (II 106) or more preferred amine parents are present, the prefix "amino" is employed.

Examples:

1,2-Propanediamine, 3-(4-amino-phenyl)- (principle: maximum number of the principal group)

$$
\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{SiH}_{2} \mathrm{NH}_{2}
$$

Silanamine, 1-(5-aminopentyl)(principle: hetero-atom parent preferred)

Benzenemethanamine, 4-amino(principle: largest heading parent)

Benzenamine, 2,6-bis[(2-amino-3,5-dimethylphenyl)methyl](principle: centrality)

Secondary and tertiary amines, $\mathrm{RR}^{\prime} \mathrm{NH}$ and $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{N}$, are named as derivatives of primary amines by application of the usual criteria (II 138).

Examples:
$\underset{2}{\mathrm{MeCH}} \underset{2}{ } \mathrm{NHCH}_{2} \mathrm{Me}$
Ethanamine, N-ethyl- (not Diethylamine)
$\left(\mathrm{Me}_{2} \mathrm{CH}\right)_{3} \mathrm{~N}$
2-Propanamine, N, N-bis(1-
methylethyl)- (not
Triisopropylamine)

2-Furanamine, N -2-furanyl-
$\mathrm{H}_{2} \mathrm{~N}^{-}-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{1}-\mathrm{NH}_{\mathrm{N}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
1,3-Propanediamine, N-(3-amino-propyl)-

Silanamine, N-stannyl- (principle: preferred hetero atom)

Cyclohexanamine, N-octyl- (principle: a cyclic parent is preferred)

$\mathrm{Me}_{2} \mathrm{NONMe}_{2}$
1,2,4-Benzenetriamine, N^{2}-(3,5-di-aminophenyl)- (principle: lowest locants for principal groups)

Methanamine, N, N^{\prime}-oxybis $[N$ -methyl- (principle: multiplication)

1,4-Benzenediamine, N, N^{\prime}-bis-
[4-(methylamino)phenyl]-
(principle: centrality)

Replacement names are employed for acyclic secondary and tertiary amines provided that the "-amine" suffix of the "aza" name expresses at least the same number of such groups as the conventional name and that other requirements (II 127), e.g., the presence of a minimum of four hetero units in the molecular skeleton, are satisfied.

Examples:

$$
\underset{N}{\mathrm{EtNHCH}}{ }_{1} \mathrm{CH}_{2} \mathrm{NH}_{3}\left[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{3} \mathrm{CH}_{13} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }_{N} \mathrm{NHEt}_{N^{\prime}}\right.
$$

3,6,9,12-Tetraazatetradecane-1,14-diamine, N, N^{\prime}-diethyl-
$\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{N}{\mathrm{NH}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}^{-} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{3}$
1,2-Ethanediamine, N-[2-(methylamino)ethyl $]-N^{\prime}-[2-[[2-$ (meth-ylamino)ethyl]amino]ethyl](not 3,6,9-Triazaundecane-1,11diamine, N, N^{\prime}-dimethyl-; this organic replacement name expresses only three hetero units) (not 2,5,8,11,14-Pentaazapentadecane; this name does not express the amino groups as a substituent suffix)

Schiff bases (anils, azomethine compounds) contain the - $\mathrm{N}=\mathrm{C}$-grouping and are therefore both amines and imines. They are indexed as amines in the absence of higher functions.

Example:
$\mathrm{PhN}=\mathrm{CHPh}$
Benzenamine, $\quad N$-(phenylmethyl-
ene)-
N-Hydroxy amines are named as such, not as hydroxylamine derivatives. Amine oxides are named by citation of the additive term " N-oxide" in the modification.

Examples:	
PhNHOH	Benzenamine, N-hydroxy-
$\mathrm{EtN}(\mathrm{O}) \mathrm{Et}_{2}$	Ethanamine, N, N-diethyl-

177. Imines are ranked as the lowest compound class named by use of a functional suffix. The "-imine" suffix is attached to a cyclic or acyclic molecular skeleton (at a carbon or hetero atom). Indicated and added hydrogen (IIII 135,136) for cyclic imines are assigned as for the analogous ketones (II 174). N-Alkyl, N-aryl, etc., imines are indexed as amines (II 176). Conjunctive nomenclature is used for imines when the molecular skeleton to which a single function is attached is itself connected to a ring system by a single bond.

Examples:

$\underset{2}{\mathrm{MeC}} \underset{1}{ } \mathrm{CH}=\underset{N}{\mathrm{NH}}$	Ethanimine (not Ethylideimine)
$\underset{1}{\mathrm{MeC}} \underset{2}{ }(=\mathrm{NH}) \underset{3}{\mathrm{Me}}$	2-Propanimine
$\mathrm{HP}=\mathrm{NH}$	Phosphinimine
${ }^{5}{ }^{1}$	2,4-Cyclopentadien-1-imine

4 H -Pyran-4-imine, tetrahydro- (not $2 H$-Pyran- $4(3 H)$-imine, dihydro-)

Methanediimine (not Carbodiimide)

2-Propanamine, N, N^{\prime}-methanetet-raylbis- (not Methanediimine, bis(1-methylethyl)-)

Ethanimine, N-chloro-N-oxide

2(1 H)-Pyridinimine, 1-ethyl-

9,10-Anthracenediimine

Benzenemethanimine, N, N^{\prime}-dithiobis[α-phenyl- (principle: multiplication of a conjunctive name)

In the presence of any other chemical function expressible as a suffix, imines are described by substituent prefixes. The $=\mathrm{NH}$ group is named imino; the $=\mathrm{C}=\mathrm{NH}$ group is expressed as carbonimidoyl in a multiplying radical or when attached to a single atom; the $-\mathrm{CH}=\mathrm{NH}$ group is named (iminomethyl) (not formimidoyl) unless the methyl group is part of an acyclic carbon chain.

Examples:

$\mathrm{HN}=\underset{3}{\mathrm{CHCH}} \underset{2}{ } \underset{1}{\mathrm{CN}}$
Propanenitrile, 3-imino-

Benzaldehyde, 3,3'-(1,4-phenyl-enedicarbonimidoyl)bis-

1,3-Benzoxathiol-4-ol, 2-imino-
$\operatorname{EtC}(=\mathrm{NH})$ OH

D. COMPOUND CLASSES

Introduction	II 178
Anhydrides	179
Anions	180
Antimony and Bismuth compounds	181
Boron compounds	182
Carbonic acid and relatives	183
Cations	184
Esters	185
Ester-anhydrides	186
Free radicals	187
Halogen and Halogenoid compounds	188
Hydrazides	189

Hydrazones	II 190
Imides	191
Molecular addition compounds	192
Nitrogen compounds	193
Organometallic compounds	194
Oximes	195
Oxygen compounds	196
Phosphorus and Arsenic compounds	197
Salts	198
Silicon, Germanium, Tin, and Lead compounds	199
Sulfur, Selenium, and Tellurium compounds	200
Zwitterionic compounds	201

178. Introduction. Previous sections have dealt with general principles and with the naming of specific compounds by combination of a molecular skeleton name with a suffix which describes the principal chemical function. The present section discusses nonfunctional compound classes (those that fall below imines in order of precedence ($\mathbb{I} 106$)), and classes of compounds such as esters, free radicals, ions, addition compounds, oxo acids, and carbonic acid relatives, which are named by application of principles already discussed. The order is alphabetic by class.
179. Anhydrides of acid groups, at least one of which is expressed as a functional suffix ("-oic acid," "-carboxylic acid," "-sulfonic acid," etc.), are indexed, if cyclic, at heterocycle names and, if acyclic, either at "a" names (II 127) or at acid heading parents with the term "anhydride" in the modification. (Acyclic anhydrides of certain mononuclear "oxo" acids, e.g., Carbonic acid, Phosphonic acid, are indexed at such headings as Dicarbonic acid, Triphosphonic acid.)

Replacement ("a") names are used for acyclic anhydrides when the suffix expresses no lower functionality than the heading parent of the regular substitutive name and the other requirements (II 127), e.g., that the molecular skeleton contain at least four hetero units, are satisfied.

Example:

$$
\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{COO}_{3} \underset{4}{ } \mathrm{SO}_{2} \mathrm{CH}_{2}{\underset{7}{\mathrm{SO}}}_{2} \mathrm{OCOCH}_{2} \mathrm{CO}_{11} \mathrm{H}
$$

4,8-Dioxa-5,7-dithiaundecanedioic acid, 3,9-dioxo-5,5,7,7-tetraoxide

Symmetrical anhydrides of monobasic organic acids are indexed at the acid heading parent with the simple term "anhydride" in the modification. Unsymmetrical anhydrides of monobasic acids, at least one of which is organic, are indexed at the name of the preferred acid (IIII 167, 138) with an "anhydride with" phrase in the modification. Anhydrides of Hydrazinecarboxylic acid and related compounds are given special treatment (see the final example below).

Examples:

$$
\stackrel{\mathrm{O}}{\stackrel{\mathrm{O}}{\mathrm{C}}-\stackrel{\mathrm{O}}{\mathrm{O}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}}
$$

Propanoic acid
anhydride

Benzoic acid, 4-chloro-
anhydride

$\stackrel{\mathrm{O}}{\mathrm{H}_{2} \mathrm{NNHC}}-\mathrm{O}-\mathrm{O}-\mathrm{C} \mathrm{NHNHCH}_{3}$
Dicarbonic dihydrazide, 2-methyl(see also II 183)

Anhydrides of monobasic organic acids with polybasic acids are indexed at the name of the preferred acid. The terms "mono," "di," etc., are used to indicate the number of molecules of water lost in anhydride formation, and locants must sometimes be cited. When three or more different acids are involved, the "anhydride with" term is repeated.

Examples:

Acyclic anhydrides of different polybasic acids sometimes require ratios. Examples:

1,4-Benzenedicarboxylic acid anhydride with carbonic acid (2:1)

Propanedioic acid anhydride with sulfuric acid (1:2)

Anhydrides of a single polybasic organic acid have such terms as "bimol. monoanhydride" and "trimol. dianhydride" in the modification, with locants when necessary.

Examples:

When the acid group which has undergone anhydride formation would have been expressed (in its unmodified form) as a substituent of the preferred heading parent, the anhydride is likewise expressed as a (more complex) substituent of the same parent. Anhydride formation of an acid group expressed as a substituent in an "anhydride with" phrase is treated similarly.

Examples:

Benzoic acid, 4-[(acetyloxy)-sulfonyl]-

Benzoic acid anhydride with [(acetyloxy)sulfonyl]acetic acid

Chalcogen analogs of acyclic anhydrides are indexed like anhydrides. When the oxygen atom connecting the acid residues has been replaced, the terms "anhydrosulfide," "anhydroselenide," and "anhydrotelluride" are used, and the sulfur, selenium, or tellurium is indicated in the names of both acid components.

Examples:

Benzenecarbothioic acid

 anhydride (not "anhydrosulfide")
Benzenesulfonotelluroic acid anhydrotelluride

Propanethioic acid
anhydrosulfide with O-ethyl
hydrogen ethylphosphonosel-
enothioate
hanimidothioic acid, N-hydroxyanhydrosulfide with thiocyanic acid

Symmetrical anhydrides of the monobasic "oxo" acids Formic, Phosphinic, Arsenic, Phosphinous, and Arsinous acids (and their substituted derivatives) are indexed by citation of the simple term "anhydride" in the modification. Symmetrical anhydrides of the dibasic "oxo" acids Phosphonic, Arsonic, Phosphonous, and Arsonous acids and their substituted derivatives are indexed at Di-, Tri-, etc., acid headings.

Example:
$\mathrm{MeAs}(\mathrm{OH}) \mathrm{OAs}(\mathrm{OH}) \mathrm{Me}$
Diarsonous acid, dimethyl-
Anhydrides of Borinic acid are indexed at Borane. Symmetrical anhydrides of Boronic acid are indexed at the acid names with "bimol. monoanhydride," etc., in the modification.

Examples:
PhBMeOBMePh
Borane, oxybis[methylphenyl-

Unsymmetrical anhydrides of "oxo" acids in general are indexed by use of "anhydride with" phrases at the preferred acid component heading parents, but cyanic acid anhydrides with mononuclear arsenic and phosphorus acids are expressed by means of "cyanatido" replacement affixes or by the class term "cyanate."

Examples:
$\xrightarrow[\substack{\mathrm{O} \\ \mathrm{CH}_{3}-\mathrm{P}-\mathrm{O}-\mathrm{CN} \\ \mathrm{O} \\ \mathrm{OH}}]{\substack{\text { I } \\ \hline}}$
Phosphonocyanatidic acid, methyl-
$\stackrel{\mathrm{O}}{\mathrm{O}_{-}^{\prime}} \mathrm{CH}_{3}-\mathrm{P}-\mathrm{O}-\mathrm{CN}$
$\mathrm{H}_{3} \mathrm{C}$
Phosphinic cyanate, dimethyl-

Anhydrosulfides of "oxo" acids are generally named analogously by use of "anhydrosulfide" terms. Other chalcogens are treated similarly. When sulfur, etc., replaces oxygen in Diphosphonic acid and similar compounds, the nondetachable prefixes "Thio," etc., are employed. The number of sulfur atoms is not indicated in the name; instead, a synonym line formula is always cited.

Example:

Thiodiphosphonic acid ((HO)HP(O)SHP(S)SH)

The peroxy analogs of this kind of "oxo" acid are indexed (with synonym line formulas) at such headings as Thioperoxydiarsonic acid $\left([(\mathbf{H O}) \mathbf{H A s}(\mathbf{S})]_{2} \mathbf{S}_{2}\right)$. Anhydrides of mononuclear peroxy "oxo" acids are generally named at Peroxide, Disulfide, etc.

Examples:

Peroxide, carboxy formyl

Disulfide, hydroxyphosphinyl sulfo

Cyclic anhydrides, anhydrosulfides, etc., are indexed like other heterocyclic compounds.

Examples:

1,3-Isobenzofurandione (not 1,2Benzenedicarboxylic acid, cyclic anhydride)

Naphth $[1,2-c][1,2,5]$ oxadithiole
1,1,3,3-tetraoxide (not 1,2-
Naphthalenedisulfonic acid,
cyclic anhydride)

Benzo[c]thiophene-1,3-dione
180. Anions. Index names for anions are required as sole entries when anions themselves are being studied, and as additional entries in the indexing of salts (II 198). Anions are often expressed differently as modification terms at cationic heading parents.

Anions from unsubstituted Ethyne, Arsine, Phosphine, Stibine, Silane (Si^{4-} only) and Hydrazine are named Acetylide, Arsenide, Phosphide, Antimonide, Silicide, and Hydrazide. Synonym line formulas are used, e.g., Acetylide $\left(\mathrm{C}_{2}{ }^{2-}\right)$, except for Hydrazide (which is $\mathrm{H}_{2} \mathrm{NNH}^{-}$) and Silicide, and for Arsenide, Phosphide, and Antimonide when all hydrogens have been lost.

Anions derived from compounds with names based on substitutive parent compounds (II 130) other than those just described are named at the heading parent for the neutral compound with a modification term such as "ion(1-)," "ion(2-)," or (if indefinite) "ion (neg)." Anions from esters of "oxo" acids are named similarly.

Certain resonance-stabilized anions and cations containing hetero atoms are indexed by $C A$ at names corresponding to preferred canonical structures. In the same manner as the analogous tautomeric compounds (II 122), anions are normalized, i.e., recognized as equivalent, by machine programs, regardless of how the structures are shown in the original documents. Each ion is assigned a single CAS Registry Number (see Appendix II, II 13) and a unique $C A$ index name.

Resonance-stabilized anions of the general formula

$$
\mathrm{M}=\mathrm{Q}-\mathrm{Z}^{-} \quad \longleftrightarrow{ }^{-} \mathrm{M}-\mathrm{Q}=\mathrm{Z}
$$

in which $\mathrm{Q}=\mathrm{C}, \mathrm{N}, \mathrm{S}, \mathrm{P}, \mathrm{Sb}, \mathrm{As}, \mathrm{Se}, \mathrm{Te}, \mathrm{Br}, \mathrm{Cl}$ or I , and M and Z represent any combination of trivalent N and/or bivalent $\mathrm{O}, \mathrm{S}, \mathrm{Se}$ or Te atoms are normalized in this way. The formula is analogous to that for normalized tautomeric compounds (II 122), with a negative charge replacing the hydrogen atom, and the requirements described for them apply equally to normalized anions. The names are derived by the same structural and nomenclature rules, and are identical except for addition of the index modification term "ion(1-)". Negative ions from tautomeric pyrazole and tropolone systems, though not normalized by the CAS Registry System, are handled like the uncharged tautomers.

Examples:
1 H -Pyrazole-3-car- NOT 1 H -Pyrazole-5-car-
bonitrile, 5-methyl-ion(1-)

Propanamide ion(1-)

1H-Benzimidazole,
NOT
5-chloro-
$\operatorname{ion}(1-)$

bonitrile, 3-methyl-ion(1-)

Radical ions are named at the neutral compound heading with "radical ion" terms in the modification.

Examples:

2,5-Cyclohexadiene-1,4-dione radical ion(1-)

At cationic index headings, e.g., Ethanaminium (see TII[184, 198), anions are expressed by "-ide" or "-ate" terms, as described below, or by "salt with" phrases. The "salt with" phrase is followed by a ratio, e.g., (1:1).

Modification terms for unsubstituted carbanions from acyclic and monocyclic hydrocarbons are derived by adding "-ide" to the hydrocarbon name after elision of the final "e," e.g., "benzenide," "cyclopentadienide." Unsubstituted acids expressed as principal groups (e.g., carboxylic and sulfonic acids) afford anions which are named by "-ate" terms in the modification, e.g., "acetate," "1,2-benzenedicarboxylate." Phosphonic acid, Carbamic acid, and other substitutive functional parent acids, whether substituted or not, also provide anions which are named in modifications by means of "-ate" terms, e.g., "phosphonate," "dimethylcarbamate." Similar terms are used for anions from partial esters of polybasic "oxo" acids.

Examples:

$$
\begin{gathered}
\mathrm{O} \\
\stackrel{\mathrm{I}}{ } \mathrm{CH}+ \\
\mathrm{CH}_{3}-\mathrm{P}-\mathrm{O}^{-} \\
\vdots \\
\mathrm{O}-\mathrm{CH}_{3}
\end{gathered}
$$

methyl methylphosphonate
$\mathrm{CH}_{3}-\stackrel{\mathrm{O}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{S}^{-}}{ }$
O-methyl carbonothioate

methyl 1,2-benzenedicarboxylate

methyl phosphate

Anions from the unsubstituted alcohols and phenols Methanol, Ethanol, 1-Propanol, 1-Butanol, and Phenol are named by "-oxide" terms, e.g., "propoxide," "phenoxide". Loss of hydrogen from the mercapto group of unsubstituted Benzenethiol is expressed as "benzenethiolate".

In all other cases, anion names at cation headings are replaced by "salt with" phrases; it is to be understood that, in a complete salt name, a ratio would always be added when known.

Examples:

salt with 4-methoxyphenol (not
"4-methoxyphenoxide")

PhNH-
salt with benzenamine

salt with 2,4,6-trinitrophenol (not "picrate")
181. Antimony and Bismuth compounds, are conveniently discussed together because of the close similarity in the indexing treatment of their derivatives. Antimony and bismuth are metals (\mathbb{I} 215), and their salts are named as such, not as cyclic or acyclic molecular skeletons. (Prior to CA Volume 95 (see II 101), antimony was classed as a nonmetal for indexing purposes; now, it and bismuth are treated alike.)

Hydrides of trivalent antimony and bismuth are named Stibine and Bismuthine, respectively; polymolecular saturated and unsaturated hydride chains have names such as Distibine, Distibene, Tribismuthine. The mononuclear oxide heading parents Stibine oxide and Bismuthine oxide are employed, as are also the analogous names for the sulfides, etc., and imides. In heterocyclic compounds the valency is understood to be three unless an abnormal valency can be expressed in the name (II 158).

Examples:
Bismuthine, triethyl-

Heterocyclic antimony and bismuth compounds without functional suffixes are ranked in accordance with the seniority of ring systems (II 138). Nonfunctional acyclic antimony substitutive parent compounds follow arsenic compounds in order of precedence ($\mathbb{I} 106$) and are followed in turn by bismuth and then boron parents. Within each class the order is determined by the number of hetero atoms, then unsaturation, size and additive hetero atoms, as illustrated by the following descending order of antimony compounds: Tristibine, Distibene, Distibine, Stibine oxide, Stibine sulfide, Stibine imide, Stibine. In the presence of more preferred compound classes, the following substituent prefixes are employed. (The substituent prefixes stiboso (-SbO), stibo $\left(-\mathrm{SbO}_{2}\right)$, stibinico $(=\mathrm{Sb}(\mathrm{O}) \mathrm{OH})$, and stibono $\left(-\mathrm{Sb}(\mathrm{O})(\mathrm{OH})_{2}\right)$ were used prior to $C A$ Volume 95 (see II 101).)

	Substituent Prefix
$-\mathrm{SbH}_{2}$	stibino
$=\mathrm{SbH}$	stibylene
$\equiv \mathrm{Sb}$	stibylidyne
$-\mathrm{Sb}=\mathrm{Sb-}$	1,2 -distibenediy
Examples:	
$\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{~S}$	

	Substituent Prefix
$-\mathrm{BiH}_{2}$	bismuthino
$=\mathrm{BiH}$	bismuthylene
$\equiv \mathrm{Bi}$	bismuthylidyne

$\underset{N}{\mathrm{PhN}}=\mathrm{BiI}$
Benzenamine, N-(iodo-bismuthylene)-

Trihydroxy and hydroxy oxo derivatives of Stibine, Bismuthine, Stibine oxide, Bismuthine oxide and their chalcogen analogs are given binary oxide, hydroxide, etc., names (with synonym line formulas) such as Antimony hydroxide $\left(\mathbf{S b}(\mathbf{O H})_{3}\right)$, Bismuth hydroxide $\left(\mathbf{B i}(\mathbf{O H})_{3}\right)$, Antimony hydroxide oxide $(\mathbf{S b}(\mathbf{O H}) \mathrm{O})$ and Bismuth hydroxide oxide $(\mathbf{B i}(\mathbf{O H}) \mathrm{O})$. (Antimonic acid headings were used prior to $C A$ Volume 95 (see ๆI 101).)

Halo, alkoxy, and aryloxy derivatives of Stibine, Bismuthine and their oxides are so named; amino derivatives are named at Stibinamine, Stibinediamine, Bismuthinamine, etc.

Examples:
$\mathrm{MeOSbCl}_{2}$
Stibine, dichloromethoxy-
$(\mathrm{HO})_{2} \mathrm{Sb}(\mathrm{O}) \mathrm{NH}_{2}$

Stibinamine, 1,1-dihydroxy-1-oxide

Arsenic compounds. See Phosphorus and Arsenic compounds (II 197)
182. Boron compounds. For the naming of neutral boron hydrides and replacement ("a") analogs (hetero polyboranes) see TIII 159, 160. Except for hydroxyl groups attached to boron (II 175), principal groups on such hydrides are expressed as suffixes in the regular way, and conjunctive names are adopted with those known to have closed polyhedral structures; e.g., Diborane(4)tetramine and 1,2-Dicarbadodecaborane(12)-1,2-diethanol.

Acyclic carbon chains containing boron atoms are given "a" names if the requirements (II 127) are met.

Example:
$\mathrm{MeB}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{~B}(\mathrm{Me}) \mathrm{Me}$
4,7-Dioxa-2,9-diboradecane, 2,9-dimethyl-
Heterocyclic boron compounds and their derivatives are named by the usual procedures (II 146). Intramolecular coordination bonds between boron atoms and other hetero atoms are ignored in naming; thus, a zwitterionic ring bond between boron and phosphorus in the last example below is disregarded, and the monocyclic system is named. (A monocycle entirely dependent on such a bond is named as an acyclic compound.)

Examples:

1,3,2-Benzodioxaborole-2-propanenitrile

1,5-Phosphaborocine

Boron molecular skeletons fall between nonfunctional bismuth and silicon compounds in the order of precedence of compound classes (II 106). Within the boron class, the descending order is carbapolyboranes, hetero polyboranes, polyboranes, heterocyclic boron compounds, and finally Borane. When more preferred groups or molecular skeletons are present, boron substituent prefixes (II 161) are used.

Examples:

$\mathrm{Me}_{3} \mathrm{~B}$	Borane, trimethyl-
$\mathrm{H}_{2} \mathrm{SbBH}_{2}$	Stibine, boryl-
$\underset{\substack{\mathrm{Me}_{2} \mathrm{BNHMe} \\ 1 N}}{\text { Boranamine, N,1,1-trimethyl- }}$(principle: heteroatom molecular skeleton preferred)	

Aziridine, 1,1'-(phenylborylene)bis-

Diborane(6), chloro-
When the position of substituent suffixes or prefixes cannot be related to the accepted numbering of polyboranes and hetero polyboranes (as illustrated in the Ring Systems Handbook and current Chemical Substance Index), no numerical locants are used, but capital italic letters may be cited to denote substitution on a "hetero" atom in a hetero polyborane.

Examples:
$\mathrm{B}_{10} \mathrm{H}_{9}$
BcO
$\mathrm{B}_{10} \mathrm{C}_{2} \mathrm{Me}_{2} \mathrm{H}_{10}$

1,2-Dicarbadodecaborane(12), (acetyloxy)-
 Dicarbadodecaborane(12), C, C^{\prime} -dimethyl-

Substitution of bridging hydrogen of a polyborane or hetero polyborane is indicated by the prefix " μ " (mu); when necessary, the locants of the boronatom bridgeheads are cited.

Examples:

Diborane(6), [μ-(phenylamino)]-

Tetraborane(10), 1,2- μ-amino-

Cyclic derivatives of polyboranes (other than Diborane(4)) and hetero polyboranes formed by replacement of non-bridging hydrogen atoms by bivalent radicals are named by citing such radicals as substituents.

Examples:

Diborane(6), 1,1-(1,4-butanediyl)-

Hydroxy derivatives of Borane have acid names as follows:

$\mathrm{B}(\mathrm{OH})_{3}$	Boric acid $\left(\mathbf{H}_{3} \mathbf{B O}_{3}\right)$
$\mathrm{HB}(\mathrm{OH})_{2}$	Boronic acid
$\mathrm{H}_{2} \mathrm{~B}(\mathrm{OH})$	Borinic acid

Boronic and borinic acids have replaceable hydrogen atoms attached to boron and are used as substitutive parent compounds. Their esters, anhydrides, salts, and hydrazides are named in the usual way, but their acid halides and amides are named as Borane and Boranamine derivatives, respectively. Chalcogen analogs are named by use of the detachable prefixes thio, seleno, and telluro.

Hydroxy derivatives of Diborane(4), are now indexed at that index heading parent.

Examples:
MeB (OMe) OEt
Boronic acid, methylethyl methyl ester

PhBMeOH
Borinic acid, methylphenyl-
$\mathrm{PhB}(\mathrm{SH})_{2}$
Boronic acid, phenyldithio-
AcOBMe_{2}
$\mathrm{PhB}\left(\mathrm{NHNH}_{2}\right)_{2}$
Acetic acid
anhydride with dimethylborinic acid
$(\mathrm{HO})_{2} \mathrm{BB}(\mathrm{OH})_{2}$
$\mathrm{B}\left(\mathrm{NH}_{2}\right)_{3}$
Boranetriamine

Boric acid $\left(\mathbf{H}_{3} \mathbf{B O}_{3}\right)$ is not a substitutive parent. Esters and anhydrides are indexed as functional derivatives; hydrazides are indexed at Hydrazine.

Examples:
$(\mathrm{HO})_{2} \mathrm{BOPr}$
Boric acid ($\mathrm{H}_{3} \mathrm{BO}_{3}$) monopropyl ester
$\left(\mathrm{H}_{2} \mathrm{NNH}\right)_{3} \mathrm{~B}$
Hydrazine, 1,1', $\mathbf{1}^{\prime \prime}$-borylidynetris-
Addition compounds of neutral boranes are named as molecular coordination compounds (see I[215). (Prior to CA Volume 95 (see II 101), they were indexed at the component names (II 192).)

Example:
$\left[\mathrm{B}\left(\mathrm{NMe}_{3}\right) \mathrm{H}_{3}\right]$
Boron, (N, N-dimethyl-methanamine)trihydro-
($T-4$)- (preferred index name) (formerly indexed at Methanamine, N, N-dimethyl-, compd. with borane (1:1), and at Borane, compd. with N, N-dimethylmethanamine (1:1))

Oligomeric boranamines which are linear or unspecified are indexed at the monomer name with "dimer," "trimer," etc., in the modification. Cyclic dimers are named as μ-derivatives of Diborane(6). Monocyclic trimers, tetramers, etc., are given ring names in which the abnormal valencies of hetero atoms are expressed (see I[158).

Examples:

Borazine, 2,2,4,4,6,6-hexabromo-
1,2,3,4,5,6-hexahydro-1,3,5-trimethyl-

Ionic boron compounds are indexed by coordination nomenclature (see \mathbb{I} 215) at such names as Borate (2-), decahydrodeca- (for $\left[\mathrm{B}_{10} \mathrm{H}_{10}\right]^{2-}$), and Boron $(1+)$, diamminedihydro- (for $\left[\mathrm{BH}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{1+}$). Acidic polyboranes and hetero polyboranes are named as complex acids (II 215); e.g., Borate(2-), decahydrodeca-, dihydrogen (not Decaborane(12)). Prior to the Eleventh Collective Index period, the special term "borata" denoted a tetrahedral borate anion attached to carbon atoms in a heterocyclic ring system. Now, compounds of this type are named by coordination nomenclature at such index headings as Borate(1-).
183. Carbonic acid and relatives, with a few trivially named exceptions, are indexed by the principles of replacement nomenclature for functions (\mathbb{I} 129), based on the names Carbonic acid (for $(\mathrm{HO})_{2} \mathrm{C}=\mathrm{O}$) and Formic acid (for $\mathrm{HCO}_{2} \mathrm{H}$). Trivial names employed in $C A$ indexes are: Formyl halides and halogenides (except the cyanide, which is indexed at Acetonitrile, oxo-), Formamide, Formaldehyde, Hydrocyanic acid, Urea, Guanidine, Cyanic acid, Thiocyanic acid, Selenocyanic acid, Tellurocyanic acid. These trivially named compounds are ranked with the appropriate class (acid, amide, etc.) as Carbonic acid derivatives, which fall below derivatives of acids named as principal groups (carboxylic, sulfonic, etc.) and above inorganic "oxo" acids (Hypochlorous acid, Phosphonic acid, etc.) (see II 106).

Examples:

	Formyl isocyanate
	Formic acid anhydride with cyanic acid
HCONHM	Formamide, N-methyl-

Analogs (imidic, hydrazonic, peroxy, chalcogen) of Formic acid, Formamide, etc., are named systematically as methanoic acid analogs, but are ranked as compounds related to Formic acid.

Examples:
$\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{H}-\mathrm{O}-\mathrm{OH}$

HCSNH_{2}
$\mathrm{HC}(=\mathrm{NH}) \mathrm{NCO}$
$\mathrm{HCS}_{2} \mathrm{CN}$
$\stackrel{\text { S }}{\mathrm{S}} \mathrm{C}-\mathrm{CO}_{2} \mathrm{H}$

Methaneperoxoic acid

Methane(dithioic) acid (not Formic acid, dithio-)

Methanethioamide (not Formamide, thio-)

Methanimidoyl isocyanate

Methane(dithioic) acid anhydrosulfide with thiocyanic acid

Formic acid, (thiocarboxy)-
(not Methanethioic acid, carboxy-)

Replacement of the nuclear hydrogen atom in formic acid compounds by radicals derived from molecular skeletons leads to carboxylic acids, carbothioamides, etc., expressed as suffixes on the skeleton names.

Formaldehyde analogs have systematic names based on Methane, e.g., Methanimine (for $\mathrm{CH}_{2}=\mathrm{NH}$) and Methanethial (for $\mathrm{CH}_{2}=\mathrm{S}$). (Methanethione (I[174) is employed only as the index heading parent for thio ketones with two cyclic substituents and for cyclic thio ketenes.) Replacement of hydrogen in formaldehyde by carbon skeletons leads to larger aldehydes and to ketones; they and their analogs are named by the usual principles of substitutive nomenclature (IIII 173, 174). Replacement by nitrogen, halogen, etc., leads to compounds which are often named as Formic or Carbonic acid derivatives.

Examples:

$\mathrm{Ph}_{2} \mathrm{CO}$
$\mathrm{PhC}(=\mathrm{NH}) \mathrm{Me}$
HCONH_{2}
$\mathrm{H}_{2} \mathrm{NCOCl}$
$\mathrm{Cl}_{2} \mathrm{C}=\mathrm{NH}$

3-Pyridinecarboxaldehyde

Methanone, diphenyl-
Benzenemethanimine, α-methyl-

Formamide

Carbamic chloride
Carbonimidic dichloride

Carbonic acid analogs in which oxygen is replaced by halogen, halogenoid, chalcogen, or nitrogen atoms or groups (II 129) (except cyano or a single hydrazino) are given functional replacement names. The replacement of one hydroxyl by amino leads formally to Carbonamidic acid, $\mathrm{H}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{OH}$, but it and its analogs are named at the approved abbreviated forms Carbamic acid, Carbamothioic acid, etc.

Examples:

$(\mathrm{HO})_{2} \mathrm{C}=\mathrm{NH}$	Carbonimidic acid (the tautomeric Carbamic acid is preferred in indexing unless both acid hydrogen atoms have been replaced.)
$\mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH}) \mathrm{OH}$	Carbamimidic acid (not Carbon- amidimidic acid) (Urea is preferred in indexing in the absence of a covalent acid derivative.)
$\mathrm{ClCO}_{2} \mathrm{H}$	Carbonochloridic acid
$\mathrm{NCCO}_{2} \mathrm{H}$	Carbonocyanidic acid
$\left(\mathrm{HOO}_{2} \mathrm{CO}\right.$	Carbonodiperoxoic acid
$\mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH}) \mathrm{SSH}$	Carbamo(dithioperox)imidic acid
$\mathrm{Cl} \mathrm{Cl}_{2} \mathrm{CS}$	Carbonothioic dichloride
ClCOBr	Carbonic bromide chloride

Carbonic diamide is named Urea, and its chalcogen analogs are indexed at Thiourea (not Urea, thio-), etc. The monohydrazide of carbonic acid is Hydrazinecarboxylic acid, but the dihydrazide is named Carbonic dihydrazide. The monocyanide of Carbonic acid is Acetonitrile, oxo-; the dicyanide is Propanedinitrile, oxo-; the trivial name Guanidine is employed for Carbonimidic diamide

Examples:

$$
\mathrm{Me} \underset{N^{\prime}}{\mathrm{N}} \mathrm{HC}\left(\underset{N^{\prime \prime}}{\mathrm{N}}\right) \underset{N}{\mathrm{~N}} \mathrm{NEt}
$$

Guanidine, N-ethyl- N^{\prime}-methyl-
Carbonic acid linear polyanhydrides are named at Dicarbonic acid, Tricarbonic acid, etc. Carbonimidic, carbonoperoxoic, and carbonimidoperoxoic acid anhydrides are named in the same manner. When all the anhydride oxygens have been replaced by -OO- or -NH- groups, nondetachable "peroxy-" and "imino-" prefixes are cited ahead of the name along with multiplicative prefixes. Chalcogen analogs are treated similarly, except that synonym line formulas form part of the name, and multiplicative prefixes are not cited. When both acid groups have been replaced by amide or acid halide functions, appropriate names are derived, but when only one hydroxyl group has been replaced, or different functions are present, choice of a simpler parent is made. Longer chains can often be indexed by replacement ("a") nomenclature (II 127).

Examples:

$$
\begin{aligned}
& \stackrel{\mathrm{O}}{\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{O}} \stackrel{\text { ® }}{\mathrm{C}}-\mathrm{OH} \\
& \text { NH NH NH } \\
& \mathrm{HO}-\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{OH}
\end{aligned}
$$

Dicarbonic acid

Tricarbonimidic acid
$\stackrel{\stackrel{\mathrm{O}}{\mathrm{O}} \stackrel{\mathrm{C}}{\mathrm{O}} \mathrm{HO}-\mathrm{O}-\mathrm{O}-\mathrm{O}}{\mathrm{C}}-\mathrm{OH}$
Dicarbonodiperoxoic acid

$\mathrm{HO}_{2} \mathrm{COOCO}_{2} \mathrm{H}$	Peroxydicarbonic acid
	Diimidotricarbonimidic acid
$\underset{\substack{\mathrm{S}} \underset{\mathrm{C}}{\mathrm{~S}}-\mathrm{S}-\mathrm{S}-\mathrm{C}-\mathrm{OH}}{\text { HO- }}$	Thioperoxydicarbonic acid $\left([(H O) C(S)]{ }_{2} \mathbf{S}_{2}\right)$

$\stackrel{\mathrm{O}}{\stackrel{\mathrm{O}}{\mathrm{Cl}-\mathrm{O}}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{Cl}}$	Dicarbonic dichloride
	Imidodicarbonic bromide chloride
$\mathrm{H}_{2} \mathrm{NNHCONHCONHNH}_{2}$	Imidodicarbonic dihydrazide
$\mathrm{ClCONHCO}_{2} \mathrm{H}$	Carbamic acid, (chlorocarbonyl)-

2,4,6,8-Tetraazanonanediamide, 3,5,7-trioxo-

Carbonic acid and its relatives are placed in the order of precedence of compound classes just below acids expressed as suffixes attached to molecular skeleton names, e.g., sulfonic acids (Il 106). Within this subclass of acids, they are ranked by the following criteria, applied successively until a decision is reached: (a) number of acid groups; (b) number of nuclear carbon atoms; (c) precedence of atoms directly attached to nuclear carbon atoms (see Table I, II 128); (d) number of most preferred hetero atoms directly attached to nuclear carbon atoms; (e) order of priority of other atoms or groups attached to nuclear carbon atoms. A partial list in descending order is: Peroxydicarbonic acid, Dicarbonic acid, Imidodicarbonic acid, Carbonoperoxoic acid, Carbonic acid, Carbonimidic acid, Carbonochloridic acid, Carbamic acid, Formic acid, Cyanic acid, Thiocyanic acid. (Chalcogen analogs of each acid immediately follow it in descending order of increasing replacement of oxygen by sulfur, selenium, and tellurium.) Acid chlorides, amides, etc., are ranked within their own classes in a similar order.

Carbamic acid derivatives with cyclic substituents are not assigned conjunctive names. In the presence of higher functions, including any acid expressed as a suffix, the carbamic acid residue is indicated by a (carboxyamino) radical. Its replacement analogs are named in the usual manner. Its hydrazides are indexed at Hydrazinecarboxamide.

Examples:

Carbamic acid, 2-naphthalenyl(not 2-Naphthalenecarbamic acid)

Carbamic acid, 1,4-phenylenebis(not Carbamic acid, $N, N^{\prime}-1,4-$ phenylenebis- (see \mathbb{I} 118))
$\mathrm{Me}_{2} \mathrm{NCS}_{2} \mathrm{H}$
Carbamodithioic acid, dimethyl-
$\operatorname{PrNHC}(=\mathrm{NH}) \mathrm{OEt}$
Carbamimidic acid, propylethyl ester

Benzenesulfonic acid, 4-(carboxy-amino)-

Cyanic acid and its chalcogen analogs are treated as mononuclear "oxo" acids; their esters and anhydrides are named in the usual way. Isocyanic acid and its analogs are not used in general index nomenclature; their esters and anhydrides are named like halogen compounds. The acids themselves, and their salts, are indexed at Cyanic acid, Thiocyanic acid, etc. The amide, $\mathrm{H}_{2} \mathrm{NCN}$, is named Cyanamide.

Examples:

MeOCN	Cyanic acid methyl ester
$\mathrm{H}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{SCN}$	Ethanethioic acid anhydrosulfide with thiocyanic acid

PhNCO
Benzene, isocyanato- (not Isocyanic acid, phenyl ester)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCONCO}$
2-Propenoyl isocyanate
PhNHCN
Cyanamide, phenyl- (not Benzenecarbamonitrile)

Numerical and italic letter locants are used with carbonic acid relatives to place substituents. Unless a locant is expressed in the heading parent, none is cited for a substituent prefix unless needed to specify an isomer (II 117). Locants are not usually employed with monosubstituted Guanidine and Carbamimidic acid.

Examples:
$\mathrm{MeNHCONH} \mathrm{N}_{2}$
Urea, methyl-

MeNHCSNHMe
Thiourea, N, N^{\prime}-dimethyl-
$\mathrm{H}_{2} \mathrm{NNHC}(=\mathrm{NH}) \mathrm{SEt}$

Hydrazinecarboximidothioic acid ethyl ester

	Carbonic dihydrazide
$\mathrm{H}_{2} \mathrm{NC}\left(=\underset{N^{\prime \prime}}{\mathrm{NH}}\right) \mathrm{N}^{\prime} \mathrm{NH}_{2}$	Guanidine
	Imidodicarbonimidic diamide
	Diimidotricarbonimidic diamide

184. Cations, including carbonium ions (which possess an electron-deficient, tricoordinate carbon atom), "ium" ions (defined for index nomenclature purposes as resulting from addition of a proton to a saturated carbon atom or of one covalent substituent other than hydrogen to a fully substituted hetero atom), and radical cations related to these two classes are described here. (For salts of which they are components, see II 198.) When a proton is added to a hetero atom, the resulting compound is named as a salt (if the anion is known) or by such modification phrases as "conjugate acid" or "conjugate monoacid" (if two or more heteroatoms are present) at the neutral component.

Examples:

$\mathrm{MeOH} \cdot \mathrm{HF}\left(\right.$ not $\left.\left[\mathrm{MeOH}_{2}\right]+\mathrm{F}^{-}\right) \quad$| Hydrofluoric acid |
| :--- |
| compd. with methanol (1:1) |
| Methanol |
| compd. with hydrofluoric acid |
| |
| |
| |
| (1:1) (additional Chemical Sub- |
| stance and Formula Index entry) |

Pyridine conjugate acid

Carbon cations formally derived by addition of a proton to a saturated carbon atom are named at the molecular skeleton name by use of a modification term such as "monoprotonated".

Example:

$\mathrm{MeCH}_{4}+$

Ethane

 monoprotonatedOrthodox carbonium compounds are named from the hydrocarbon (or other parent) radical by addition of "-ium."

Examples:

$\mathrm{MeCH}_{2}+$	Ethylium
$\mathrm{Me}_{2} \mathrm{CH}^{+}$	Ethylium, 1-methyl- (not 2- Propylium
Ethylium, 1-oxo- (not Acetylium)	
MeCO	
Methylium, cyclopropyloxo- (not	
Cyclopropylcarbonylium)	

Acyclic nitrogen cations derived from amines attached to parent molecular skeletons are named by converting the preferred "-amine" name (II 176) to "-aminium" and expressing the remaining quaternizing groups as substituent prefixes.

Examples:

Methanaminium, N, N, N-trimethyl-
Methanaminium, N-methyl- N-oxo-

2-Propanaminium, $N, 2$-dimeth-yl- N-(phenylmethylene)(principle: largest amine parent)

$\mathrm{MeC} \equiv \mathrm{N}^{+} \mathrm{Me}$
Quaternary ammonium cations not included in the heading parent are expressed as substituted ammonio, ${ }^{+} \mathrm{NH}_{3}-$, iminio, ${ }^{+} \mathrm{NH}_{2}=$, and nitrilio, ${ }^{+} \mathrm{NH} \equiv$, radicals.

Example:

1,6-Hexanediaminium, N-[3-[(6-aminohexyl)dimethylammonio]-propyl]- $N, N, N^{\prime}, N^{\prime}, N^{\prime}$-penta-methyl- (principle: largest heading parent)

Aminium and diaminium names may be derived from amines named by replacement (" a ") nomenclature. In addition, cationic centers in the " a " name of a molecular skeleton may be expressed, if such a name is permitted (see I[127), by use of the "azonia" replacement prefix.

Example:

7,14,21,28-Tetraazoniatetratria-contane-1,34-diaminium, N, N^{\prime} -diethyl- $N, N, N^{\prime}, N^{\prime}, 7,7,14,14,-$ $\mathbf{2 1 , 2 1 , 2 8 , 2 8}$-dodecamethyl-

Iminium names are employed when the quaternary nitrogen atom is attached to one or more bivalent radicals derived from a molecular skeleton, and analogous monovalent radicals are absent. The names are derived from those of the preferred imines (II 177).

Example:

$$
\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N}^{+}=\mathrm{CPh}_{2} \quad \begin{gathered}
\text { Benzenemethaniminium, } N- \\
\text { (diphenylmethylene)- } \alpha \text {-phenyl- }
\end{gathered}
$$

Diazonium compounds contain the $-\mathrm{N}_{2}{ }^{+}$group attached to a substitutive parent compound. When such a parent is a molecular skeleton, the suffix "-diazonium" is employed; otherwise Diazonium is the heading parent. The corresponding substituent prefix is "diazonio."

Examples:

Cations from acyclic nitrogen molecular skeletons are named in a similar manner by use of the "-ium" suffix. Lowest locants are given to cationic centers when a choice is necessary.

Examples:

$\mathrm{PhN}^{+} \mathrm{Me}_{2} \mathrm{NH}_{2}$	Hydrazinium, 1,1-dimethyl-1-phenyl-
$\mathrm{H}_{2} \mathrm{NN}^{+} \mathrm{Me}_{2} \mathrm{NH}_{3}$	Triazanium, 2,2-dimethyl-
$\underset{3}{\mathrm{MeN}}=\underset{2}{\mathrm{NN}_{1}^{+}} \mathrm{Me}_{3}$	2-Triazenium, 1,1,1,3-tetramethyl-
$\mathrm{Me}_{3} \mathrm{~N}^{+} \mathrm{N}^{+} \mathrm{Me}_{3}$	Hydrazinium, hexamethyl(not Hydrazinium, 1,1,1,2,2,2-hexamethyl-)

Acyclic cations from nonnitrogenous hetero atoms are indexed at Phosphonium, Arsonium, Stibonium, Bismuthonium, Oxonium, Sulfonium, Iodonium, etc. The corresponding substituent prefixes are phosphonio, arsonio, etc. Diphosphine, $\mathrm{H}_{2} \mathrm{P}-\mathrm{PH}_{2}$, affords Diphosphinium.

Examples:
$\mathrm{Me}_{3} \mathrm{P}^{+}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}^{+} \mathrm{Me}_{3}$
Phosphonium, 1,2-ethanediylbis-[trimethyl- (analogous compounds with one or more noncarbon attachments to phosphorus are indexed at Phosphorus(1+) (see ఫ[215))
$\mathrm{Cl}_{2} \mathrm{PP}^{+} \mathrm{Me}_{3} \quad$ Diphosphinium, 2,2-dichloro-1,1,1-trimethyl-
$\mathrm{Me}_{4} \mathrm{As}^{+}$
$\mathrm{Me}_{3} \mathrm{~S}^{+}$
$\mathrm{Ph}_{2} \mathrm{I}^{+}$

Arsonium, tetramethyl-

Sulfonium, trimethyl- (the corresponding S-oxide is named Sulfoxonium, trimethyl-)

Iodonium, diphenyl- (the corresponding I-oxide is named Iodonium, diphenyl-, I-oxide)

Cyclic cations from rings with "a" names are named by replacing the aza, oxa, thia, etc., terms by the cationic prefixes azonia, oxonia, thionia, etc. They are cited in the same order as the corresponding neutral terms (Table I II 128); when the same element is present in neutral and cationic forms, alphabetic order of the terms is followed, but the cationic center is preferred for lowest locants if a choice is available.

Examples:

5-Aza-2-azoniabicyclo[4.2.2]decane, 2,2-diethyl-

2,6,7-Trioxa-1-phospha-4-phosphoniabicyclo[2.2.2]octane, 4-methyl-

8-Thioniabicyclo[3.2.1]octane, 8-methyl-

1-Oxa-4-azoniaspiro[4.4]nonane, 2,2,4,4-tetramethyl-

Cationic monocyclic and fused ring systems, other than those with "a" names, are indexed at heading parents derived from the heterocycle name by addition of an "-ium" suffix. Lowest locants are preferred for indicated hydrogen, e.g., $\mathbf{1} H$ (never $\mathbf{3} H$)-Benzimidazolium; a cationic center is numbered lower than a neutral hetero atom of the same element if a choice is available.

Examples:

Pyridinium, 1,3-dimethyl-

Phenazinium, 3,7-dibromo-5-methyl- (not Phenazinium, 2,8-dibromo-10-methyl-)

Piperazinium, 1,1,4,4-tetramethyl-

Furanium, 1-ethyltetrahydro-

In all the examples above, the charge of the cationic atom was derived from an additional covalent substituent at a ring hetero atom already saturated to the covalency limit. Similar names are used (for rings other than those with "a" names) when the covalency limit is exceeded within the ring system itself, no "external" substitution being involved. The "-ium" name is derived from the uncharged heterocycle, indicated hydrogen, if present, being removed. If indicated hydrogen is needed for the cationic system, it is added at the lowest available nonangular position. The trivial names Furylium, Pyrylium, Thiopyrylium (and their benzo analogs), and Xanthylium (from Xanthene) are used. When other hetero atoms are present in the ring system, a locant before the "-ium" suffix defines the position of the cationic center.

Examples:

Quinolizinium

Pyrylium, 4-methoxy- (from 2Hor 4H-Pyran)

Dibenziodolium, 1,9-dimethoxy-

1,3-Dioxol-1-ium, 2-methyl-

Phenothiazin-5-ium, 3,7-bis(di-methylamino)-

Cationic heterocyclic monospiro compounds, other than those from "a"named rings, have the "-ium" term placed in the name in accordance with the nature of the component rings. When the cationic hetero atoms are in nonspiro positions, the "-ium" suffix is appended to the appropriate component. If the spiro and cationic centers coincide, or if both component rings contain such a center, the "-ium" is attached only to the second component (if the components are different). For "a"-named components, "azonia," "oxonia," etc., terms are used as appropriate; in addition, an "-ium" suffix is attached to the second component if the spiro atom is cationic and the second component does not have an "a" name.

Examples

Spiro[benzothiazolium-4(5H), 1^{\prime} cyclopentane], 6,7-dihydro-2,3-dimethyl-

Spiro[1,3-dioxolane-2,6'(2'H)isoquinolinium], $\mathbf{2}^{\prime}, \mathbf{2}^{\prime}$-dimethyl-

Spiro[isoquinoline-2(1H), $\mathbf{2}^{\prime}$-[2H] pyrido[1,2-a]pyrazinium]

Spirobi[5H-dibenzophospholium]

Spiro[3-azoniabicyclo[3.1.0]hexane-6,9'-[9H]fluorene], 3,3-dimethyl-

Spiro[3-azoniabicyclo[3.2.2]no-nane-3, $\mathbf{3}^{\prime}(2 H)$-oxazolium]

Dispiro compounds with other than " a "-named components and containing two cationic spiro atoms have the "ium" suffix appended to the terminal, i.e., the first and third, component names.

Several classes of resonance-stabilized cations containing nitrogen atoms are either normalized by the CAS Registry System or treated as though they were; i.e., to avoid scattering of information in $C A$ indexes, each such cation, regardless of how its structure is drawn, is assigned a unique CAS Registry Number and unique CA Chemical Substance Index name (cf. IIII 122, 180). Normalized cations have the general structure:

in which $R, R^{\prime}, R^{\prime \prime}$, and $R^{\prime \prime \prime}$ represent any atom or group except hydrogen. The structure may be acyclic or wholly or partly within a ring system, and two or more structures may be linked through a common atom to permit further "migration" of the cationic center. The unique CA Chemical Substance Index name is derived in general by regular nomenclature rules (see II 138).

Examples:

Ethanaminium, $N-[(d i-\quad$ NOT Methanaminium, $N-[(d i-$ methylamino)methyl- ethylamino)methylene]-ene]- N-ethyl-N-methyl-
(principle: preferred index parent)

1 H -Benzimidazolium, 1- NOT 1 H -Benzimidazolium, 3-
methyl-3-phenyl-
(principle: lowest
locants for substituents)

1 H-Purinium, 2,9-di-hydro-1,7-dimethyl-2-oxo-9-phenyl(principle: lowest locant for indicated hydrogen, then for cationic center)

Imidazo[1,2-a]pyridini-
um, 1-ethyl-
(principle: the neutral
ring, quaternized by
substitution, is
preferred)
When at least one canonical form of a resonance-stabilized cation represents a hydrogen atom as being attached to a positively charged nitrogen atom, it is named as a neutral compound with an index modification term such as "conjugate monoacid" or (if the anion is known) as a salt such as "hydrochloride".

Example:

(The hydrochloride salt is the preferred structure.)

Cationic prefixes are used when more preferred compound classes (II 106) are present, or when different cations, or additional occurrences of the same cation, cannot be included in the heading parent. Heteroacyclic cationic prefixes are based on "-onio" radicals such as ammonio and iminio (for singly and doubly bound nitrogen, respectively), diazonio, sulfonio, phosphonio, and iodonio. Cyclic cationic radicals from rings, not named by "a" nomenclature, containing a single hetero atom at which the free valency is located are named by changing the "-ium" ending of the cation name to "-io"; e.g., pyridinio, $2 \mathrm{H}-$ pyranio, phenanthridinio. In all other cases, heteroacyclic and heterocyclic cationic prefixes are derived from the cation name by adding "-yl," "-diyl," etc., to the "-ium" suffix with locants (low-numbered if there is a choice) to indicate the points of attachment.

Examples:

(1-methylpyridinium-2-yl)
Me

(1,4-dimethylpiperazinium-1,4-diyl)
(5-methyl-10H-phenothiazinium-$10-\mathrm{yl}$)
$\mathrm{Me}_{2} \mathrm{NN}_{3}=\underset{2}{\mathrm{NN}_{1}}{ }^{+} \mathrm{Me}_{2}{ }^{-}$
(1,1,4,4-tetramethyl-2-tetrazenium-1-yl)

piperidinium-1-ylidene

1-azoniabicyclo[3.3.1]non-1-yl

Carbon cationic prefixes are named by addition of "-yl" to the cation name. Locants are cited (except for methane prefixes) for both the cationic center and the point of attachment, with lowest locants for the latter.

Examples:

$\mathrm{H}_{2} \mathrm{C}^{+}$	methyliumyl
$\mathrm{MeC}^{+} \mathrm{H}-$	1-ethylium-1-yl
(tetrahydro-4 4-ylium-4-yl)	

(octahydro-8a(1H)-azulenylium-1-yl)

Cationic compounds are ranked in the following descending order of precedence of elements: C, N, P, As, Sb, Bi, O, S, Se, Te, F, Cl, Br, I. When more than one cationic center is present, the general rules of substitutive nomenclature (II 138) are applied, the cationic centers being considered as principal chemical groups for this purpose.

Examples:

Cycloheptatrienylium, (1-methyl-
pyridinium-4-yl)- (principle:
carbon cation preferred)

1-Propanaminium, 3-(dimethyl-sulfonio)- N, N, N-trimethyl(principle: nitrogen cation preferred)

Pyrazinium, 1,4-dimethyl-2-[(1-methylquinolinium-6-yl) methyl]- (principle: maximum number of cationic centers)

Pyridinium, 1-[2-(trimethyl-ammonio)ethyl]- (principle: ring parent preferred)

Benzothiazolium, 3-methyl-2-[2-(1,3,3-trimethyl-3 H^{-} indolium-2-yl)ethyl](principle: preferred ring)

Cationic compounds of indefinite structure are named by use of alternative locants if possible, e.g., Quinazolinium, 1(or 3)-methyl-, iodide; otherwise as molecular addition compounds of the neutral compounds with a term such as "compd. with iodomethane (1:1)" (not "monomethiodide") in the modification and additional Chemical Substance and Formula Index entries at the less preferred component, e.g., Methane, iodo-.

Cationic free radicals from carbonium ions are named like the carbon cationic prefixes (above); e.g., Methyliumyl; 4-Cyclohexylium-1-yl. When the free radical and cationic centers are separated, the "-yl" suffix is preceded by a locant, if known. When the free radical and cationic center are in different parent molecular skeletons, the free radical supplies the heading parent.

Examples:

2-Pyrrolidinyl,
 2-[(1,1-dimethyl-
 pyrrolidinium-2-yl) methyl]-1-methyl-

Delocalized radical cations are described at the index name of the corresponding neutral compound by the modification term "radical ion" followed by a cationic Ewens-Bassett number in parentheses.

Example:

Azulene
radical ion(1+)

Cationic free radicals formally derived by loss of an electron from a hetero atom of a molecular skeleton or of an isolated chalcogen atom are named similarly (II 270).

Example:
$\mathrm{Me}_{3} \mathrm{~N}^{+}$
Methanamine, N, N-dimethylradical ion(1+)
185. Esters, other than cyclic esters, of principal functions are named as such for indexing purposes, usually at the acid component name. Cyclic esters are named as heterocyclic ring system derivatives. Esters of hydroxy, mercapto, carboxy, sulfo, etc., groups expressed as substituents of heading parents are expressed as compound or complex substituents, not as modification terms at the same heading parent. To be recognized as an ester in $C A$ indexing, a C-O, C-S, C-Se, or C-Te bond must be present. Thus, ethyl cyanate and ethyl perchlorate are considered to be esters, but ethyl azide, ethyl isocyanate, and ethyl chloride are not.

Examples:

EtOCN	Cyanic acid ethyl ester
EtOClO_{3}	Perchloric acid ethyl ester
EtN_{3}	Ethane, azido-
EtNCO	Ethane, isocyanato-
EtCl	Ethane, chloro-

To permit information on esterified alcohols and thiols to be more readily found in the Chemical Substance Index, the usual rules of index name selection
are modified for esters. The chemical functionality (II 106) of certain very common acids ("Class I" acids) is disregarded for the purpose of naming their esters, unless the "alcoholic" component is also very common, and the entry is made instead at the uncommon alcohol, despite its lower functionality. The "Class I" acids comprise: Acetic acid; Benzenesulfonic acid; Benzenesulfonic acid, 4-methyl-; Benzoic acid and its monoamino, mononitro, and dinitro derivatives; Boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$; Carbamic acid; Carbamic acid, methyl-; Carbamic acid, phenyl-; Carbonic acid; Formic acid; Methanesulfonic acid; Nitric acid; Phosphoric acid; Phosphorodithioic acid; Phosphorothioic acid; Phosphorous acid; Propanoic acid; Sulfuric acid; Sul-furous acid. All other acids, including isotopically labeled forms of "Class I" acids, belong to "Class II."

Esters of "Class I" monobasic acids with "Class II" alcohols and thiols are indexed at the latter. Esters of "Class I" acids with "Class I" alcohols and thiols are indexed at the acids. "Class I" alcohols are: Benzeneethanol; Benzenemethanol; 1-Butanol; 1-Butanol, 2-ethyl-; 2-Butanol; Cyclohexanol; 1Decanol; 1-Dodecanol; Ethanol; Ethanol, 2-(diethylamino)-; Ethanol, 2-(dimethylamino)-; Ethenol; 1-Heptanol; 1-Hexanol; 1-Hexanol, 2-ethyl-; Methanol; 1-Nonanol; 1-Octadecanol; 1-Octanol; 1-Pentanol; Phenol and its monochloro, monomethyl, and mononitro derivatives; 1-Propanol; 1-Propanol, 2-methyl-; 2-Propanol; 2-Propanol, 2-methyl-; 2-Propen-1-ol. The list of "Class I" thiols is completely analogous to the "Class I" alcohol list; the individual index names are also analogous, e.g., Benzeneethanethiol; 2-Propanethiol, 2-methyl-; except that the Phenol analog is Benzenethiol. All selenols and tellurols belong to "Class II."

Examples:
$\mathrm{AcO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$
Acetic acid 2-phenylethyl ester
$\mathrm{MeOSO}_{3} \mathrm{H}$
Sulfuric acid
monomethyl ester (the uninverted name is methyl hydrogen sulfate)
$\operatorname{PhSP}(\mathrm{S})(\mathrm{OMe}) \mathrm{OH}$
Phosphorodithioic acid O-methyl S-phenyl ester

In each of the examples above, a "Class I" acid is esterified by a "Class I" alcohol or thiol. When the acid belongs to "Class I" and the alcohol or thiol to "Class II," the entry is found at the alcoholic component name, except when the acid is polybasic and the alcohols differ from one another, in which case the acid heading is chosen.

Examples:

	1,2-Ethanediol mono(4-methylbenzenesulfonate)
OBz	1,2-Cyclohexanediol acetate benzoate
$\mathrm{HCO}_{2} \mathrm{CH}_{1}{\underset{2}{2}}_{2}^{\mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CH}}$	1,2-Ethanediol diformate (the uninverted name is 1,2 -ethanediyl diformate)
$\left[\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right]_{3} \mathrm{P}(\mathrm{O})$	Ethanol, 2-chlorophosphate (3:1) (all the "Class II" alcoholic components are alike here; the ratio is necessary to indicate a neutral ester of known composition; the mono- and diesters are named with "dihydrogen phosphate" and "hydrogen phosphate", respectively in the modification)
$\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{OMe})_{2}$	Phosphorous acid 2-hydroxyethyl dimethyl ester (the entry is made at a "Class I" acid, not at the "Class II" alcohol 1,2-Ethanediol, because the alcoholic components are unlike)

When an ester of the type illustrated immediately above has a more preferred acid residue present in the molecule, the "Class I" polybasic acid becomes a substituent.

Example:

$$
\xrightarrow[\substack{\mathrm{O} \\ \mathrm{CH}_{3}-\mathrm{O}-\mathrm{P}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{COOH} \\ \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}}]{\text { O}}
$$

Acetic acid, [[(2-hydroxyethoxy)-methoxyphosphinyl]oxy]- (not Acetic acid, hydroxy-, 2-hydroxyethyl methyl phosphate)

If an "-ate" term in a modification could be interpreted to denote either an ester or a salt, the parenthetical expression "(ester)" is added. This is done
whenever the index heading expresses any nitrogen atom or any trivalent phosphorus or arsenic atom. When a locant is needed in the modification, the "(ester)" term is dropped.

Examples:

Esterified substituents of the index heading parent are expressed as substituents, not as modification phrases.

Examples:

Benzenesulfonic acid, 3-(acetyloxy)-
methyl ester (not Benzenesulfonic acid, 3-hydroxy-, methyl ester acetate)

Benzoic acid, 4,4'-[carbonylbis-
(oxy)]bis- (not Benzoic acid,
4-hydroxy-, carbonate (2:1))
The phrase "ester with" is usually avoided in general index nomenclature for compounds of known structure, even when the alcoholic component contains a function higher than alcohol, but it is employed when an acid which requires a line formula is cited in a modification; a ratio is usually needed also unless "monoester with," "diester with," etc., phrases can be employed unambiguously.

Examples:
 $\underset{(2: 1)}{\text { ester with boric acid }\left(\mathbf{H}_{3} \mathrm{BO}_{3}\right)}$

The word "hydrogen," with multiplicative prefixes if necessary, is used with an "-ate" (or "-ite") term derived from a polybasic acid cited in a modification to denote unesterified acid groups. One or more "hydrogen" terms may be replaced by radicals to denote further esterification not expressed in the heading parent. When all acid groups of a polybasic acid have been esterified, "hydrogen" cannot be cited; therefore, if the precise structure is known, a ratio is placed after the "-ate" term. If more than one such term is necessary, the complete "-ate" phrases are cited (without commas) in alphabetical order.

Examples:

$$
\underset{3}{\stackrel{\mathrm{OH}}{\mathrm{H}}} \underset{\substack{\mathrm{C} \\ \mathrm{HO}-\mathrm{CH}_{2} \\ \mathrm{C}_{2}}}{ } \mathrm{CH}_{2}-\mathrm{O}-\mathrm{SO}_{2}-\mathrm{OH} \quad \text { 1,2,3-Propanetriol }
$$

Esters are named by replacement ("a") nomenclature if the requirements (II 127) are met.

Example:

$$
\mathrm{HOCH}_{1} \mathrm{CH}_{2} \mathrm{OSO}_{3} \mathrm{OS}_{2} \underset{5}{\mathrm{O}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OS}_{8} \mathrm{O}_{2} \mathrm{OCH}_{10} \mathrm{CH}_{2} \mathrm{OSO}_{3} \mathrm{H}
$$

3,5,8,10-Tetraoxa-4,9-dithiado-decane-1,12-diol mono(hydrogen sulfate), 4,4,9,9-tetraoxide

Multiplicative radicals in modifications are cited ahead of nonmultiplicative. Example:

	Boric acid $\left(\mathbf{H}_{3} \mathbf{B O}_{3}\right)$
$(\mathrm{MeO})_{2} \mathrm{BO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OB}(\mathrm{OMe})_{2}$	1,3-propanediyl tetramethyl
	ester

Although locants to differentiate between principal and subsidiary groups are strictly not necessary in ester modifications (because esterification of the latter is not expressed in the modification), they are nevertheless cited to preclude misinterpretation.

Examples:
(

Benzoic acid, 3-(phenoxysulfonyl)-

Esterification of an alcoholic component cited in the index modification is expressed as a substituent of the esterifying radical.

Example:

Propanedioic acid ethyl 3-(2-methyl-1-oxoprop-oxy)-2-oxopropyl ester (not Propanedioic acid, ethyl 3-hydroxy-2-oxopropyl ester, 2-methylpropanoate)

The choice of a preferred index name for a complex ester depends on the normal criteria (II 138), first on the preferred acid class (peroxoic, carboxylic, carboximidic, sulfonic, carbonic, etc.) then on the preferred heading parent and the particular occurrence of such a parent if it occurs more than once. If there are three or more occurrences, the principle of centrality is invoked; if there are only two, often the preferred name is the one appearing earliest in index sequence.

Example:

Benzoic acid, 4-bromo-
4-[[(4-bromobenzoyl)oxy]methyl]phenyl ester (not Benzoic acid, 4-bromo-, [4-[(4-bromobenzoyl)oxy]phenyl]methyl ester)

When functions higher in precedence than acids are present, all esters are expressed as substituents.

Example:

Pyridinium, 3-(ethoxycarbonyl)-1-methylchloride

Peroxy acid esters and their chalcogen analogs are named in the usual way, with "OO," "OS," "SeO," "SS," etc., locants used when necessary along with the usual " O, ," S," etc., locants.

Examples:

	Ethanediperoxoic acid bis(trichloromethyl) ester
	Carbonoperoxoic acid $\begin{aligned} & O O, O O^{\prime}-(1,1,4,4 \text {-tetramethyl-1,4- } \\ & \text { butanediyl) } O, O^{\prime} \text {-bis(1-methyl- } \\ & \text { ethyl) ester } \end{aligned}$
	Benzenecarbo(thioperoxoic) acid $O S$-(trichloromethyl) ester
EtSSOMe	Ethanesulfeno(thioperoxoic) acid SO-methyl ester
	```Carbono(dithioperox)imidic acid, methyl- O-ethyl SS-(trichloromethyl) ester```

Esters of boric acids and their chalcogen analogs are indexed regularly, except for those of Hypoboric acid and cyclic metaboric acids, $\left(\mathrm{HBO}_{2}\right)_{\mathrm{n}}$, which are named as derivatives of the molecular skeletons.

Examples:
$(\mathrm{EtO})_{2} \mathrm{BB}(\mathrm{OMe})_{2}$
Diborane(4), 1,1-diethoxy-2,2-

$(\mathrm{BuS})_{2} \mathrm{BOMe}$
dimethoxy-

Boroxin, trimethoxy-

Thioboric acid ((HO)(HS) $\left.)_{2} \mathrm{~B}\right)$ $S, S$-dibutyl $O$-methyl ester

Esters of ortho acids and their peroxy and chalcogen analogs are indexed like ethers, sulfides, peroxides, hydroperoxides, alcohols, etc. Ortho acid names are not used as heading parents.

Examples:
$\mathrm{MeC}(\mathrm{OMe})_{3}$
Ethane, 1,1,1-trimethoxy- (not Orthoacetic acid, trimethyl ester)

PhC(SMe) ${ }_{3}$
Benzene, [tris(methylthio)methyl]-
$\mathrm{MeC}(\mathrm{OEt})_{2} \mathrm{OH}$
Ethanol, 1,1-diethoxy-
$\mathrm{MeC}(\mathrm{OEt})_{2} \mathrm{OOCMe}_{3}$
Peroxide, 1,1-diethoxyethyl 1,1dimethylethyl


Methanesulfenic acid, trimethoxymethyl ester

Oxides of thio esters are named not as ester derivatives but at the preferred molecular skeleton or other heading parent with sulfinyl or sulfonyl prefixes. Examples:


Benzene, 1-methoxy-4-[[(4-meth-oxyphenyl)sulfinyl]sulfonyl]-


Benzenemethanimine, $N$ -hydroxy- $\alpha$-(methylsulfinyl)-

Glycerides, esters of 1,2,3-Propanetriol (glycerol), are indexed at the name of the preferred acid unless only "Class I" acids are present.

Examples:



Octadecanoic acid 1,2,3-propanetriyl ester


9-Octadecenoic acid 2-[(1-oxooctadecyl)oxy]-1[ [(1-oxooctadecyl)oxy]methyl]ethyl ester (principle: unsaturated acid preferred)

Urethanes are esters of Carbamic acid and its derivatives. Xanthic acids are $O$-esters of Carbonodithioic acid.

Examples:
$\mathrm{PhNHCO}_{2} \mathrm{Et}$
Carbamic acid, phenylethyl ester
$\mathrm{PhOCS}_{2} \mathrm{H}$
Carbonodithioic acid
$O$-phenyl ester
Cyclic esters and lactones are indexed as heterocycles. Examples:

1,3-Dioxane-4,6-dione, 2,2-di-methyl-
(not Propanedioic acid, cyclic 1methylethylidene ester)


2(5H)-Furanimine (not 2-Butenimidic acid, 4-hydroxy-, $\gamma$-lactone)


1,2-Oxaphosphorinane, 2-ethoxy-
2-oxide (not Phosphonic acid, (4-hydroxybutyl)-, monoethyl ester, $\delta$-lactone)


2H-1-Benzopyran-2-one (not
Coumarin; not 2-Propenoic acid,
3-(2-hydroxyphenyl)-, $\delta$-lactone)
186. Ester-anhydrides are named by combining the policies for anhydrides and esters (IIII 179, 185). Cyclic anhydride and cyclic ester components are named in accordance with heterocyclic nomenclature. Anhydride terms precede ester terms where this can be done unambiguously (but see the last example, below). Esters cited in modifications are named in the uninverted form unless the acid is one for which a synonym line formula is required.

Examples:


5-Isobenzofurancarboxylic acid,
1,3-dihydro-1,3-dioxo-
1,2-ethanediyl ester


4 H -3,1-Benzoxathiin-4-one, 2-(cyclohexylimino)- (not Carbonimidothioic acid, cyclohexyl-, anhydride with 2-mercaptobenzoic acid, cyclic ester)


Free radicals that might be considered as derived from Borane are indexed at Borane(1) and Borane(2).

Examples:
FHB•
Borane(2), fluoro- (not Boryl, fluoro-)

FB:
Borane(1), fluoro- (not Boron fluoride (BF))

Free radicals from ammonia, amides, or amines are named as Amidogen, $\mathrm{H}_{2} \mathrm{~N}^{\bullet}$, Imidogen, HN :, and their derivatives.
$\mathrm{F}_{2} \mathrm{~N} \cdot$
Amidogen, difluoro- (not Nitrogen fluoride $\left(\mathrm{NF}_{2}\right)$ )

The heading parent Nitroxide is employed for the free radical $\mathrm{H}_{2} \mathrm{~N}-\mathrm{O} \cdot$ Example:
$\mathrm{Me}_{2} \mathrm{NO}$ Nitroxide, dimethyl
Free radicals from hydroxyl and hydroperoxy groups that are attached to a molecular skeleton, including (acyloxy) radicals (see below), are indexed at "oxy" and "-dioxy" heading parents with systematically named nondetachable prefixes. Chalcogen analogs are named similarly at "-thio" and "-dithio" heading parents.

Examples:

$$
\mathrm{MeO} \quad \text { Methoxy (not Oxy, methyl-) }
$$

$\underset{\mathrm{HC}-\mathrm{O}}{\mathrm{O}} \quad$ Methoxy, oxo- (not Formyloxy)
$\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{C}-\mathrm{OO}$ -
$\mathrm{CH}_{3}-\stackrel{\mathrm{C}}{\mathrm{O}} \mathrm{C}-\mathrm{O}$ -


Ethyldioxy, 1-oxo-

Diazenyloxy, (4-chlorophenyl)- (not (Phenylazo)oxy, 4-chloro-)

MeS•

## Methylthio

Acyl free radicals (derived from aldehydes or acids) are named as $\alpha$-oxo derivatives of the alkyl parents.

Examples:


Ethyl, 1-oxo- (not Acetyl)


Methyl, cyclopropyloxo- (not Cyclopropylcarbonyl)
$\mathrm{H}_{2} \mathrm{NCO} \cdot$
Methyl, aminooxo- (not Aminocarbonyl)

Free radicals from sulfonic and sulfinic acids are named as derivatives of alkyl and aryl sulfonyl and sulfinyl radicals and the analogous oxy radicals.

Examples:
$\mathrm{CH}_{3}-\mathrm{SO}_{2}-\mathrm{O} \cdot$
(Methylsulfonyl)oxy


Phenylsulfinyl, 4-methyl-

The following chalcogen hydride free radicals are employed: Hydroxyl, $\mathrm{HO} \bullet$; Hydroperoxo, HOO•; Mercapto, HS•; Selenyl, HSe•.
188. Halogen and halogenoid compounds. (See also Acid halides, $\mathbb{I}$ 170). The halogen and halogenoid "oxo" acids are hypohalous acids, HOX (e.g., Hypochlorous acid, HOCl ); halous acids, HOXO ; halic acids, $\mathrm{HOXO}_{2}$; perhalic acids, $\mathrm{HOXO}_{3}$; Cyanic acid, HOCN ; and Fulminic acid, HONC. Their esters and anhydrides are named in the regular way. They rank below acids, e.g., carboxylic, sulfonic, expressed as suffixes on molecular skeleton names (II 106), and in their presence are expressed as cyanato, (iodyloxy), (chloryloxy), etc., radicals.

Examples:

$$
\mathrm{PhOF}
$$

Hypofluorous acid
phenyl ester
$\mathrm{MeCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OBrO}_{2}$
Bromic acid
3-oxobutyl ester
OCN


$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\mathrm{O}}{\mathrm{O}}-\mathrm{S}-\mathrm{Cl}$
$\mathrm{NCOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$

Cyanic acid
3-methylphenyl ester

Benzoic acid, 4-chloroanhydride with hypoiodous acid (not Benzoyl hypoiodite, 4-chloro-)

Propanethioic acid anhydrosulfide with thiohypochlorous acid (not Propanoyl thiohypochlorite)


Benzoic acid, 4-(chloryloxy)-

The groups $-\mathrm{X},-\mathrm{XO},-\mathrm{XO}_{2},-\mathrm{XO}_{3},-\mathrm{NC},-\mathrm{NCO},-\mathrm{N}_{3}$, and their chalcogen analogs, e.g., $-\mathrm{XSe} ;-\mathrm{NCS}$, are normally expressed as substituent prefixes when attached to a molecular skeleton; the radicals chloro, chlorosyl, chloryl, perchloryl, isocyano, isocyanato, isothiocyanato, azido, etc., are used (see the Illustrative List of Substituent Prefixes in Section H (II 294)).

Examples:
$\mathrm{CHCl}_{3}$
$\mathrm{PhIO}_{2}$
NC

NC
N
1

$\mathrm{Me}_{2} \mathrm{Si}(\mathrm{NCO})_{2}$

Methane, trichloro- (not Chloroform)
Benzene, iodyl-

Piperidine, 1-isocyano-

Silane, diisocyanatodimethyl- (not Isocyanic acid, dimethylsilylene ester)

Groups such as $-\mathrm{I}(\mathrm{OH})_{2},-\mathrm{ClBr}_{2}$, are not expressed by (dihydroxyiodo) and (dibromochloro) radicals; instead, coordination nomenclature (II 215) based on the central halogen atom is employed.

Example:
$\mathrm{PhI}(\mathrm{OH})_{2}$
Iodine, dihydroxyphenyl-
189. Hydrazides of principal acid groups are expressed by hydrazide terms in the index modification except for (a) sulfenic acid hydrazides, $\mathrm{R}-\mathrm{S}-\mathrm{NHNH}_{2}$, which are indexed at Hydrazine with a "thio" substituent prefix; and (b) hydrazides of Hydrazinecarboxylic acid, for which the heading parent Carbonic dihydrazide, $\left(\mathrm{H}_{2} \mathrm{NNH}\right)_{2} \mathrm{CO}$, (II 183) is employed. Hydrazides of subsidiary groups, e.g., of carboxyl substituents on aminium compounds, are indexed as substituents by use of hydrazino radicals. Cyclic hydrazides are indexed as heterocycles. Replacement ("a") names are used when the requirements (II 127) are satisfied.

Examples:

PhCSNHNH2	Benzenecarbothioic acid hydrazide
AcNHNHAc	Acetic acid 2-acetylhydrazide (not Hydrazine, 1,2-diacetyl-)
$\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{CONHNHPh}$	Propanedioic acid mono(2-phenylhydrazide) (not Propanoic acid, 3-oxo-3-(2-phenylhydrazino)-)
	Acetic acid 2,2'-(1,2,4,5-tetrazine-3,6-diyl)dihydrazide
	Benzenesulfonic acid, 4-amino-1-methylhydrazide
	Diazenecarboxylic acid, (4-carboxyphenyl)-1-[2-(4-carboxyphenyl)hydrazide] (principle: hetero acyclic parent preferred)
	Benzoic acid, 4-(hydrazinosulfonyl)-
	3H-Indazol-3-one, 1,2-dihydro- (not Benzoic acid, 2-hydrazino-, cyclic hydrazide)
	2,5,6,8,9,11-Hexaazatridecanedioic acid, 4,7,10-trioxo-

190. Hydrazones of ketone and aldehyde principal groups are expressed by hydrazone terms in the index modification except for hydrazones of carbonyl groups of acids, acid halides, and amides; these are usually indexed as hydrazonic acids (II 169) and their halides and amides. Azines are indexed as "-ylidene" hydrazones; osazones as dihydrazones (of adjacent carbonyl groups); cyclic hydrazones as heterocycles. In the presence of compound classes more preferred than the aldehyde or ketone bearing the hydrazone, a hydrazono substituent is cited.

Examples:
$\mathrm{Me}_{2} \mathrm{C}=\mathrm{NNH}_{2} \quad$ 2-Propanone hydrazone
$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}=\mathrm{NNH}-\mathrm{NHN}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$
Benzenepropanal 1,4-phenylenedihydrazone


Cyclohexanone (1-methylhexylidene)hydrazone (not 2-Heptanone, azine with cyclohexanone) (principle: ring preferred to chain)
$\mathrm{PhNHN}=\mathrm{CHSCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
Acetic acid, [[(phenylhydrazono)-methyl]thio]- (not Acetic acid, mercapto-, formate, phenylhydrazone)
$\mathrm{MeNHN}=\mathrm{CPhCPh}=\mathrm{NNHMe}$
Ethanedione, diphenylbis(methylhydrazone)


Dibenzo $[c, g][\mathbf{1 , 2 , 5 , 6}]$ tetrazocine (not 3,5-Cyclohexadiene-1,2-dione, bimol. cyclic azine)

Phosphazines, which contain the fragment $=\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{P}$, are indexed as phosphoranylidene hydrazones.

Example:
$\mathrm{MeCH}=\mathrm{NN}=\mathrm{PPh}_{3}$

## Acetaldehyde (triphenylphosphoranylidene)hydrazone

Semicarbazones, isosemicarbazones, carbohydrazones, and semioxamazones of systematically named compounds are expressed, not by these modification terms or as substituted hydrazones, but by the general principles of substitutive nomenclature on the basis of the highest function present.

Examples:
$\underset{2 l}{\mathrm{Me}_{2} \mathrm{C}=\underset{2}{\mathrm{NNH}_{2}}} \quad \begin{gathered}\text { Hydrazinecarbothioamide, 2-(1- } \\ \text { methylethylidene)- (not 2- }\end{gathered}$ Propanone, thiosemicarbazone)

PhCH=NNHCNHOEt
Hydrazinecarboximidic acid, (phenylmethylene)ethyl ester (not Benzaldehyde, 3-ethylisosemicarbazone)


Carbonic dihydrazide, [(5-nitro-2-furanyl)methylene](phenyl-methylene)- (not 2-Furancarboxaldehyde, 5-nitro, carbohydrazone with benzaldhyde)
$\mathrm{PhCH}=\mathrm{NNHCOCONH} 2$
Acetic acid, aminooxo-
(phenylmethylene)hydrazide (not Benzaldehyde, semioxamazone)
191. Imides are indexed as heterocycles with "-one" suffixes and are accordingly ranked as ketones; in the presence of higher ranking compounds, the
imide is expressed as a heterocyclic radical. The "diimide" of orthocarbonic ac$\mathrm{id}, \mathrm{HN}=\mathrm{C}=\mathrm{NH}$ ("carbodiimide") is indexed at Methanediimine, and its derivatives are often to be found at amine or amide headings.

Examples:

1H-Azepine-2,7-dione, 3,4-dihydro(not 2-Hexenimide)

1 $H$-Benz[de]isoquinoline-1,3( 2 H )-dione (not 1,8-Naphthalenedicarboximide)
[ $3,3^{\prime}$-Bipyrrolidine]-2,2' ${ }^{\prime}, 5,5^{\prime}-$ tetrone (not 1,2,3,4-Butanetetracarboxylic 1,2:3,4-diimide
4H-1,3,2-Dithiazine, dihydro-1,1,3,3-tetraoxide (not 1,3Propanedisulfonimide)

Butanamide, $N$-(2,4-dioxo-1-aze-tidinyl)-

4-Morpholineethanamine, N -(ethylcarbonimidoyl)-

Benzenesulfonamide, 4-methylN -(phenylcarbonimidoyl)-

For sulfur imides, see II 200; for Phosphine imide, see II 197.
192. Molecular addition compounds of neutral components are generally indexed in the Chemical Substance and Formula Indexes at the name and formula of each component. (The formula headings used are those of the components.) Some common components are not indexed unless all other components are also "common" or cannot be related to compound classes described in the "Order of Precedence of Compound Classes" (IIII 106); however, unesterified acids in the following list are indexed when not components of salts with bases. These common components are:

## Acetic acid

Acetic acid, trifluoro-
Acetonitrile
Benzene
Benzene, methyl-
Benzene, 1,3,5-trinitro-
1,3-Benzenediol, 2,4,6-trinitro-
Benzenesulfonic acid
Benzenesulfonic acid, 4-methyl-
Benzoic acid
Borate(1-), tetrafluoro-, hydrogen
Butanedioic acid, 2,3-dihydroxy- (all stereoisomers)
2-Butenedioic acid (of defined or undefined stereochemistry)
Carbamimidothioic acid, phenylmethyl ester
Cyclohexanamine
Cyclohexanamine, $N$-cyclohexyl-
Ethanamine, $N, N$-diethyl-
Ethanedioic acid
Methane, dichloro-
Methanesulfonic acid
Phenol, 2,4,6-trinitro-
1,2,3-Propanetricarboxylic acid, 2-hydroxy-
3H-Pyrazol-3-one, 2,4-dihydro-5-methyl-4-nitro-2-(4-nitrophenyl)Pyridine

In addition, compounds with water and ammonia are not indexed at these names; they are expressed as "hydrate" and "ammoniate," with the prefixes mono, di, tri, etc. Fractional hydrates and ammoniates, such as hemi- and sesquihydrate, are named by use of a ratio as hydrate (2:1) and hydrate (2:3), respectively. Other solvates are indexed as molecular addition compounds. Often the solvate component receives the only entry; e.g., Ethanol, compd. with pyridine (1:1). Crystal forms of organic compounds containing solvents of crystallization are indexed only as the unsolvated species except when properties of the crystals themselves are being studied. "Hydrates" of carbonyl compounds are indexed as gem-diols; e.g., "acetaldehyde hydrate" is indexed as 1,1-Ethanediol.

Ozonides of known structure are indexed by regular nomenclature; ozonides of unsaturated compounds are indexed at the compound headings with "ozonide" modification terms when the structures are unknown; "ozonides" of other compounds, e.g., phosphorus acid esters, are expressed as "compd. with ozone" and a ratio.

Bisulfite addition compounds are named as salts of specific hydroxy sulfonic acids when the structures are known or can reasonably be assumed, otherwise as a molecular addition compound of the carbonyl compound with a phrase such as "compd. with sodium hydrogen sulfite" and a ratio (if known) in the modification. An additional entry appears at Sulfurous acid, compounds, monosodium salt, compd. with.... (This is an exception; an "oxo" acid salt ranks higher than an aldehyde or ketone (II 106) and would normally receive the preferred index entry.)

Diels-Alder adducts (diene adducts) of unknown constitution are indexed like molecular addition compounds, except that the "compd. with" phrase is replaced by "adduct with."

Catena compounds (cyclic compounds with interlocking rings) are indexed at the components with a "catena compd. with" phrase and a ratio.

Rotaxane is the term given to a stable anion of a linear molecule threaded through a cyclic molecule. The cyclic molecule is usually large, and the linear molecule usually has bulky end groups that prevent unthreading. These are indexed at the component names with a "rotaxane compd. with" phrase and a ratio.

The "preferred" index name (for molecular addition compounds that receive more than one) is that name to which cross-references in the Index Guide direct the reader from trivial names, the name given precedence in the CAS Registry System, and therefore the name which, after uninversion of the index heading if necessary, may be used among $C A$ users in general discussions and reports. (To the index user in search of information, all the index names for an individual compound are of equal value.) For molecular addition compounds of stereoparents and their derivatives (II 203 I) with nonstereoparents, the preferred index entry appears at the former heading. In the absence of a stereoparent, the preferred index name is that which describes, in order of decreasing preference:
(a) a component other than a common component (see list above) selected according to the Order of Precedence of Compound Classes (II 106);
(b) a common component highest in the same order;
(c) a component which does not belong to any compound class described in the "Order of Precedence of Compound Classes," according to the earliest alphabetic position of the index name.

Examples ( $(a)$ is the preferred index name in each case):

1. (a) 2,5-Cyclohexadiene-1,4-dione, 2,3,5,6-tetrachloro-
compd. with coronene (no ratio cited because unknown; functional compound preferred to cyclic hydrocarbon)
(b) Coronene
compd. with 2,3,5,6-tetrachloro-2,5-cyclohexadiene-1,4-dione
2. (a) Anthracene
compd. with $\mathbf{2 , 4 , 6}$-trinitrophenol (2:1) (only entry; the cyclic hydrocarbon is preferred to a common compound of higher rank)
3. (a) Methane, sulfinylbis-
compd. with iodine (1:1) (by "iodine," the molecular form $\mathrm{I}_{2}$ is implied; atomic forms are indicated, when necessary, by phrases such as "compd. with at. chlorine (1:2)" and an entry, in such a case, at Chlorine, atomic)
(b) Iodine
compd. with sulfinylbis[methane] (1:1) (note that multiplied heading parents are bracketed in the uninverted names)
4. Nitrogen compounds. Cyclic nitrogen compounds, including lactams, sultams, and cyclic hydrazones, oximes, etc., are indexed at heterocyclic molecular skeletons (see Section B). Nitrogen-containing functional derivatives include imidic acids, amides, amines, imines, etc., for which the appropriate paragraph should be consulted. Hydroxylamine (see below) is a substitutive functional parent compound (I[ 130). Acyclic nitrogen skeletons, alone or with principal groups expressed as suffixes, are employed as heading parents for indexing purposes. Some groups, including azido, nitro, nitroso, and isocyano, are always expressed as substituent prefixes (II 132). aci-Nitro, HON(O)=, is also a mandatory prefix, and it may be substituted; e.g., (propyl-aci-nitro) is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}(\mathrm{O})=$; (benzoyl-aci-nitro) is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O})-\mathrm{ON}(\mathrm{O})=$;

Diazene, $\mathrm{HN}=\mathrm{NH}$; 1-Triazene, $\mathrm{NH}=\mathrm{N}-\mathrm{NH}_{2}$; Triazane, $\mathrm{NH}_{2}-\mathrm{NH}-\mathrm{NH}_{2}$, etc., are molecular skeleton heading parents to which the principal groups except hydroxy (and its chalcogen analogs), amino, and imino can be suffixed. Hydrazine is used as a trivial name for Diazane and its derivatives. Except for hydrazides (II 189) and hydrazones (II 190), alkyl, aryl and acyl derivatives are indexed at these nitrogen parents, which rank just below nitrogen heterocycles as the highest class of nonfunctional compounds (II 106). Within the class, seniority depends first on the number of hetero atoms, then on maximum unsaturation. When more preferred compound classes (including all those expressed by means of function suffixes) are present, the nitrogen skeletons are named as substituent prefixes, some of which have trivial names.

Examples (See also II 161):

$\mathrm{HN}=\mathrm{N}-$	diazenyl (only when unsubstituted; otherwise azo is used)
$-\mathrm{N}=\mathrm{N}-$	azo (when attached to different atoms)
$-\mathrm{N}=\mathrm{N}(\mathrm{O})-$	azoxy (When used as a substituted monovalent radical, the position of the oxide (if known) is indicated by an $N N O$ - or $O N N$-locant (see example below).)
$\mathrm{H}_{2} \mathrm{NNH}-$	hydrazino
$\mathrm{H}_{2} \mathrm{NN}=$	hydrazono
-NHNH-	hydrazo (when attached to different atoms)
- NHN=	1-hydrazinyl-2-ylidene
$=\mathrm{NN}=$	azino
$\mathrm{H}_{2}$ NNHNH-	triazanyl
$\mathrm{H}_{2} \mathrm{NN}=\mathrm{N}-$	1-triazenyl
$\mathrm{HN}=\mathrm{NNH}-$	2-triazenyl
$-\mathrm{N}=\mathrm{NNH}-$	1-triazene-1,3-diyl
$\mathrm{H}_{2}$ NNHNHNH-	tetrazanyl
$=$ NNHNHN $=$	1,4-tetrazanediylidene

Hydrazides (II 189) and hydrazones (including azines) (II 190) are excluded from the following examples.

Examples:

$\mathrm{H}_{2} \mathrm{NNHCO}_{2} \mathrm{NHCO}_{2} \mathrm{H}$	Hydrazinecarboxylic acid
$\mathrm{HO}_{2} \mathrm{CNH}_{1} \mathrm{HNHCO}_{2} \mathrm{H}$	1,2-Hydrazinedicarboxylic acid
$\mathrm{H}_{2}{\underset{2}{\mathrm{~N}} \mathrm{IN}_{1} \mathrm{NCON}}_{\mathrm{N}}$	Hydrazinecarboxamide, $N$-methyl-
$\mathrm{Et}_{2}$ NNHEt	Hydrazine, triethyl-
$\mathrm{H}_{2} \mathrm{NNHOH}$	Hydrazine, hydroxy-
	Hydrazine, (3-nitro-2-thienyl)(principle: preferred hetero atom in heading parent (II 138))
	Acridine, 9-(2,2-dimethyl-hydrazino)- (principle: cyclic parent preferred (II 138))
$\mathrm{PhN}=\mathrm{NSO}_{3} \mathrm{H}$	Diazenesulfonic acid, phenyl-
$\mathrm{PhN} \underset{2}{ }=\underset{1}{\mathrm{NCON}_{N}} \underset{N}{ }$	Diazenecarboxamide, 2-phenyl-
	Benzoic acid, 4-(phenyl-NNO-az-oxy)-
$[\mathrm{MeOCO}-\mathrm{N}(\mathrm{O})=]_{2}$	Benzoic acid, 4,4'-(dioxidoazo)bisdimethyl ester
	Diazene, (2-chlorophenyl)fluoro-1-oxide
$\mathrm{H}_{2} \mathrm{NN}=\mathrm{NAc}$	1-Triazene, 1-acetyl-

$$
\mathrm{MeSO}_{2} \underset{3}{\mathrm{NHNH}} \underset{1}{2} \underset{1}{ } \mathrm{HC}(=\mathrm{NH}) \mathrm{Me}
$$

Triazane, 1-(1-iminoethyl)-3-(methylsulfonyl)-


1,5-Hexazadiene-3,4-dicarboxaldehyde, 1,6-bis(4-bromo-phenyl)-


Benzenecarboximidamide, 4,4
(1-triazene-1,3-diyl)bis-
Formazan is a trivial name that describes the tautomeric compound $\mathrm{H}_{2} \mathrm{~N}-$ $\mathrm{N}=\mathrm{CH}-\mathrm{N}=\mathrm{NH}$. Beginning with the Thirteenth Collective period, the use of formazan and its associated prefixes, formazano and formazanyl, has been discontinued and compounds containing the formazan residue are named systematically.

Examples:

$\mathrm{H}_{2} \mathrm{~N}-\mathrm{N}=\mathrm{CH}-\mathrm{N}=\mathrm{NH}$	Diazenecarboxaldehyde,   hydrazone (formerly Formazan)
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{N}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{N}=\mathrm{N}-\mathrm{CH}_{3}$	Diazene, (1-hydrazonoethyl)methyl-
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{N}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)-\mathrm{N}=\mathrm{N}-\mathrm{CH}_{3}$	Ethanol, 2-hydrazono-2-(methyl-   azo)-



Diazenecarbohydrazonyl iodide, methyl(phenylmethylene)


Benzoic acid, 4-[[[(4-carboxy-phenyl)azo]methylene]-hydrazino]-2-chloro-


Benzoic acid, 4-[[[[(4-carboxy-phenyl)hydrazono]methyl]-azo]-2-chloro-


Benzaldehyde [1-(methylazo)ethylidene]hydrazone

Hydroxylamine, $\mathrm{H}_{2} \mathrm{NOH}$; Thiohydroxylamine, $\mathrm{H}_{2} \mathrm{NSH}$, etc., are substitutive parent compounds; i.e., substituent prefixes but (usually) not substituent suffixes may be attached to them. $N$-Ylidene derivatives are oximes (II 195), imidic acid derivatives ( $([165$ ), etc.

In general, $N$-alkyl and $N$-aryl derivatives of Hydroxylamine are indexed as amines; $N$-acyl derivatives as amides; $S$-amino derivatives of Thiohydroxylamine are indexed as sulfenamides. When the nitrogen atom is unsubstituted, $O$-derivatives are usually indexed at Hydroxylamine, etc. The only suffixes employed are "sulfonic acid," "sulfonyl chloride," etc., when attached to the chalcogen atoms; the locant (" $O$ " " $S$," etc.) is placed just ahead of the suffix.

Examples:
$\mathrm{H}_{2} \mathrm{NOSO}_{3} \mathrm{H}$
Hydroxylamine- $O$-sulfonic acid
Hydroxylamine, $O$-acetyl-
Hydroxylamine, $O$-carboxy-
Hydroxylamine, $O$-(amino-carbonyl)-

$\mathrm{BuONH}_{2}$	Hydroxylamine, $O$-butyl-   $\mathrm{H}_{2} \mathrm{NO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{ONH}_{2}$
$\mathrm{EtSNH}_{2}$	Hydroxylamine, $O, O^{\prime}$-1,2-ethane-   diylbis-
PhNHOH	Ethanesulfenamide
AcNHSH	Benzenamine, $N$-hydroxy-
$\mathrm{HONHCO}_{2} \mathrm{H}$	Acetamide, $N$-mercapto-
$\mathrm{HONHCONH}_{2}$	Carbamic acid, hydroxy-
$\mathrm{PhSO}_{2} \mathrm{NHOH}$	Urea, hydroxy-

Hydroxylamine and its chalcogen analogs rank lowest among the nonfunctional nitrogen parents. In the presence of more preferred compound classes, the radicals (aminooxy), (aminothio), (hydroxyamino), etc., are employed.

Examples:
HONHCOCO ${ }_{2} \mathrm{H}$
Acetic acid, (hydroxyamino)oxo-
$\mathrm{H}_{2} \mathrm{NOCH}_{2} \mathrm{NHNH}_{2} \mathrm{NH}_{3}$
Triazane, 1-[(aminooxy)methyl]-
194. Organometallic compounds. Organic derivatives of germanium, tin, lead, antimony, and bismuth are indexed at hydride heading parents (see gIIf 181, 199).

Cyclic derivatives of these metals with standard substitutive valencies are indexed as heterocycles.

Example:


1H-2-Benzogermole

Acyclic metal derivatives, other than acetylides (II 219) and those indexed at metal hydride names, are indexed at the metal element name. Such names are ranked as neutral coordination compounds (II 215) and all functional compounds are expressed as substituent prefixes. When all metal atoms cannot be expressed by the heading parent, elements other than those of Groups IVA and VA are expressed as "-io" radicals, e.g., sodio, magnesio, aurio, lithio, when the metal replaces a single hydrogen. No hydrogen or other "substituent" is implied by these radical names, and atoms or groups attached to them must be expressed.

Examples:

Li- Ph	Lithium, phenyl-
	Phosphonium, [3-(bromo-   mercurio)-1-propenyl]-   trimethyl-   bromide

195. Oximes contain a bivalent hydroxylamine residue, $=\mathrm{N}-\mathrm{OH}$. When this residue has replaced oxygen in carboxylic acids, acid halides, and amides, the compounds are named as $N$-hydroxy derivatives of imidic acids (II 165), imidoyl halides (II 170), and imidamides (II 171). Cyclic oximes are indexed at heterocyclic parents, e.g., Isoxazole.

Acyclic oximes derived from aldehydes and ketones expressed as principalgroup suffixes are expressed by "oxime" terms in the index modifications at the carbonyl-containing heading parents. When the carbonyl group is expressed as a substituent, it is replaced by the (hydroxyimino) radical, HO- $\mathrm{N}=. O$-Alkyl, $O$-aryl and $O$-acyl oximes are named as such in the modification or as an "-oxyimino" radical. Oximes derived from Hydroxylamine- $O$-sulfonic acid (II 193) are named as substituents of that heading parent.

Examples:


$\mathrm{MeCH}=\mathrm{NOSO}_{3} \mathrm{Me}$
Hydroxylamine- $O$-sulfonic acid,
$N$-ethylidene-
methyl ester
196. Oxygen compounds include a wide range of compound classes: acids, anhydrides, esters, alcohols, salts, metal oxides, etc. These are discussed in other sections and paragraphs. Cyclic oxygen compounds are indexed as heterocycles; these include cyclic esters, anhydrides, ethers, and oximes, as well as lactones, sulfones, etc.

Examples:


Oxirane, 2,2-diethyl- (not Butane, 1,2-epoxy-2-ethyl-)


2-Oxetanone, 4-ethyl- (not Pentanoic acid, 3-hydroxy-, $\beta$-lactone; see II 185)



7-Oxabicyclo[4.1.0]heptane (a Von
Baeyer ring system; see ๆI 155)
Acyclic ethers (including acetals and ortho esters) are indexed by replacement ("a") nomenclature if the requirements (II 127) are satisfied.

Example:


3,5,8,10-Tetraoxadodecan-1-ol,
4,9-dimethyl- (not Acetaldehyde, 1,2-ethanediyl ethyl 2-hydroxyethyl diacetal)
When "a" names are not permitted, acyclic ethers are indexed at heading parents (functional parent compounds, hydrocarbons, etc.) by use of "oxy" radicals, including the elided radicals (II 107) methoxy, ethoxy, propoxy, butoxy, and phenoxy.

Examples:
EtOMe
Ethane, methoxy- (not Ether, ethyl methyl)
$\mathrm{Et}_{2} \mathrm{O}$
Ethane, 1, 1'-oxybis- (not Ethyl ether)


Benzene, $1,1^{\prime}$-[oxybis(methy-lene)]bis-


Naphthalene, 2-(dodecyloxy)(principle: ring preferred to chain (II 138))


Oxirane, [ 2-(2-methylphenoxy)-ethoxy]methyl]- (principle: preferred ring)


Ethene, 1,1'-[(1-chloroethylidene)-bis(oxy)]bis- (principle: unsaturation)


Benzene, 1,1'-oxybis[4-phenoxy-
(principles: centrality and multiplication)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
Disulfide, bis(2-ethoxyethyl) (an "a" name cannot be used; only three hetero units ( $\mathbb{I} 127$ ) are present)


Benzene, 1-methoxy-2-(4-meth-oxyphenoxy)- principle: lowest locants for substituent prefixes)

Hydroperoxides, ROOH , follow alcohols (including phenols) in order of precedence (II 106). They are indexed at the radicofunctional heading parent Hydroperoxide. No hyphen follows the substituent radical (II 108) unless the heading parent is being multiplied by a prefix such as "bis". In the presence of more preferred compound classes, or when the HOO- group is attached to a hetero atom other than silicon, a hydroperoxy radical is employed. The chalcogen analogs $\mathrm{R}-\mathrm{S}-\mathrm{OH}$ and $\mathrm{R}-\mathrm{S}-\mathrm{SH}$ are indexed as sulfenic acids and sulfenothioic acids, respectively (II 165). Thiohydroperoxide is the heading parent for $\mathrm{R}-\mathrm{O}-\mathrm{SH}$ compounds.

Hydrotrioxide, Hydrotetraoxide, etc., heading parents are treated in a similar manner, and hydrotrioxy and hydrotetraoxy radicals can be used as substituent prefixes.

Examples:

EtOOH

$\mathrm{HOOCH}_{2} \mathrm{COPh}$




Acyl hydroperoxides are peroxy acids (II 165).
Peroxides, $\mathrm{R}-\mathrm{O}-\mathrm{O}-\mathrm{R}^{\prime}\left(\mathrm{R}\right.$ and $\mathrm{R}^{\prime}=$ alkyl or acyl), are named at the radicofunctional heading parent Peroxide unless a replacement ("a") name (I[ 127) is appropriate. Cyclic peroxides are indexed as heterocycles and are ranked in accordance with the seniority of ring systems (II 138). Acyclic peroxides rank with the nonfunctional oxygen parents (II 106) and in the presence of a more preferred compound class are expressed by "dioxy" radicals. Acyl alkyl (and acyl silyl) peroxides are esters of peroxy acids. Symmetrical diacyl peroxides derived from "oxo" acids are named at acid, acid halide, etc., heading parents such as Peroxydiphosphonic acid. Dithio peroxides are indexed at Disulfide (II 200); R-S-O-R' compounds are named as esters of sulfenic acids (II 165). The corresponding diacyl compounds are indexed at Thioperoxide.

Examples:


3,4,6,9,12,14,15-Heptaoxaheptadecane, $2,2,5,5,13,13,16,16-$ octa-methyl-

$\mathrm{Me}_{2} \mathrm{CHOOCHMe}_{2}$
EtoOMe
$\stackrel{\stackrel{\mathrm{O}}{\mathrm{\|}} \stackrel{\stackrel{\mathrm{O}}{\mathrm{O}}}{\mathrm{C}}-\mathrm{O}-\mathrm{O}-\mathrm{C}-\mathrm{CH}_{3}}{ }$

Piperidine, 1-hydroperoxy-

Thiohydroperoxide, $O$-(1-methyl-1phenylethyl)
Hydroperoxide, ethyl (the uninverted name is Ethyl hydroperoxide)

Hydroperoxide, 9H-fluoren-9-yl-idenebis-

Ethanone, 2-hydroperoxy-1-phenyl-

Hydrotrioxide, 1,1-dimethylethyl
$\mathrm{Me}_{2}{ }_{2}^{\mathrm{NNHP}}(\mathrm{O})(\mathrm{OH})_{2}$
$\underset{N}{\mathrm{MeNHP}(\mathrm{OH})(=\mathrm{NH})} \underset{N^{\prime \prime}}{\mathrm{N}^{\prime}} \mathrm{HMe}$
$\mathrm{Ph}_{2} \operatorname{AsOH}$
$\operatorname{EtNHAs}(\mathrm{O})(\mathrm{OH})_{2}$
Phosphorohydrazidic acid, 2,2-
dimethyl- Phosphorodiamidimidic acid, $N,-$ $\underset{N^{\prime} \text {-dimethyl- }}{\text { Phosphorodiami }}$
Arsinous acid, diphenyl-
Arsenamidic acid, ethyl-
Esters and anhydrides are indexed by the usual rules. Phosphorous, Phosphoric, Phosphorothioic and Phosphorodithioic acids are "Class I" acids; their esters with a single alcohol or thiol of "Class II" (II 185) are indexed at the alcohol name, but "mixed" esters are indexed at the phosphorus acid unless a more preferred compound class (e.g., carboxylic acid, aminium compound) is present. All cyclic esters are indexed as heterocycles.

Examples:

$(\mathrm{EtO}))_{2} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$	Phosphorous acid 2-aminoethyl diethyl ester
$\left[\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right]_{3} \mathrm{P}$	Ethanol, 2-chlorophosphite (3:1)
$\mathrm{HP}(\mathrm{O})(\mathrm{OH}) \mathrm{OMe}$	Phosphonic acid monomethyl ester
$\mathrm{EtP}(\mathrm{O})(\mathrm{OEt}) \mathrm{SEt}$	Phosphonothioic acid, ethyl$O, S$-diethyl ester
	Arsinodithioic acid, dimethylanhydrosulfide with dimethylarsinothious acid

Nonacidic mononuclear arsenic and phosphorus names are derived from the acid names in the usual way by expressing the highest function as a class term, e.g., "amide," "chloride," and the other replacement terms in alphabetical order within the main part of the name. The descending order of precedence for class terms is: hydrazide, halide (all considered equivalent, and cited in alphabetical order), azide, amide, cyanide, isocyanide, cyanate, thiocyanate (etc.), isocyanate, isothiocyanate (etc.), nitride, imide. Nonacidic analogs of phosphoric acid in which an oxo and hydroxyl group have been replaced by $\equiv \mathrm{N}$, are named at Phosphonitrile headings.

Examples:

$\left(\mathrm{H}_{2} \mathrm{~N}\right)_{3} \mathrm{P}=\mathrm{NH}$	Phosphorimidic triamide
$\mathrm{Cl}_{3} \mathrm{P}=\mathrm{NH}$	Phosphorimidic trichloride
$\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{Cl}_{2} \mathrm{PS}$	Phosphoramidothioic dichloride
$\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{BrClPO}$	Phosphoramidic bromide chloride
(OCN) ClFPO	Phosphorisocyanatidic chloride fluoride
$\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2}\left(\mathrm{~N}_{3}\right) \mathrm{PO}$	Phosphorodiamidic azide
$\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2}(\mathrm{NC}) \mathrm{PO}$	Phosphorocyanidic diamide
$\left(\mathrm{H}_{2} \mathrm{NNH}\right) \mathrm{F}_{2} \mathrm{PO}$	Phosphorodifluoridic hydrazide
$\left(\mathrm{H}_{2} \mathrm{~N}\right)_{3} \mathrm{P}$	Phosphorous triamide
$\mathrm{Cl}_{3} \mathrm{P}$	Phosphorous trichloride
$\mathrm{ClF}_{2} \mathrm{P}$	Phosphorous chloride difluoride
(NC) $\mathrm{H}_{2} \mathrm{P}$	Phosphinous cyanide
$(\mathrm{SCN}) \mathrm{H}_{2} \mathrm{P}$	Phosphinous isothiocyanate
$\mathrm{H}_{2}$ NPS	Phosphenothious amide
$\mathrm{ClP}=\mathrm{NH}$	Phosphenimidous chloride
$\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{ClHP}=\mathrm{NH}$	Phosphonamidimidic chloride
$\mathrm{Cl}_{2} \mathrm{P} \equiv \mathrm{N}$	Phosphonitrile chloride (not Phosphoronitridic dichloride)
$\left(\mathrm{H}_{2} \mathrm{~N}\right)_{3} \mathrm{AsO}$	Arsenic triamide
$\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{ClHAs}=\mathrm{NH}$	Arsonamidimidic chloride
$(\mathrm{NCS})_{2} \mathrm{HAsO}$	Arsonic dithiocyanate
$\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{H}_{2} \mathrm{As}=\mathrm{NH}$	Arsinimidic amide
$\mathrm{Cl}_{3} \mathrm{As}$	Arsenous trichloride


$\mathrm{Cl}_{2} \mathrm{HAs}$	Arsonous dichloride
$(\mathrm{NC}) \mathrm{H}_{2} \mathrm{As}$	Arsinous cyanide
$\mathrm{ClAs}=\mathrm{NH}$	Arsenenimidous chloride
BrAsO	Arsenenous bromide
$\mathrm{Cl}_{3} \mathrm{PO}$	Phosphoric trichloride
$\mathrm{ClF}_{2} \mathrm{PO}$	Phosphoric chloride difluoride
$(\mathrm{OCN})_{3} \mathrm{PO}$	Phosphoric triisocyanate
$\mathrm{Cl}_{3} \mathrm{PS}$	Phosphorothioic trichloride
$\mathrm{OP} \equiv \mathrm{N}$	Phosphoric nitride

Esters and anhydrides of cyclic oligomers of metaphosphorus acids are indexed as heterocycles.

Examples:

1,3,2,4-Diazadiphosphetidine, 1,3-dimethyl-2,4-diphenoxy-2,4-dioxide


1,3,5,2,4,6-Trioxatriphosphorinane, 2-[(diethoxyphosphinyl)oxy]-4,6-diethoxy-2,4,6-trioxide

Phosphorus and arsenic molecular skeletons other than those named as acids and acid analogs are indexed as heterocycles or at acyclic hydride names: Phosphine, $\mathrm{PH}_{3}$; Arsine, $\mathrm{AsH}_{3}$; Phosphorane, $\mathrm{PH}_{5}$; Arsorane $\mathrm{AsH}_{5}$; Diphosphine, $\mathrm{H}_{2} \mathrm{P}-\mathrm{PH}_{2}$; Triarsine, $\mathrm{H}_{2} \mathrm{As}-\mathrm{AsH}-\mathrm{AsH}$ 2 ; etc. Oxo, thio (etc.), and imino derivatives of Phosphorane and Arsorane are indexed at additive heading parents.

Examples:

$\mathrm{H}_{3} \mathrm{PO}$	Phosphine oxide
$\mathrm{H}_{3} \mathrm{AsSe}$	Arsine selenide
$\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$	Phosphine imide
$\mathrm{HPO}_{2}$	Phosphine oxide, oxo- (not Phos-   phorane, dioxo-)

Oxides, etc., of Diphosphine, Diarsine, Triphosphine, etc., are indexed by use of "oxide" and "sulfide" terms, with locants if necessary, in the modification. Acid derivatives of one of the phosphorus atoms are indexed at acid parents when names based on the phosphorus chains are impracticable.

Example:

$\operatorname{PhPHP}(\mathrm{O}) \mathrm{H}_{2}$	Diphosphine, phenyl-   2-oxide
$\mathrm{Et}_{3} \mathrm{P}(\mathrm{Cl}) \mathrm{P}(\mathrm{O}) \mathrm{Cl}_{2}$	Phosphonic dichloride, (chloro-   triethylphosphoranyl)-

Derivatives of Phosphine and other phosphorus and arsenic molecular skeleton parents are named substitutively by use of suffixes and prefixes.

Examples:
$(\mathrm{HO}){ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{F}_{4} \mathrm{PNHMe}$
$\mathrm{Me}_{2} \mathrm{AsCO}_{2} \mathrm{H}$
$\mathrm{EtAsMe}_{2}=\mathrm{NH}$
$\underset{\substack{\text { hydroxy- } \\ \text { Phosphinecarboxylic acid, di- }}}{\text { dide }}$ oxide

Phosphoranamine, 1,1,1,1-tetra-fluoro- $N$-methyl-

Arsinecarboxylic acid, dimethyl-
Arsine imide, $A s$-ethyl- $A s, A s$-di-methyl-
$(\mathrm{EtO}))_{5} \mathrm{P}$
Phosphorane, pentaethoxy-
$\mathrm{Ph}_{3} \mathrm{As}(\mathrm{OAc})_{2}$

Arsorane, bis(acetyloxy)triphenyl-
HPO
Phosphine, oxo-
MeAsS
MePHPHMe
$(\mathrm{Me})(\mathrm{Ph}) \mathrm{As}-\mathrm{As}(\mathrm{Ph})(\mathrm{Me})$
$\mathrm{MeAs}=\mathrm{AsMe}$
Arsine, methylthioxo-
Diphosphine, 1,2-dimethyl-
Diarsine, 1,2-dimethyl-1,2-di-phenyl-

Diarsene, dimethyl-

Polyphosphorus acids (anhydrides of the mononuclear acids) and their replacement analogs do not follow the rules described for the mononuclear acids. They are given traditional inorganic names, and many cross-references will be found at mononuclear names (see also II 219). (Polyarsenic acids are named analogously.)

Examples:

$(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OP}(\mathrm{O})(\mathrm{OH})_{2}$	Diphosphoric acid
$(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$	Hypophosphoric acid
$(\mathrm{HO}) \mathrm{HP}(\mathrm{O}) \mathrm{OP}(\mathrm{O})(\mathrm{OH})_{2}$	Isohypophosphoric acid
$(\mathrm{HO})_{2} \mathrm{POP}(\mathrm{O})(\mathrm{OH})_{2}$	Diphosphoric(III,V) acid
$(\mathrm{HO})_{2} \mathrm{POP}(\mathrm{OH})_{2}$	Diphosphorous acid
$(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{NHP}(\mathrm{O})(\mathrm{OH})_{2}$	Imidodiphosphoric acid
$(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OP}(\mathrm{O})(\mathrm{OH}) \mathrm{NHP}(\mathrm{O})(\mathrm{OH}) \mathrm{OP}(\mathrm{O})(\mathrm{OH})_{2}$	
	$P^{\prime}$-Imidotetraphosphoric acid
$\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{NHP}(\mathrm{O})(\mathrm{OH})_{2}$	$P, P$-Diamidoimidodiphosphoric
	acid

Line formulas are used with thio, seleno, and telluro analogs of polyphosphorus acids to indicate the number and positions of sulfur (etc.) atoms. Thio, etc., prefixes are placed at the beginning of the name without multiplicative terms; e.g., Thiodiphosphorous acid $\left(\left[(H O)_{2} \mathrm{P}\right]_{2} \mathbf{S}\right)$; Thiodiphosphoric(III,V) acid $\left((\mathrm{HO})_{2} \mathrm{POP}(\mathrm{S})(\mathrm{OH})_{2}\right)$; Thioperoxydiphosphoric acid $\left(\left[(\mathrm{HO})_{2} \mathrm{P}(\mathrm{S})\right]_{2} \mathrm{~S}_{2}\right)$; Thioimidodiphosphoric acid $\left(\left[(\mathbf{H O})_{2} \mathrm{P}(S)\right]_{2} \mathbf{N H}\right)$.

When all acid groups have been replaced, the compounds are named as halides, amides, etc. The phosphoric halides and halogenoids are named by phosphoryl terms, the phosphoric amides by single-word heading parents. The phosphorous analogs of both classes are indexed at Phosphorous binary heading parents with a multiplicative prefix for the class term.

Examples:

$\mathrm{Cl}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OP}(\mathrm{O}) \mathrm{Cl}_{2}$	Diphosphoryl chloride (the phos-   phorous analog is named Di-   phosphorous tetrachloride)
$\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{POP}\left(\mathrm{NH}_{2}\right)_{2}$	Diphosphorous tetraamide (the   phosphoric analog is named   Diphosphoramide)



Diimidotriphosphoramide

In the order of precedence of compound classes (II 106), phosphorus and arsenic acids are functional heading parents, which fall below the acids expressed as principal functions (carboxylic, sulfonic, etc.) but above the highest nonacid group (acid halides). Phosphorus acids as a group rank just above arsenic acids. Within each group, seniority is dependent on (a) the greatest number of acid groups; (b) the greatest number of nuclear phosphorus or arsenic atoms; (c) the highest oxidation state (5+) of these atoms; ( $d$ ) the most preferred atoms (Table I, II 128) attached to the nuclear atoms; ( $e$ ) the greatest number of such preferred atoms; $(f)$ the nature of less preferred atoms. A partial list of acids in descending order of precedence is: Triphosphoric, Diphosphoric, Imidodiphosphoric, Diphosphorous, Phosphoroperoxoic, Phosphoric, Phosphorothioic, Phosphorodithioic, Phosphorous, Phosphorochloridic, Phosphorohydrazidic, Phosphoramidic, Phosphonic, Phosphinic, Phosphinous acid. (Chalcogen analogs of each acid immediately follow it in descending order of increasing replacement of oxygen by sulfur, selenium, and tellurium.) For the choice between tautomeric pairs such as Phosphorous and Phosphonic acids, see also above.

Nonacid analogs are ranked according to their class, e.g., halide, amide; then on the multiplicity of their class, e.g., a diamide is preferred over a monoamide; then on the remaining criteria set out above for the acids.

In the presence of more preferred compound classes, phosphorus and arsenic acids and hydrides are expressed by the following substituent radicals (*denotes a radical which requires bis, tris, etc., (and parentheses) instead of di, tri, etc., when more than one is present):

$\mathrm{H}_{2} \mathrm{P}-$	*phosphino	$\mathrm{H}_{2} \mathrm{As}-$	*arsino
$\mathrm{H}_{2} \mathrm{P}(\mathrm{O})-$	*phosphinyl	$\mathrm{H}_{2} \mathrm{As}(\mathrm{O})-$	*arsinyl
$\mathrm{H}_{2} \mathrm{P}(\mathrm{S})-$	phosphinothioyl	$\mathrm{H}_{2} \mathrm{As}(\mathrm{S})-$	arsinothioyl
$\mathrm{H}_{2} \mathrm{P}(=\mathrm{NH})-$	phosphinimyl	$\mathrm{H}_{2} \mathrm{As}(=\mathrm{NH})-$	arsinimyl
$\mathrm{HP}(\equiv \mathrm{N})-$	phosphononitridyl	$\mathrm{HAs}(\equiv \mathrm{N})-$	arsononitridyl
$\mathrm{H}_{4} \mathrm{P}-$	*phosphoranyl	$\mathrm{H}_{4} \mathrm{As}-$	*arsoranyl
$\mathrm{HP}=$	phosphinidene	$\mathrm{HAs}=$	arsinidene
$\mathrm{HP}(\mathrm{O})=$	*phosphinylidene	$\mathrm{HAs}(\mathrm{S})=$	arsinothioylidene
$\mathrm{P}(\mathrm{O}) \equiv$	*phosphinylidyne	$\mathrm{As} \equiv$	arsinidyne

The above are substitutive; the following are not, and can be used only as simple radicals (II 132):

$\mathrm{P}(\mathrm{O})^{-}$	phosphoroso	$\mathrm{As}(\mathrm{O})-$	arsenoso
$\mathrm{P}(\mathrm{O})_{2}-$	phospho	$\mathrm{As}(\mathrm{O})_{2^{-}}$	arso
$(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O})-$	phosphono	$(\mathrm{HO})_{2} \mathrm{As}(\mathrm{O})-$	arsono
$-\mathrm{P}(\mathrm{O})(\mathrm{OH})-$	phosphinico   (multiplying   radical only)	$-\mathrm{As}(\mathrm{O})(\mathrm{OH})-$	arsinico   (multiplying   radical only)

Radicals from polynuclear arsenic and phosphorus hydrides are formed like the carbon analogs.

Examples:

$\mathrm{H}_{2} \mathrm{PPH}-$	diphosphinyl
- $\mathrm{PHPH}-$	1,2-diphosphinediyl
$=\mathrm{PP}=$	1,2-diphosphinediylidene
$-\mathrm{P}=\mathrm{P}-$	1,2-diphosphenediyl
$-\mathrm{As}=\mathrm{As}-$	1,2-diarsenediyl
$-\mathrm{PH}(\mathrm{PH})_{2} \mathrm{PH}-$	1,4-tetraphosphinediyl

198. Salts. Metal salts of acids and of other compounds having replaceable hydrogen on chalcogen atoms (whether expressed in the heading parent, in the substituents, or in a previous modification phrase) are indexed by use of salt terms in the modification. The terms mono, di, and tri, Ewens-Bassett numbers (II 215), and ratios, are used as required (unless information is lacking), but locants are never cited. In the presence of hetero atom groups capable of forming chelate rings, salts of aluminum, beryllium, gallium, indium, magnesium, thallium, and the transition metals with acids (except polybasic hydroxy acids) are named by coordination nomenclature ( $\mathbb{C l}$ 215).

Examples:
$\mathrm{AcOH} \cdot \mathrm{Na}$

$\mathrm{PhP}(\mathrm{O})(\mathrm{OH}) \mathrm{OEt} \cdot \mathrm{K}$
$3 \mathrm{MeOH} \cdot \mathrm{Bi}^{3+}$

$-\mathrm{CO}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH} \cdot \mathrm{Li}$
Acetic acid sodium salt

1,4-Benzenediol
dipotassium salt

When a metal (except $\mathrm{Sb}^{3+}, \mathrm{Bi}^{3+}, \mathrm{Ge}^{4+}, \mathrm{Sn}^{4+}$, or $\mathrm{Pb}^{4+}$ ) has replaced hydrogen atoms attached to nitrogen, phosphorus, arsenic or antimony in molecular skeletons, they also are named as salts, e.g., Piperidine, potassium salt; Acetamide, monosodium salt; Phosphine, cyclohexyl-, monolithium salt; but unsubstituted Hydrazine, Phosphine, and Arsine afford the binary heading
parents Sodium hydrazide $\left(\mathbf{N a N}_{2} \mathbf{H}_{3}\right)$; Lithium arsenide $\left(\mathbf{L i H}_{2} \mathbf{A s}\right)$; Aluminum phosphide; etc.

Except for those cyclic derivatives of germanium, tin, lead, antimony, and bismuth which are treated as heterocycles (II 194), cyclic metal salts of two or more compounds, as well as mixed acyclic salts, are named by coordination nomenclature (II 215). Metal salts of radical anions and of certain delocalized structures, e.g., $\beta$-dicarbonyl compounds and nitro alkanes, are indexed by citing the ion term in the modification followed by the metal name.

Examples:

Naphthalene
radical ion(1-), sodium


Methane, dinitro-
ion(1-), sodium


$\mathrm{CH}_{3}-\stackrel{\mathrm{C}}{\mathrm{C}}-\overline{\mathrm{C}} \mathrm{H}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{3} \cdot \mathrm{~K}^{+}$ | 2,4-Pentanedione |
| :---: |
| ion $(1-)$, potassium |

Uninverted names for metal salts of acids and esters are formed by citing first the metal, then the ester radical, then "hydrogen" (if any acidic group remains unaccounted for), and finally an "-ate" or "-ite" term. When the acid is one that requires a line formula, or has acidic sites, e.g., hydroxyl or amino substituents, elsewhere than in the principal chemical group, the acid name is placed first.

Examples:

## sodium acetate

potassium hydrogen carbonate
calcium ethyl phosphate
zinc bis(methyl sulfate)
copper(2+) diacetate
boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ monopotassium salt
2-hydroxybenzoic acid monosodium salt
4 -aminobenzoic acid calcium salt (2:1)
Amine, phosphine, etc., salts of acids, alcohols, thiols, etc., in general are indexed in the Chemical Substance and Formula Indexes at the names and formulas of both components. Exceptions are salts of ammonia, indexed only as ammonium salts at the acid headings, and the "common components" of molecular addition compounds (II 192) together with the following common acids: hydriodic, hydrobromic, hydrochloric, hydrofluoric, nitric, nitrous, perchloric, phosphoric, phosphorous, sulfuric, sulfurous. Entries are not made for these components except for salts that contain only "common components," in which case a single entry based on the rules for molecular addition compounds (II 192) is made. At the acid heading, a "compd. with" phrase appears in the modification.

Example:


Acetic acid
compd. with cyclohexanamine
(1:1)

At index headings for nitrogenous substances, and those containing trivalent phosphorus or arsenic, an "-ate", "-ite", or "-ide" term is normally cited in the modification, but when the acid has a synonym line formula, or is an acid ester indexed at a "Class II" alcohol name, a "compd. with..." phrase is used instead. Sometimes the designation "(salt)" must be added to an "-ate" term to differentiate it from an ester.

Examples:


Benzamide, 4-amino-
compd. with 2-chloroethyl dihydrogen phosphate (1:1) (preferred index name)
Ethanol, 2-chloro-
dihydrogen phosphate, compd.
with 4-aminobenzamide (1:1)
(additional index name)


Selenic acid
compd. with pyridine (1:1)
(only index name) (II 265A)
$\underset{4}{\mathrm{MeCH}} 2_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{OH} \cdot \mathrm{HO}_{2} \mathrm{CCO}_{2} \mathrm{H}$ 1-Butanol, 2-amino-
ethanedioate (1:1) (salt)


Phenol, 4-amino-
acetate (ester), acetate (salt)

For salts of amines, etc., with alcohols and thiols, a "compd. with" phrase and a ratio are used at both component headings.

Examples:


Ethanol
compd. with 2-methylpyridine
(1:1) (preferred index name)
Pyridine, 2-methyl-
compd. with ethanol (1:1)
(additional index name)
Salts of aminium compounds and other substitutive cations are indexed by combining the "-ium" heading and the anion term, named according to the rules already described, (IIf 180, 184). Both components are indexed in the Chemical Substance and Formula Indexes except for the following common anions:
(a) halide and halogenide simple anions, e.g., bromide, cyanide, thiocyanate, azide;
(b) chalcogenide anions, e.g., hydroxide, sulfide;
(c) anions derived from "Class I" acids, alcohols, and thiols (II 185), trifluoroacetic acid, trifluoromethanesulfonic acid, nitrous acid, perchloric acid, and 2,4,6-trinitrophenol;
(d) methyl sulfate $\left(\mathrm{MeOSO}_{3}-\right)$, and ethyl sulfate $\left(\mathrm{EtOSO}_{3}^{-}\right)$;
(e) tetrafluoroborate(1-) $\left(\mathrm{BF}_{4}^{-}\right)$, tetraphenylborate $(1-)\left(\mathrm{BPh}_{4}^{-}\right)$, and hexafluorophosphate (1-) $\left(\mathrm{PF}_{6}{ }^{-}\right)$.

Ternary salts of this kind are indexed by citing the terms in alphabetical order in the modification, cations first, then anions. In molecular addition compounds, the "-ium" salt is cited in uninverted form. In each example, below, the preferred index name is cited first; less preferred Chemical Substance and Formula Index names (if any) are then described.

Examples:

$$
\mathrm{Me}_{4} \mathrm{~N}^{+} \cdot \mathrm{Br}^{-}
$$

$\mathrm{Me}_{4} \mathrm{~N}^{+} \cdot \mathrm{MeCOS}^{-}$




$$
\mathrm{Me}_{4} \mathrm{~N}^{+} \cdot{ }^{-} \mathrm{NHPh}
$$

$\mathrm{Me}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{OH} \cdot \mathrm{ClO}_{4}^{-}$

Piperazinium, 1,1,4,4-tetramethyldicyclopentadienide
1,3-Cyclopentadiene ion(1-), 1,1,4,4-tetramethylpiperazinium (2:1)
Methanaminium, $\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethylbromide

Methanaminium, $\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethylethanethioate
Ethanethioic acid ion(1-), $N, N, N$-trimethylmethanaminium

Arsonium, tetraethylcyclohexanecarboxylate
Cyclohexanecarboxylic acid ion(1-), tetraethylarsonium

Pyridinium, 1-methyl-
1,2-benzenedicarboxylate (1:1)
1,2-Benzenedicarboxylic acid, ion(1-), 1-methylpyridinium

Methanaminium, $N, N, N$-trimethylsalt with benzenamine ( $1: 1$ )
Benzenamine
ion(1-), $N, N, N$-trimethyl-
methanaminium
Methanaminium, 1-hydroxy- $N, N, N-$ trimethyl-
perchlorate (salt) (note the use of the "(salt)" designation to resolve any ambiguity, even though the ester would have been named as a substituent)


Piperazinium, 1,1-dimethylsalt with trifluoroacetic acid (1:1), hydrochloride (II 281A)


Phosphonium, tetramethyltetramethylarsonium, salt with 2,2'-(2,5-cyclohexadiene-1,4diylidene)bis[propanedinitrile] (1:1:2)
Arsonium, tetramethyltetramethylphosphonium, salt with 2,2'-(2,5-cyclohexadiene-1,4-diylidene)bis(propanedinitrile] (1:1:2)
Propanedinitrile, 2,2'-(2,5-cyclo-hexadiene-1,4-diylidene)bisradical ion(1-), tetramethylarsonium tetramethylphosphonium (2:1:1)


Benzenediazonium, 4-chlorochloride, compd. with cobalt chloride $\left(\mathrm{CoCl}_{2}\right)$
Cobalt chloride ( $\mathbf{C o C l}_{2}$ ) compd. with 4-chlorobenzenediazonium chloride (Diazonium "double salts" of known ratio are indexed as "trichlorocobaltate(1-)," "tetrachlorocobaltate(2-)," etc.)
199. Silicon, germanium, tin, and lead compounds are indexed (a) as heterocyclic compounds, (b) as derivatives of acyclic hydride parents such as Germane or Disilane, (c) as special acyclic parents such as Tristannathiane or Tetrasiloxane, or (d) as silicic acids.

Heterocyclic compounds are indexed by the usual methods (IIfl 146, 149).
Examples:


4H-1,3,2-Dioxagermin


Silacyclopentane

Bicyclo[5.3.1]pentasiloxane
Hexastannin, hexahydro-

Acyclic linear chains of tetravalent hydrides of silicon, germanium, tin, and lead are molecular skeletons with names derived from the mononuclear hydrides: Silane, $\mathbf{S i H}_{4}$; Germane, $\mathbf{G e H}_{\mathbf{4}} ;$ Stannane, $\mathbf{S n H}_{4}$; Plumbane, $\mathbf{P b H}_{4}$.

Examples:
$\mathrm{H}_{3} \mathrm{SiSiH}_{3}$
$\mathrm{H}_{3} \mathrm{GeGeH}_{2} \mathrm{GeH}_{3}$
$\mathrm{H}_{3} \mathrm{Sn}\left(\mathrm{SnH}_{2}\right)_{11} \mathrm{SnH}_{3}$
$\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{SiH}\left(\mathrm{SiH}_{3}\right) \mathrm{SiH}_{2} \mathrm{SiH}_{3}$

## Disilane

Trigermane
Tridecastannane
$\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{SiH}\left(\mathrm{SiH}_{3}\right) \mathrm{SiH}_{2} \mathrm{SiH}_{3}$
Pentasilane, 3-silyl-
When a single element of this series alternates with a single chalcogen in a linear acyclic chain, "-ane" names which express the nature of the alternating elements and number of silicon (etc.) atoms are employed.

Examples:

$\left(\mathrm{H}_{3} \mathrm{Si}\right)_{2} \mathrm{O}$	Disiloxane
$\left(\mathrm{H}_{3} \mathrm{Si}\right)_{2} \mathrm{~S}$	Disilathiane
$\left(\mathrm{H}_{3} \mathrm{Ge}\right)_{2} \mathrm{Se}$	Digermaselenane
$\left(\mathrm{H}_{3} \mathrm{Sn}\right)_{2} \mathrm{Te}$	Distannatellurane
$\left(\mathrm{H}_{3} \mathrm{SnO}\right)_{2} \mathrm{SnH}_{2}$	Tristannoxane
$\mathrm{H}_{3} \mathrm{Si}\left(\mathrm{OSiH}_{2}\right)_{2} \mathrm{OSiH}_{3}$	Tetrasiloxane

An acyclic chain of alternating silicon and nitrogen atoms is not named as a silazane; instead the functionality of the nitrogen is recognized. Thus, disilazane, $\mathrm{H}_{3} \mathrm{SiNHSiH}_{3}$, is indexed at Silanamine, $N$-silyl-. However, silazanyl radicals (see below) are employed in the presence of higher functions.

Replacement ("a") names are used as parents when the chain contains carbon atoms and the other requirements (II 127) are met.

Example:

$$
\begin{aligned}
& \underset{1}{\mathrm{MeO}} \underset{2}{ }\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCCH}_{2} \underset{7}{\mathrm{SiMe}_{2}} \mathrm{OSSiMe}_{2} \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMMe}_{14} \\
& \text { 2,5,8,11,14-Pentaoxa-7,9-disilapen- } \\
& \text { tadecane, 7,7,9,9-tetramethyl- }
\end{aligned}
$$

Derivatives of all these parents are named by the usual substitutive methods except for silicic acids and germanium, tin, and lead hydroxides and salts (see below). A hydroxyl group on a germanium, tin, or lead atom is expressed as a hydroxy prefix, but by the suffix "-ol" on a silicon atom when it is a principal group. $O$-Acyl silanols are named as esters.

Examples:
$\mathrm{SiCl}_{4}$
$\mathrm{Me}_{3} \mathrm{SiCN}$
$\mathrm{Me}_{3} \mathrm{SnCN}$
$\mathrm{Me}_{3} \mathrm{SiOH}$
$\mathrm{Et}_{3} \mathrm{SiOSiEt}_{2} \mathrm{OH}$
$\mathrm{H}_{3} \mathrm{GeNH}_{2}$
$\left(\mathrm{HOSiMe}_{2}\right){ }_{2} \mathrm{CH}_{2}$

$\underset{1}{\mathrm{ClSMe}} \underset{2}{ } \mathrm{OSnMe}_{2} \mathrm{Cl}$
$\mathrm{PhPb}(\mathrm{O}) \mathrm{OPb}(\mathrm{O}) \mathrm{Ph}$
1
23
$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{Se}$
$\mathrm{Me}_{2} \mathrm{PbO}$
$\mathrm{F}_{3} \mathrm{SiSiH}_{3}$
$\mathrm{Et}_{3} \mathrm{PbPbEt}_{3}$
$\mathrm{PhPb}(\mathrm{O}) \mathrm{OH}$
$\underset{1}{\mathrm{HOGeH}} \mathrm{O}_{2} \mathrm{OGeH}_{2} \mathrm{OH}$

Silane, tetrachloro

Silanecarbonitrile, trimethyl-

Stannanecarbonitrile, trimethyl-

Silanol, trimethyl-

Disiloxanol, pentaethyl-

Germanamine

Silanol, methylenebis[dimethyl-

Cyclotrisiloxanol, pentamethyl-

Distannoxane, 1,3-dichloro-1,1,3,3-tetramethyl-

Diplumboxane, 1,3-dioxo-1,3-di-phenyl-

Disilaselenane, hexamethyl-

Plumbane, dimethyloxo-

Disilane, 1,1,1-trifluoro-

Diplumbane, hexaethyl-

Plumbane, hydroxyoxophenyl-

Digermoxane, 1,3-dihydroxy-

Silane, trimethoxymethyl-
$\mathrm{Me}_{3} \mathrm{SiOAc}$
Silanol, trimethylacetate


Germane, trimethyl(1-oxoprop-oxy)-

Substituent prefixes (radicals) from silicon, germanium, tin, and lead mononuclear hydrides are formed by adding the suffixes "-yl," "-ylene," and "-ylidyne" to the appropriate stem, or "-tetrayl" to the hydride name: silyl, $\mathrm{H}_{3} \mathrm{Si}-$; germylene, $\mathrm{H}_{2} \mathrm{Ge}=$; stannylidyne, $\mathrm{HSn} \equiv$; plumbanetetrayl, $=\mathrm{Pb}=$. Radicals from polynuclear hydrides and "oxanes," etc., are derived as for hydrocarbons.

Examples:

$\mathrm{H}_{3} \mathrm{SiSiH}_{2}-$	disilanyl
$-\underset{l}{-\mathrm{GeH}_{2}} \underset{2}{ } \mathrm{GeH}_{2}-$	1,2-digermanediyl (form digermanylene)
$\mathrm{H}_{3} \mathrm{SnSnH}_{2} \mathrm{SnH}=$	tristannanylidene
$\equiv \underset{1}{\operatorname{SnSn}} \equiv$	1,2-distannanediylidyne
$\mathrm{H}_{3} \mathrm{SiOSiH}_{2}-$	disiloxanyl
$\mathrm{H}_{3} \mathrm{SiNHSSH}_{2}-$	disilazanyl
$\underset{1}{-\mathrm{PbH}_{2} \mathrm{OPbH}_{2}-}$	1,3-diplumboxanediyl
$\underset{1}{-\mathrm{SiH}_{2} \mathrm{OSiO}_{3}^{\prime}} \stackrel{\mathrm{l}}{5}$	1,3,5-trisiloxanetriyl

The nonfunctional silicon, germanium, tin, and lead hydrides fall (in that order) between boron and oxygen heading parents in order of precedence of compound classes (II 106). When a principal group is expressed as a suffix, the compound is classed accordingly. Thus Silanol is ranked with the alcohols, and the silicon "chain" places it above all carbon-chain monohydric alcohols, cyclic or acyclic (II 138).

Examples:
$\mathrm{Me}_{3} \mathrm{SiOSiMe}{ }_{2} \mathrm{CH}_{2} \mathrm{OH}$
Methanol, (pentamethyldi-siloxanyl)- (not 3-Oxa-2,4-di-silapentan-1-ol, 2,2,4,4-tetra-methyl-)


Benzenamine, 4-disilanyl-


Silanol, [[4-(acetyloxy)phenyl]-methyl]-
benzoate (not Phenol, 4-[[(ben-zoyloxy)silyl]methyl]]-, acetate)
$\mathrm{Et}_{3} \mathrm{GeCH}_{6}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{1} \mathrm{NH}_{2}$
$\mathrm{H}_{3} \mathrm{SiOSiH}_{2} \mathrm{SSiH}_{3}$
1-Hexanamine, 6-(triethylgermyl)-

Disiloxane, (silylthio)-

Silicic acids are silanes and siloxanes (and chalcogen analogs) in which all hydrogen atoms have been replaced by hydroxyl and oxo groups (or their chalcogen analogs). Their esters and anhydrides are named as usual. Cyclic derivatives are named as heterocycles.

Examples:
(EtO) ${ }_{4} \mathrm{Si}$
$\left(\mathrm{Me}_{2} \mathrm{CHO}\right)_{3} \mathrm{SiSH}$
Silicic acid ( $\mathbf{H}_{4} \mathrm{SiO}_{4}$ )
tetraethyl ester

Thiosilicic acid $\left(\mathrm{H}_{4} \mathrm{SiO}_{3} \mathrm{~S}\right)$ $O, O, O$-tris(1-methylethyl) ester


1,4,6,9-Tetraoxa-5-silaspiro[4.4]nonane
(not 1,2-Ethanediol, cyclic diester with silicic acid $\left(\mathrm{H}_{4} \mathrm{SiO}_{4}\right)$ )

$$
\begin{gathered}
\stackrel{\mathrm{O}}{\mathrm{O}} \stackrel{\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3}}{\mathrm{~S}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3} \\
\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3}
\end{gathered}
$$

## Carbonic acid <br> monoethyl ester, anhydride with silicic acid $\left(\mathrm{H}_{4} \mathrm{SiO}_{4}\right)$ tributyl <br> ester (see also 厅I 186)

Germanium, tin, and lead analogs of silicic acids are named at binary hydroxide and hydroxide oxide heading parents. Symmetrical derivatives of Germane, Stannane, and Plumbane, in which all hydrogen atoms have been replaced by groups derived from alcohols, thiols, etc., or acids, are named as metal salts.

Examples:

$$
\mathrm{Ge}(\mathrm{OH})_{4} \quad \text { Germanium hydroxide }\left(\mathbf{G e}(\mathbf{O H})_{4}\right)
$$

$\mathrm{SnO}(\mathrm{OH})_{2} \quad$ Tin hydroxide oxide $\left(\mathbf{S n}(\mathbf{O H})_{2} \mathbf{O}\right)$
$4 \mathrm{Me}-\mathrm{Co}_{2} \mathrm{H} \cdot \mathrm{Pb}^{4^{+}}$
Benzoic acid, 4-methyl-
lead(4+) salt
200. Sulfur, selenium, and tellurium compounds are often named similarly to oxygen compounds, but sometimes, e.g., in sulfonic and sulfenic acids (II 165), the sulfur, etc., acts as a nuclear atom in a functional group of which no oxygen analog is known. Because sulfur, selenium, and tellurium are treated identically, "thio," "sulfur," "sulfide," etc., in the following discussion may invariably be replaced by the corresponding selenium or tellurium term.

Cyclic sulfur compounds are named as heterocycles; sulfur alternating with silicon, germanium, tin, or lead atoms forms the silathianes, etc. (II 199). Sulfur analogs of anhydrides are usually named as anhydrosulfides, but the anhydrosulfides of acids named as functional parent compounds are often indexed at polynuclear acid headings, e.g., Thiodicarbonic acid.

Examples:


Thiodicarbonic diamide $\left(\left[\mathrm{H}_{2} \mathrm{NC}(\mathrm{S})\right]_{2} \mathrm{~S}\right)$, tetramethyl-


1-Piperidinecarbodithioic acid anhydrosulfide with diethylcarbamodithioic acid


## Thioperoxydiphosphoric tetrafluoride ( $\left.\left[\mathrm{F}_{2} \mathbf{P}(\mathbf{S})\right]_{2} \mathbf{S}_{2}\right)$

The additive term "sulfide" is used in modifications when sulfur is attached to saturated Group VA elements in molecular skeletons. The locant relating to the parent is used when the parent contains the heteroelement sulfide; otherwise, an element symbol provides the locant.

Examples:


1,3,2-Dioxaphosphorinane, 2-methoxy-
2-sulfide


Propanedioic acid, (1-sulfido-2-pyridinyl)-

Oxides of doubly-bound sulfur atoms in principal groups are named in the modification with an " $S$ " locant.

Examples:

$$
\begin{array}{lc}
\mathrm{MeC}(=\mathrm{S}=\mathrm{O}) \mathrm{NH}_{2} & \text { Ethanethioamide } \\
& S \text {-oxide } \\
\underset{1}{\mathrm{MeCH}}{ }_{2} \mathrm{C}(=\mathrm{S}=\mathrm{O}) \underset{4}{\mathrm{CH}_{2}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}_{7} & \text { 3-Heptanethione } \\
S \text {-oxide }
\end{array}
$$

Phosphine sulfide, Arsine sulfide, and Stibine sulfide (IIII 181, 197) are substitutive parent compounds, but the sulfides of Diphosphine, Triarsine, etc., are named by modification terms.

Acyclic sulfides, sulfoxides, and sulfones, containing one or more isolated sulfur atoms, including thio acetals and thio ortho esters, are named (like ethers (II 196)) as substituents of hydrocarbons and other heading parents by use of thio radicals, unless a replacement ("a") name (II 127) is permissible. In the latter, oxide terms in the modification are employed to express sulfinyl ( $-\mathrm{S}(\mathrm{O})-$ ) and sulfonyl ( $\left.-\mathrm{S}(\mathrm{O})_{2}-\right)$ groups. The analogs of "thio" are "seleno" and "telluro"; those of "sulfinyl" are "seleninyl" and "tellurinyl"; those of "sulfonyl" are "selenonyl" and "telluronyl."

Examples:
$\underset{1}{\mathrm{CH}_{3}-\mathrm{S}-\mathrm{CH}_{2}-\underset{3}{\mathrm{~S}}-\mathrm{CH}_{2}-\underset{5}{\mathrm{~S}}-\underset{7}{\mathrm{CH}_{2}}-\underset{8}{\mathrm{~S}}-\mathrm{CH}_{3}}$
2,4,6,8-Tetrathianonane


3,6,9,12-Tetrathiatetradecane 3,6,9,12-tetraoxide
$\mathrm{MeSeCH}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H} \quad$ Butanoic acid, 4-(methylseleno)-
$\mathrm{PhCOCH}_{2} \mathrm{CH}_{2} \mathrm{TePh}$
1-Propanone, 1-phenyl-3-(phenyltelluro)-
$\mathrm{H}_{2} \mathrm{NCH}_{I} \underset{2}{\mathrm{CH}_{2}} \mathrm{SeCH}_{2^{\prime}}{\underset{I}{ }{ }^{\prime}}_{\mathrm{CH}_{2}} \mathrm{NH}_{2}$
Ethanamine, 2,2'-selenobis-


Propane, 2,2-bis(ethylsulfonyl)(principle: largest heading parent (II 138))


Ethane, (methyltellurinyl)- (principle: largest heading parent)
$\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{SO}_{2} \mathrm{Ph}$
Benzene, (heptylsulfonyl)- (principle: ring preferred over chain)


Benzene, [(cyclohexylselenonyl)-methyl]- (principle: preferred ring system)

Ethene, 1,1'-[methylenebis(thio)]-bis- (principles: largest heading parent and multiplication)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHSCHMeOEt}$
Ethene, [(1-ethoxyethyl)thio](principle: maximum number of unsaturated bonds)

## $\mathrm{Cl}_{2} \mathrm{CHCH}_{2} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{2} \mathrm{CHCl}_{2}$

Ethane, 1, $\mathbf{1}^{\prime}$-thiobis[2-[(2,2-di-chloroethyl)thio]- (principles: centrality and multiplication)


Cl
$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SPh}$
Benzene, 2,4-dichloro-1-[(phen-oxymethyl)thio]- (principle: maximum number of substituent prefixes)

Benzene, [(2-phenylethyl)thio](not Benzene, [2-(phenylthio)- ethyl]-) (principle: earliest index position)

Hydrodisulfides are named as dithioperoxoic acids, as sulfenothioic acids, or as thio analogs of mononuclear peroxy "oxo" acids. The oxides $\mathrm{R}-\mathrm{S}(\mathrm{O})-\mathrm{SH}$ and $\mathrm{R}-\mathrm{S}(\mathrm{O})_{2}-\mathrm{SH}$ are named as sulfinothioic and sulfonothioic acids.

Examples:

## $\mathrm{PhC}(\mathrm{O}) \mathrm{SSH}$

Benzenecarbo(dithioperoxoic) acid
EtSSH
Ethanesulfenothioic acid
$(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{SSH}$
Phosphoro(dithioperoxoic) acid
$\mathrm{HOSO}_{2} \mathrm{SSH}$
Thioperoxymonosulfuric acid $\left((\mathrm{HO})(\mathrm{HSS}) \mathrm{SO}_{2}\right)$

The compounds $\mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{SH}, \mathrm{R}-\mathrm{S}(\mathrm{O})-\mathrm{S}-\mathrm{SH}, \mathrm{R}-\mathrm{S}(\mathrm{O})_{2}-\mathrm{S}-\mathrm{SH}$, are named as sulfeno(dithioperoxoic) acids and their sulfino and sulfono analogs. Example:

PhSSSH

## Benzenesulfeno(dithioperoxoic)

 acidHydrotrisulfide is a radicofunctional heading parent for acyl derivatives, and Hydrotetrasulfide, etc., for alkyl, aryl, and acyl derivatives.

Example:

$$
\text { AcSSSH } \quad \text { Hydrotrisulfide, acetyl }
$$

Cyclic polysulfides are named as heterocycles; acyclic sulfides fulfilling the requirements (II 127) of replacement nomenclature are indexed at "thia" names. Other acyclic disulfides, trisulfides, etc., are indexed at Disulfide and similar heading parents unless they are esters of dithioperoxoic acids or chalcogen analogs of peroxy condensed mononuclear acids. (Examples of these exceptions are illustrated below.) Hydrogen polysulfides in which both of the terminal hydrogen atoms have been replaced by sulfo groups constitute the polythionic acids; thus, Tetrathionic acid is $\mathrm{HO}_{3} \mathrm{~S}-\mathrm{S}-\mathrm{S}-\mathrm{SO}_{3} \mathrm{H}$.

Examples:


The heading parents Disulfoxide, Trisulfone, etc., are employed for chalcogen compounds in which the same number of oxygen atoms is attached to each skeletal atom. When all oxide atoms are on one sulfur, the compounds are named whenever possible as esters or anhydrides of thio analogs of sulfur acids. When different numbers of oxide atoms are attached to skeletal sulfur atoms, substitutive nomenclature is employed in which thio, sulfinyl, and sulfonyl radicals are cited separately.

Examples:
$[\mathrm{MeS}(\mathrm{O})]_{2} \quad$ Disulfoxide, dimethyl


Disulfone, bis(4-chlorophenyl)
$\mathrm{PhSO}_{2} \mathrm{SPh}$
Benzenesulfonothioic acid $S$-phenyl ester


Thiosulfurous acid ( $\mathbf{H}_{2} \mathrm{~S}_{3} \mathrm{O}$ )
$S, S$-bis(4-chlorophenyl) ester


Carbonodithioic acid
bis(anhydrosulfide) with thiosulfuric acid $\left(\mathrm{H}_{2} \mathrm{~S}_{3} \mathrm{O}_{2}\right)$


Benzene, 1-methoxy-4-[[(4-meth-oxyphenyl)sulfinyl]sulfonyl](not Benzene, 1-methoxy-4-[[(4-methoxyphenyl)sulfonyl]sulfinyl]-) (principle: earliest index position)

Cyclic sulfides, etc., are ranked according to the rules for ring systems; acyclic sulfur, selenium, and tellurium heading parents follow, in that order, the oxygen heading parents (Peroxide, etc.). Within each element group, the descending order is illustrated as follows: Trisulfide, Disulfone, Disulfoxide, Disulfide. In the presence of more preferred compound classes, dithio, trithio, diseleno, disulfonyl, etc., radicals are used as substituents.

Examples:


Pyridine, 3,3'-dithiobis-


Thiophene, 3-(phenyldithio)(principle: preferred ring system)

$$
\mathrm{HO}_{3} \mathrm{SCH}_{1} \mathrm{CH}_{2} \mathrm{SS}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{3} \mathrm{H}
$$

Ethanesulfonic acid, 2-[[(2-sulfoethyl)sulfinyl]thio]- (not Ethanesulfonic acid, 2-[[(2-sulfo-ethyl]thio]sulfinyl]- (principle: earliest index position)

Acyl alkyl and acyl aryl disulfides are named as esters of either dithioperoxoic acids or peroxy mononuclear "oxo" acids.

Examples:

$\mathrm{PhSO}_{2} \mathrm{SSPh}$
$\mathrm{HOSO}_{2} \mathrm{SSMe}$
Thioperoxymonosulfuric acid ((HO)(HSS)SO ${ }_{2}$ )
SS-methyl ester
Symmetrical diacyl disulfides derived from polybasic mononuclear "oxo" acids (except Sulfuric acid and Sulfurous acid; see above) are named at Thioperoxy headings.

Example:

$$
\stackrel{\stackrel{\mathrm{S}}{\|}}{\stackrel{\mathrm{S}}{\mathrm{U}}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{C}-\mathrm{C}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}}
$$

Thioperoxydicarbonic diamide $\left(\left[\left(\mathbf{H}_{2} \mathbf{N}\right) \mathbf{C}(\mathbf{S})\right]_{2} \mathbf{S}_{\mathbf{2}}\right), N, N^{\prime}-\operatorname{bis}(\mathbf{2}-$ hydroxyethyl)-

Sulfilimine, $\mathrm{H}_{2} \mathrm{~S}=\mathrm{NH}$, and Sulfoximine, $\mathrm{H}_{2} \mathrm{~S}(\mathrm{O})=\mathrm{NH}$, are substitutive heading parents. The selenium and tellurium analogs are named Selenilimine, Tellurilimine, Selenoximine and Telluroximine. They are ranked just below imine suffix compounds ( $(\mathbb{I} 106)$ but $N$-derivatives containing higher chemical functions must often be indexed at the chalcogen parents for lack of an acceptable name for the $\mathrm{H}_{2} \mathrm{~S}=$, etc., radicals. However, higher functions in chalcogenlinked derivatives can be recognized by use of other chalcogen-nitrogen parents or by sulfonimidoyl, sulfinimidoyl, etc., radicals.

Examples:

$$
\mathrm{Et}_{2} \mathrm{~S}=\mathrm{NSO}_{2} \mathrm{Ph} \quad \begin{gathered}
\text { Sulfilimine, } S, S \text {-diethyl- } N \text {-(phe- } \\
\text { nylsulfonyl)- }
\end{gathered}
$$

Sulfur diimide, $\mathrm{HN}=\mathrm{S}=\mathrm{NH}$, and Sulfur triimide, $\mathrm{HN}=\mathrm{S}(=\mathrm{NH})=\mathrm{NH}$, are substitutive heading parents. All derivatives are, if possible, expressed as substituents.

Examples:


Sulfur diimide, bis(4-carboxy-phenyl)-


Sulfur diimide, methyl[4-[[(me-thylsulfinimidoyl)amino]-methyl]phenyl]-

Sulfimide, $\mathrm{O}_{2} \mathrm{~S}=\mathrm{NH}$, and Thionyl imide, $\mathrm{OS}=\mathrm{NH}$, are substitutive heading parents. They follow the imines in order of precedence (II 106) and, when necessary, are expressed by sulfonyl $\left(\mathrm{O}_{2} \mathrm{~S}=\right)$ (sulfinylamino) ( $\mathrm{OS}=\mathrm{N}-$ ), etc., radicals.

Examples:

$\mathrm{O}_{2} \mathrm{~S}=\mathrm{NMe}$	Methanamine, $N$-sulfonyl-
$\mathrm{PhSO}_{2} \mathrm{~N}=\mathrm{SO}$	Benzenesulfonamide, $N$-sulfinyl-

Amidosulfenyl chloride $\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{S}-\mathrm{Cl}\right)$ is ranked with mononuclear "oxo" acid halides and can be expressed by (chlorothio) and [(chlorothio)amino] radicals when necessary.

Example:
$\mathrm{PhSO}_{2} \mathrm{NMeSCl}$
Amidosulfenyl chloride, methyl-(phenylsulfonyl)- (not Benzenesulfonamide, N -(chlorothio)- N -methyl-)

Mixed sulfide-selenides, etc., with three contiguous chalcogen atoms are usually named by compound and complex radicals; e.g., [selenobis(thio)] for $-\mathrm{S}-\mathrm{Se}-\mathrm{S}-$. When only two different contiguous chalcogen atoms are present, the compound is an ester of a sulfenic (etc.) acid analog.

Example:
PhSSePh
Benzenesulfenoselenoic acid phenyl ester

Acyclic tetravalent and hexavalent sulfur compounds containing at least one substituent derived from a molecular skeleton (\$I 130) that cannot be named by general index nomenclature as described above, or as "oxo" acid derivatives, are given coordination names (II 215).

Examples:

$\mathrm{PhSF}_{5} \quad$| Sulfur, pentafluorophenyl- |
| :---: |
| $(O C-6-21)-$ |

$$
\mathrm{Ph}_{2} \mathrm{TeCl}_{2}
$$

Tellurium, dichlorodiphenyl-(T-4)-
201. Zwitterionic compounds have internally compensating ionic centers. When the cationic center is known, the compound is named either as an "inner salt" or as an "ylide."

Ylides have a compensating carbanion adjacent to the cationic center. They are named at the "-ium" heading (except Phosphonium) with the suffix "-ide" added to the hydrocarbon radical to express the anion. Phosphonium ylides are indexed only as ylidene derivatives of Phosphorane (at this heading or by use of a phosphoranylidene radical).

Examples:
$\mathrm{Me}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2}{ }^{-}$
Methanaminium, $\mathrm{N}, \mathrm{N}$-dimethylmethylide

Sulfonium, dimethyl-2-oxo-2-phenylethylide


Pyridinium
2-ethoxy-1-(ethoxycarbonyl)-
2-oxoethylide
$\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHPh}$

Phosphorane, triphenyl(phenyl-methylene)- (preferred index name)

Zwitterionic compounds other than ylides are usually named at the "-ium" heading with "inner salt" as the phrase in the modification. "Inner salt" (II 293A) indicates a compensating anion located in the same molecule as the cation. The expression "bis(inner salt)" at a "-diium" heading indicates two compensating anions in the same molecule. A phosphonium compound of this type is indexed as a phosphonium inner salt only when such a zwitterionic structure is emphasized or discussed by the author. Otherwise only a neutral Phosphorane entry is made.

Examples:

$$
\underset{N}{\mathrm{Me}_{3} \mathrm{~N}^{+}{\underset{l}{1}}_{\mathrm{CH}_{2}} \mathrm{CO}_{2}^{-}}
$$

Methanaminium, 1-carboxy- $N, N, N$ -trimethyl-
inner salt


Benzenaminium, 3-[(hydroxy-methoxyphosphinyl)oxy]- $N, N, N$ trimethyl inner salt


Quinolinium, 1-(acetylamino)inner salt



Hydrazinium, [(4-methyl-phenyl)methylidyne]phenylinner salt

Cationic "ium" compounds with internally compensating borate anions are named where possible by coordination nomenclature (II 215); the term "borata" is avoided.

Example:


Boron, tetrachlorobis $[\mu-(1 H-$ pyrazolato- $N^{1}: N^{2}$ )]di- (not $4 H, 4 H, 8 H, 8 H-7 a, 8 a-D i a z a-3 a, 4 a-$ diazonia-4,8-diborata-s-indacene, 4,4,8,8-tetrachloro-)

2,4-Cyclohexadien-1-one, 4-hydroxy-6-(triphenylphospho-ranylidene)- (the alternative ionic structure is named Phosphonium, (2,5-dihydroxyphenyl)tri-phenyl-, inner salt)

Meso-ionic compounds such as sydnone derivatives are named, if possible, at an "-ium" parent by use of the term "inner salt" in the modification. Examples:

$$
\text { mesoionic form } \quad \text { preferred structure }
$$



1,2,3-Oxadiazolium, 4-carboxy-5-hydroxy-3-(1-methylethyl)inner salt (formerly Sydnone,
4-carboxy-3-(1-methylethyl)-


1,2,3-Oxadiazolium, 5-amino-3-methyl-
inner salt (formerly Sydnone imine, 3-methyl-)

[1,2,3]Oxadiazolo[4,3- $a$ ]isoquinolin-4-ium, 5,6-dihydro-1-hydroxyinner salt

## E. STEREOCHEMISTRY AND STEREOPARENTS

Introduction	II 202
Stereochemistry	203
Alkaloids	204
Amino acids	205
Peptides	206
Proteins	207

202. Introduction. A discussion of stereochemical descriptors for systematically named compounds, modified stereoparents, and coordination compounds follows this introduction. The remainder of Section E is directed to various classes of stereoparents. A stereoparent is an index heading parent the name of which implies specific stereochemical information. Illustrative structural diagrams for stereoparents that have received entries in current indexing are provided in the Chemical Substance Index; these diagrams indicate both the stereochemistry and the numbering systems from which locants are derived. The bond lengths and angles shown in these diagrams have been drawn in a standard format and do not necessarily represent the actual shape of the compounds.

It is convenient to divide natural products into four classes according to the methods by which they are indexed. The classification has been most completely worked out for alkaloids, discussed more fully in II 204, below.

Class A contains those substances, of little or no stereochemical complexity, which are indexed systematically rather than at stereoparents.

Class B stereoparents represent groups of natural products which have cyclic molecular skeletons in common. The base structure is derived by removal of all chemical functions but retention of hydrocarbon substituents and the pattern of hydrogenation; the name is derived from the trivial names of the related natural products, and author numbering is adopted if possible. General substitutive nomenclature, as illustrated in previous sections of this introduction, is used to convert the stereoparents into complete index names by addition of prefixes, suffixes and conjunctive terms. Examples of Class B stereoparents are Prostane and Picrasane:


Picrasane ( $(3 S, 3 \mathrm{a} S, 6 \mathrm{a} R, 7 \mathrm{a} S, 8 R, 11 \mathrm{a} S$, $11 \mathrm{~b} R, 11 \mathrm{cS}$ )-hexadecahydro-
3,8,11a,11c-tetramethylphenant-hro[10,1-bc]pyran)


Class C stereoparents imply both stereochemistry and chemical functionality. Other functions (including higher functions) are expressed as substituents. Examples will be found in the discussion of alkaloids (II 204). Miscellaneous Class C stereoparents include Leucomycin V. Their derivatives are indexed like alkaloids.

Class D stereoparents possess incompletely elucidated structures. If sufficient information is available, they are named systematically and no stereochemical descriptor is assigned. When no systematic name is possible, the trivial name in the original document is used.

Because treatment of stereoparents by the general rules of substitutive nomenclature can sometimes lead to loss of stereochemical information, special rules for their derivatives are employed. Thus, esters and semicarbazones (and their chalcogen analogs) are named as derivatives of the stereoparents, not at "Class II" acid names or as Hydrazinecarboxamide derivatives. Esters formed by an acidic and an alcoholic stereoparent are indexed at the stereoparent that contains the highest chemical function.

Examples:

## Androstan-17-o

butanoate, $(5 \alpha, 17 \beta)$ - (not Butanoic acid, $(5 \alpha, 17 \beta)$-androstan-17-yl ester)
L-Valine
$2^{\prime}$-ester with adenosine
Molecular addition compounds and salts of stereoparents with nonstereoparents are indexed at the name and formula of each component. The preferred $C A$ name is the one that employs the stereoparent in the index heading parent. Addition compounds and salts containing more than one stereoparent

Carbohydrates	Il 208
Cyclitols	209
Nucleosides and Nucleotides	210
Steroids	211
Terpenes	212

derivative are assigned preferred index names based on chemical functionality of the stereoparents.

Example:
L-Proline
compd. with ( $8 \alpha, 9 R$ )-cinchonan-9-ol (1:1) (preferred index name) Cinchonan-9-ol
$(8 \alpha, 9 R)$-, compd. with L-proline (1:1) (additional index name)
Acyclic acetals of functions expressed by "-one" suffixes or "oxo" substituents of stereoparents are indexed as dialkoxy derivatives. Cyclic acetals of stereoparent diols with formaldehyde are named as [methylenebis(oxy)] derivatives of the stereoparent; other cyclic acetals are named similarly if subsidiary functions of the stereoparent are involved, but by modification terms if a principal chemical function has been acetalized. Lactones of principal functions are also named in the modification.

Examples:


Androst-5-en-3-one, 17-hydroxycyclic 1,2-ethanediyl acetal, (17 $\beta$ )-

When two or more stereoparents are covalently attached to one another the compound is normally indexed at the stereoparent that expresses (a) the largest number of highest chemical functions, $(b)$ the most preferred skeleton.

Citation of additional and modified stereochemistry at stereoparent and stereoparent derivative names is discussed in the following section.
203. Stereochemistry is expressed in $C A$ index names ${ }^{1}$ by three methods:

The stereochemistry for the heading parent of systematically named compounds, including some natural products with only one or two chiral centers, e.g., most carbohydrates with four or fewer carbon atoms, simple alkaloids and terpenes, and some steroid degradation products, is expressed in the modification, following all other structural information such as "ethyl ester," and ahead of descriptive terms related to a specific abstract, such as "spectrum of." Additional stereochemical expressions are included with the substituent and modification terms to which they refer. The terms used in this "systematic stereochemistry" are the main subject of the present section.

Natural products, especially those with a multiplicity of chiral centers, are conveniently indexed at fundamental trivial names (stereoparents) where they and their derivatives can be found at headings familiar to users in the alkaloid, carbohydrate, steroid, and terpene fields. The concept of stereoparents has been discussed above; the separate natural product classes to which it is applied are the subjects of TIII 204-212.

Coordination compounds require specialized descriptors to describe the arrangement of ligands around the central atom. These are discussed in the final part of this paragraph.
I. Systematically named compounds. New rules have been adopted for systematic stereochemistry in CAS index nomenclature. These conventions have been applied since March 1997 to systematically named fragments of

[^6]structures containing stereoparents. The new policy was expanded in June 1998 (CA Volume 129) to all systematic organic compounds.

The methods described below are a simplification of previous CAS stereochemical practice. Rules that were in use since the beginning of the Ninth Collective Index period (1972) have now been thoroughly revised. The need for a single expression to describe the total stereochemistry of a molecule has been eliminated. Stereochemical terms are now placed within the parts of a chemical name to which the stereochemical information applies. Only the stereochemistry contained in the heading parent is expressed in the name modification following all other structural information.

In general, the new rules are consistent with IUPAC recommendations and produce CAS index names containing stereochemical information which can be readily interpreted.

The terms $R$ and $S$ are employed for chiral elements possessing either absolute or relative stereochemistry. The term rel is used in conjunction with $R$ and $S$ for structures with only relative stereochemistry. $E$ and $Z$ are used primarily to describe geometrical isomerism about double bonds. The relative terms cis, trans, endo, exo, syn, anti, $\alpha$, and $\beta$ are used as alternatives to $R$ and $S$ in certain limited situations.

Assignment of the absolute terms $R$ and $S$ depends on the priority ranking of atoms or groups attached to the stereochemical element whose chirality ("handedness") is to be determined by the Cahn-Ingold-Prelog Sequence Rule. ${ }^{2,3}$ This ranking depends first on the descending order of atomic number of the atoms directly attached to the chiral center; thus, for bromochlorofluoroiodomethane the order is $\mathrm{I}, \mathrm{Br}, \mathrm{Cl}, \mathrm{F}$. In the following diagrams these atoms are represented by $a, b, c$, and $d$, respectively. The least preferred atom or group, $d$, is represented by a dotted line to indicate it is to be considered to be below the plane of the paper, while $a, b$, and $c$ are to be imagined to project toward the viewer at an angle. (The analogy of an automobile steering wheel with three radial bars is a useful one to visualize.) $R$ is assigned to a clockwise (right-handed) sequence of $a, b, c$, while $S$ denotes a counterclockwise (anticlockwise) sequence.

$R$

$S$

Alternative ways of drawing chiral diagrams are often more convenient: either (a) at most two bonds (as indicated by ordinary lines) are shown to be in the plane while one projects forward and one backward (as indicated by a wedge and a dotted line, respectively), or (b) two bonds are shown projecting forward and two backward, as in the diagram below. In both instances it must be remembered that the atom or group of lowest priority, $d$, must be oriented away from the viewer so that the clockwise or counterclockwise arrangement of $a, b$, and $c$ is correctly observed.

In organic compounds it is generally necessary to compare the ranking of two or more carbon bonds. This is done by proceeding outward one step at a time until a decision is reached.


In the structure above, H clearly has the lowest priority, but it is necessary to establish the ranking of the three carbon groups. This is done by arranging the atomic numbers of the most senior substituent on each carbon in descending order: $\mathrm{Cl}, \mathrm{O}, \mathrm{H}$. This elicits the absolute stereochemical descriptor $R$.

Branching, especially branching close to the chiral center, raises the priority ranking of alkyl groups. Multiple bonds of all kinds are handled by "duplicating" or "triplicating" both of the atoms connected by the bonds; thus:

$$
-\mathrm{HC}=\mathrm{CH}-\equiv \stackrel{\stackrel{\mathrm{C}}{\mathrm{C}}-\stackrel{\mathrm{C}}{\mathrm{C}}-}{\stackrel{\mathrm{C}}{\text { | }}}
$$



Only the immediate atoms are replicated; the procedure is not carried further. Aryl, e.g., phenyl, naphthalenyl, radicals are handled in a similar manner.

[^7]The following groups are arranged in descending order of Sequence Rule priority: $-\mathrm{SCH}_{3}, \quad-\mathrm{SH},-\mathrm{OCOCH}_{3}, \quad-\mathrm{OCH}_{2} \mathrm{CH}_{3},-\mathrm{OCH}_{3}, \quad-\mathrm{OH}, \quad-\mathrm{NO}_{2}$, $-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2},-\mathrm{NH}_{2},-\mathrm{COOH},-\mathrm{COCH}_{3},-\mathrm{CHO},-\mathrm{CH}_{2} \mathrm{OH},-\mathrm{C} \equiv \mathrm{N},-\mathrm{CH}_{2} \mathrm{NH}_{2}$, $-\mathrm{C}_{6} \mathrm{H}_{5}, \quad-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \quad-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}, \quad-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CH}_{3}$. It is essential to rank branched chains by a rigorous procedure if assignment errors are to be avoided. In

it can be immediately perceived that H has the lowest rank ( $d$ ) and that of the three carbon bonds $\mathrm{CH}_{3}$ has rank $c$. Proceeding outward to the left and right from the chiral enter we observe that each carbon is attached to one oxygen, one carbon, and one hydrogen. The rule to be observed here is that we should now proceed just one step along the senior (highest-priority) branches (in this instance through the oxygens) to find H on the left, C (preferred) on the right. The fact that, in the junior branch, the priorities are reversed, with C attached to two C's and an H on the left, to only one C and two H's on the right, is disregarded, because this stage in the process is never reached. Only when a one-step search of the senior branches results in a tie is the junior branch inspected to the same extent. (This would have been necessary, with a consequent assignment of $S$ instead of $R$, if $-\mathrm{OCH}_{3}$ replaced - OH in the diagram, even if, at the same time, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$ replaced $-\mathrm{OCH}_{3}$ on the right.)

In complicated cases it is sometimes necessary to construct an exploration table or tree diagram in assigning $R$ and $S$ descriptors. A useful summary of Sequence Rule procedures is included in Section E of the IUPAC rules, ${ }^{2}$ but consultation of the papers of Cahn, Ingold and Prelog, especially their 1966 paper, ${ }^{3}$ may be necessary for resolution of the most difficult cases.

Relative descriptors of various kinds are used as follows:
(A) cis and trans are restricted to cyclic structures with two achiral stereogenic atoms (an atom is stereogenic when interchange of two of the atoms or groups attached to it produces a nonidentical compound). An example is $\mathbf{1 , 3}$ Cyclobutanediol. The cis isomer has the senior groups (as defined by the Sequence Rule) on the same side of the reference plane.
(B) endo and exo are used only for achiral ring positions on the X and Y bridges of bicyclo[X.Y.Z]anes ( $(I$ 155) in which $\mathrm{X} \geq \mathrm{Y}>\mathrm{Z}>0$, and $\mathrm{X}+\mathrm{Y}<7$. The exo isomer has the configuration in which the senior substituent is on the same side of the reference plane as the Z bridge (see diagram below).
(C) syn and anti are restricted to achiral ring positions on the Z bridge of a bicyclo[X.Y.Z]ane in which $\mathrm{X} \geq \mathrm{Y}>\mathrm{Z}>0$, and $\mathrm{X}+\mathrm{Y}<7$. The syn isomer has the senior substituent oriented towards the X bridge.

(D) $\alpha$ and $\beta$ are employed for ring positions of certain meso cyclic compounds. In the diagram below, the senior groups at the three stereogenic centers (by the Sequence Rule) are a, c, e; the junior groups are b, d, f. The $\alpha$-side of the reference plane is that side on which the preferred substituent lies at the lowest-numbered stereogenic position; c lies on the same side as a, so both are assigned $\alpha$ descriptors; e lies on the opposite side of the reference plane and is assigned a $\beta$ descriptor; hence: $1 \alpha, 2 \alpha, 4 \beta$. It should be noted that this usage differs from that for cyclic stereoparents ( 4 [ 203II, below), in which " $\alpha$-" means "below the plane" and denotes absolute configuration.

(E) $E$ and $Z$ (from German: "entgegen" (opposite) and "zusammen" (together)) are geometrical stereodescriptors for substances having achiral elements resulting from double bonds. In a compound

the double bond can be considered to be in a vertical plane, and $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d in a horizontal plane. When the senior atom or group at $\mathrm{X}(\mathrm{a})$ and the senior
atom or group at Y (c) are on the same side of the vertical reference plane, the descriptor Z is cited; its isomer is assigned an $E$ descriptor. ${ }^{4}$
$(G)$ The ( $\pm$ ) descriptor is only used for indicating stereoparents are racemic instead of absolute. The optical rotation descriptors ( + ) and (-) indicate the sign of rotation of plane-polarized light in the visible range ( $400-700 \mathrm{~nm}$ ). The original literature should be consulted for the specific conditions under which the optical rotation was obtained.

These descriptors, alone or in combination, are employed to express the total stereochemical information for a chemical substance as follows:
(1) Stereochemistry for the index heading parent is cited at the end of the preferred (inverted) index name. Locants are used with all stereochemical terms, except cis and trans, relating to the parent.

Treatment of categorized substance headings and structural repeating units is illustrated elsewhere in this appendix.
(2) Stereochemistry for substituents and modifications of the parent are expressed at the beginning of each individual nomenclature fragment to which the stereochemical terms apply.
(3) The preferred stereo terms are $R, S$. E. and Z. Each is preceded by a locant, arranged in locant order, and separated by commas. The resulting stereochemical expression is enclosed in curves and followed by a hyphen, e.g., $(1 R, 2 S, 3 R, 5 E)$-.
(4) For substances with only partially known stereochemistry, stereogenic elements of unknown configuration are ignored for nomenclature purposes. The term [partial] is no longer used.
(5) The term rel is used as a global expression to denote that the entire stereochemistry of a structure is relative only. Thus, rel appears at the end of the name modification following any stereochemical terms describing the parent.
(6) The sign of optical rotation, $(+)$ or (-), follows the term rel when the complete relative configuration of a substance is defined but the absolute stereochemistry is unknown.
(7) When the substance has only one chiral element, not defined by the author, the sign of rotation is cited alone at the end of the inverted name.
(8) In the uninverted name (+), (-), rel, rel-(+), or rel-(-) appear at the beginning of the name, before any other terms.
(9) When the absolute configuration of a substance is unknown, either of two enantiomeric structures may be used to depict the relative configuration. Both the inverted and uninverted names will express that enantiomer which results in the first occurring $R$ term in the inverted CAS index name.
(10) Stereogenic centers which cannot be expressed as $R$ or $S$ may be described using endo, exo, syn, anti, cis, trans, $\alpha$, or $\beta$.
(11) Bicyclo[X.Y.Z]ane compounds in which $\mathrm{X} \geq \mathrm{Y}>\mathrm{Z}>\emptyset$, and $\mathrm{X}+\mathrm{Y}<7$, and which contain achiral stereogenic elements are the only structures for which endo, exo, syn, and anti are used. These terms are each preceded by a locant which is followed by a hyphen with the resulting stereochemical expression enclosed in curves, e.g., (3-endo, 8-anti).
(12) The terms cis and trans are used for eight-membered or smaller rings substituted in only two achiral stereogenic positions. No locants or enclosing marks are used with single occurrences of these terms. Multiple terms for ring assemblies, e.g., bicyclohexyl, are cited in the order of unprimed, primed, dou-ble-primed, etc., rings and separated by commas and enclosed in curves.
(13) Use of $\alpha$ and $\beta$ is restricted to cases not covered by the above rules. These terms are not cited in the same stereochemical expression in combination with other relative terms.

Examples:

$$
\begin{aligned}
& \mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2} \\
& \text { Stereo: absolute }
\end{aligned}
$$



2-Piperidinecarboxylic acid, methyl ester, (2S)-

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \\
& \text { Stereo: relative }
\end{aligned}
$$



1-Oxaspiro[5.5]undecan-7-ol, $(6 R, 7 S)$-rel-
${ }^{4}$ J. E. Blackwood, C. L. Gladys, A. E. Petrarca, W. H. Powell, and J. E. Rush, "Unique and Unambiguous Specifications of Stereoisomerism about a Double Bond in Nomenclature and Other Notation Systems", J. Chem. Doc. 1968, 8, 30-32.
$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{3}$ Stereo: absolute (-)


2, 3-Piperidinediol, 2-[(5R)-5-hydroxyhexyl]-, (2S,3S)-
$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{C} 10$ Stereo: relative


Tricyclo[3.2.1.0 $0^{2,4}$ ]octan-2-ol, 5-chloro-, ( $1 R, 2 S, 4 R, 5 R$ )-rel-

$$
\begin{aligned}
& \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \\
& \text { Stereo: absolute partial }
\end{aligned}
$$



3-Pentene-1,2-diol, 1-[(2R,7aR)-3a-(2E,4E)-2,4-hexadienyloctahydro-2-benzofuranyl]-, (1S)-
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{Br}$
Stereo: relative


Cyclohexene, 1-[(1Z, 3E)-5-bromo-1,3-pentadienyl]-
$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}$
Stereo: absolute


2-Pentenoic acid, 5-hydroxy-5-(2R)-oxiranyl-, (2E,5S)-
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{I}_{2} \mathrm{O}_{2}$
Stereo: relative (+)


2-Butenoic acid, 4,4-diiodo-, $(1 R, 3 R, 5 Z)$-3-methyl-5propylidenecyclohexyl ester, (2E)-rel-(+)-
[The $Z$ double bond is cited on the atom closer to the parent.]
$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$
Stereo: absol
$\xrightarrow[\text { Stereo: absolute }]{\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}}$


Spiro[5H-indene-5, $2^{\prime}-[2 H]$ pyran]-1(4H)-one, decahydro-7a-methyl-, ( $2^{\prime} R, 3 \mathrm{a} S, 7 \mathrm{a} S$ )-
[The lower locant ( $2^{\prime}$ ) is used to cite the $R$ center.]

$$
\begin{aligned}
& \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrO} \\
& \text { Stereo: absolute }
\end{aligned}
$$



Bicyclo[2.2.1]heptan-2-one, 3-bromo-7-methyl-, (1S,3R,4R,7S)-

```
C
Stereo: absolute
```



OH

Benzeneacetic acid, $\alpha$-hydroxy-, (3-endo)-bicyclo[3.2.1]oct-3-yl ester, ( $\alpha S$ )-

[1, 1'-Bicyclohexyl]-4-carboxylic acid, 4'-ethyl-1-hydroxy-, trans-4-hydroxycyclohexyl ester, (cis,trans)-
[The unprimed ring is cis and the primed ring is trans.]

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \\
& \text { Stereo: absolute }
\end{aligned}
$$



Benzoic acid, 4-[(4S,5S)-4,5-dimethyl-1,3-dioxolan-2-yl]-
[The 2-position on the dioxolane ring is non-stereogenic.]
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$
Stereo: rela
Stereo: relative


Me

Benzoic acid, 4-[(2 $\alpha, 4 \beta, 5 \beta)$-4,5-dimethyl-1,3-dioxolan-2-yl]-
[The 2-position on the dioxolane ring is achiral stereogenic.]

The stereochemistry of some compounds cannot be described completely by the rules above. The presence of stereochemical information in an original document is indicated in the index entries for such compounds by the modification term "stereoisomer."

Examples:

[This achiral stereogenic system can only be described by syn or anti, but these descriptors are not allowed for this ring system.]
stereoisomer

stereoisomer
[This achiral stereogenic system can only be described by the $\alpha / \beta$ system, which is not allowed in rings of this size. Had the system been chiral, $R$ and $S$ could have been used.]

Molecular addition compounds, mixtures and polymers of components with stereogenic elements have the stereochemical descriptors cited with the respective components; a descriptor for the entire addition compound, etc., is cited last, if known.

Examples (only the preferred index entry is shown here for each compound):

Cyclohexanol, 4-amino-
trans-,
acetate (salt)
2-Furancarboxylic acid, tetrahydro-2-methoxy-
$(2 R)$-, compd. with rel-methyl $(1 R, 2 S)$ -
2-aminocyclobutanecarboxylate
1,2-Cyclobutanedicarbonyl dichloride
$(1 R, 2 R)$-rel-, polymer with rel-(2R,5S)-2,5-dimethylpiperazine
Although the polymer in the final example above probably has cis-trans stereochemistry, these terms are not repeated at the monomer headings; the structural repeating unit entry (II 222), however, would cite the descriptors in the order dictated by that heading.
II. Stereoparents have been discussed in II 202. Their use enables lengthy stereochemical descriptors to be dispensed with. Cross-references and synonyms relating stereoparents to the corresponding systematic names appear (as stereospecifically as possible) in the Index Guide, and author names for stereoparents and derivatives are also cross-referred.

A stereochemical descriptor is cited in an index modification at a stereoparent heading to express differences between the stereoparent illustrative diagram and the structure of the reported substance. In the diagrams the configurations on ring-system substituents are indicated by dotted lines for $\alpha$ and "wedges" for $\beta$. Variations for specific derivatives are indicated by citing appropriate $\alpha$ and $\beta$ terms with the locants of the modified centers. Variant stereochemistry for acyclic, bridge and spiro centers is indicated by $E$ and $Z$ or by $R$ and $S$ as described for systematic stereochemistry, above. If a variation is not reported, the normal stereochemistry is considered to be retained. When the modified stereochemistry is unknown, e.g., indicated by a wavy line in a structural diagram, the descriptor x (xi) is assigned to that position. Descriptors are also cited for added configurations (when the stereoparent diagram shows no stereochemistry at a center). When the added stereochemistry is in a stereoparent substituent or modification, the descriptor is cited as a prefix, e.g., [ $(5 \alpha, 16 E)$-androstan-16-ylidene]-. When the center is in a systematically named substituent or modification term, the descriptor is placed with the systematic nomenclature term, e.g., Preg nane-3,20-dione, 5-hydroxy-6-[(1Z)-3-hydroxy-1-propenyl]-, $(5 \alpha, 6 \beta)$-.

Examples (the stereoparent diagram is compared with an author's diagram for a derivative in each case):

[The configuration at positions $8,9,10,13$ and 14 correspond; position 5 has added stereochemistry; position 17 has modified stereochemistry. The stereochemical descriptor at Pregn-6-ene-3,20-dione is $(5 \alpha, 17 \alpha)$-.]


An androstane derivative
Androstane (stereoparent)

Positions 8, 9, and 13 are normal; position 14 is substituted, but has normal configuration. Position 10 has unknown modified stereochemistry; positions 3,5 and 16 have added stereochemistry and the substituent at 16 is a stereoparent ( $\beta$-D-glucopyranosyl radical).

The stereochemical descriptor is $(3 \beta, 5 \alpha, 10 \xi, 16 \beta)$-. [The stereochemistry within the stereoparent radical is expressed by the substituent radical name.]
III. Coordination compounds. The stereochemistry of mononuclear complexes is expressed by special descriptors. The term "stereoisomer" is used for polynuclear coordination complexes when all the nuclear stereochemistry is known. When no nuclear stereochemistry is known, ligand stereochemistry is cited using the rules for systematic organic compounds. No ligand stereochemistry is cited unless all ligand stereochemistry is described. When more than one ligand is stereogenic, the stereochemistry for the complex is cited as if all ligand stereochemistry is in one organic ligand. The discussion that follows is necessarily brief; for a more detailed explanation the review by T. E. Sloan ${ }^{5}$ should be consulted.

For coordination numbers 1, 2, and 3, no nuclear stereochemistry is possible. Ligands are assigned systematic descriptors according to the rules in I above. If the chirality of a 3-coordinate tetrahedral complex is reported, it is described as $R$ or $S$ by application of the Sequence Rule as described above. The special coordination descriptors comprise:
(a) a symmetry site term to describe the molecular geometry about the nuclear atom;
(b) a configuration number to identify the atoms on each axis and plane of the system;
(c) a chirality symbol to differentiate members of enantiomeric pairs (when the structure has no reflection symmetry); and
(d) a ligand segment (when ligands have stereochemistry of their own) cited as described in II 203I, above.

Symmetry site terms are comprised of one- to three-letter abbreviations to describe the geometry around the central atom combined with the coordination number. They are generally based on information reported by an author, but some assumptions are made in indexing: square planar for 4-coordinate $\mathrm{Pd}^{2+}, \mathrm{Pt}^{2}, \mathrm{Rh}^{+}, \mathrm{Ir}^{+}, \mathrm{Au}^{3+}, \mathrm{Se}^{2+}$, and $\mathrm{Te}^{2+}$; square pyramidal for 5-coordinate nitrido complexes of all metals and oxo complexes of technetium (the nitrido and oxo ligands are assumed to be axial); octahedral for all 6-coordinate complexes unless the ligand constraints prohibit this geometry; or if an anionic nonmetallic coordination center contains six identical monodentate ligands; tetrahedral for 4-coordinate complexes of (a) all 4-coordinate metallic complexes except $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ru}, \mathrm{Os}, \mathrm{Co}, \mathrm{Rh}, \mathrm{Ir}, \mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt}, \mathrm{Cu}, \mathrm{Ag}$, or Au ; (b) any 4-coordinate complex of $\mathrm{Fe}^{2-}, \mathrm{Ru}^{2-}, \mathrm{Os}^{2-}, \mathrm{Co}-, \mathrm{Rh}-, \mathrm{Ir}^{-}, \mathrm{Ni}^{0}, \mathrm{Pd}^{0}, \mathrm{Pt}^{0}, \mathrm{Cu}+$, $\mathrm{Ag}^{+}$, or $\mathrm{Au}^{+}$; (c) $\mathrm{Ni}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$, or $\mathrm{Mn}^{2+}$ with four halides or pseudohalides; (d) $\mathrm{Co}^{2+}$ with four monodentate ligands; (e) all 4-coordinate nonmetallic complexes except $\mathrm{Se}^{2+}$ and $\mathrm{Te}^{2+}$ (tetrahedral descriptors are not cited for anionic nonmetallic complexes containing four identical monodentate ligands); and (f) substances indexed at Antimony(1+), Arsenic(1+), Bismuth(1+), and Phosphorus(1+) (not Phosphonium, see 厅I 184). Americyl, neptunyl, plutonyl, and uranyl $\left(\mathrm{Mo}_{2}{ }^{\text {n+ }}\right)$ groups in 5, 6, 7,8 , and 9 coordinate complexes are assumed to be trans. Molybdenyl and tungstyl are assumed to have cis oxo groups. The ammines are assumed to be trans in the Reineckate anion.

Planar ring systems, $\alpha$-dioximes, 2, 2': $6^{\prime}, 2^{\prime \prime}$-terpyridine and $2,2^{\prime}, 2^{\prime \prime}$ - nitrilotris[ethanol] as ligands impose their geometry on the central atom; thus, a zinc-porphine complex is square planar, not tetrahedral. Symmetry site terms
${ }^{5}$ T. E. Sloan in Topics in Inorganic and Organometallic Stereochemistry, G. Geoffroy, ed., John Wiley \& Sons, Inc., New York, 1981, 1-36.
are not required for 4-and 6-coordinate anionic coordination complex-es containing nonmetallic central atoms and identical monodentate ligands: they can be assumed to be tetrahedral and octahedral, respectively. The terms are omitted also when information is lacking.

$T-4$	tetrahedral
$S P-4$	square planar
$T B-5$	trigonal bipyramidal
$S P-5$	square pyramidal
$O C-6$	octahedral
$T P-6$	trigonal prismatic
$P B-7$	pentagonal bipyramidal
OCF-7	octahedral faced monocapped
TPS-7	trigonal prismatic square faced monocapped
$C U-8$	cubic
$S A-8$	square antiprismatic
$D D-8$	dodecahedral
$H B-8$	hexagonal bipyramidal
OCT-8	octahedral trans-bicapped
TPT-8	trigonal prismatic triangular faced bicapped
$T P S-8$	trigonal prismatic square faced bicapped
$T P S-9$	trigonal prismatic square faced tricapped
$H B-9$	heptagonal bipyramidal

Configuration numbers depend first upon application of the Sequence Rule to determine order of seniority (priority) of atoms coordinated to the central atom. When constitutionally equivalent atoms are present, the same priority number is assigned to each; thus in $\mathrm{Ma}_{2} \mathrm{~b}_{2} \mathrm{c}_{2}$, the order is $1,1,2,2,3,3$. When a choice of configuration number is possible, preference is given to the atom of lower priority (higher numerical value). Tie-breaking is necessary with equivalent sets of polydentate ligand atoms. Chiral ligands, otherwise identical, are ranked with the $R$-form above the $S$-form. The chirality symbols $C$ - for clockwise - and A- for anticlockwise (counterclockwise)-are used to denote absolute stereochemistry in coordination compounds, except that $R$ and $S$ are used for tetrahedral complexes, and $\Delta$ (delta) and $\Lambda$ (lambda) for octahedral complexes containing cis-bis(monodentate)bis(bidentate) ligands and tris(bidentate) ligands, respectively. Chirality symbols are placed after configuration numbers, which are determined and cited as follows:
(a) Tetrahedral complexes (T-4) are assigned no configuration number. The chirality symbol $R$ or $S$ is assigned as for organic compounds with a single chiral center.
(b) Square planar complexes (SP-4) have the ligating atoms at the corners of a square. The rank number of the atom diagonally opposite the senior atom (1) is cited as the configuration number. Three isomers are possible when all four ligands are different.

Example:

(c) Trigonal bipyramidal complexes (TB-5). The configuration number comprises the rank numbers for the atoms at the ends of the major axis cited without punctuation in descending order of priority. If the complex has no reflection symmetry, the order of atoms in the plane perpendicular to the axis is expressed by $C$ (clockwise ascending sequence of numerals, equivalent to descending priority) or $A$ (anticlockwise) as viewed from the highest priority ligand on the major axis.

Example:


Configuration number	$=13$
Chirality symbol	$=\mathrm{A}$
Stereochemical descriptor	$=(T B-5-13-\mathrm{A})-$

Stereochemical descriptor $\quad=(T B-5-13-\mathrm{A})-$
(When all five coordinating atoms are different, 10 configurations are possible. Each is chiral, affording configurations are possib
20 possible stereoisomers.)
(d) Square pyramidal complexes (SP-5) have a lone coordinating atom on the principal axis and four atoms in a square planar configuration at right angles to this axis. The first digit of the configuration number is the priority number of the lone atom; the second digit is the priority number of the atom situated diagonally opposite to the most senior coordinating atom in the plane. The chirality symbol is derived by viewing the plane from the position of the lone axial atom and tracing a path around the square plane from the most senior atom to the next most senior atom present. If this path is clockwise, $C$ is the assigned chirality symbol; if anticlockwise, the symbol is $A$.

Example:


Configuration number	$=25$
Chirality symbol	$=\mathrm{A}$
Stereochemical descriptor	$=(S P-5-25-A)-$

(When all coordinating sites are unlike, 15 configurations are possible. Each is chiral, affording 30 possible stereoisomers.)
(e) Octahedral systems (OC-6) for which $C$ and $A$ can be used as chirality symbols (see above) have configuration numbers of which the first digit is derived from the priority number of the atom opposite to atom 1 and the second digit from the priority number opposite to the senior atom in the plane perpendicular to the axis containing atom 1 . When no reflection symmetry is present, the chirality symbol is derived by viewing the plane from atom 1 and tracing a path clockwise $(C)$ or anticlockwise $(A)$ from the most senior atom to the next most senior atom.

Examples:


(The priorities of the ligand atoms are determined by arranging their atomic numbers ( $17,15,6$ and 1 ) in descending order thus: $\mathrm{Cl}, \mathrm{P}, \mathrm{C}$ and H . There are numbers identical ligands of order 2; one is on the main axis (opposite ligand 1), three identical igands of order 2; one is on the main axis (opposite ligand 1),
the others are in the transverse plane opposite 3 and 4 ; the higher number is cited. The transverse pathway from the preferred 2 to the neighboring (less preferred) 2 is clockwise when viewed from atom 1.)

Configuration number	$=24$
Stereochemical descriptor	$=(O C-6-24-C)$ -

For octahedral complexes with two or three bidentate ligands oriented in a skew configuration, the helicity symbols $\Delta$ and $\Lambda$ are employed instead of chirality symbols, they are related to right-handed and left-handed spirals, respectively, as follows:

(a) $\Delta$

(b) $\Lambda$

In diagram (a) above, BB is a tangent to the right-handed helix that has axis AA and radius NN; (b) shows its mirror image, a left-handed helix. Turning each diagram through 90 degrees in either direction results in the simplified diagrams ( $c$ ) and (d), respectively.

(c)

(d)

AA and BB have now lost their respective identities as axis and tangent and can be considered either as two tangents or as two segments of a double helix. BB is in front of AA in both diagrams; in (c), when AA is horizontal, BB descends to the right, in ( $d$ ) to the left.

In the octahedral complex, pictured as a regular octahedron in $(e)$ below, the lines AA and BB represent two bidentate ligands oriented as in $(c)$ above and represented by the helicity symbol $\Delta$. (A third bidentate ligand, if it were present at CC, would not affect the helicity.)

(e)

The helicity symbol replaces the chirality symbol in octahedral complexes of this type. In the complex named in abbreviated fashion as $\left[\mathrm{Co}(1,2-\mathrm{pn})_{3}\right]^{3+}$ the ligands themselves have chirality (denoted by $R$ or $S$ ), and their geometry around the cobalt atom is described by use of " 1 " (for bonding to a secondary carbon) and " 2 " (for bonding to $\mathrm{CH}_{2}$ ). The helicity can be seen to correspond to the diagram above and the symbol $\Delta$ is therefore appropriate.


Octahedral complexes containing identical bis(tridentate) ligands are assigned geometric and chirality symbols in the same manner as normal octahedral complexes. However, in order to distinguish between enantiomers it is necessary to add primes to the donor atoms of one ligand. The primes are retained in the configuration number and this distinguishes between enantiomers.

(f) Trigonal prismatic complexes (TP-6). The configuration number is obtained by citing the priority numbers of the three atoms opposite to (eclipsed by) the preferred triangular face, i.e., the face containing the maximum number of ligating atoms of highest priority (lowest numerals). These numbers are cited to correspond to the ascending numerical order of the respective eclipsing atoms. A chirality symbol, $C$ or $A$, denotes the direction of numerical progression of the eclipsed atoms.

Example:

Configuration number
Chirality symbol
Stereochemical descriptor

$$
\begin{aligned}
& =526 \\
& =\mathrm{A} \\
& =(T P-6-526-A)
\end{aligned}
$$

(g) Stereochemical descriptors were extended to 7-, 8-, and 9- coordinate complexes in CA indexes in $1977 .{ }^{6}$

In the following table, all 12 model polyhedra for $7-, 8$-, and 9 -coordinate complexes are shown, with examples of priority numbers for ligands from which configuration numbers are derived.

1. Pentagonal bipyramidal

2. Octahedral faced monocapped


[^8]3. Trigonal prismatic square faced monocapped

4. Cubic


CU-8-13153234
5. Square antiprismatic

6. Dodecahedral

7. Hexagonal bipyramidal


HB-8-13-234653
8. Octahedral trans-bicapped


OCT-8-33-124445
9. Trigonal prismatic triangular faced bicapped


TPT-8-36-142454
10. Trigonal prismatic square faced bicapped


TPS-8-13252416
11. Trigonal prismatic square faced tricapped

12. Heptagonal bipyramidal


The configuration number is assigned by orienting the model structure with the highest-order axis in the vertical plane. The model structure is then viewed from the highest priority ligating atom on the highest-order axis or from a point on the highest-order axis above the most preferred end or terminal plane perpendicular to the axis. The most preferred end or terminal plane is that end plane which either contains the greatest number of atoms, contains the greatest number of highest priority ligating atoms, or is adjacent to a plane containing the greatest number of highest priority ligating atoms. (Note that the OCF-7 (octahedral faced monocapped), TPS-7 (trigonal prismatic square faced monocapped), and TPS-8 (trigonal prismatic square faced bicapped) model structures are of low symmetry and have only one correct orientation.)

The configuration numbers for the model structures coded $P B-7, O C F-7$, $T P S-7, H B-8, O C T-8, T P T-8$, and $H B-9$ begin with the priority numbers of the ligating atom(s) on the highest-order axis and are given in lowest numerical order sequence. These priority numbers are separated from the remainder of the configuration number by a hyphen. The remaining portion of the configuration number is derived by viewing the structure from the highest-priority ligating atom on the highest-order axis, or from the axial ligating atom located
above the preferred plane, and by citing the priority number of the ligating atom with the highest priority in the plane adjacent to that atom. The configuration number is then completed by continuing to cite the priority numbers of the ligating atoms in sequence as they are encountered, either clockwise or anticlockwise around the projection of the model structure, alternating between planes where necessary, when viewing from the highest priority atom. For those model structures with eclipsed pairs of ligating atoms, the priority numbers are given in pairs with the priority number for the preferred atom in the first plane followed by that for the eclipsed atom. The remaining priority numbers are given as they are encountered, either clockwise or anticlockwise around the projection of the model structure as viewed from the preferred end of the highest-order axis. For compounds in which clockwise and anticlockwise citations of the configuration number give two different configuration numbers (generally chiral compounds), the correct one is the lower numerical sequence as determined at the first point of difference. The remaining five model structures, $C U-8, S A-8, D D-8, T P S-8$, and $T P S-9$, do not have a ligating atom on the highest-order axis and thus do not have a distinct portion of the configuration number set off by a hyphen. These model structures are viewed from a point on the highest-order symmetry axis above the preferred terminal plane as defined previously. The configuration number is derived by first citing the priority number of the preferred ligating atom in the preferred end plane and then citing the priority number of the ligating atom it eclipses, if one exists. In the next step, one proceeds clockwise or anticlock-wise around the projection of the model structure, giving the priority numbers of the ligating atoms as they are encountered, alternating between planes when necessary. Again, the clockwise or anticlockwise direction is chosen to give the lowest-order numerical sequence for the configuration number as determined at the first point of difference.

When there are two or more equivalent bidentate or tridentate ligands and the same priority numbers thus occur in equivalent ligands, the ties are broken by identically priming all the CIP priority numbers of the ligating atoms within a ligand to determine both the configuration number and the chirality symbol. In those complexes with symmetrical polydentate ligands, tetradentate, hexadentate (including symmetrical macrocyclic) ligands, etc., ties between equivalent ligating atoms are broken by priming the ligating atom priority numbers in chelating groups or pairs, thereby reducing the polydentate ligand to groupings of equivalent bidentate or tridentate ligands. When two or more nonequivalent tie-breaking choices exist for the coordination polyhedra of coordination numbers 7,8 , and 9 , the tie is resolved by (a) assigning the lowest priming to the preferred symmetry axis or plane, and (b) assigning the lowest priming to give the lowest numerical value to the configuration number at the point of difference. Primes are restricted to the configuration number for octahedral complexes containing two identical tridentate ligands and trigonalprismatic complexes containing two or more identical polydentate ligands and for all 7,8 and 9 coordinate complexes. The use of primes is exemplified by the first example below, which is explained in some detail.

Examples:
Pentagonal bipyramidal (PB-7)

( $\left.P B-7-11-232^{\prime} 4^{\prime} 4\right)^{-}$
The ligands of highest atomic number (chlorine) are numbered 1. An exploration table (not shown) may be needed to establish the order of priorities ( 2,3 , and 4 ) of the nitrogen ligands. No chirality symbol ( $C$ or $A$ ) is needed.

Octahedral faced monocapped (OCF-7)

(OCF-7-1-316254-C)-
${ }^{7}$ R. S. Cahn, C. K. Ingold, and V. Prelog, Angew. Chem. Int. Ed. Engl. 1966, 5, 391-395.

Trigonal prismatic square faced monocapped (TPS-7)

(TPS-7-2-122212-A)-
(The direction must be selected so as to cite the priority number of the atom in the next lower plane.)

Cubic (CU-8)

( $C U-8-13242542-A$ )-
(Each face must be tested to determine the preferred terminal plane. As drawn in this example, the preferred face (terminal plane) is on the left side of the in this example, the preferred face (terminal plane) is on the left side of the
cube. Consequently the cube must be re-oriented before assigning the cube. Conseq
descriptor.)

Square antiprismatic (SA-8)

(SA-8-14324125-C)-
(The preferred orientation must be determined before the descriptor assigned.)

Dodecahedral (DD-8)

(The preferred orientation must be determined before the descriptor is assigned; also, the pathway is selected to pass through the atom of highest priority (lowest numerical value) in the next lower plane.)

(HB-8-34-122343-A)-

Octahedral trans-bicapped (OCT-8)

(OCT-8-55-112346-A)-
(The preferred orientation must be determined before the descriptor is assigned.)

Trigonal prismatic triangular faced bicapped (TPT-8)

(The preferred orientation must be determined before the descriptor is assigned.)

Trigonal prismatic square faced bicapped (TPS-8)

(TPS-8-13445244-A)-
(The pathway is selected to pass through the atom of highest priority (lowest numerical value) in the next lower plane.)

(HB-9-24-1153245-C)-

Trigonal prismatic square faced tricapped (TPS-9)


$$
(T P S-9-143352226-A)-
$$

Mononuclear coordination complexes containing ligands which require the use of $\eta$ do not follow the stereochemical rules for other mononuclear coordination complexes. When the author indicates stereochemistry for the total complex, the term "stereoisomer" is used. Ligand stereochemistry in $\pi$ complexes is described using the rules for systematic organic stereochemistry (see II 203 I). No ligand stereochemical descriptor is cited unless all ligand stereochemistry can be described. However, ligand stereochemical descriptors are cited even if the geometry about the metal is unknown. When more than one ligand is stereogenic, the stereochemistry for the complex is cited as if all ligand stereochemistry is in one organic ligand. An exception is made for metallocenes.

Metallocenes, when asymmetrically disubstituted, are not superimposable on their mirror images; they can therefore exist as enantiomers. The absolute configuration of the chiral center of highest priority is determined by the Sequence Rule and cited as $R$ or S when specific information is stated in the original document. (The configuration of the other four centers is then fixed.)

Metallocenes which have stereochemistry only in the substituents have that indicated as described by the rules in I above.

Partial stereochemistry is not cited for coordination compounds.
204. Alkaloids are divided into classes largely in accordance with their stereochemical complexity. Class A alkaloids include substances containing only one chiral center, or none at all, or whose stereochemistry, typically restricted to a single ring system, is easily defined. Alkaloids of this class are indexed systematically; cross-references are found at the alkaloid names.

Example:

## Tropine

See 8-Azabicyclo[3.2.1]octan-3-ol, 8-methyl-, (3-endo)-
Class B alkaloids possess more complex stereochemistry. They have been organized as derivatives of a single stereoparent of known absolute configuration common to several alkaloids. (Class C alkaloids are those which have not yet been organized in this way, but whose absolute configuration is known.) Class B stereoparents are illustrated in the Chemical Substance Index when justified by current entries. The following is a partial list of those currently employed for alkaloids:

Aconitane	Hasubanan
Ajmalan	Hetisan
Aspidospermidine	Ibogamine
Cevane	Morphinan
Cinchonan	Oxayohimban
Curan	Sarpagan
Eburnamenine	Solanidane
Ergoline	Strychnidine
Ergotaman	Veatchane
Erythrinan	Yohimban
6,14-Ethenomorphinan	

Deviations in stereochemistry for specific derivatives of Class B alkaloids are indicated in the modification (II 203 II). The prefixes, suffixes, conjunctive names, etc., of regular substitutive nomenclature are employed in naming derivatives. Radicals, e.g., aconitanyl, are formed from the stereoparent names in the usual way. Ring modifications as expressed by prefixes such as cyclo, homo, nor, and seco, on the heading parent, are not permitted and systematic nomenclature is used. Carboxylic acids are formed from Class B stereoparents by oxidation of an existing carbon to form an "-oic acid" or by addition of a carboxyl group to form a "-carboxylic acid"; the latter type of name is preferred if a choice is presented. Removal of hydrogen is indicated by "dehydro" terms in the inverted part of the heading.

Class C alkaloids are indexed at stereoparent names supplied in the literature, the numbering system is that most commonly adopted in original documents, and the numbering is extended, if necessary, to include all positions except acyclic hetero atoms. The latter are denoted by italic element symbols, with superscripts, if necessary, derived from the lowest numbered atom to which the hetero atom is attached, e.g., $N^{6}, O^{2}$. Illustrative diagrams in the Chemical Substance Index at Class C alkaloid names, currently Cephalotaxine and Vincaleukoblastine, indicate the stereochemistry and numbering systems. Derivatives of Class C alkaloids are named, when sufficient information is presented, by modifying the stereoparent name. Suffixes are not used except for "-oic acid," to denote oxidation of a methyl group or removal of an ester group. "Hydro" terms are employed to indicate saturation of positions; "de" terms, e.g., "dehydro," "deoxy," "deepoxy," "deoxo," "demethyl," "de(methoxycarbonyl)," denote removal of atoms or groups, which may be replaced by other groups; e.g., Vincaleukoblastine, 3-de(methoxy-carbonyl)-3-(hydroxymethyl)-. Higher functions attached to Class C stereoparents are indexed as substituents. When an alkaloid derivative can be named at two or more Class C stereoparents, the decision depends in descending order of preference on (a) removal of the fewest different substituents; (b) removal of substituents of lowest molecular weight; (c) retention of the stereoparent of highest molecular weight; $(d)$ addition of prefixes related to the lowest number of smallest substituents; $(e)$ the least stereochemical change; $(f)$ the lowest locants for substituents; $(g)$ the earliest index positions of the index name.

Derivatives of Class C alkaloids that meet the criteria for Class A alkaloids are named systematically by substitutive nomenclature. When a Class C stereoparent structure contains an oxo group, derivatives of the group, e.g., oximes or hydrazones, are expressed in the modification; otherwise they are expressed as substituents, e.g., as (hydroxyimino) or hydrazono radicals. Esters are named analogously in the modification or by (acyloxy) or [(alkyloxy) carbonyl] substituents. Stereochemical deviations of Class C alkaloid derivatives are expressed as the final term in the modification in the usual way.

Quaternary alkaloids are either (a) alkaloids that contain a cationic nitrogen atom, or ( $b$ ) alkaloids that have been quaternized, e.g., by methylation of a tertiary nitrogen group. Names of (a) are completed by citing the anion (if known) in the modification, e.g., "chloride"; (b) are usually named by adding "ium" to the neutral alkaloid name, and indicating the quaternizing substituents as in regular substitutive nomenclature; e.g., Morphinanium, 17,17-dimethyl-, iodide by quaternization of Morphinan). When the location of the quaternary center is unknown, the "ium" ending is omitted and the quaternary compound is named as alkaloid compd. with iodomethane (1:1), with an additional index entry at Methane, iodo-, compd. with alkaloid (1:1). Nonquaternary derivatives of the alkaloids described in (a), above, are named by subtractive prefixes, e.g., demethyl, or by "dihydro" terms.

Removal of a methyl group from the carbon skeleton of an alkaloid is indicated by "nor" with the locant of the carbon atom lost, but removal of a methyl group from a hetero atom is expressed by "demethyl."

Ring contraction and enlargement in alkaloids is not permitted, and revert to systematic nomenclature.

Ring closure may be effected by insertion of heteroatoms (other than nitrogen) as bridges while maintaining stereoparent nomenclature, e.g., Aspidospermidine, 19,21-epoxy-. Such a bridge may also include one carbon atom, e.g., 6,14-Ethenomorphinan, 7,5-(methyleneoxy)-. Replacement of one carbon atom by a heteroatom or insertion of additional nitrogen or replacement of existing nitrogen is not permitted.

Seco alkaloids are formed by ring cleavage and addition of hydrogen at the resulting terminal groups. Such compounds are given systematic names.

Ring-fused derivatives of alkaloid stereoparents are named systematically.
Degradation products of alkaloids in which ring cleavage and removal of large portions of the molecule still leave intact some rings and the original stereochemical relationships are named, when possible, as derivatives of a smaller alkaloid stereoparent. When this is impossible and the structure is known, degradation products of Class C alkaloids are named systematically, but, for those of unknown structure, only the author's names are employed.

For steroidal alkaloids, see II 211.
205. Amino acids. The following biologically significant amino acids are stereoparents:


The following amino carboxylic, amino sulfonic, and amino arsonic acids, indexed prior to 1972 at their trivial names, are now named either systematically or as derivatives of an amino acid listed above:

Trivial name Allocystathionine
Anthranilic acid
Arsanilic acid
(3 isomers)
Carnosine
Creatine
Cystathionine
Ethionine
Hippuric acid
Lanthionine
Metanilic acid
Panthothenic acid
Sarcosine
Sulfanilic acid
Taurine
Thyronine
Thyroxine
$\quad$ CA Index Name
Homocysteine, $S$-(2-amino-2-carboxyethyl)-
Benzoic acid, 2-amino-
Arsonic acid, (aminophenyl)-
Histidine, $\beta$-alanyl-
Glycine, $N$-(aminoiminomethyl)- $N$-methyl-
Homocysteine, $S$-(2-amino-2-carboxyethyl)-
Homocysteine, $S$-ethyl-
Glycine, $N$-benzoyl-
Cysteine, $S$-(2-amino-2-carboxyethyl)-
Benzenesulfonic acid, 3-amino-
$\beta$-Alanine, $N$-(2,4-dihydroxy-3,3-dimethyl-
1-oxobutyl)-(see $~$
Gly 224 )
Benzene, $N$-methylfonic acid, 4-amino-
Ethanesulfonic acid, 2-amino-
Tyrosine, $O$-(4-hydroxyphenyl)-
Tyrosine, $O$-(4-hydroxy- $\mathbf{3 , 5 - d i i o d o - ~}$
phenyl)-3,5-diiodo-

The configurational descriptors D- and L- are placed before the stereoparent names; no descriptor is cited for the optically inactive mixture or racemic form; thus, L-Leucine; D-Valine; Phenylalanine. In the absence of contrary evidence, the L-isomer is assumed for amino acid stereoparents, except Glycine and $\beta$ Alanine, which possess no asymmetric center, and Alloisoleucine and Allothreonine (see below). When the original document clearly indicates that an amino acid is synthetic, it is indexed as the racemic form. The same assumptions are made for their radicals, which are employed in peptide nomenclature, and for derivatives such as esters, salts, and $\mathrm{N}-, O-$, and $S$-derivatives indexed at the stereoparent. No assumptions are made for carbon-substituted derivatives or for derivatives named systematically. Systematically named amino acids of known stereochemistry are assigned the absolute descriptors $R$ and $S$ in the modification. Of the diastereoisomeric pairs, assumptions in favor of Isoleucine over Alloisoleucine and of Threonine over Allothreonine are made. The absolute descriptors $R$ and $S$ (with locants) are cited in the modifications of diastereoisomeric derivatives of amino acid stereoparents to define the second asymmetric center, e.g., L-Aspartic acid, 3-hydroxy-, ( $3 R$ )- and L-Proline, 4-methyl-,(4S)-.

Phenylalanine is a stereoparent employed for Alanine, 3-phenyl-. It is treated in substitutive nomenclature as though it were the conjunctive name Benzenealanine. The naturally occurring isomer is L-Phenylalanine, which affords the radical L-phenylalanyl. Derivatives containing higher functions or more preferred ring systems are named systematically according to the regular rules.

Example:


Radicals derived from the names of amino acid stereoparents, e.g., glycyl L-alanyl, L-phenylalanyl, are employed only in naming peptides (II 206). In other situations, systematically named radicals are used; e.g., (aminoacetyl) instead of glycyl. The phenylalanyl radical is considered to be a specially named one part radical; no parentheses are placed around it when it is unsubstituted. Stereoparent radical names are derived by replacing the final "-ine" by "-yl" (an exception is Cysteine, which affords cysteinyl); Tryptophan gives tryptophyl; Aspartic acid and Glutamic acid radicals are as follows:

$-\mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$	aspartoyl
$\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$	$\alpha$-aspartyl
$-\mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{H}$	$\beta$-aspartyl
$-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$	glutamoyl
$\mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$	$\alpha$-glutamyl
$-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{H}$	$\gamma$-glutamyl

Amino acids are given less preference for special treatment than other stereoparents. They are ranked just above the unsubstituted parent acids; thus, Alanine (2-aminopropanoic acid) is ranked above Propanoic acid but below Butanoic acid. All carbon-substituted derivatives of Glycine and $\beta$-Alanine are indexed at systematic names, but the carbon-substituted radicals are permitted in peptide nomenclature.

Examples:

$$
\underset{N}{\mathrm{BzNH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}}
$$

Glycine, $N$-benzoyl-

$\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CMe}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{H}$
Octanoic acid, 2-amino-2-methyl(not Alanine, $\alpha$-hexyl-)
$\operatorname{PhCH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
Benzenepropanoic acid, $\beta$-amino$(\beta R)$ - (not $\beta$-Alanine, 3-phen-$\mathrm{yl}-,(3 R)-)$
$O$-Substituted derivatives of the hydroxy amino acids (Allothreonine, Homoserine, Serine, Threonine, and Tyrosine) and $S$-derivatives of the mercapto amino acids (Cysteine and Homocysteine) are named at those stereoparents, the alkyl derivatives as substituents, e.g., Serine, $O$-methyl-, and the acyl derivatives as esters in the modification, e.g., L-Cysteine, acetate (ester). The stereoparent Methionine, $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$, is the $S$-methyl derivative of Homocysteine. Derivatives in which this methyl group is substituted are indexed as Homocysteine derivatives. $S$-Oxide derivatives of Cysteine, Homocysteine, and Methionine are indexed as sulfinyl and sulfonyl derivatives of simpler parents.

Conjunctive names are not formed from amino acid stereoparents attached to ring systems; instead, such a combination is usually indexed at a systematic conjunctive name with an " $\alpha$-amino" substituent. Derivatives of Arginine, $\mathrm{H}_{2} \mathrm{NC}(: \mathrm{NH}) \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$, substituted in the guanidino group are indexed as derivatives of Ornithine, $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$.

Histidine $(\mathrm{R}=\mathrm{H})$ is capable of existing in the following tautomeric forms:

(a)

(b)

When the tautomers are stabilized by substitution on a nitrogen atom of the ring, two isomers result. The side chain has been arbitrarily assigned to the 4 position of the ring and, if $\mathrm{R}=$ ethyl, the structures shown above are indexed:
(a) L-Histidine, 3-ethyl-
(b) L-Histidine, 1-ethyl-

It should be noted that while (b) conforms to the correct treatment for $\mathbf{1 H}$-Imidazole, the numbering of (a) violates the rules ( $\mathbf{3} \mathrm{H}$-Imidazole is not used as a heading parent) and is adopted only for these special cases. A 1substituent is assumed in indexing indefinite 1- or 3-derivatives of Histidine.

Esters of amino acid stereoparents with nonstereoparents are indexed at the amino acid names; e.g., L-Alanine, 4-carboxyphenyl ester. Esters with other stereoparents are indexed at the parent which represents the greatest number of highest functions. Usually only one index entry is made for an ester. Locants are used with ester terms when necessary.

Examples:

$\mathrm{EtO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{Me}$	L-Glutamic acid 5-ethyl 1-methyl ester
$\mathrm{HO}_{2} \mathrm{CNHCHMeCO}_{2} \mathrm{Et}$	L-Alanine, $N$-carboxy-   1-ethyl ester (the locant "l" is cited for clarity, even though the $N$-ethyl ester is indexed as L-Alanine, $N$-(ethoxycarbonyl)- (II 185))

Amides of amino acids are indexed at systematic names, e.g., Acetamide, 2-amino- (not Glycinamide), but peptide amides (II 206) are indexed at $C$-terminal amino acid names, e.g., Glycinamide, L-alanyl-.

Anhydrides of amino acids are indexed at the amino acid name with "anhydride" or "anhydride with" terms in the modification. Cyclic anhydrides and lactones are indexed as heterocycles. Hydrazides are indexed at acid headings with "hydrazide" terms in the modifications. Molecular addition compounds of nonstereoparents with amino acids named as stereoparents receive preferred index names at the latter, but Chemical Substance and Formula Index entries will be found also at the other component(s). The preferred name of an addition compound of two or more stereoparents is chosen on the basis of the maximum number of highest functions in the stereoparent.

Beryllium, magnesium, aluminum, gallium, indium, thallium, and transition-metal salts of amino acids are indexed as coordination compounds (II 215) if sufficient information is presented, and the special stereochemical descriptors (II 203 III ) for such compounds are then adopted. Other salts are indexed at such names as Glycine, sodium salt; L-Phenylalanine, methyl ester, hydrochloride.

Example:


Copper, bis (L-homocysteinato-
$\kappa N, \kappa O$ )-
(T-4)-
206. Peptides are generally named by use of amino acid stereoparents (II 205) and stereoparent radicals; the L-isomers are assumed for indexing purposes in the absence of contrary information. Trivial names of some peptides and all proteins are employed, and special "Cyclo" names are used for tri- and higher cyclic peptides. The systematic ring names are covered by crossreferences in the Index Guide.

Linear peptides without trivial names are indexed at "amino acid sequence names." The heading parent is the C-terminal amino acid. Enclosing marks and locants for points of attachment of the amino acid radicals are omitted; however, Greek-letter locants are cited for aspartyl and glutamyl radicals, and " $N N^{6-}$ " and " $N^{5}$-" are used with Lysine and Ornithine, respectively, and their radicals, when the attachment is not on the $\alpha$-amino group ( $N^{2}$-position). $N$ Derivatives of the radicals are expressed as substituents. Esters of carboxy groups of aspartic and glutamic acid residues are cited in the modification; $O$ and $S$-acyl derivatives of seryl, cysteinyl, etc., radicals are expressed by use of ( $O$-acetyl-L-seryl), etc., radicals; when a hydroxyl- or mercapto-group-containing amino acid is the heading parent, the ester, e.g., "acetate," is cited in the modification.

Examples:

H-L-Met-L-Asp $\left(\mathrm{NH}_{2}\right)$-L-Pro-D-Phe-L-Phe-OH
L-Phenylalanine, L-methionyl-L-asparaginyl-L-prolyl-D-phenylalanyl-


L-Tyrosine, L- $\alpha$-aspartyl-$S$-methyl-L-cysteinyl- $O$ -methyl-


L-Glutamic acid, $N$ -
[(phenylmethoxy) carbonyl]-L-
$\alpha$-glutamyl-L- $\alpha$-glutamyl-L-
$\alpha$-glutamyl-
pentamethyl ester


L-Phenylalaninamide, L-tryptophyl-L-methionyl-L- $\alpha$-aspartyl- $N$-methyl-

To be named as such, a linear peptide must have at least two standard amino acids. In peptide nomenclature, standard amino acids are defined as amino acid stereoparents (II 205), plus $\alpha$-Asparagine, $\mathrm{H}_{2} \mathrm{NCOCH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{COOH}$, and $\alpha$-Glutamine, $\mathrm{H}_{2} \mathrm{NCOCH}\left(\mathrm{NH}_{2}\right)\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$. Peptides that do not meet this requirement are named systematically; e.g., Butanoic acid, 4-amino-2-[(ami-noacetyl)amino]-, (2S)-.
When the above requirement is met, nonstandard $\alpha$-amino acids are allowed residues in terminal or nonterminal positions. Nonstandard amino acids in which the amino group is not $\alpha$ to the carbonyl are allowed provided they are nonterminal. All nonstandard amino acids are assigned systematic acid or acyl names. Absolute stereochemistry is described by the use of $R / S$ terms preceded by locants; e.g., L-Alanine, 5-oxo-L-prolyl-( $\alpha \boldsymbol{S}$ )- $\alpha-$ amino-4-chlorobenzenebutanoyl-; $1 H$-Indole-2-carboxylic acid, $\mathrm{L}^{-}$ seryl-L-methionyloctahydro-, ( $2 S, 3 \mathrm{aR}, 7 \mathrm{a} R)^{-}$-; L-Proline, L-histidyl-(3R)-3-(methylamino)hexanoylglycyl-L- $\alpha$-aspartyl-.

Branched-chain peptides may comprise $N^{5}$ - or $N^{6}$ - isopeptide derivatives of Ornithine or Lysine, respectively, or $O$ - or $S$-derivatives of hydroxy or mercapto amino acids (heterodetic homomeric peptides). Both types are named as substituted derivatives of the parent linear peptides.

Examples:


D-Alanine, L-alanyl-D-glutami-nyl- $N^{6}$ - [L-alanyl-D-glutami-nyl-$N^{6}$-(L-alanyl-L-alanyl)-L-lysyl-D-alanyl-L-alanyl-L-alanyl]-L-lysyl-

```
H-L-Leu-L-Ala-L-Phe \(\longrightarrow\)
 H-L-Pro-L-Met-L-Ser-L-Asp-OH
```

L-Aspartic acid, L-prolyl-L-me-thio-nyl- $O$-(L-leucyl-L-alanyl-L-pheny-lalanyl)-L-seryl-

Higher functions in peptides are expressed as substituents. When the C- terminal residue is not an amino acid or amino acid amide, but an acid-related compound such as an alcohol, aldehyde, or nitrile, the adjacent amino acid amide residue is adopted as the heading parent, and the terminal group is expressed as an $N$-(cyanomethyl), $N$-(2-oxoethyl), etc., substituent.

Cyclic dipeptides are indexed at systematic heterocycle names, with crossreferences at "Cyclo" names (see below).

Example:


Pyrrolo[1,2- $a$ ]pyrazine-1,4-di-one, hexahydro- (cross-reference from Cyclo (glycylprolyl))

Tripeptides and longer peptides containing two or more standard amino acids are assigned "Cyclo" names formed by citing the amino acid radicals
(with substituents) as for an amino acid sequence name, placing them in enclosing marks, and prefixing the term "Cyclo". The order of citation is by lowest alphabetical order of parent amino acid residues (substituents are disregarded).


Cyclo[L-alanyl- $N^{5}$-acetyl-D-orni-th-ylglycyl-L-alanyl-D-prolyl- $O$ -(1,1-dimethylethyl)-L-seryl] (note that the substituent "acetyl" is disregarded in determining pre-ferred citation of the peptide sequence; the lowest alphabetical sequence of par-ent-radical initial letters is "a, $o, g$, a, $\mathrm{p}, \mathrm{s}$ ")

When ring formation has taken place by way of a side-chain peptide linkage, the acyclic peptide is named and the linkage expressed in the modification by a phrase of the type "cyclic $(10 \rightarrow 4)$-peptide" in which the lactam linkage is denoted by amino acid residue locants (numbered from the N -terminus) with the acid end of the linkage cited first.

Peptide lactones not assigned depsipeptide names (see below) are expressed by modification terms such as " $(3 \rightarrow 1)$-lactone." Peptides containing disulfide linkages are indexed at the reduced (cysteinyl-group-containing) form with terms such as " $(2 \rightarrow 2$ ')-disulfide," "cyclic $(1 \rightarrow 6)$-disulfide" and " $(5 \rightarrow 3$ ')-disulfide with ..." in the modification.
$N$-(Peptidyloxy) derivatives of nitrogenous heterocycles are indexed at the heterocycle names.

Depsipeptides contain ester linkages with hydroxy acids as well as amide (peptide) linkages with amino acids. Those with three or more acid residues, of which at least two are standard amino acid residues, are indexed by "depsipeptide nomenclature"; otherwise a systematic name is employed. A depsipeptide name is based on the C-terminal acid and indexed by methods analogous to those for amino acid sequence names. Trivially named hydroxyacyl radicals (lactoyl, glycoloyl, etc.) are given systematic acyl radical names in this area.

Example:

## HOCHMeCONHCHMeCO ${ }_{2} \mathrm{CHMeCONHCHMeCO}_{2} \mathrm{H}$

# L-Alanine, (2R)-2-hydroxypropanoyl-L-alanyl-(2R)-2-hydroxypropanoyl- 

Cyclic didepsipeptides are indexed as heterocycles. Cyclic tri- and higher depsipeptides are indexed at "Cyclo..." names analogous to those for cyclic peptides. Cyclic depsipeptides with one hydroxy acid are named as such, not as lactones.

Example:

$$
\begin{array}{cc}
\mathrm{Me} & \mathrm{CH}_{2} \mathrm{OH} \\
\mathrm{O} \\
\mathrm{O}-\mathrm{CH}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}-\mathrm{CO} \\
\mid \\
\mathrm{CO}-\mathrm{CH}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}-\mathrm{NH} \\
\mid \\
\mathrm{CH}_{2} \mathrm{CHMe}_{2} & \mathrm{CH}_{2} \mathrm{Ph}
\end{array}
$$

## Cyclo[L-leucyl-(2S)-2-hydroxy-

 propanoyl-L-seryl-L-phenyla-lanyl] (the hydroxy acyl radical is alphabetized at "p," not "h")The Greek letter $\psi$, shorthand for "pseudo," is used to convey the fact that a peptide bond has been replaced by a pseudopeptide bond. If the structure contains the moiety ...-NH-CHR-X-X'-CHR'-CO-..., where R and $\mathrm{R}^{\prime}$ are amino acid side-chain groups and X and $\mathrm{X}^{\prime}$ are the groups that replace the peptide bond, then the format of the $\psi$ term is ...-A- $\psi\left(\mathrm{X}-\mathrm{X}^{\prime}\right)-\mathrm{B}-\ldots$, where A is the amino acid whose carbonyl group has been modified to X (or remains unmodified) and B the amino acid whose $\alpha$-amino group has been modified to $\mathrm{X}^{\prime}$ (or remains unmodified). X and $\mathrm{X}^{\prime}$ are shown as strings of element symbols, separated by a bond; e.g., L-Leucine, L-alanyl-L-valyl- $\psi\left(\mathbf{C H}_{\mathbf{2}}-\mathbf{C H}_{\mathbf{2}}\right)$-L-isoleucyl-L-alanyl-

Naturally occurring biologically active peptides with five or fewer amino acid residues are indexed as described above. Those with six to fifty residues are assigned the trivial names commonly used in the literature. Crossreferences at peptide sequence names appear in the Index Guide, and illustrative diagrams appear for the more common natural peptides. For cysteine-containing natural peptides, only the reduced form is illustrated (Oxytocin and Vasopressin, below, are exceptions).

Examples:

$$
\mathrm{H}-\mathrm{L}-\underset{1}{\mathrm{Arg}-\mathrm{L}-\mathrm{Pro}} \underset{2}{\mathrm{~L}}-\mathrm{Pro}-\underset{4}{\mathrm{Gly}}-\mathrm{L}-\mathrm{Phe}-\mathrm{L}-\mathrm{Ser}-\mathrm{L}-\mathrm{Pro}-\mathrm{L}-\mathrm{Phe}-\mathrm{L}-\underset{8}{\mathrm{Arg}}-\mathrm{OH}
$$

Bradykinin (cross-reference from L-Arginine, L-arginyl-L-prolyl-L-prolylglycyl-L-phenylalanyl-L-seryl-L-prolyl-L-phenylalanyl-)

Gramicidin $\mathbf{S}$ (cross-reference from Cyclo(L-leucyl-D-phenylalanyl-L-prolyl-L-valyl-L-ornithyl-L-leucyl-D-phenylalanyl-L-prolyl-L-valyl-L-ornithyl))


Apamin (reduced) (cross-reference from L-Histidinamide, L-cysteinyl-L-asparaginyl-L-cysteinyl-L-ly-syl-L-alanyl-L-prolyl-L-a-glutamyl-L-threonyl-L-alanyl-L-leucyl-L-cysteinyl-L-alanyl-L-arginyl-L-arginyl-L-cysteinyl-L-glutaminyl-L-glutaminyl-)

Because the location of disulfide bonds in natural apamin has been determined, the following cross-reference appears in the Index Guide:

## Apamin (reduced) <br> cyclic $(\mathbf{1} \rightarrow \mathbf{1 1}),(\mathbf{3} \rightarrow \mathbf{1 5})$-bis(disulfide)-see Apamin

Species variations are dealt with by citing the name of the species as a homograph definition after the heading. Each species variant is an independent stereoparent; e.g., Calcitonin (swine reduced); Calcitonin (human reduced).

Replacement of one amino acid residue by another is indicated at a trivially named peptide heading by citing the names of the new amino acids in numerical (not alphabetical) order as substituents; e.g., 1-34-Gastrin I (swine), 2-L-serine- $\mathbf{1 0}$-L-alanine-. In addition, the chain of the reference compound can be extended at either end, either by substitution of the N -terminal a-amino group or by citing additional terms with locants derived from the highest present by addition of "a," "b," etc. In a similar manner, insertion of amino acid units between existing ones is indicated by "endo" terms with "a" locants derived from the lower of the two neighboring units (e.g., " 3 a " indicates insertion between " 3 " and " 4 "). Removal of a unit is indicated by a "de" term such as "4-desulfo" to indicate removal of only a modifying group in a unit, or "6-de-L-glutamic acid" to express removal of an entire unit.

Examples:
Kallidin, $N^{2}$-L-alanyl- (N-terminal extension)
Glucagon (swine), $N$-acetyl- ( N -terminal extension)
Bradykinin, 9a-L-valine-9b-L-lysine- (C-terminal extension)
Fibrinopeptide B (human), 14a-D-serinamide- (C-terminal extension)

## Bradykinin, 6a-endo-L-alanine- (insertion)

Caerulein, 4-desulfo- (removal of modifying group)
Caerulein, 4-de( $O$-sulfo-L-tyrosine)- (removal of unit)
Combinations of various types of structural modifiers are indicated by citing them in numerical order. When the modifying operations total at least one-half the number of units in the original parent, a regular peptide name is employed.

The Greek letter $\psi$ (see above) is used in derivative names to indicate a modified peptide bond. The format of the $\psi$ term is $\ldots-A-n \psi^{n+1}\left(X-X^{\prime}\right)-B-\ldots$, where n is the residue number of the amino acid A whose carbonyl group has been modified to $X$ (or remains unmodified) and $n+1$ the residue number of the amino acid $B$ whose $\alpha$-amino group has been modified to $X^{\prime}$ (or remains unmodified). A and B are cited in the name only if they are otherwise modified; e.g., Bradykinin, ${ }^{7} \Psi^{8}(\mathbf{C H}=\mathbf{C H}, \boldsymbol{E})$-8-L-tyrosine-. The formatting of the stereochemical data for $\mathrm{X}-\mathrm{X}^{\prime}$ follows standard literature practice.

The prefix "enantio" denotes reversal of configuration of all amino acid residues; thus, enantio-Bradykinin contains only the D-forms of the amino acid residues, but in the same sequence as in Bradykinin. The new parent is used if more than half of the units have been replaced by their enantiomers; unchanged units are expressed by replacement nomenclature. The prefix "retro" denotes a reversal of the amino acid sequence; thus retro-Gramicidin $\mathbf{S}$ has the structure of Gramicidin $\mathbf{S}$ (see diagram above) but with the acidamine linkages running from right to left. The combined prefix "enantio-retro-" indicates reversed configuration and reversed sequence.

In Angiotensin I and Angiotensin II, the amino acid in the 5-position, if known, is cited in the inverted part of the heading, e.g., Angiotensin I, 5- L-isoleucine-.

Oxytocin and Vasopressin derivatives in the disulfide form are named at these headings with replacement, etc., terms as usual, but reduced analogs are indexed at amino acid sequence names, not at Oxytocin (reduced) and Vasopressin (reduced). The amino acid at position 8 of Vasopressin is always specified if known.

In $\alpha^{1-39}$-Corticotropin (swine) " $\alpha$ " indicates that this was the first principle isolated; the superscripts give the range of amino acid units. Fragments containing more than twelve sequential units receive names such as $\alpha^{1-24}$-Corticotropin and $\alpha^{11-39}$-Corticotropin. An amino acid sequence name is employed for fragments of fewer than twelve units, but cross-references at the alternative names, e.g., $\alpha^{1-10}$ Corticotropin, appear in the Index Guide.

Insulin contains two peptide chains, an A-chain of 21 amino acid units and a B-chain of 30 units, connected at two points by disulfide bridges. For each species, cross-references appear in the Index Guide at the aminacid sequence names of the two chains. Replacement names that retain the disulfide bridges and have fewer than 11 and 15 residue changes in the A - and B -chains, respectively, are formed in the usual way. Locants have superscript letters to indicate to which chain they belong; e.g., Insulin (cattle), $\mathbf{3 0}^{\mathrm{B}}$-L-methionine-. The reduced forms of the individual insulin chains are also stereoparents; internal disulfide bonds are expressed in the modification.

Actinomycins are a class of natural products that contain peptide chains attached to non-peptide moieties. Actinomycin $\mathbf{D}$ (sometimes called $C_{1}$ ) is one member of the actinomycin family.

Example:


Actinomycin D(cross-references from 3H-Phenoxazine-1,9-dicarboxamide, 2 -amino- $N, N^{\prime}$-bis[hexa-decahydro-2,5,9-trimethyl-6,13-bis(1-methylethyl)-1,4,7,11,14-pentaoxo- $1 H$-pyrrolo $[2,1-i][1,4$, 7,10,13] oxatetraazacyclohexade-cin-10-yl]-4,6-dimethyl-3-oxo-; and $1 H$-Pyrrolo $2,1-i][1,4,7$, 10,13]oxatetraazacyclohexadecine)

The "Me-L-Val" symbol denotes $N$-methyl-L-valine and "Me-Gly" denotes $N$-methylglycine (sarcosine). Substitution in the phenoxazine ring is expressed before amino-acid replacement, etc., in the peptide moiety.

Examples:

## Actinomycin D, 8-bromo-7-chloro-

Actinomycin D, 2-deamino-2-hydroxy-3 ${ }^{\text {A }}$-D-proline-4 ${ }^{\text {A }}$-D-norleucine-

Removal of a methyl group is indicated by "nor" or "dinor" prefixes, e.g., 11,12-Dinoractinomycin $D$. When one or other or both of the peptide lactone rings are opened, the stereoparents Actinomycin- $5^{\mathrm{A}}$-oic D acid, Actinomy-cin- $5^{\mathrm{B}}$-oic D acid, and Actinomycindioic D acid are formed. Derivatives are named as for Actinomycin D.

Homopolymers of amino acids are indexed by polymer procedures (II 122); e.g., L-Alanine, homopolymer. The structural repeating unit is indexed at Poly[imino[(1S)-1-methyl-2-oxo-1,2-ethanediyl]]. The stereochemical assumptions are the same as for the monomeric amino acids. Peptides of indefinite molecular weight with repeating peptide sequences are named as homopolymers at the peptide monomer names and at structural repeating unit names.
207. Proteins. Proteins are arbitrarily defined for indexing purposes as peptides containing more than 50 amino acids. Proteins, for which complete amino acid sequences are known, are indexed as chemical substances from all patents and journals covered by CAS. The protein sequence is entered into the CAS sequence database, and is searchable and displayable on STN. Partial protein sequences are also indexed from selected journals.

Each protein sequence is given a unique name based on controlled vocabulary, as well as author terminology, the species of origin, and additional information which may include strain/clone, gene, and subunit/isoform, etc., as applicable.

Protein fragments may be prefixed with two numbers, relating to the range of amino acids represented; e.g., 1-124-Somatotropin (cattle). Replacement names, as for peptides, are used for analogs. If the range of amino acids cannot be based on a complete protein, fragment is included in the name.
208. Carbohydrates. Carbohydrate stereoparents are defined for indexing purposes as polyhydroxy acids, aldehydes, ketones, alkanes, and their derivatives, with a skeleton of five or more carbon atoms, more than half of which must be attached to oxygen (or another chalcogen) or nitrogen, and at least one of the chalcogen attachments must be by a single bond to a nonterminal carbon atom. At least half of the nonterminal carbon atoms must be asymmetric. Carbohydrate stereoparents existing in the cyclic hemiacetal form must contain at least three asymmetric carbon atoms, including the anomeric carbon atom. Except for uronic and ulosuronic acids, the openchain is numbered to give the highest function the lowest possible locant. Illustrative structural diagrams related to current index entries will be found in
the Chemical Substance Index for open-chain forms and common cyclic forms of carbohydrate stereoparents. Stereoparents representing the following carbohydrates and their derivatives are employed as heading parents:

Pentoses:
Hexoses:
Arabinose, Lyxose, Ribose, Xylose.
Allose, Altrose, Galactose, Glucose, Gulose, Idose, Mannose, Talose.
Fructose, Psicose, Sorbose, Tagatose.
Ascorbic acid (II 224), Muramic acid, Neuraminic acid.

Monosaccharides that exist in the open form are indexed at the stereoparents. Higher functions are expressed as substituents or in the modification. Derivatives of the cyclic forms are indexed at the highest function if a glycosyl radical can be used to express the sugar, which is ranked as a polyhydric alcohol unless a higher function, e.g., a nonglycosidic ketone or aldehyde, is expressed as a suffix.

When a second stereoparent is represented in a structure, the parent of higher functionality is chosen in indexing.

Configurational descriptors, D and L, are placed before stereoparent names, including monosaccharide semisystematic names (see below). Examples are D-Glucose and L-arabino-Hexose, 2-deoxy-. In the Fischer projections of the open forms, the carbon skeleton is displayed vertically, with locant " 1 " at the top. The D-series can then be recognized by the hydroxyl group to the right of the bottom nonterminal asymmetric carbon atom.

Examples:



Configurational prefixes, derived from trivial aldose names, are used in semisystematic carbohydrate nomenclature; for one asymmetric carbon atom, e.g., $>\mathrm{CHOH},>\mathrm{CHOCH}_{3},>\mathrm{CHNH}_{2}$, glycero is the prefix used (with D or L as described above); with two, erythro and threo; with three, arabino, lyxo, ribo, and xylo; with four, allo, altro, galacto, gluco, gulo, ido, manno, and talo. (The centers need not be on neighboring carbon atoms.) For more than four consecutive centers, combinations of these terms are used.

Examples (" X " is the group with the lowest-numbered carbon atom):


In choosing a monosaccharide stereoparent name (when such a choice is necessary), (a) the oxo (or higher) function is numbered low (except the carboxyl group in uronic and ulosuronic acids); (b) the name appearing earliest alphabetically is chosen; (c) "D" is preferred to "L"; (d) the anomeric prefix " $\alpha$ " is preferred to " $\beta$ "; (e) lowest locants for substituents are employed; $(f)$ the lowest locant is used for the first-cited substituent.

Systematic carbohydrate names, employed for monosaccharides other than those with trivial names, are based on stem names which express the size and function; the stem names for open-chain aldoses of five or more carbon atoms are Pentose, Hexose, Heptose, Octose, Nonose, etc.; corresponding ketose stems are Pentulose, Hexulose, etc. (Additional terms are used to indicate ring size if necessary; see below.) The stem names are preceded by stereochemical descriptors. 2-Hexuloses have trivial names (see above); other ketoses are named systematically, e.g., L-erythro-2-Pentulose. For meso-forms, the Dand L- configurational symbols are not needed; e.g., erythro-3-Pentulose. Diketoses have names of the type D-threo-2,4-Hexodiulose; ketoaldoses have "-osulose" names such as D-ribo-Hexos-3-ulose; dialdoses have names such as D-gluco-Hexodialdose; chalcogen analogs are indexed by use of thio, etc., prefixes, e.g., D-Glucose, 1-thio-; replacement of hydroxyl by hydrogen is denoted by "deoxy" terms.

Substitution on carbon with prior removal of a hydroxyl group requires citation of "deoxy" and the substituent prefix in alphabetic order, e.g., D-Glucose, 2-(acetylamino)-2-deoxy-. When the existing hydrogen is substituted on a carbon atom already carrying an oxygen (or other chalcogen) or nitrogen group in the open or cyclic forms, the italic capital letter $C$ is employed, e.g., D-Ribose, 3-C-(nitromethyl)-. When both the hydrogen and hydroxyl are replaced by nonchalcogen, nonnitrogen substituents, the stereochemistry is expressed by a Sequence Rule descriptor at the systematic saccharide name, e.g., D-ribo-Hexose, 3-bromo-3-chloro-3-deoxy-, (3S)-.

Substitution of hydrogen on a hydroxyl group of a carbohydrate is denoted by " $O$ " locants (or by " $S$ ", etc., if chalcogen replacement has also taken place). Examples:

D-Mannose, $\mathbf{2 , 3 , 4 , 5 , 6}$-penta- $O$-methyl-
D-Glucose, 2-S-ethyl-2-thio-

## D-Glucitol, 1- $O$-ethyl-1- $C$-(phenylamino)-

Cyclic acetals employ bivalent radicals with " $O$ " terms, e.g., D-Ribose, 2,3:4,5-bis- $O$-(1-methylethylidene)-.

Oximes and hydrazones are expressed in the modification, osazones similarly as dihydrazones of osuloses. Hydrates, acetals, hemiacetals and esters are also named in the modification.

Examples:

## D-Xylose <br> diethyl dithioacetal <br> D-Xylose <br> 2,3-diacetate 4,5-dibenzoate

Cyclic hemiacetal forms of monosaccharides are indexed by inclusion in the name of a term indicating the ring size, if known; five, six, and sevenmembered rings, are denoted by "-furanose," "-pyranose," and "-septanose" suffixes. Two anomers, named " $\alpha$ " and " $\beta$," result on ring formation, and these Greek letters are employed as anomeric prefixes, which are placed ahead of the configurational descriptors ( D or L ) in the name.

$\alpha$-D-Glucopyranose

The following examples show the derivation of names for ketoaldoses when the ring closure involves $(a)$ the aldehyde, and $(b)$ the keto function.


More complicated cases, e.g., cyclic forms of dialdoses and higher ketoses, are named in accordance with rules (lowest locants for the keto group, alphabetically preferred configurational prefixes, etc.) already described. Locants, e.g., "-6,10-" are inserted before the ring-size descriptor in the name, and " $\alpha$ " or " $\beta$ " is also cited if the anomeric carbon is numbered lower than the reference carbon atom in the ring being formed, otherwise $R$ or $S$ is used.

Nitrogen analogs of cyclic sugars are named systematically.
Intramolecular anhydrides are denoted by terms such as "1,5-anhydro" in which the locants define the pair of hydroxyl groups involved. The sulfur analogs are named with "dideoxy-epithio" terms. Intermolecular anhydrides are polysaccharides (below); intermolecular dianhydrides are named by citing the word "dianhydride" after the name(s) of the parent monosaccharides (an aldose precedes a ketose); two pairs of locants define the positions of the anhydride linkages.

Example:

$\beta$-D-Fructofuranose $\beta$-D-threo-2-
pentulofuranose $1,2^{\prime}: 2,1^{\prime}$-di-
anhydride

Carbohydrate acids are named by characteristic suffixes, as follows:

	$1 \mathrm{CO}_{2} \mathrm{H}$	
${ }^{1} \mathrm{CO}_{2} \mathrm{H}$		${ }^{1} \mathrm{CHO}$
(СНОН)		$\begin{aligned} & 1 \\ & (\mathrm{CHOH}) \end{aligned}$
( CHOH )	$(\mathrm{CHOH}){ }_{x}$	( CHOH )
$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CO}_{2} \mathrm{H}$
-onic acid	-ulosonic acid	-uronic acid
$\underset{\mid}{\text { I СНO }}$		$\stackrel{I}{{ }_{\mid} \mathrm{CO}_{2} \mathrm{H}}$
${ }^{2} \mathrm{C}=\mathrm{O}$	$1 \mathrm{CO}_{2} \mathrm{H}$	${ }^{2} \mathrm{C}=\mathrm{O}$
$\begin{aligned} & \stackrel{1}{\mathrm{CHOH}}) \end{aligned}$	$\stackrel{1}{(\mathrm{CHOH})}$	$\begin{aligned} & \stackrel{1}{\mathrm{CHOH}}) \end{aligned}$
${ }^{\text {C }}{ }_{2} \mathrm{H}$		
$\mathrm{CO}_{2} \mathrm{H}$		$\mathrm{CO}_{2} \mathrm{H}$
-ulosuronic acid	-aric acid	-ulosaric acid

The stems of aldaric, aldonic and uronic acid names are derived from trivial (common) aldose names whenever possible. Acids containing a keto function are named from the systematic stem names. Acid halide, amide, and nitrile names are derived as usual. Esters, hydrazides, salts, and lactones are expressed in the modification. Lactams are named systematically (II171).

Examples:

## D-Gluconoyl chloride <br> L-Ribonic acid

$\gamma$-lactone
The trivial names Muramic acid and Neuraminic acid are used for the structures shown below; the acyl radicals muramoyl and neuraminoyl, and the glycosyl radicals muramosyl and neuraminosyl, are also employed in indexing. (Isomuramic acid is treated similarly; it is the muramic acid ( $S$ )-epimer about the carbon atom bearing the carboxyl group.)

Examples:

$$
\xrightarrow{\substack{\mathrm{OCHMCO}_{2} \mathrm{H}}} \mathrm{OH}_{\mathrm{OH}}^{\mathrm{OCO}}
$$


$\alpha$-Muramic acid
(the ( $R$ )-epimer)
$\beta$-Neuraminic acid

Glycosyl radicals derived from trivially and systematically named saccharides by removal of the anomeric (hemiacetal) hydroxyl group have the suffix "-osyl," e.g., $\beta$-D-mannopyranosyl (if the ring size is known), D-mannosyl, $\alpha$ -D-arabino-hexopyranos-2-ulos-1-yl. Uronic acid radicals are derived by replacing the "-ic acid" by "-osyl," e.g., $\beta$-d-glucopyranuronosyl; acid derivatives, e.g., uronamides, yield "-uronamidosyl" radicals, etc.

The following stereochemical and ring size assumptions are made when an author does not completely define a glycosyl radical:

FOR	ASSUME
galactosyl	D-galactopyranosyl
glucosyl	D-glucopyranosyl
mannosyl	D-mannopyranosyl
xylosyl	D-xylopyranosyl
L-fucosyl	6-deoxy-L-galactopyranosyl
D-fucosyl	6-deoxy-D-galactopyranosyl
rhamnosyl	6-deoxy-L-mannopyranosyl
fructosyl	D-fructofuranosyl
apiosyl	D-apio- $\beta$-D-furanosyl

Note that no assumption is made for fucosyl when the absolute stereo is not indicated.

Glycosyl halides, isocyanates, etc., without functions higher than a polyol in the unsubstituted saccharide have names containing the "-osyl" radical; otherwise the heading parent expresses the higher function.

Examples:
$\alpha$-D-Mannopyranosyl bromide

## $\beta$-D-Glucopyranuronic acid, 1-chloro-1-deoxy-

Glycosylamines are named by similar principles. Examples:

## $\alpha$-D-Glucopyranosylamine

## $\alpha$-D-Glucopyranuronamide, 1,1'-iminobis[1-deoxy-

Glycosides are mixed acetals derived by replacement of the hydrogen atom on the anomeric hydroxyl group of a saccharide by a group derived from an alcohol or phenol. Glycoside heading parents, e.g., $\alpha$-D-Ribofura-noside, are employed. In the inverted part of the heading, the radical derived from the alcoholic or phenolic aglycon is cited, followed by a space. Then any substituents of the saccharide are expressed in the usual way. When functions higher than the saccharide (which is normally a polyol) are present in the aglycon, a heading parent which expresses the greatest number of highest functions is chosen, provided that an appropriate glycosyl radical name can be employed to express the saccharide as a substituent. When the functionality is equal in the two portions of the molecule, the stereoparent is preferred. Glycoside parents are also derived from uronic acids and ulosonic acids, e.g., $\alpha$-D-Mannopyranosiduronic acid; $\alpha$-D-arabino-2-Hexulofuranosidonic acid.

Examples:

$\beta$-D-Mannopyranoside, methyl 2-
HO bromo-2-deoxy-
$\alpha$-D-erythro-Hexopyranosid-3ulose, methyl 2-deoxy-4,6-diacetate


$\alpha$-D-Ribofuranoside, methyl 1-thio-

Glycosides of ring systems are indexed at the saccharide headings unless the aglycon contains a higher function or the glycosyl attachment is at a nitrogen atom. $C$-Glycosides (glycosyl derivatives with carbon-carbon bonds) of ring systems are indexed at the higher function.

Examples:
D-Glucitol, 1,5-anhydro-1-C-phenyl-
(1R)-

## 4H-1-Benzopyran-4-one, 8- $\beta$-D-glucopyranosyl-2-phenyl-

A naturally occurring glycoside is indexed at the systematic (or stereoparent) name if the structure, including the ring-size of the saccharide, is known, whether or not all the stereochemistry has been elucidated. (A "glucoside" is assumed to be the $\beta$-D-glucopyranoside, a "rhamnoside" the 6-deoxy- $\alpha$-Lmannopyranoside.)
$N$-Glycosyl derivatives of heterocycles are usually indexed at the heterocycle names (see also Nucleosides and Nucleotides, If 210), but a saccharide containing an expressed aldehyde or higher functional suffix is preferred.

Examples:


3H-Purin-6-amine, 3- $\beta$-d-ribo furanosyl-

HO OH


## $\beta$-D-Galactopyranuronic acid, 1-deoxy-1-(2,5-dioxo-3-thiazoli dinyl)- <br> methyl ester

Alditols are polyhydric alcohols derived mainly by reduction of aldehydes. They are named by changing the suffix "-ose" to "-itol." Since the end groups are alike, they are more symmetrical than saccharides; the preferred heading parent is the one in which the trivial name (or the configurational prefix (erythro, etc.) of a semisystematic name) and then the configurational descriptors ( D and L) expresses the lowest alphabetic order. Hence Gulitol is cross-referred to Glucitol, and D-glycero-L-gulo is preferred over D-glycero-D-ido. Lowest locants for substituents are considered only after the heading parent has been determined.

Example:



D-Galactitol, 5-O-methyl- (not
L-Galactitol, 2-O-methyl-)

The meso alditols (Ribitol, Xylitol, Allitol, and Galactitol) do not require D or L unless they are substituted unsymmetrically, in which case the D-form is chosen. Higher chemical functions than the alditol are expressed as substituents of the alditol parent.

Branched-chain monosaccharides are generally named as derivatives of the linear saccharides, selecting first the highest function and then the longest chain, but the trivial name Apiose is used.

Example:


D-Apiose

Olefinic monosaccharides are expressed by "en" in the stereoparent. Destruction of the anomeric center leads to an anhydro unsaturated alditol with the multiple bond assigned the lowest possible locant after the alphabetic choice ( D before $\mathrm{L}, \alpha$ before $\beta$ ) has been made. Geometrical isomerism about a double bond, when known, is indicated by $E$ and $Z$ descriptors.

Examples:

```
D-threo-Hex-2-enose, 2-(acetyl-
 amino)-2,3-dideoxy-
 (2Z)-
```


## 9H-Purin-6-amine, 9-(2,3-dideoxy-

$\beta$-D-erythro-hex-2-enopyranosyl)-
D-xylo-Hex-1-enofuranosylamine, 2-deoxy- $N$-phenyl-

Oligosaccharides of known structure are given carbohydrate names which express the monosaccharide content. The open-chain form is used in naming reducing oligosaccharides in the absence of anomeric prefixes or contrary derivative information.

Trisaccharides and higher members are named by use of "arrow" nomenclature, in which arrows and locants indicate the direction and position of linkages from anomeric carbon atoms to hydroxylic carbon atoms. The reducing monosaccharide unit is named as the stereoparent. Other substituents of the parent are named last. Cross-references at oligosaccharide trivial names are found in the Index Guide.

Examples:

Lactose.
Sucrose.
Cellotriose.
Stachyose.

See D-Glucose, 4-O- $\beta$-D-galactopyranosyl-
See $\alpha$-D-Glucopyranoside, $\beta$-D-fructofuranosyl
See D-Glucose, O- $\beta$-D-glucopyranosyl-( $1 \rightarrow$ -4)-O- $\beta$-D-glucopyranosyl- $(1 \rightarrow 4)$ -

See $\alpha$-D-Glucopyranoside, $\beta$-D-fructofuranosyl $O$ - $\alpha$-D-galactopyranosyl-( $(\rightarrow \sigma)$-O- $\alpha$-D-galactopyranosyl-( $1 \rightarrow 6$ )-

Polysaccharides are often indexed at common names, e.g., Agar Amylopectin, Cellulose, Starch. Homoglycans (polysaccharides derived from one type of sugar residue) are named by converting the "-ose" suffix of an aldose or ketose, or the "-ic acid" of a glycuronic acid, to "-an," e.g., $\beta$-DMannan, $(1 \rightarrow 4)$-; L-Arabinan; D-Glucuronan. Heteroglycans contain more than one kind of saccharide; the name, e.g., Glucuronoarabinoxylan, expresses the saccharide with the higher chemical function first; if the functions are alike, longer chain and then alphabetic order decide. Esters and most other derivatives are cited in the modification. Synthetic homopolymers and copolymers are indexed by polymer nomenclature, e.g., L-Arabinose, homopolymer.
209. Cyclitols are cycloalkanes in which a hydroxyl group is attached to each of three or more ring atoms. Cyclitols of the cyclohexane series constitute the inositols; those that contain at least five asymmetric centers in the ring, of which at least three are directly bonded to oxygen (or another chalcogen) or nitrogen, are given Inositol stereoparent names; the others are named systematically as cyclohexanepolyols. Relative stereochemistry is expressed by special italicized configurational prefixes. The eight Inositol stereoparents, arranged according to the number and position of hydroxyl groups on the same side of the cyclohexane ring (as indicated by the numerical locants, which are not used in indexing) are:

cis-Inositol	$(1,2,3,4,5,6)$
epi-Inositol	$(1,2,3,4,5)$
allo-Inositol	$(1,2,3,4)$
myo-Inositol	$(1,2,3,5)$
muco-Inositol	$(1,2,5)$
neo-Inositol	$(1,2,4)$
chiro-Inositol	$(1,3,5)$
scyllo-Inositol	

Choice of a preferred index name for an inositol derivative depends on (a) the alphabetically preferred configurational prefix in the order: allo, chiro, cis, epi, muco, myo, neo, scyllo; (b) the preferred configurational descriptor (D over L); (c) the lowest set of locants for substituent prefixes (II 137). The configurational descriptor D or L may be determined by numbering the hydroxyl groups (or replacement groups) which lie on one side of the ring beginning at each possible "position 1." If the groups, e.g., the 1,2,4-groups in chiro-Inositol, are up when numbering clockwise, or down when numbering counterclock-wise, the descriptor is L; if the groups are up in numbering counterclockwise or down in numbering clockwise, the descriptor is D . The D -stereoparent is chosen regardless of high locants for substituent prefixes. The D and L descrip-tors are used only when optical activity is present and can be determined from the original document.

Example:


D-chiro-Inositol


HO
L-chiro-Inositol

Common names for inositols, e.g., Scyllitol, are cross-referred in the Index Guide to preferred index names. Ethers are named as $O$-derivatives; chalcogen analogs are expressed by "thio," etc., in the inverted part of the heading. Esters are expressed by modification terms, e.g., "hexaacetate." Glycosides are indexed at the Inositol stereoparent with $O$-glycosyl substituent prefixes. 1,2,3,4,5-Cyclohexanepentols (quercitols) are indexed at the alphabetically preferred Inositol parent by use of a "deoxy" prefix, and D or L determined as described above, e.g., D-chiro-Inositol, 2-deoxy- (not D-chiro-Inositol, 5deoxy; not D-muco-Inositol, 2-deoxy-; not L-muco-Inositol, 1-deoxy-). Replacement of one, two, or three hydroxyl groups, with retention of configu-ration, is expressed by "deoxy" terms and appropriate radicals. The capital italic letter $C$ is used to denote replacement of hydrogen on a carbon atom to which a hydroxyl group is also attached, e.g., scyllo-Inositol, 1-C-methyl-.

Inosamines and their $N$-acyl (including carboxy) derivatives are usually indexed at such names as neo-Inositol, 2-amino-2-deoxy-, but Streptamine is the stereoparent for 1,3-diamino-1,3-dideoxy-scyllo- inositol and derivatives.

Example:


Inosose is the stereoparent for 2,3,4,5,6-pentahydroxycyclohexanone stereoisomers.

210. Nucleosides and Nucleotides are hydrolytic products of nucleic acids; chemically, nucleosides are $N$-glycosyl derivatives of heterocyclic bases, principally purine and pyrimidine, and nucleotides are esters of nucleosides with phosphoric acid and polyphosphoric acids.

The bases are named systematically, with the tautomerism resolved for indexing purposes in favor of highest expressed function, etc. (II 122).

Trivial Name	Index Name
Adenine	
Cytosine	$\mathbf{1 H}$-Purin-6-amine
Guanine	$\mathbf{2 ( 1 H )}$-Pyrimidinone, 4-amino-
Hypoxanthine	$\mathbf{6 H}$-Purin-6-one, 2-amino-1,7-dihydro-
Thymine	$\mathbf{6 H}$-Purin-6-one, 1,7-dihydro-
Uracil	$\mathbf{2 , 4 ( 1 H , 3 H}$-Pyrimidinedione, $\mathbf{5}$-methyl-
Xanthine	$\mathbf{2 , 4 ( 1 H , 3 H )}$-Pyrimidinedione
	$\mathbf{1 H}$-Purine-2,6-dione, 3,7-dihydro-

Trivial names for seven common nucleosides and the related nucleotides are employed as stereoparents; these nucleosides are:

Purine derivatives	Pyrimidine derivatives
Adenosine	Cytidine
Guanosine	Thymidine
Inosine	Uridine
Xanthosine	

The seven stereoparents (above) are heading parents for derivatives, including $N$-acyl and $N$-carboxy derivatives, e.g., Adenosine, $N$-acetyl-; Cytidine, $N$-(ethoxycarbonyl)-. When a chemical function higher than carboxamide (II 106), except $N$-carboxy, is present, an index parent which expresses it is chosen, unless lack of a suitable radical precludes expression of the nucleoside residue as a substituent prefix (this occurs when the higher function is attached to the saccharide at any position other than " 1 "). Replacement of oxygen in the saccharide moiety or on the heterocycle by sulfur is expressed by a "thio" prefix, and the regular methods of carbohydrate nomenclature (II 208) are employed for other saccharide modifications, including ester formation other than phosphates.

Examples:


AcNH OH


Nucleotides are indexed at stereoparents descriptive of the type and position of the phosphate residue on the sugar moiety. Esters with phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, are "-ylic acid" stereoparents. Each isomer has its own heading, e.g., $5^{\prime}$-Adenylic acid for the $5^{\prime}$-(dihydrogen phosphate) of Adenosine. When more than one such acid residue is present, the lowest locant is chosen for the stereoparent, e.g., $\mathbf{3}^{\prime}$-Adenylic acid, $5^{\prime}$-(dihydrogen phosphate). Cyclic phosphates are expressed in the modification at the nucleoside name by such phrases as "cyclic $3^{\prime}, 5^{\prime}$-(hydrogen phosphate)."

Nucleoside esters with unsubstituted linear polyphosphoric acids are indexed at stereoparents which express the complete ester name, e.g., Guanosine $\mathbf{3}^{\boldsymbol{\prime}}$-(trihydrogen diphosphate). An unspecified isomer is assumed to be the $5^{\prime}$-isomer. Di- and triesters with the same acid are indexed at the lowest numbered isomer heading. Substituted derivatives and esters with nonphosphorus acids are named like those of the nucleotides.

Example:


Coenzyme A is employed as a stereoparent for adenosine $5^{\prime}$-(trihydrogen diphosphate) $3^{\prime}$-(dihydrogen phosphate) $P^{\prime}-[(3 R)$-hydroxy-4-[[3-[(2-mercap-toethyl)amino]-3-oxopropyl]amino]-2,2-dimethyl-4-oxobutyl ester; functional derivatives, notably esters such as " $S$-acetate," are also indexed at this stereoparent.

Esters and molecular addition compounds of nucleoside and nucleotide stereoparents, including "-ylic acids," with nonstereoparents are indexed at the stereoparents regardless of functionality.

Example:

## Inosine $5^{\prime}$-(trihydrogen diphosphate) <br> $2^{\prime}$-(dihydrogen phosphate), $P^{\prime} \rightarrow 5^{\prime}$-ester with 3-(aminocarbo-nyl)-1- $\beta$-D-ribofuranosylpyridinium hydroxide, inner salt

Oligonucleotides contain not more than eight nucleotide units connected by phosphoric acid residues. Higher-molecular-weight compounds are indexed as polynucleotides (see Polymers $\mathbb{T}$ 222) or at the headings DNA or RNA. Phosphate links attached to the preferred stereoparent of an oligonucleotide form parts of "-ylyl" radical substituents.

The heading parent is attached to the rest of the nucleotide chain at its $5^{\prime}$ position. Arrows are employed with locants, as in oligosaccharide nomenclature ( $\mathbb{T}$ 208), to indicate progression and points of attachment on saccharide residues beginning at the end of the chain furthest from the preferred stereoparent. Esters and substituents of "-ylyl" radicals are named as substituents without regard to higher functions. Nonnucleotidylyl esters of the stereoparent are expressed in the modification. When a cyclic ester is part of the polynucleotide linkage, the locants for the ester are separated by a hyphen, and the arrow to the point of attachment follows in the usual way, e.g., Adenylic acid, adeny$\mathbf{l y l}-\left(\mathbf{2}^{\prime} \mathbf{3}^{\prime} \rightarrow \mathbf{5}^{\prime}\right)$-.

Example:


Guanosine, 5'-0-[hydroxy(2-hy-droxyethoxy)phosphinyl]- $P$ -methyladenylyl-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)$ -

Intermolecular cyclic nucleotides are named like the linear compounds, but with the term "cyclic nucleotide" in the modification.
211. Steroids are cyclopenta $[a]$ phenanthrene derivatives that are indexed as stereoparents (II 202) at trivial names that imply stereochemistry. The following steroid numbering system is employed:


When two methyl groups are present at the 4-position, as well as one at the 14-position, along with a 1,5-dimethylhexyl substituent at position 17 , the compound is indexed as a terpene stereoparent (II 212); otherwise the steroid or terpene stereoparent is employed that requires least modification.

The hydrogenated ring system without substituents is Gonane; Estrane has a methyl group only at the 13-position; the compound with only a 10 -methyl group is named as $\mathbf{1 8}$-Norandrostane. The following stereoparents are derivatives of Androstane (hexadecahydro-10,13-dimethyl-1 H -cyclopen$\operatorname{ta}[a]$ phenanthrene) with various side chains at the 17-position:

$-\mathrm{CH}_{2} \mathrm{Me}$	Pregnane
-CHMePr	Cholane
$-\mathrm{CHMe}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHMe}_{2}$	Cholestane
$-\mathrm{CHMe}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMeCHMe}_{2}$	Ergostane
$-\mathrm{CHMe}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHEtCHMe}$	2

The implied configurations in all cases are $\mathbf{8} \beta, \mathbf{9} \alpha, \mathbf{1 0} \beta, \mathbf{1 3} \beta, \mathbf{1 4} \alpha$. The configuration at the 5-position, when known, is cited as added stereochemistry in the modification. Pregnane is $17 \beta$; Cholane and Cholestane are $17 \beta, 20 R$; Ergostane is $\mathbf{1 7} \beta, \mathbf{2 0} R, \mathbf{2 4 S}$; Stigmastane is $\mathbf{1 7} \beta, \mathbf{2 0} R, \mathbf{2 4} R$. Illustrative diagrams appear for all these fundamental stereoparents to accompany the entries in the Chemical Substance Index.

Unsaturation in steroids is expressed by "en" and "yn" infixes, e.g., Estra-1,3,5(10)-triene; Androst-1-en-16-ol, (5 $\alpha$ ). The first example requires two locants for the last cited double bond; this situation is avoided where possible, with steroids containing benzenoid rings, by rearrangement of bonds; e.g., Gona-5,7,9-triene (not Gona-5(10),6,8-triene).

Cyclosteroids contain an additional ring formed by a valence bond between two existing ring positions or between a ring position and an angular methyl group or side-chain atom. They are indexed at such stereoparents as 3,5Cyclopregnane and 9,19-Cycloandrostane, for which diagrams showing the implied configurations are displayed in the Chemical Substance Index when required by current entries.

Bufanolide and Cardanolide are stereoparents with a $\delta$-lactone and a $\gamma$ lactone ring, respectively, attached to the 17-position of Androstane. The configurations are as for Cholane except for $14 \beta$ instead of $14 \alpha$. When a carboxylic acid or higher function is present the lactone ring is opened and named in the modification.

Example:


24-Norchol-20(22)-ene-19,23-dioic acid, 3,5,14,21-tetrahydroxy-$\gamma$-lactone, $(3 \beta, 5 \beta, 14 \beta)$ -
(cross-reference from Card-20
(22)-enolid-19-oic acid)

Furostan is a stereoparent which represents 16 $\beta$,22-epoxycholestane; this has a furan ring fused to the steroid system in the 16,17-position. Spirostan is a 16,22:22,26-diepoxycholestane derivative. Configurations at the 5-, 22-, and 25 -positions of furostan and at the 5 - and 25 -positions of spirostans are expressed in the modifications if known.

## Examples:




Spirostan-3-ol, 24-bromo-
$(\mathbf{3} \beta, 5 \beta, 24 R, 25 R)$-(configurations for added stereochemistry at C-3 and $\mathrm{C}-24$ are indicated: there is no modified stereochemistry)

Elimination of an acyclic carbon atom (or methyl group) from a steroid is expressed by the prefix "nor" with the locant for the carbon removed; (but 21-Norpregnane is indexed at Androstane, 17-methyl-). Elimination of one or two carbon atoms from the $\mathrm{C}-17$ side chain of $\mathrm{C}_{27}$ and larger steroids may be expressed by "nor" and "dinor," unless a smaller stereoparent is thereby obtained; e.g., 21,27-Dinorcholestan-26-oic acid; 26,27-Dinorcholes-tane; but Cholane-24-carboxylic acid (not 26,27-Dinorcholestan-25-oic acid). Removal of C-18 and C-19 by "nor" terms is independent of treatment of the $\mathrm{C}-17$ side chain; hence 18,19-Dinorpregnane (not Gonane, 17-ethyl-).

Ring contraction and expansion expressed by "nor" and "homo" prefixes are no longer permitted. Such substances are named systematically.

Ring scission is expressed by the "seco" prefix and two locants to indicate the positions between which the ring has been opened, is used only for $9,10-$ seco systems.

Examples:



Replacement ("a") nomenclature (II 127) is no longer used for heterosteroids, e.g., 2-thiaandrostane, and 3-aza-A-homoandrostane, are now given systematic names.

Steroidal alkaloids containing exocyclic nitrogen are indexed at steroid stereoparents. Thus Irehine is cross-referred to Pregn-5-en-3-ol, 20-(dimeth-ylamino)-, ( $3 \beta, 20 S$ )-. Kurchi alkaloids are named as derivatives of the stereoparent Conanine; implied configurations are the same as for Pregnane, with the addition of $20 \beta$.

Example:


The solasodine-tomatidine and solanidine groups of Solanum alkaloids are indexed at Spirosolane and Solanidane stereoparents, respectively. Example:
 configuration, when known, is cited.)

Veratrum alkaloids are indexed, according to type, at the stereoparents Veratraman and Cevane. Buxus alkaloids are indexed at such headings as 9,19-Cyclopregnane. As usual, all these stereoparents are illustrated in the Chemical Substance Index when related entries appear there.

Radicals derived from steroid stereoparents are employed when the highest function is present in a nonsteroid part of the molecule (except the esters, semicarbazones and additional compounds are always indexed at the stereoparents (II 202)). Radical names are formed in the usual way, and the free valency can be at an acyclic atom; e.g., estra-1,3,5(10)-triene-17-yl, cholest-4-en-26-yl. No radical names are formed from cardanolides or bufanolides. Configurations are cited ahead of the entire substituted radical; e.g., $[(3 \beta, 5 \alpha)-3$-hy-droxyandrostan-5-yl]-. For acetals of steroids, see I[ 202.

Steroids with -O- and -OO- bridges are indexed by use of "epoxy" and "epidioxy" substituents at the stereoparents. When the -NHNH- group is attached to a single skeletal atom, the "hydrazi" radical is employed. Steroid stereoparents may be adopted as components of spiro systems (II 156), e.g., Spiro[androst-4-ene-2,1'-cyclopropan]-3-one.

Fused steroid names are used on a restricted basis. The steroid component is named first when fusion is to a heterocycle; the reverse order occurs with less preferred carbocycles. Each system retains its own numbering and the nonsteroid is given primed locants. When saturation is expressed at positions common to both components, steroid locants are cited if possible.

Examples:


H
$3^{\prime} \mathrm{H}$-Cyclopropa [2,3]androsta-2,4diene, 2,3-dihydro-( $2 \alpha, 3 \alpha$ )-

$\mathbf{2}^{\prime} H$-Androst-2-eno[3,2- $c$ ]pyrazol-17-ol
$(5 \alpha, 17 \beta)$ -
212. Terpenes contain repeating isopentane units:

$$
\begin{gathered}
\stackrel{\mathrm{C}}{\mid} \\
(-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-)_{n}
\end{gathered}
$$

Mono-, sesqui-, di-, sester-, tri-, and tetraterpenes contain two, three, four, five, six, and eight such units; tetraterpenes are usually called carotenes (see below). Most mono-, sesqui-, and diterpenes are indexed by the principles of systematic substitutive nomenclature; stereoparents are employed for terpenes that contain four or more rings, or possess three or more elements of stereochemistry, at least one of which is associated with a bridged or side-chain center, or a center in a ring of twelve or more members. Illustrative diagrams for terpene stereoparents, exhibiting the numbering systems and partial or complete configurations, appear as needed in the Chemical Substance Index. Cross-references from trivially named terpenes, including all heading parents appearing in CA indexes prior to Volume 76, are supplied in the Index Guide, e.g., Geraniol. See 2,6-Octadien-1-ol, 3,7-dimethyl-, (E)-.

Examples:


Cyclohexanol, 3-methyl-2-(1-methylethyl)-
$(\mathbf{1 S , 2 R}, \mathbf{3 R})$-(cross-reference from $o$-Neoisomenthol)


Bicyclo[3.1.1]heptane, 2,6,6-tri-methyl- (cross-reference from Pinane)


Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl- (cross-reference from Camphor)


Naphthalene, decahydro-1,6-di-methyl-4-(1-methylethyl)$(1 S, 4 S, 4 a S, 6 S, 8 a S)$ - (cross-reference from Cadinane)


Naphthalene, decahydro-1,4a-di-methyl-7-(1-methylethyl)( $1 R, 4 \mathrm{a} R, 7 R, 8 \mathrm{aS})$ (crossreference from Eudesmane)

The stereoparent Trichothecane, a sesquiterpene "epoxide," is used in indexing, and other derivatives of sesquiterpenes and diterpenes may be used as stereoparents when they meet the criteria. Gibbane is a partially stereospecific stereoparent employed in naming gibberellic acid derivatives. Two tetracyclic diterpene stereoparents are Kaurane and Atisane. Cyclic triterpenes include Gammacerane, Lanostane, Lupane, Oleanane, and Ursane.

Abnormal configurations are expressed by " $\alpha$ " or " $\beta$ " at angular carbon atoms in ring systems, and by " $R$ " and " $S$ " when there is inversion on a bridge or side-chain. Additional stereochemistry produced by substitution is expressed similarly. All terms cited with a stereoparent are considered to be absolute, not relative. The geminate methyl groups of triterpenes have no implied configuration associated with the locants; " $\alpha$ " or " $\beta$ " is cited when substitution in the methyl groups makes this necessary.

Because lowest locants are assigned to principal groups, in accordance with general systematic nomenclature, the author's numbering may be changed in indexing, especially with a symmetrical stereoparent such as Gammacerane.

Example:


Gammacer-15-en-3-ol
(3 3 )- (not Gammacer-6-en-
21-ol, (21 $\alpha$ )-)
"Friedo," preceded by $D$, has been used to indicate $D: A, D: B$, or $D: C$ as prefixed to pentacyclic triterpene stereoparents that angular methyl groups have shifted from their normal positions. These names are no longer used, and these substances are named as derivatives of other triterpenes.

The prefix "neo-" preceded by an italicized capital $A$ indicates that ring $A$ has undergone a rearrangement. These names are no longer used.

In the gammacerane skeleton, $A^{\prime}$-Neo- is used.


Normal arrangement

$\underset{27}{\mathrm{Me}}$

$$
A^{\prime}-\text { Neo- }
$$

The prefix "cyclo" indicates a valence bond forming an extra ring, e.g., in 9,19-Cyclolanostane a "fused" cyclopropane ring is formed.

Principal groups are expressed as "-oic acid," "-al," "-one," "-ol," etc., by the procedures of general substitutive nomenclature. Terpene radicals are formed in the usual way. Configurational terms are placed ahead of the complete radical (cf. Steroids, II 211).

Lactones of triterpene acids are indexed at the acid names; cyclic acetals are likewise expressed in the modification at stereoparent headings.

Carotenoids comprise carotenes (hydrocarbons) and xanthophylls (their oxygenated derivatives) in which eight isoprene units are joined in such a manner that the arrangement is reversed at the center of the molecule, whereby the two central substituent methyl groups are in 1,6-relationship and the remaining methyl groups in 1,5-relationship. The class also includes some rearranged and degraded compounds, but excludes Retinol and related $\mathrm{C}_{20}{ }^{-}$ compounds (see below).

General entries are found at Carotenoids in the General Subject Index. Specific substances are indexed at Carotene:


Each dotted curved line represents two double bonds or their equivalent; thus, individual compounds may have acyclic end groups with two double bonds, or terminal cyclohexenyl groups, or one of each. By extension, Carotene is used as the stereoparent representing dihydro and tetradehydro derivatives which possess cyclopentyl and phenyl end-groups. Two Greek letter prefixes on the Carotene stereoparent, cited in (Greek) alphabetical order, are employed to express the terminal structures of specific compounds:

$\Psi$

$\beta$

$\varepsilon$

$\chi$

Addition of water $(\mathrm{H}, \mathrm{OH})$ or methanol $\left(\mathrm{H}, \mathrm{OCH}_{3}\right)$ to a double bond is expressed by "dihydro-hydroxy" and "dihydro-methoxy." When the "-ol" suffix can be used only for some of the hydroxy groups, the "dihydro-hydroxy" method is employed for all.

Carotenoids with diosphenol end-groups are indexed as the keto tautomers; e.g., $\beta, \beta$-Carotene- $\mathbf{3}, \mathbf{3}^{\prime}, \mathbf{4}^{\prime} \mathbf{4}^{\prime}$-tetrone. For carotenoids with identical end groups, lowest locants are assigned to the principal groups, if present, and then to prefixes; e.g., $\varepsilon, \varepsilon$-Carotene-2,3'-dione, $\mathbf{2}^{\prime}$-methoxy- (not $\varepsilon, \varepsilon$-Carotene-2',3-dione, 2-methoxy-).
"Retro" carotenes have undergone a shift of the alternating single-double bond system by one position. A prefix such as " $4,7^{\prime}$-retro-" is applied to the stereoparent to express this situation; the first cited locant shows where a proton has been gained, the second, where a proton has been lost.
"Apo" carotenes names are no longer used. Oxidative degradation products of carotenes are named at retinol, retinoic acid, etc., or systematically.

Stereochemistry of carotenoids is of two types. The geometrical configuration around double bonds is implied by the stereoparent stem Carotene to be all-trans. Abnormal configuration at one or more positions is indicated in the modification by terms such as "15-cis-." Absolute configuration at chiral centers is expressed by " $R$ " or " $S$."

Example:

$\kappa, \kappa-$ Carotene-6, $6^{\prime}$-dione, $3,3^{\prime}$-di-hydroxy( $3 S, 3^{\prime} S, 5 R, 5^{\prime} R$ )-

Retinol and its relatives are indexed at the stereoparent:


## Retinol (stereoparent)

## Illustrative diagrams for Retinol and Retinoic acid appear in the Chemical

 Substance Index. Cross-references between retin names and Vitamin A terms are found in the Index Guide. Vitamin $\mathrm{A}_{1}$ is indexed at Retinol; Vitamin $\mathrm{A}_{2}$ at Retinol, 3,4-didehydro-. Hydrocarbon derivatives are indexed at systematic names. At Retinol, functions higher than the alcohol are expressed as substituents, e.g., Retinol, 4-oxo-. The all-trans configuration is assumed; if abnormal stereochemistry is reported, it is expressed in the modification by terms such as "13-cis-".$\beta, \beta$-Carotene-3,3'-diol,5,6:5 $\mathbf{5}^{\prime}, \mathbf{6}^{\prime}$-di-epoxy-5,5', $6,6^{\prime}$-tetrahydro-

## F. SPECIALIZED SUBSTANCES

Introduction	II 213
Alloys	214
Coordination compounds	215
Dyes	216
Elementary particles	217
Enzymes	218


Inorganic compounds	II 219
Isotopes	220
Mixtures	221
Polymers	222
Porphyrins and Bile pigments	223
Vitamins	224

213. Introduction. The special classes of chemical substances discussed in this section exclude those natural products and their derivatives, largely indexed at stereoparents, which were the subject of the previous section. The topics covered here fall into three groups: inorganic (alloys, coordination compounds, elementary particles, and general inorganic compounds); biological (enzymes, porphyrins and bile pigments, and vitamins); and special subjects not chemically related to any particular class (dyes, isotopes, mixtures, and polymers). The arrangement is alphabetic.
214. Alloys, including those with nonmetallic and gaseous components, are indexed and registered by CAS as specific chemical substances. The percentage composition is expressed in the modification in descending order of abundance of metals, either as individual round numbers or as ranges. Components present in amounts below $0.1 \%$ are generally ignored. The metal in greatest amount is indexed at an "element alloy base" heading parent.

Example (an alloy of $69.93 \%$ copper, $17.45 \%$ nickel, $10.29 \%$ aluminum, $1.50 \%$ cobalt, $0.83 \%$ iron):

## Copper alloy, base <br> Cu 70,Ni 17,Al 10,Co 1.5,Fe 0.8

Binary alloys of 50-50\% composition are indexed at the base heading for the metal with the earliest alphabetical element symbol.

If ranges, rather than specific compositions, are supplied in the original document for all or some components, they are cited thus: $\mathrm{Cu} 68-73$, Ni 16-18, Al $9-10$, Co 1-2,Fe 0.7-1. Alloys of unknown percentage composition are entered only at nonbase headings, unless the base component is known.

Example: (An alloy of iron and thulium, base component unknown)

## Iron alloy, nonbase

## Fe,Tm

The symbols are cited in alphabetical order, except that the base element is placed first if known; e.g., $\mathrm{Al}, \mathrm{Co}, \mathrm{Fe}, \mathrm{Ni}$ or (for a cobalt base alloy) $\mathrm{Co}, \mathrm{Al}, \mathrm{Fe}, \mathrm{Ni}$.

Alloys with trade names or code designations (other than standards) sometimes vary in reported composition; therefore, the numerical values are omitted from the entries. The base metal symbol is placed first and the others in alphabetical order; finally, the trade name or code designation is cited in parentheses. If only the base metal is known, the parenthetical expression alone is cited in the modification.

Examples:

## Copper alloy, base <br> $\mathbf{C u}, \mathrm{Fe}, \mathrm{Ni}$ (Cunife I)

## Nickel alloy, base

## (Permalloy)

Numerical values are included in entries for trade-named alloys of fixed composition and for those identified by the following U.S. standards: AA, AISI, AMS, ASTM, AWS, CDA, SAE, and UNS. The international standards of ISO and the standards of most other countries are also recognized for the purpose of $C A$ indexing of alloys.

Cermets are alloys containing nonmetals. They are indexed at metal alloy headings or at nonmetal headings with "alloy" in the modification depending on the composition.

Example (a cermet containing tungsten carbide (WC) 94\%, cobalt 6\%):

## Tungsten carbide (WC)

alloy, WC 94,Co 6
Alloys containing gases ( $0.1 \%$ or more) are indexed similarly.
Example:

## Nickel alloy, base Ni 99,H 1

Steel is a heading parent for iron-carbon alloys so described and either containing a minimum of $97 \%$ iron or having no disclosed compositions. The steel composition or a designation (such as AISI 1017) which implies the composition is cited in the modification.

## Examples:

## Steel

(AISI 1017)

## Steel

Fe 98,Mn 1.5,Si 0.5,C 0.1
Isotopically labeled alloys are distinguished by the mass number on the element symbol.

Example:

## Aluminum alloy, base Al $95,{ }^{235}$ U 5

215. Coordination compounds are molecules or ions in which a central atom (in polynuclear compounds, more than one) has atoms or groups of atoms, called ligands, attached to it to the extent of its coordination valency. The central atom may be of any element, but it is usually a metal atom. The metals comprise all elements except the following: Ar, As, At, B, Br, C, Cl, F, He, H, I, Kr, Ne, N, O, P, Rn, Se, Si, S, Te, Xe. (Prior to CA Volume 95 (see I[ 101), antimony was also indexed as a nonmetal.) Compounds of nonmetals are generally not indexed as coordination compounds, but there are several exceptions, e.g., tetra- and hexavalent sulfur compounds (II 200), and borates containing ligands other than oxo and hydroxy. Hydride derivatives of antimony, bismuth, germanium, tin, and lead are named not as coordination compounds but as covalent derivatives of the hydride heading parents, e.g., Stibine, Germane (IIII 181, 199).

A ligand is any atom or group of atoms, charged or neutral, that is attached to the central atom of a coordination complex. The atoms of a ligand that are attached to the central atom are called coordinating atoms regardless of the type of bonding involved. A ligand with more than one coordinating site is described as multidentate; when more than one such site is engaged with a single central atom, it is a chelate ligand; when it is coordinated with two or more central atoms it is a bridging ligand.

Neutral compounds with monoatomic ligands (except hydride) and mononuclear carbonyls and nitrosyls are given binary salt names. Common oligomeric salts are named in the monomeric form, e.g., Aluminum chloride $\left(\mathbf{A l C l}_{\mathbf{3}}\right)$, but studies of the dimers, etc., are indexed additionally at the oligomeric names, e.g., Aluminum, di- $\mu$-chlorotetrachlorodi-.

Coordination compounds may be anionic, neutral, or cationic, in accordance with the oxidation state of the central atom and the number and nature of the ligands; when the latter are derived from the molecular skeletons of substitutive nomenclature, including nonmetal hydrides, by loss of hydrogen, they are considered negative in computing the total charge of the complexes containing them. This charge is expressed by a Ewens-Bassett number, e.g., (3+) or (2-), placed after the heading parent derived from the name of the central element; thus, Copper(1+), Borate(2-). Absence of a Ewens-Bassett number indicates that the complex expressed by the complete boldface heading is neutral. Ligands are cited in alphabetical order and their ligating atoms are identified by a modification of the Kappa system ${ }^{1}$. The periodic table symbol of the ligated atom is stated as an italic capital-letter locant preceeded by the greek letter kappa, e. g. $\kappa N, \kappa O^{1}, \kappa S^{1}$. These letter locants are placed at the portion of the name corresponding to their attachment on the coordination center. Letter locants are not cited with (a) regular substituent prefixes, e.g., methoxy, phenyl, 2-pyridinyl; (b) other sigma-bonded ligands in which hetero atoms are either absent or uninvolved in the coordination; (c) monoatomic ligands, e.g., hydro, iodo; ( $d$ ) ligands with unspecified bonding; $(e)$ neutral and monoanionic organic ligands derived from cyclic or acyclic compounds containing only one hetero atom capable of coordination, e.g., triethyl phosphine, pyridine, $N, N-$ dimethylmethanamine, $N$-methylmethanaminato, provided that the hetero atom is coordinated but no carbon atom is also bonded; (f) the following simple polyatomic inorganic ligands: amido, ammine, aqua, selenyl, telluryl, hydroxy, imido, mercapto, phosphino, and (except sometimes when present as bridges) azido, carbonyl, dinitrogen, dioxygen, nitrosyl, peroxy, and carbonothioyl.

[^9]The preferred Chemical Substance and Formula Index entries for coordination compounds are made at the central element names (or the derived "-ate" names) as discussed above.

## Example:

Cobalt(1+), (5,12-dimethyl-1,4,8,11-tetraazacyclotetradeca-
4,11-diene- $\left.\kappa N^{1}, \kappa N^{4}, \kappa N^{8}, \kappa N^{11}\right)$-,
(SP-4-1)-, [131154-44-4]


Cationic complexes are highest in order of precedence (II 106) among coordination compounds. (A positive element heading, e.g., Phosphorus(1+), is ranked just above the corresponding "-onium" heading, e.g., Phosphonium.) Neutral complexes are lower in the order of precedence, followed by anionic coordination compounds. For mixed polynuclear complexes, the preferred element (or derived "-ate") heading is that appearing earliest in the following list: $\mathrm{Rn}, \mathrm{Xe}, \mathrm{Kr}, \mathrm{Ar}, \mathrm{Ne}, \mathrm{He}, \mathrm{Fr}, \mathrm{Cs}, \mathrm{Rb}, \mathrm{K}, \mathrm{Na}, \mathrm{Li}, \mathrm{H}, \mathrm{Ra}, \mathrm{Ba}, \mathrm{Sr}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Be}$, (Lr to Ac), (Lu to La), Y, Sc, Hf, Zr, Ti, Ta, Nb, V, W, Mo, Cr, Re, Tc, Mn, Os, $\mathrm{Ru}, \mathrm{Fe}, \mathrm{Ir}, \mathrm{Rh}, \mathrm{Co}, \mathrm{Pt}, \mathrm{Pd}, \mathrm{Ni}, \mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Hg}, \mathrm{Cd}, \mathrm{Zn}, \mathrm{Tl}, \mathrm{In}, \mathrm{Ga}, \mathrm{Al}, \mathrm{B}, \mathrm{Pb}$, $\mathrm{Sn}, \mathrm{Ge}, \mathrm{Si}, \mathrm{C}, \mathrm{Bi}, \mathrm{Sb}, \mathrm{As}, \mathrm{P}, \mathrm{N}, \mathrm{Po}, \mathrm{Te}, \mathrm{Se}, \mathrm{S}, \mathrm{O}, \mathrm{At}, \mathrm{I}, \mathrm{Br}, \mathrm{Cl}, ~ \mathrm{~F}$.

Many ligand names correspond to those of the substituent prefixes of general nomenclature. They include hydro, chloro (etc.), oxo, thioxo, hydroxy, mercapto, peroxy, diazenyl, sulfo. Among ligand names which differ are the following: superoxido $\left(\mathrm{O}_{2}-\right)$, amido ( $\mathrm{H}_{2} \mathrm{~N}-$ ), imido ( $\mathrm{HN}=$ ), chloramido ( $\mathrm{ClHN}-$ ), nitrido ( $\mathrm{N} \equiv$ ), phosphido ( $\mathrm{P} \equiv$ ), arsenido ( $\mathrm{As} \equiv$ ).
"Ato" ligand names are employed to express loss of hydrogen from inorganic "oxo" acids named as "-ic acids" and their chalcogen analogs. Those named as "-ous acids" correspondingly afford "-ito" ligands. Loss of one, two, etc., protons from polybasic acids is expressed by Ewens-Bassett numbers (loss of one hydrogen atom from most other classes of compounds is denoted simply by omission of a Ewens-Bassett number). Letter locants (see above) are sometimes employed. "Ato" and "ito" ligand names are always placed in enclosing marks.

Examples:

${ }^{-} \mathrm{O}-\mathrm{PF}(\mathrm{O})-\mathrm{O}^{-}$	[phosphorofluoridato(2-)]
$\mathrm{O}_{3} \mathrm{ClO}^{-}$	(perchlorato)
${ }^{-} \mathrm{OSO}_{2} \mathrm{O}^{-}$	[sulfato(2-)]
${ }^{-} \mathrm{OS}(\mathrm{O}) \mathrm{O}^{-}$	[sulfito(2-)]
$-^{-} \mathrm{O}_{2} \mathrm{~N}-$	(nitrito- $\kappa N$ ) (not nitro)
${ }^{-} \mathrm{O}=\mathrm{NO}-$	(nitrito-кO) (not nitrito)
${ }^{-} \mathrm{O}-\mathrm{N}=\mathrm{N}-\mathrm{O}^{-}$	[hyponitrito(2-)]
$\mathrm{OP}\left(\mathrm{O}^{-}\right)_{3}$	[phosphato(3-)]

The following cyanato radicals are employed:
-OCN-
(cyanato- $\kappa N$ ) (not isocyanato)
-NCO-
(cyanato- $\kappa O$ ) (not cyanato)
and similarly for thiocyanato, etc. Oxo acids which require synonym line formulas at their own heading parents are given more specific names when converted into ligands, e.g., [monothiosulfato(2-)], [trimetaborato(3-)].

Anionic carbon-attached ligands containing no anionic hetero-atom attachments to the metal, and acyl ligands containing no anionic hetero-atom attachments except for the acyl portion, are given names identical with those of normal substituent prefixes, e.g., ethyl, 2-pyridinyl, $1 H$-imidazol-2-yl, (phenylsulfonyl). Phosphino, phosphinyl and (phenylazo) radicals are also used. Anionic ligands derived from heterocycles by loss of a proton only from a hetero atom in the ring, and containing no additional hetero atoms in the ring or substituents, are also named by substituent prefixes, e.g., 1-piperidinyl. All other anionic heterocyclic ligands are given "ato" names; they include porphines, phthalocyanines, corrins, other heterocycles containing rings of more than ten members, and heterocyclic ligands containing more than one hetero atom (including substituents). Unsubstituted phenoxy and also methoxy through (dodecyloxy) radicals are used to express these ligands, but the chalcogen analogs and the substituted oxy radicals are named (chloromethanolato), (2-propanolato) (not (1-methylethoxy)), (ethanethiolato), etc. Organic "-ic acids" and organophosphorus acids afford ligand names in which "-ic acid" or "-ous acid" is replaced by "-ato" or "-ito", respectively. Ligands from esters are named in uninverted form. The "ato" suffix denotes loss of one proton in all cases unless a Ewens-Bassett number, e.g., "(2-)," is cited.

Examples (letter locants are added to many of these names in particular coordination names; e.g., (acetato- $\left.\kappa O, \kappa O^{\prime}\right)$ ):

${ }^{-} \mathrm{O}_{2} \mathrm{C}^{-}$	(carboxylato) (this is an exception: not [carboxylato(2-)])
$\mathrm{AcO}^{-}$	(acetato)
${ }^{-} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}$	[acetato(2-)]
$\mathrm{Ph}_{2}(\mathrm{O}) \mathrm{P}-$	(diphenylphosphinyl)
$\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{O}^{-}$	(diphenylphosphinito)
	[1,2-benzenediolato(2-)]
${ }^{-} \mathrm{O}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2}{ }^{-}$	[pentanedioato(2-)]
$\mathrm{AcO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}^{-}$	(2-hydroxyethyl acetato) (an ester is named in its uninverted form)
$\mathrm{MeO}-\mathrm{S}(\mathrm{O})_{2}-\mathrm{O}^{-}$	(monomethyl sulfato) (derived from methyl hydrogen sulfate)
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	(methyl glycinate) (derived from glycine methyl ester)

Metal radical names (II 194) such as aluminio, aurio, and sodio, are used in the presence of higher compound classes or more preferred metals when the metal replaces a single hydrogen, but not to "place" a metal directly on another metal (see polynuclear complexes, below); e.g., Ethyl, 2-sodio- (a free-radical name); Potassium, (5-lithio-1-naphthalenyl)-. Because metal radicals carry no implication of valency, hydrogen and other attached atoms and groups must be expressed, e.g., dihydroaluminio for $\mathrm{H}_{2} \mathrm{Al}$-.
$\pi$-bonded ligands, and ligands attached to metal atoms by both $\pi$ and $\sigma$ bonds, are named by prefixing the Greek letter $\eta$ (eta). (Delocalized bonds are "fixed" for the purpose of naming the ligand so that lowest locants are given first to the point of attachment, then for unsaturation, etc.) Locants (if available) for atoms contributing to the ligand-metal bonding are cited ahead of " $\eta$ " and the entire descriptor so formed is enclosed in parentheses; alternatively, if all the skeletal atoms of an unsubstituted conjugated acyclic or cyclic molecule or radical are involved, a superscript denoting the number of such atoms is cited immediately after " $\eta$ " and the locants are omitted. Ligands with negative charges on adjacent hetero atoms are named instead as the neutral unsaturated compounds. $\sigma$-bonded ligands are named as regular radicals, e.g., 2,4 -cyclo-pentadien-1-yl. (The name cyclopentadienyl is used without locants in the absence of further information.)

Examples:
(1,2,3- $\eta$ )-2,4-cyclopentadien-1-yl$\left(\eta^{5}-2,4\right.$-cyclopentadien-1-yl)


[(1,2,3,3a- $\eta)$-azulene]


In polynuclear compounds (see below) a colon partitions the locants into sets to indicate bonding to different metal atoms.

Examples:


$[\mu-[(1,2-\eta: 2,3-\eta)-1,2$-propadiene $]]$

Cationic molecules (II 184) are named in the unchanged (but uninverted) form when present as ligands, except that a Ewens-Bassett number denotes the charge when necessary; e.g., oxonium, [hydrazinium(1+)], [hydrazinium( $2+$ )], (1-methyl-4-aza-1-azoniabicyclo[2.2.2]octane). When protons have been lost from hetero atoms of such ligands, "ato" names are used.

Example:

$$
\xrightarrow[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}^{-}]{\stackrel{\mathrm{NH}}{\mathrm{Me}_{2} \mathrm{~N}}+}
$$

Enclosing marks are used with all "ato" ligand names, and with ligands, like (cyano-C), that have letter locants; "bis," etc., (rather than "di," etc.) are used to indicate two or more, e.g., bis(benzoato). When a Ewens-Bassett number is also present, the "ato" name is bracketed, e.g., [tetrahydroborato(1-)]. When such a ligand name includes a multiplicative radical (\$I 125), it is closed off and followed by the Ewens-Bassett number, which in this case may be (1-), and the total name bracketed.

Example:

[ [2,2'-[1,3-propanediylbis(nitrilo-methylidyne)]bis[phenolato]](1-)]

Ligands from dioximes, trihydrazones, etc., are expressed by enclosing the name and then citing the Ewens-Bassett number (which may be (1-) in this case also) to indicate the number of protons lost; e.g., [(2,3-butanedione diox-imato)(1-)].

Neutral ligands are enclosed by parentheses or brackets (as required), except for ammine, aqua, carbonyl, and nitrosyl, e.g., (dinitrogen), (phosphine), (benzene); they are multiplied by "bis," "tris," etc.

Anionic mononuclear complexes are indexed at "-ate" headings derived from the name of the central element, e.g., Borate, Cuprate. The total charge of the complex anion is cited by a Ewens-Bassett number, and in the inverted part of the name the ligands are cited in alphabetical order. All cations are named in the modification in alphabetical order, except that hydrogen is placed last. Multiplicative terms are used with univalent cations if necessary, but when multivalent cations are present, ratios are employed for all. For metals of variable valency, Ewens-Bassett numbers are cited after their names.

Examples:


Aluminate(3-), hexafluoro-
disodium hydrogen, (OC-6-11)-
(For the significance of the final
term, see II 203III.)


Ferrate(4-), hexakis(cyano-кC)ammonium copper(2+) (1:2:1), (OC-6-11)- (Note that the ratio is expressed in the same order as the index name, i.e., first the heading, then the modification terms.)


Anionic mononuclear complexes which contain simple anions as well as simple cations are named at the complex anion heading as shown above. The cations are named in the modification, followed by the simple anions. Thus Borate(1-), tetrahydro-, europium(2+) bromide ( $1: 1: 1$ ). When a complex or organic cation is present, this receives the preferred entry.

Example:
$\mathrm{Li}_{4}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]_{8}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{7} \quad$ Cobalt( $3+$ ), hexaammine-
(OC-6-11)-, lithium (OC-6-
11)-hexakis(cyano-кC)ferrate(4-) (8:4:7)
Ferrate(4-), hexakis(cyano-кC)-
(OC-6-11)-, (OC-6-11)-hexa-
amminecobalt(3+) lithium (7:8:4)
When more than one complex anion is present, the choice is determined first by the preferred central element (see above); then by the highest numerical value, e.g., Antimonate(3-) preferred over Antimonate(1-); finally, by the earliest index position of the entire entry.

Example:


Antimonate (3-), hexabromo-(OC-6-11)-, ammonium (OC-6-11)-hexabromoantimonate(1-) (1:4:1)

Antimonate(1-), hexabromo-(OC-6-11)-, ammonium (OC-6-11)-hexabromoantimonate( $3-$ ) (1:4:1)

Complexes that contain ligands with uncoordinated acid functions, e.g., carboxylic acids or inorganic oxo acids, are named as though all acidic protons were dissociated from the uncoordinated groups; the cations and acid hydrogens are then cited in the modification.

## Examples:



Germanate(3-), hydroxybis-[phosphato(3-)- $\left.\kappa O, \kappa O^{\prime}\right]$ sodium dihydrogen


Cuprate(4-), $[29 H, 31 \mathrm{H}$-phthalo-cyanine-2, $9,16,23$-tetrasulfonato( $6-$ - $\left.-\kappa N^{29}, \kappa N^{30}, \kappa N^{31}, \kappa N^{32}\right]$ tetrasodium, $(S P-4-1)$ - (not Copper, [29H,31H-phthalocyanine-2,9,16,23-tetrasulfonato(2-)$\left.\kappa N^{29}, \kappa N^{30}, \kappa N^{31}, \kappa N^{32}\right]-$ tetrasodium salt)

Cationic mononuclear complexes are indexed at the central element names with a Ewens-Bassett number to indicate the total charge on the cation. The ligands are cited in the inverted part of the heading in alphabetical order, the associated anions (if any) in the modification; ion terms, e.g., "ion(1+)," are not cited. Univalent anions are prefixed by "di," "tri," etc., if necessary; ratios are used with multivalent anions and with mixtures of anions and cations, the first numeral relating to the heading cation, the others to the modification terms in sequence. The Formula Index headings exclude the atoms expressed by modification terms. Additional Chemical Substance and Formula Index entries will be found for the anions except for the common anions listed in 厅I 198.

Example:


Cobalt(1+), bis[[(2,3-butanedione di(oximato- $\kappa N)](1-)] b i s(m e-$ thanamine)-
( $O C$-6-11)-, ( $O C$-6-11)-hexakis-
(cyano-кC)ferrate (3-) (3:1)
Ferrate(3-), hexakis(cyano- $\kappa C$ )( $O C-6-11$ )-, ( $O C-6-11$ )-tris[bis[ $[($ 2,3-butanedione di(oximato)- $\kappa N)$ ] (1-)- $\left.\left.N, N^{\prime}\right]\right]$ bis(methanamine)cobalt(1+)]

Cationic complexes containing both complex mononuclear cations and simple cations are indexed at the names of the former; associated complex anions are also indexed as usual.

Example:

## $\mathrm{Li}_{2} \mathrm{H}_{2}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]_{8}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{7}$

Cobalt(3+), hexaammine( $O C-6-11$ )-, lithium hydrogen (OC-6-11)-hexakis(cyano$\kappa C)$ ferrate (4-) (8:2:2:7)
Ferrate(4-), hexakis(cyano- $\kappa C$ )( $O C$-6-11)-, (OC-6-11)-hexaamminecobalt (3+) lithium hydrogen (7:8:2:2) (additional Chemical Substance and Formula Index entry)

When more than one complex cation is present in a compound, the choice of preferred index entry is based on the nature of the central atom (see above for precedence list of elements), e.g., the heading parent Platinum(2+) is preferred over Palladium(3+). If the elements are alike, the complex with the higher positive charge is preferred. Additional entries for other complex cations, and for anions and ligands, appear as usual.

Example:



Platinum(2+), bis(1,2-ethanedi-amine- $\left.\kappa N, \kappa N^{\prime}\right)-$, ( $(S P-4-1)$-, di-chlorobis(1,2-ethanediamine$\kappa N, \kappa N^{\prime}$ )platinum(2+) perchlorate (1:1:4)
Platinum(2+), dichlorobis(1,2-ethanediamine- $\left.\kappa N, \kappa N^{\prime}\right)$-, ( $(S P-4$ -1)-bis(1,2-ethanediamine- $\kappa N$,$\kappa N^{\prime}$ )platinum(2+)
perchlorate (1:1:4)

Neutral mononuclear coordination complexes are indexed at the central element names without a Ewens-Bassett number.

Example:


Copper,bis[4-fluoro-2-(hydroxy$\kappa O$ )benzaldehydato- $\kappa O$ ]-

Neutral complexes with internal charge compensation, e.g., with ligands which are ylides, inner salts, etc., are named according to structures provided in the original documents.

Example:

Iron, trichloro(1-methyl-4-aza-1-azoniabicyclo[2.2.2]octane- $\kappa N^{4}$ )-
Copper, diaqua[4-[1,3-dioxo-3-phenylpropyl]benzenesulfo-nato(2-)- $O^{4}, O^{4^{\prime}}$ ]-


Manganese, dicarbonyl[(1,2,3,4,5- $)$ -1-methyl-2,4-cyclopentadien-1-yl] [trimethylphosphonium (1- $)$ -phenylmethylide]-

Boron(1+), (2,2'-bipyridine- $\kappa N^{1}, \kappa N^{1}$ )-(oxydi-2,1-phenylene)-T-4)perchlorate

Metallocenes (dicyclopentadienyl metal complexes in which all carbon atoms of the cyclopentadiene rings contribute to the metal-ligand bondings) are indexed at the parents Ferrocene, Nickelocene, Cobaltocene, Osmocene, Ruthenocene, etc.

Example:


Ferrocene, 1,1'-dichloro-

When additional ligands or ring systems more complex than cyclopentadiene are present, the compounds are indexed at the names of the central metals. All positions of each cyclopentadiene ring are considered equivalent, and substituents are assigned lowest locants without regard to attachment of the metal. In order of precedence, metallocenes are ranked with the neutral coordination complexes (\$1 106), Ferrocene, for example, being placed just below Iron as an index parent. Radical names, e.g., ferrocenyl, $1,1^{\prime}$-ferrocenediyl, can be formed.

Example:


Mercury, [(2-(acetyl- $\kappa O)$ ferrocenyl$\kappa C$ chloro-

Suffixes are not attached to metallocene heading parents, and conjunctive names are not derived from them; thus, Ferrocene, carboxy- (not Ferrocenecarboyxlic acid); Ferrocene, 1,1'-bis(carboxymethyl)- (not 1,1'-Ferrocenediacetic acid). Bridged derivatives are named by use of bivalent substituent prefixes.

Example:


Ferrocene, $\mathbf{1 , 1}^{\prime}: \mathbf{3 , 3} \mathbf{3}^{\prime}$-bis(1,3-propanediyl)-

The cationic analog of Ferrocene is named Ferrocenium. Example:

$1,1^{\prime \prime}: 1^{\prime}, 1^{\prime \prime \prime}$-Biferrocenium(2+)

Polynuclear coordination complexes may have (a) direct linkages between the central metal atoms; (b) bridging ligands connecting them; $(c)$ both kinds of linkages. A bridging ligand is designated by the Greek letter $\mu(\mathrm{mu})$; when it binds more than two central atoms, a subscript is cited with it, e.g., $\mu_{3}$. When the ligand name itself requires enclosing marks, an extra set is employed for the $\mu$-ligand, otherwise none are used; e.g., $\mu$-chloro, $\left[\mu\right.$-(acetato-к $\left.\left.O: \kappa O^{\prime}\right)\right]$. A $\mu$-ligand is cited just ahead of the same ligand without the prefix, disregarding in the ordering process any accompanying letter locants, e.g., [ $\mu$-(acetato$\left.\left.\kappa O: \kappa O^{\prime}\right)\right]-($ acetato- $O$ ). Colons within letter-locant sets indicate the distribution of bonds from a bridging ligand to individual metal atoms.

Bridging ligands are not treated as multiplying radicals; i.e., the total of nonbridging ligands on all nuclear atoms is indicated directly. The number of nuclear atoms is indicated, after citation of all ligands, by "di," "tri," etc. Let-ter-locant sets are partitioned by colons. The cyclic structure of an oligomeric complex is indicated by "cyclo" as the first term in the modification. Direct linkages between like or unlike metals are always indicated, if known, by such terms as " $\mathrm{Fe}-\mathrm{Fe})$ " or " $(\mathrm{Co}-\mathrm{Re})$," whether or not bridging ligands are present. (In more complicated cases the total number of various bondings is expressed in terms such as " $(3 \mathrm{Co}-\mathrm{Co})(3 \mathrm{Co}-\mathrm{Fe})$. .") For "cluster" compounds, in which three or more central atoms form a core, the geometrical descriptors triangulo, tetrahedro, or octahedro are assigned if the information is available.The term cluster is used for 13 or more direct metal linkages.

The entry is made at the name (or derived "-ate" term) of the preferred metal, e.g., Cobalt, Cobalt(2+), Cobaltate(1-); other metals with their associated ligands are named as complex ligands of the preferred atom(s). These complex ligands are placed in a single alphabetical sequence with bridging and nonbridging ligands bonded to the preferred metal. (Metal radicals, e.g., cobaltio, mercurio, are not used in naming polynuclear complexes.)

Examples:


Iron, hexacarbonylbis $[\mu$-(ethane-thiolato)]di-
( $\mathrm{Fe}-\mathrm{Fe}$ )



OC
Chromium, tricarbonyl $\left[\mu-\left[\eta^{5}: \eta^{6}\right.\right.$ -1-(1-oxo-3-phenyl-2-propen-yl)-2,4-cyclopentadien-1-yl]](tricarbonylmanganese)-
$(\mathrm{MeHg})_{4} \mathrm{~S}^{2+}$
Mercury(2+), tetramethyl- $\mu_{4}$-thi-oxotetra-


Chromate(1-), pentacarbonyl-(pentacarbonylmanganate)-(Cr-Mn)
(Note: The "-ate" ending is used in all central atoms names in anionic complexes)


Iridium, dodecacarbonyltetra-, tetrahedro


Polynuclear complexes with extended structures caused by bridging ligands are indexed at monomer headings, with a modification term such as "homopolymer." Bridging ligands within the monomeric unit are named as usual, but those which bind the units to one another are not named by use of the " $\mu$ " prefix.

Examples:


Cuprate(1-), trichloro-, cesium
homopolymer


Coordination compounds of indefinite structure are indexed (if the formula is unknown) at the organic ligand (if one is present) and at each metal "compounds" heading. These entries in the Chemical Substance Index are of a general nature and describe the entire series of complexes studied.

Example:
Pyridine, 2,6-dimethyl-
platinum complexes [if complexes with no other metal were studied]

## Platinum, compounds

2,6-dimethylpyridine complexes [or "alkylpyridine complexes" or "nitrogen heterocycle complexes," etc., as appropriate]

A polynuclear coordination complex of known formula but unknown structure is indexed at the heading parent for the most preferred central element (or its "-ate" term). The ligands are cited in the inverted part of the heading in alphabetical order, followed by the less preferred metals (or their "-ate" terms) in descending order of precedence.

Examples:

$$
\mathrm{AlTiCl}_{2} \mathrm{Et}_{2}(\mathrm{OH})_{2}
$$

Titanium, dichlorodiethyldi-hydroxy(aluminum)-
$\left[\mathrm{AgAuCl}_{6}\right]^{2-}$
Aurate(2-), hexachloroargentate-

$$
\left[\mathrm{Nb}_{6} \mathrm{O}_{3}\left(\mathrm{SO}_{4}\right)_{12}\right]^{8-}
$$

Niobate( $\mathbf{8}^{-}$), trioxododecakis[sul-fato(2-)]hexa-

$$
\left[\mathrm{Cu}_{4}(\mathrm{OH})_{5}\left[\mathrm{~N}\left[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right]_{3}\right]_{4}\right]^{3+}
$$

## Copper(3+), pentahydroxytetrakis $\left[2,2^{\prime}, \mathbf{2}^{\prime \prime}\right.$-nitrilotris[eth-anol]]tetra-

216. Dyes of established structure are indexed at their systematic names by the regular rules of substitutive nomenclature. For most classes of dyes a crossreference will be found in the Index Guide at the Colour Index (C.I.) name, and the C.I. name is also used as a synonym (in the Index Guide and Chemical Substance Index) at the systematic name. The Colour Index ${ }^{2}$ is employed as the chief reference source for the chemical constitution of trade-named dyes.

A dye of unknown structure is indexed at the C.I. name if this is available, otherwise only at a trade name or other designation used in the original document. When the Colour Index shows an indefinite structure, the systematic name is still used if this can be done by omission of one or more locants or by use of alternative locants, e.g., "5(or 6)-chloro-."

Example:


Deliberate mixtures (\$I 221) of dyes with known structures are indexed at each component with a "mixt. with" modification. Reaction products are not considered to be deliberate mixtures.

When an author supplies a structure for a trade-named dye which has been assigned a C.I. name but no constitution in the Colour Index, an entry will be found at the systematic name for the author's structures, and a separate entry,

[^10]in the Chemical Substance Index only, at the C.I. name. The cross-reference continues to be based on Colour Index information; i.e., it runs from the trade name to the C.I. name as usual. If a trade name (or common name) is not listed in the Colour Index, the author's information (a C.I. number or name, or a structure) is used to make the index entry, cross-references and synonym.

Cyanine dyes (methines) are indexed systematically. Because the location of the charge may be shown differently in different documents, the preferred ring system (II 138) is selected as the site of the quaternized center in every case and, if further criteria are needed, the structure named is chosen to conform to the principles of maximum number of substituents, lowest locants, and earliest index position.

Example (name in original document: $3^{\prime}$-ethyl-3-methyl-8-phenoxythiacarbocyanine iodide):


Benzothiazolium, 2-[3-(3-ethyl-2( 3 H )-benzothiazolylidene)- 1 -phenoxy-1-propenyl]-3-methyliodide

Fluoresceins, phthaleins, and sulfonephthaleins have tautomeric structures in which a heterocyclic ring may be considered closed or opened, with generation of a carboxyl or sulfo group.

Example (fluorescein):


Spiro[isobenzofuran-1(3H), $\mathbf{9}^{\prime}$ $[9 H]$ xanthen]-3-one, $3^{\prime}, 6^{\prime}-\mathrm{di}$ hydroxy-


Benzoic acid, 2-(6-hydroxy-3-oxo- 3 H -xanthen-9-yl)-

These compounds and their derivatives, including metal salts, are named in the closed forms unless a covalently bound derivative of the acid group, e.g., an ester or amide, is present. The preferred (closed) forms are indexed as shown by the following cross-references:

Fluorescein.	See Spiro[isobenzofuran- $1(3 H), 9^{\prime}-[9 H]-$ xanthen]-3-one, $3^{\prime}, 6^{\prime}$-dihydroxy-
Phenolphthalein.	See $1(3 H)$-Isobenzofuranone, 3,3-bis(4-hydroxyphenyl)-
Sulfonefluorescein.	See Spiro[3H-2,1-benzoxathiole-3, ${ }^{\prime}$-[9H]-xanthene]-3', $6^{\prime}$-diol, 1,1-dioxide
Phenolsulfonephthalein.	See Phenol, 4,4'-(1,1-dioxido-3H-2,1-benzox-athiol-3-ylidene)bis-

Azo dyes from pyrazolines and from acetoacetanilide derivatives are indexed as the keto rather than the enol forms.

Cationic resonance-stabilized diamino derivatives of phenazine, phenoxazine, phenothiazine, xanthene, etc., are generally indexed as possessing the cation within the ring.

Lakes are pigments which comprise insoluble salts of soluble dyes. They are indexed at the systematic names, e.g., as calcium or barium salts at the acid heading parent, if the constitution is known. The structure of a transition-metal lake is usually not precisely defined; when it is, a coordination name (II 215) is used; otherwise it is indexed at a C.I. name (if such a name has been assigned to the lake itself) or at trade names.

New dyes, as reported in patent specifications, are indexed at systematic names, including coordination names (for metal complexes of precisely stated structure).

Zinc chloride double salts cause an indexing problem, both because the same dye can be used in the zinc-containing and zinc-free forms, and because the toxicity of soluble zinc salts renders misindexing a serious matter. The
presence of zinc is never assumed; it is excluded from cross-references at C.I. names and included in index entries for a specific trade-named dye only when it is listed in the Colour Index as a zinc salt, or when its presence is indicated by an original document. When a ratio is known, the appropriate entry can be made both at the cationic heading, e.g., Benzenediazonium, and at the anion, e.g., Zincate(1-), trichloro-, or Zincate(2-), tetrachloro-. Otherwise it is indexed as a molecular addition compound (II 192) of the "-ium" chloride and Zinc chloride $\left(\mathbf{Z n C l}_{2}\right)$ with no ratio cited at either heading.

Sulfur dyes seldom have a known constitution. The preferred entry is a C.I. name, if available; otherwise the trade name is indexed, or, as a last resource, the starting material, e.g., Phenol, 4-amino-, sulfur dyes from.
217. Elementary particles and their atomic and molecular states are indexed as chemical substances. Elementary particle names follow a systematic scheme. ${ }^{3}$ In this scheme, a given letter (Roman or Greek, upper or lower case) is used in the context of a given set of quantum numbers. This scheme replaces the haphazard assignment of letters used previously. These particles may be subdivided as follows:
(a) Particle classes; e.g., Bosons, Fermions, Leptons, Hadrons, Baryons, Mesons, Hyperons, Nucleons, Tachyons, Quarks. These terms are employed as General Subject Index headings.
(b) Particles with symbols but no reported mass; e.g., $\Sigma$-Hyperon, $\pi$-Meson, Muon, Alpha particle, Beta particle, Neutron, Proton, Neutrino, Deuteron, Tau particle. The index headings have the form Meson, $\pi$, in which the particle symbol appears in the heading after the name.
(c) Particles with unique symbols and masses; e.g., Hyperon $\Lambda(2100)$, Positive Muon, $\pi^{+}-\operatorname{Meson}(140)$. The index entries are of the form Muon, $\mu^{+}(106)$ and Meson, $\pi^{+}(140)$.
(d) Particle resonances without reported masses; e.g., Meson resonance $K^{+} \pi$, Nucleon resonance $\Delta$, Nucleon resonance $N^{*}$. The index entry corresponds to the information available, e.g., Nucleon, resonance; Nucleon, resonance $\Delta$. For multiple resonances, more than one Chemical Substance Index entry appears; e.g., Meson, $K$, resonance $K \pi \pi$; Meson, $\pi$, resonance $K \pi \pi$.
(e) Particle resonances with reported masses.

Examples of index entries:

## Nucleon

resonance $N^{*}$ (2040)
Meson, $K$
resonance $K^{+} K^{+}(\mathbf{1 2 8 0})$

## Meson, $K$

resonance $K N(\mathbf{1 7 8 0})$ (preferred entry)

## Nucleon

resonance $K N(\mathbf{1 7 8 0})$ (additional entry)
(f) Particles composed of nuclei of elements of less than $98 \%$ natural abundance; e.g., lithium-6, boron-10, are indexed in the modification at the element headings. Specific particles from isotopes of hydrogen and helium-3 and -4 are indexed at Proton, Deuteron, Triton, Tau particle, and Alpha particle, respectively. The zero-charge nucleon is indexed at Neutron.
Examples of index entries. (Notation in the original document: ${ }^{115} \mathrm{In}$ $\left.\left({ }^{7} \mathrm{Li}, 3 \mathrm{n}\right)^{1}{ }^{19 m} T e\right)$ :

Lithium, reactions
isotope of mass 7, indium-115 bombardment by
Indium, reactions
isotope of mass $\mathbf{1 1 5}$, bombardment of, by lithium-7
Tellurium, properties
isotope of mass 119, nuclear energy levels of, metastable, from lithium-7 bombardment of indium-115

## Neutron

from lithium-7 bombardment, of indium-115
In particle-particle and particle-nuclei interactions, all new particles and nuclei are indexed, otherwise, interactions of known particles and nuclei are indexed according to the author's emphasis.
(g) Particles of nuclei of elements of at least $98 \%$ natural abundance. Such particles are not named at the beginning of the modification at the element name.

Examples of index entries. (Notation in the original document: ${ }^{63} \mathrm{Cu}-$ $\left.\left({ }^{12} \mathrm{C}, \alpha p\right)\right)$ :

## Carbon, reactions

ions of carbon-12, copper- 63 bombardment by
Copper, reactions
isotope of mass 63, bombardment of, by carbon-12

[^11]
## Proton

from carbon-12 bombardment, of copper 63
Alpha particle
from carbon-12 bombardment, of copper 63
(h) Antielements and antiparticles are indexed at the element and particle names with "Anti-" as a prefix; the symbol (the usual one with a vinculum added) is cited in the heading after a comma, and the isotope number of the antielement is given in the modification; e.g., Antihelium, $\overline{\mathrm{He}}$, isotope of mass 4; Antiproton, $\overline{\mathrm{p}}$. The antielectron is indexed at Positron, and the negative muon and positive pion antiparticles are named as the particles of opposite charge, e.g., Meson, $\pi^{+}$; Muon, $\mu^{-}(106)$.
(i) Atomic and molecular states of elementary particles. General studies are indexed at such headings as Mesonic atom, $K$-Mesonic atom, and Muonic molecule. Specific atomic and molecular states are indexed at the element name ("compounds" category) or particle name.

Examples of index entries:

## 1. The original document describes the $K B e$ mesonic atom:

Meson, $K$
mesonic atom with beryllium ( $K \mathbf{B e}$ ) (preferred index entry)

## Beryllium, compounds

$K$-mesonic atom ( $K \mathbf{B e}$ ) (additional entry)
2. The original document describes the exotic combination of muonium with chlorine:

## Muon, $\mu$

leptonic mol. with chlorine ( $\mu^{+} e^{-} \mathbf{C l}^{0}$ ) (preferred index entry)
Chlorine
leptonic mol. $\left(\mu^{+} e^{-} \mathbf{C l}^{0}\right)$ (additional entry)
The atomic and molecular states of elementary particles are assigned the preferred entry at the particle name, with an additional entry for the atom or molecule.
(j) Muonium and positronium are used for the bound states $\left(\mu^{+} e^{-}\right)$and $\left(e^{+} e^{-}\right)$.
(k) Hypernuclei from hyperon interaction with atomic nuclei, and quark nuclei from quark binding in atomic nuclei are indexed in the Chemical Substance Index at the element name.

Examples:

## Helium

hypernucleus of helium-5
Helium
quark nucleus

$$
\left.q^{( }\left(2-\frac{1}{3}\right)^{\mathrm{He}}\right)^{1 / 3} 3^{+}
$$

218. Enzymes are indexed by $C A$ at the names recommended by the Nomenclature Committee of the International Union of Biochemistry (IUB) ${ }^{4}$ and Supplements as far as is compatible with $C A$ nomenclature and indexing practices. Each specific enzyme is assigned a CAS Registry Number which is cited after the preferred index name in the Chemical Substance Index, where entries are to be found, and also in the Index Guide at Enzyme Commission, where E.C. designations are listed as part of cross-references leading to the preferred names. The E.C. designations are four-figure sets, e.g., E.C. 2.6.1.2 for Alanine aminotransferase, in which the first figure denotes one of the six main classes based on the type of reaction catalyzed by the enzyme, the second and third figures indicate further classification, and the final figure is a unique enzyme identification number. Whereas the E.C. cross-references lead directly from designation to enzyme name, the reverse route can also be taken by the user. At Dehydrogenase in the Index Guide appears the cross-reference "For related subclasses, see E.C. 1." Such subclasses include Reductase, Oxidase, Hydrogenase, and Hydroxylase, all with E.C. 1 designations.

Names for enzymes may comprise (a) a trivial substrate name combined with an action term, e.g., Lactate dehydrogenase, which is indexed at Dehydrogenase, lactate (this is E.C. 1.1.1.27, at which designation a cross-reference can be found); (b) a substrate name and the suffix "-ase," e.g., Adenosine triphosphatase, which is indexed at Phosphatase, adenosine tri-; (c) a name, similar to those in (b), but from which a heading parent expressing the enzyme action cannot be readily separated, e.g., Asparaginase, which is indexed at this name; and (d) other single terms which may describe the source, e.g., Papain, or the action, e.g., Lysozyme or Chymotrypsin; such enzymes (mainly proteinases) are indexed at these names.

Qualifying phrases, which form part of the total enzyme name, appear in parentheses in the boldface heading after the main part of the name and express coenzyme specificity, secondary enzyme activity, secondary product formed, etc. Sometimes more than one type of information is expressed in this way.

[^12]
## Examples:

## Dehydrogenase, malate (decarboxylating)

Synthetase, acyl coenzyme A (guanosine diphosphate-forming)
Dehydrogenase, glyceraldehyde phosphate (nicotinamide adenine dinucleotide phosphate) (phosphorylating)
General studies of enzymes, and new enzymes, will be found at Enzymes in the General Subject Index. When complete primary structural information (amino acid sequence) is reported for an enzyme, an entry with as much source specificity as possible is made, e.g., Pepsin A (human pancreas), and a separate CAS registration linked to the structural information is prepared.
219. Inorganic compounds are indexed at names based on United States usage and the recommendations of the International Union of Pure and Applied Chemistry. For elements 104-109, CAS follows the recommendations of the ACS Committee on Nomenclature: 104 - Rutherfordium(Rf); 105 - Dubnium (Db); 106 - Seaborgium (Sg); 107 - Bohrium (Bh); 108 - Hassium (Hs); and 109 - Meitnerium (Mt). For isotopically labeled inorganic compounds, see II 220.

Elements of atomic number higher than 109, prior to 1982, were indexed at such headings as Element 114. They are now named by a combination of three syllables derived from the atomic number, the numerals $0-9$ corresponding to the syllables nil, un, bi, tri, quad, pent, hex, sept, oct, and enn. The final " n " of enn is elided before nil, and the " $i$ " of bi and tri before ium, which is the invariant suffix.

Example:

## Ununquadium (formerly Element 114)

The initial letters of the first three syllables of the names provide the symbols from which synonym line formulas are derived for binary compounds of these superheavy elements.

Example:

## Ununquadium fluoride $\left(\mathbf{U u q F}_{\mathbf{4}}\right.$ ) (formerly Element 114 fluoride (1:4))

These index headings are not subdivided into categories (see Appendix II, II 10B) as is done for elements with established names (i.e., 1 through 109).

Elements reported or discussed without specific reference to atomic number are indexed at Elements in the General Subject Index. Class headings in the same index, e.g., Group IVA elements, Alkaline earth metals, Halogens, Helium-group gases, Platinum metals, Transition metals, are employed for general studies of varying specificity.

Molecular forms of the elements are indicated in the modification, except that hydrogen and its isotopes, and nitrogen, oxygen, and the halogens are assumed to be diatomic (unless the term "atomic" is cited). Examples: Sulfur, mol. ( $\mathrm{S}_{8}$ ); Oxygen; Hydrogen, atomic.

Uninverted salt-type heading parents are used to index binary compounds, double salts, mixed salts, and certain other ionic and simple covalent compounds. The electropositive (cationic) constituents are named first in alphabetical order, followed by electronegative (anionic) constituents in alphabetical order. In the case of binary compounds between nonmetals, that constituent is placed first which appears earlier in the following sequence: $\mathrm{Rn}, \mathrm{Xe}, \mathrm{Kr}, \mathrm{Ar}$, $\mathrm{Ne}, \mathrm{He}, \mathrm{B}, \mathrm{Si}, \mathrm{C}, \mathrm{As}, \mathrm{P}, \mathrm{N}, \mathrm{H}, \mathrm{Te}, \mathrm{Se}, \mathrm{S}, \mathrm{At}, \mathrm{I}, \mathrm{CN}, \mathrm{SCN}, \mathrm{Br}, \mathrm{Cl}, \mathrm{O}, \mathrm{O}_{2}{ }^{2-}, \mathrm{F}$, $\mathrm{N}_{3}{ }^{1-}$, OCN. (Elements not listed here are treated as metals; prior to the Tenth Collective Index (1977-1981) antimony was included among the nonmetals.) For monoatomic anions, the ending "-ide" is cited. When a binary compound contains only nonmetals, the same sequence determines the order of the total name, e.g., Silicon carbide (SiC).

A synonym line formula follows the name of each uninverted salt-type heading parent. (Prior to the Tenth Collective Index (1977-1981), line formulas did not appear with unambiguous names, e.g., Sodium chloride, Zinc sulfide.) Beginning with the Twelfth Collective Period (1987-1991), line formulas may be expressed with decimals or numerical ranges as well as integers.

Example:

## Sodium tungsten oxide ( $\mathbf{N a}_{0.37} \mathbf{W O}_{3}$ )

Hydrides of the metals antimony, bismuth, germanium, tin, and lead are indexed at hydride names such as Germane (II 199). Halides are indexed as derivatives at these headings, e.g., Stannane, tetrachloro- (not Tin chloride (Sn$\mathrm{Cl}_{4}$ )); Plumbane, diiodo-. Hydrides, halides, etc., of most other elements are indexed at headings such as Sodium hydride ( $\mathbf{N a H}$ ); Thorium hydride iodide $\left(\mathbf{T h H I}_{3}\right)$. The hydrides of nitrogen have trivial names: Ammonia, for $\mathrm{NH}_{3}$; Amidogen, for $\mathrm{NH}_{2}$; Hydrazine, for $\mathrm{N}_{2} \mathrm{H}_{4}$; and Hydrazoic acid, for $\mathrm{HN}_{3}$. Some derivatives of ammonia also have trivial names: Chloramine, for $\mathrm{NH}_{2} \mathrm{Cl} ;$ Fluorimide, for $\mathrm{NHF}_{2} ;$ Hydroxylamine, for $\mathrm{HONH}_{2} ;$ Sulfamide, for $\mathrm{SO}_{2}\left(\mathrm{NH}_{2}\right)_{2}$; Sulfimide, for $\mathrm{SO}_{2} \mathrm{NH}$. The cyclic trimer of sulfimide is indexed at the heterocyclic name: $\mathbf{1 , 3 , 5 , 2 , 4 , 6}$-Trithiatriazine, $1,1,3,3,5,5$-hexaoxide.

Chalcogen hydride names include Water, for $\mathrm{H}_{2} \mathrm{O}$; Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$; Hydrogen trioxide, for $\mathrm{H}_{2} \mathrm{O}_{3}$; Hydroxyl, for HO; Hydroperoxo, for $\mathrm{HO}_{2}$; Hydrotrioxo, for $\mathrm{HO}_{3}$; Selenyl, for HSe ; and Hydrogen sulfide ( $\mathbf{H}_{2} \mathbf{S}$ ).

Salts of hydric cations such as Ammonium, Phosphonium, Nitric acidium, are indexed at uninverted salt names with the "-ium" term cited first, or at "oxo" acid headings with "-ium salt" terms in the modification.

Examples:

## Ammonium chloride $\left(\left(\mathrm{NH}_{4}\right) \mathrm{Cl}\right)$ <br> Phosphonium cyanide $\left(\left(\mathrm{PH}_{4}\right) \mathbf{C N}\right)$

## Oxonium chloride $\left(\left(\mathrm{OH}_{3}\right) \mathrm{Cl}\right)$

## Perchloric acid, compounds

ammonium salt (named like a metal salt of the same acid, see below)
Salts of Hydrazine and Hydroxylamine are named as molecular addition compounds (II 192), e.g., Hydrazine, sulfate (2:1).

Binary oxides are indexed at headings such as Sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$, Iron oxide (with a synonym line formula, if known), Chlorine oxide ( $\mathbf{C l O}_{2}$ ). Uninverted peroxide, superoxide, and ozonide headings are also employed, e.g., Sodium peroxide $\left(\mathbf{N a}_{2} \mathbf{O}_{2}\right)$. The oxides $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{SO}_{3}$, and $\mathrm{SiO}_{2}$ are indexed at Carbon monoxide, Carbon dioxide, Sulfur dioxide, Sulfur trioxide, and Silica, respectively.

Mixed-metal oxides containing only the oxide $\left(\mathrm{O}^{2-}\right)$ anion are indexed at oxide headings, with the metals cited in alphabetic order, e.g., Iron zinc oxide $\left(\mathrm{Fe}_{2} \mathbf{Z n O}_{4}\right)$. Hydroxides of one or more metals are indexed at metal hydroxide headings, e.g., Chromium hydroxide $\left(\mathbf{C r}(\mathbf{O H})_{3}\right)$. Mixed-metal oxides, hydroxides, and oxide-hydroxides that also contain a Group IA and/or Group IIA metal are named at oxy-anion headings with cation terms in the modification, e.g., Stannate ( $\mathbf{S n}(\mathbf{O H})_{6}{ }^{2-}$ ), dipotassium, $(O C-6-11)$-; $\operatorname{Tantalate}\left(\mathrm{Ta}_{6}(\mathrm{OH})\right.$ $\mathrm{O}_{18}{ }^{7-}$ ), heptapotassium; Molybdate(2-), tetra- $\mu$-oxotetraoxoferratedi-, disodium. Hydroxide-oxides that contain no Group IA or IIA metals are indexed at such headings as Manganese hydroxide oxide ( $\mathbf{M n}(\mathbf{O H}) \mathbf{O})$. The index heading parents Chromic acid $\left(\mathrm{H}_{2} \mathrm{CrO}_{4}\right)$, Chromic acid $\left(\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$, Manganic acid $\left(\mathrm{H}_{2} \mathbf{M n O}_{4}\right)$ and Permanganic acid $\left(\mathbf{H M n O}_{4}\right)$ are retained. Hydroperoxides are indexed at peroxide headings with synonym line formulas, e.g., Sodium peroxide $\left(\mathbf{N a}\left(\mathrm{HO}_{2}\right)\right.$ ), for $\mathrm{Na}(\mathrm{OOH})$. Mixed peroxide, hydroperoxide, ozonide, and superoxide headings are also employed. Sulfides, selenides, and tellurides are named like the oxides. The compounds $\mathrm{CS}_{2}$ and COS are indexed at Carbon disulfide and Carbon oxide sulfide (COS), respectively.

Uninverted salt-type headings are used for halides, amides, arsenides, azides, borides, carbides, cyanides, hydrazides, hydroxylamides, imides, nitrides, phosphides, and silicides. Synonym line formulas are used to differentiate the hydrazides $\left(\mathrm{H}_{3} \mathrm{~N}_{2}{ }^{1-}\right)$ and $\left(\mathrm{H}_{2} \mathrm{~N}_{2}{ }^{2-}\right)$; for special cases such as iodide $\left(\mathrm{I}_{3}{ }^{1-}\right)$, chloride $\left(\mathrm{HCl}_{2}{ }^{1-}\right)$, and fluoride $\left(\mathrm{HF}_{2}{ }^{1-}\right)$; and for arsine, phosphine, and stibine which have lost one or two protons, e.g., Arsenide (HAss ${ }^{2-}$ ). Otherwise it is understood the anions are monoatomic and have lost all protons, e.g., As ${ }^{3-}$ $, \mathbf{P}^{3-}, \mathbf{S i}^{4-}$. Examples: Sodium chloride ( NaCl ), Potassium iodide (KI), Potassium iodide ( $\mathbf{K}\left(\mathbf{I}_{3}\right)$ ), Calcium niobium fluoride [formula unknown]. Sodium phosphide ( $\mathbf{N a}\left(\mathrm{H}_{2} \mathbf{P}\right)$ ), Cyanogen chloride ( $\left.(\mathbf{C N}) \mathbf{C l}\right)$.

In these compounds, and the oxides, sulfides, etc., discussed earlier, all metals are considered to be cationic. Nonmetals are placed in cationic or anionic sequence to balance the charges. If this violates the electronegativity sequence described earlier, all metals are named as cations and all nonmetals as "-ide" anion terms.

Examples:

## Aluminum gallium arsenide ((Al,Ga)As)

Cadmium silicon phosphide ( $\mathbf{C d S i P}_{2}$ ) (not Cadmium phosphide silicide)
Thallium phosphide selenide (TIPSe) (not Thallium selenium phosphide)

## Mercury iodide phosphide $\left(\mathrm{Hg}_{3} \mathbf{I}_{4} \mathbf{P}_{2}\right)$

Solid solutions are normally indexed as mixed salts (oxides, etc.). Decimal fractions, which can include ranges of composition, are used as subscripts in the accompanying formulas to specify stoichiometric relationships when applicable. As a result of nonstoichiometry, decimal fractions may not add to whole numbers. The omission of such numerical designations indicates incomplete information on the proportions in the original document.

Examples:
Aluminum gallium arsenide ( $\mathbf{A l}_{0.5} \mathbf{G a}_{0.5} \mathbf{A s}$ )
Cadmium mercury telluride (( $\mathbf{C d}, \mathbf{H g}) \mathbf{T e})$
Copper platinum sulfide ( $\mathbf{C u}_{1.7-1.8} \mathbf{P t}_{3-3.2} \mathbf{S}_{6}$ )
Iron manganese zinc oxide ( $\mathbf{F e}_{2.3} \mathbf{M n}_{0.5} \mathbf{Z n}_{0.2} \mathbf{O}_{3.9}$ )
Solid solutions that involve classes of substances, or are otherwise incompletely defined as to elemental constituents, are identified in the index modification by a phrase such as "solid solns. with ..."

Example:

## Iron oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$

solid solns. with ferrites
Salts of interhalogen anions are indexed as coordination compounds ( $\mathbb{I}$ 215), e.g., Iodate(1-), dichloro-, sodium, for $\mathrm{Na}\left[\mathrm{ICl}_{2}\right]$. Acetylides are in-
dexed at names such as Sodium acetylide $\left(\mathbf{N a}\left(\mathrm{C}_{2} \mathbf{H}\right)\right)$. The common name Calcium carbide $\left(\mathbf{C a}\left(\mathbf{C}_{2}\right)\right)$ is the single exception. Metal derivatives of substituted Ethyne and of other alkynes are indexed by organometallic nomenclature (II 194).

Examples:

$$
\begin{array}{ll}
\mathrm{BrC} \equiv \mathrm{CAg} & \text { Silver, (bromoethynyl)- } \\
\mathrm{EtC} \equiv \mathrm{CNa} & \text { Sodium, 1-butynyl- }
\end{array}
$$

Graphite compounds are indexed at the Graphite index heading parent and at the name of the other component(s) as molecular addition compounds. Prior to CA Volume 95 (see $\mathbb{I}$ 101), binary headings such as Graphitic acid, Graphite nitrate, etc., were employed.

Example:
C • $1 / 10 \mathrm{HNO}_{3}$

## Nitric acid, compd. with graphite (1:10) <br> Graphite, compd. with nitric acid (10:1)

The following metal-oxide radical names are sometimes used: americyl $\left(\mathrm{O}_{2} \mathrm{Am}-\right.$ and $\left.\mathrm{O}_{2} \mathrm{Am}=\right)$, chromyl $\left(\mathrm{O}_{2} \mathrm{Cr}=\right)$, neptunyl $\left(\mathrm{O}_{2} \mathrm{~Np}-\right.$ and $\left.\mathrm{O}_{2} \mathrm{~Np}=\right)$, permanganyl $\left(\mathrm{O}_{3} \mathrm{Mn}-\right)$, perrhenyl $\left(\mathrm{O}_{3} \mathrm{Re}-\right)$, pertechnetyl $\left(\mathrm{O}_{3} \mathrm{Tc}-\right)$, plutonyl $\left(\mathrm{O}_{2} \mathrm{Pu}-\right.$ and $\left.\mathrm{O}_{2} \mathrm{Pu}=\right)$, titanyl $\left(\mathrm{O}_{2} \mathrm{Ti}=\right)$, uranyl $\left(\mathrm{O}_{2} \mathrm{U}-\right.$ and $\left.\mathrm{O}_{2} \mathrm{U}=\right)$, vanadyl, $(\mathrm{OV}-, \mathrm{OV}=$, and $\mathrm{OV} \equiv)$, and zirconyl ( $\mathrm{OZr}=$ ). These names, and those for the thio, seleno, and telluro analogs, are used for the ions, e.g., Vanadyl ion(2+), and to complete the salt names at coordination anion headings ( $\mathbb{I}$ 215). They are not used for their compounds with simple inorganic salts, nonmetal oxo acids or organic acids

Examples:

$$
\begin{array}{ll}
\mathrm{UO}_{2} \mathrm{Cl}_{2} & \text { Uranium, dichlorodioxo- } \\
\mathrm{K}_{2} \mathrm{UO}_{2}\left(\mathrm{SO}_{4}\right)_{2} & \text { Uranate(2-), dioxobis[sulfato- } \\
(2-)-\mathrm{KO}] \text {-dipotassium }
\end{array}
$$

The following nonmetal oxide radicals and their chalcogen analogs are employed: nitrosyl ( ON -), nitryl $\left(\mathrm{O}_{2} \mathrm{~N}-\right)$, sulfinyl ( $\mathrm{OS}=$ ) (thionyl is limited to halides and halogenides), sulfonyl $\left(\mathrm{O}_{2} \mathrm{~S}=\right)$ (sulfuryl is limited to halides and halogenides), thiotrithiazyl $\left(\mathrm{N}_{3} \mathrm{~S}_{4^{-}}\right)$, diphosphoryl $\left(\mathrm{O}_{3} \mathrm{P}_{2}\right)$,disulfonyl $\left(\mathrm{O}_{5} \mathrm{~S}_{2}-\right)$, chlorosyl ( $\mathrm{OCl}-)$, chloryl $\left(\mathrm{O}_{2} \mathrm{Cl}-\right)$, perchloryl $\left(\mathrm{O}_{3} \mathrm{Cl}-\right)$ (and similarly for other halogen radicals). For other phosphorus and sulfur radicals see $9 I f 1$ 197, 200, 276, and the Illustrative List of Substituent Prefixes (Section H, II 294).

Examples:

$\mathrm{Cl}-\mathrm{S}\left(\mathrm{O}_{2}\right)-\mathrm{S}\left(\mathrm{O}_{2}\right)-\mathrm{Cl}$	Disulfonyl chloride
$(\mathrm{SO}) \mathrm{Br}_{2}$	Thionyl bromide
$\mathrm{NOH}\left(\mathrm{S}_{2} \mathrm{O}_{7}\right)$	Nitrosyl (disulfate) $\left((\mathrm{NO}) \mathbf{H}\left(\mathbf{S}_{2} \mathbf{O}_{7}\right)\right)$
$\left(\mathrm{SeO}_{2}\right) \mathrm{Cl}_{2}$	Selenonyl chloride

Compounds of the nonmetal radicals with "organic" acids (i.e., those named as principal groups on molecular skeletons, such as carboxylic and sulfonic acids, $\mathbb{T}^{[165)}$ are indexed as anhydrides ( $\mathbb{T}$ 179). For carbonyl compounds, e.g., Carbonic dihydrazide, Imidodicarbonic diamide, Urea, see II 183.

Metal carbonyls and nitrosyls are indexed at binary headings when they are either mononuclear or of unknown polynuclear structure, e.g., Chromium carbonyl $\left(\mathbf{C r}(\mathbf{C O})_{6}\right)$, (OC-6-11)-. Polynuclear carbonyls and nitrosyls of known structures are named as coordination complexes. (Simple metal nitrosyl dimers may be hyponitrites, e.g., $\mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, Hyponitrous acid, disodium salt.) Polynuclear carbonyls and nitrosyls of known composition are indexed as coordination compounds (II 215); cross-references will be found at the metal carbonyl headings in the Index Guide.

Helium-group compounds are indexed like the analogous metal compounds, except that salts with acids are named at their own headings.

Examples:
$\mathrm{KrF}_{2}$
$\mathrm{XeO}_{4}$
$\mathrm{K}_{2}\left[\mathrm{XeF}_{8}\right]$
Krypton fluoride ( $\mathbf{K r F}_{2}$ )
Xenon oxide ( $\mathrm{XeO}_{4}$ )
Xenonate(2-), octafluorodipotassium
$\mathrm{Xe}\left(\mathrm{ClO}_{4}\right)_{2}$
Xenon perchlorate $\left(\mathrm{Xe}\left(\mathrm{ClO}_{4}\right)_{2}\right)$
(not Perchloric acid, xenon(2+) salt)
Oligomeric inorganic compounds, except clusters, are reduced to their empirical formulas when the structures are unknown. When the actual structure of the oligomer is defined in the source document or known from references, an entry is made at the empirical formula with an additional entry at the more structurally descriptive oligomer. Clusters with unspecified oligomeric bonding are not reduced to their empirical formulas.

Examples:
$\mathrm{Al}_{2} \mathrm{Cl}_{6}$

Aluminum, di- $\mu$-chlorotetra-chlorodi- (preferred index n
Aluminum chloride ( $\mathbf{A l C l}_{3}$ )   (additional index name)
Beryllium, hexa- $\mu$-chlorotri-, triangulo (preferred index na
eryllium chloride $\left(\mathbf{B e C l}_{2}\right)$ (additional index name)

Metal-containing inorganic clusters receive standard nomenclature for inorganic compounds, e.g., Sodium fluoride ( $\mathbf{N a}_{7} \mathbf{F}_{7}$ ), Lithium potassium chloride $\left(\mathbf{L i}_{6} \mathbf{K}_{4} \mathbf{C l}_{10}\right)$. Nonmetallic inorganic clusters receive oligomeric names when the monomeric form does not receive a line formula. All other nonmetallic inorganic clusters receive regular inorganic names with a line formula denoting the oligomeric formula.

Examples:
$(\mathrm{HF})_{3}$
Hydrofluoric acid trimer
$\left(\mathrm{SF}_{6}\right)_{7}$
Sulfur fluoride $\left(\mathbf{S}_{7} \mathbf{F}_{42}\right)$

Complex, mixed, and multiple salts are indexed at their own headings or (if complex cations or anions are present) as coordination compounds (II 215). Mixed salts of a single oxo acid are indexed at the acid heading.

Examples:


Cobaltate(2-), tetrachlorocesium chloride (1:3:1), (T-4)-
$\mathrm{UOCl}_{2}$
$\mathrm{Co}_{5}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{SO}_{4}\right)_{4}$
$\mathrm{H}_{2} \mathrm{O}_{3} \mathrm{~S} \cdot 1 / 2 \mathrm{Fe} \cdot \mathrm{NH}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

Uranium chloride oxide $\left(\mathbf{U C l}_{2} \mathbf{O}\right)$
Cobalt nitrate sulfate
$\left(\mathbf{C o}_{5}\left(\mathbf{N O}_{3}\right)_{2}\left(\mathbf{S O}_{4}\right)_{4}\right)$
Sulfuric acid ammonium iron(2+) salt
(2:2:1), hexahydrate
$2 \mathrm{NaCl} \cdot \mathrm{Na}_{2} \mathrm{SO}_{4}$
Sodium chloride sulfate
$\left(\mathrm{Na}_{4} \mathrm{Cl}_{2}\left(\mathbf{S O}_{4}\right)\right.$ )
$\mathrm{B}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$
Boron phosphate ( $\mathbf{B}\left(\mathrm{PO}_{4}\right)$ )

Cyclic inorganic substances composed of two or more elements and containing no metals of Groups 1-13 are named as ring systems.


Dioxathiirane
$\mathbf{1 , 2 , 4 , 5 , 3 , 6 , 7}$ - Tetrathiatriselenepane
-

Organic derivatives of these substances may also be named as rings when there is no coordinate bonding.


Dioxathiirane, 3,3-dihydro-
3-mereapto-3-methyl-

Ammoniates are expressed in the modification at salt names, unless the ammonia is coordinated, in which cases "ammine" coordination names (II 215) are employed.

Hydrates of simple metal salts are named by modification phrases and as coordination compounds if water is the only coordinating ligand. When other ligands are present, "aqua" coordination names (II 215) are used. Uncoordinated water is expressed as "hydrate" in the modification.

Examples:

$\left[\mathrm{Ni}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} .2 \mathrm{Cl}^{-}$	Nickel(2+), hexaaqua-   dichloride, $($ OC-6-11)-
$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	Nickel chloride $\left(\mathbf{N i C l}_{2}\right)$   hexahydrate $($ additional   Chemical Substance and   Formula Index entry)
	F

$$
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}
$$

Binary and pseudobinary inorganic acids are restricted to Hydrofluoric, Hydrochloric, Hydrobromic, Hydriodic, Hydrocyanic, Hydrazoic $\left(\mathrm{HN}_{3}\right)$, Fulminic (HONC), Cyanic, and Thiocyanic acid, together with Hydrogen triiodide $\left(\mathrm{HI}_{3}\right)$ and oligomers such as Hydrochloric acid, dimer. (For isocyanic and isothiocyanic acids, see đI 183.)

Inorganic oxo acids. Protonic acids of anions containing only oxo or hydroxy ligands are given names terminating in "-ic acid" or "-ous acid." Acids ending in "-ous acid" are limited to the lower valent compounds of the elements $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{S}, \mathrm{Se}, \mathrm{N}, \mathrm{P}$, and As. The prefix "per-" is used to designate one oxo acid of manganese (see below), peroxy acids of boron, and oxo acids of the halogens in the $7+$ oxidation state. Inorganic oxo "-ic" and "-ous" acid names are in general limited to hydroxy and oxo-hydroxy compounds of the nonmetals As, At, B, Br, Cl, F, I, N, P, S, Se, Si, and Te, in any oxidation state. Prior to the Tenth Collective Index (1977-1981), metal acid headings were employed; now, acids of metals (including antimony) are in general indexed at metal oxide and hydroxide headings, e.g., Antimony hydroxide $\left(\mathbf{S b}(\mathbf{O H})_{3}\right)$; however, the metal acid names Chromic acid ( $\mathrm{H}_{2} \mathrm{CrO}_{4}$ ), Chromic acid ( $\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ ), Manganic acid $\left(\mathrm{H}_{2} \mathbf{M n O}_{4}\right)$, and Permanganic acid $\left(\mathbf{H M n O}_{4}\right)$ are retained as index heading parents. Chalcogen and peroxy analogs of these metal and nonmetal acids are named by prefixing the "-ic" or "-ous" acid name by seleno-, thio-, tel-luro-, or peroxy-. The number of substituting atoms or groups is indicated in the synonym line formula in the heading.

For Carbonic, Carbonothioic, and Carbonoperoxoic acids, see II 183. Other peroxy acid names include Peroxychromic acid $\left(\mathbf{H}_{2} \mathrm{CrO}_{2}\left(\mathrm{O}_{2}\right)_{2}\right)$, etc. The two mononuclear Boric acid headings are differentiated by the synonym line formulas $\mathbf{H B O}_{2}$ and $\mathbf{H}_{3} \mathbf{B O}_{3}$. Cyclic metaborates of the general formula $\mathrm{H}_{n} \mathrm{~B}_{n} \mathrm{O}_{2 n}$, in which $n$ is equal to or greater than 3 , are also indexed at this heading. Thio, etc., acids are named at such headings as Thioboric acid $\left(\mathbf{H}_{3} \mathbf{B S}_{3}\right)$. Isopoly acids can be considered to arise formally by condensation of a mononuclear acid, thus, $2 \mathrm{H}_{3} \mathrm{BO}_{3} \rightarrow \mathrm{H}_{4} \mathrm{~B}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O}$. The names used in indexing isopoly acids are the same as those of the mononuclear precursors, e.g., Boric acid $\left(\mathbf{H}_{4} \mathbf{B}_{2} \mathbf{O}_{5}\right)$. The synonym line formulas are usually empirical, but molecular formulas are shown for cyclic "meta" acids. Thus, Boric acid ( $\mathbf{H}_{3} \mathbf{B}_{3} \mathbf{O}_{3}$ ). For the former Hypoboric acid $\left((\mathrm{HO})_{2} \mathrm{BB}(\mathrm{OH})_{2}\right)$ and its derivatives, see $\mathbb{1}[182$.

Examples of peroxy and chalcogen analogs of isopoly acids are Peroxydicarbonic acid (see II 183), Thioboric acid $\left(\mathrm{H}_{2} \mathbf{B}_{2} \mathbf{S}_{4}\right)$, Thiosilicic acid $\left(\mathrm{H}_{4} \mathbf{S i}_{3}\right.$ $\mathrm{O}_{4} \mathbf{S}_{3}$ ), Selenotellurodiarsenous acid ( $\mathrm{H}_{4} \mathrm{As}_{2} \mathrm{Se}_{3} \mathrm{Te}_{2}$ ).

The single name Telluric acid is used in association with the following synonym line formulas: $\mathbf{H}_{2} \mathrm{TeO}_{3}, \mathrm{H}_{2} \mathrm{TeO}_{4}, \mathrm{H}_{2} \mathrm{Te}_{2} \mathrm{O}_{5}, \mathrm{H}_{2} \mathrm{Te}_{2} \mathrm{O}_{7}, \mathbf{H}_{6} \mathrm{TeO}_{6}$, $\mathrm{H}_{8} \mathrm{Te}_{2} \mathrm{O}_{10}$.

Selenious and Selenic acid analogs in which one hydroxyl has been replaced by a univalent group are indexed at acid headings with nondetachable prefixes, e.g., Fluoroselenious acid $\left(\mathbf{H S e F O}_{2}\right)$, Amidoselenic acid ( $\mathbf{S e}\left(\mathbf{N H}_{2}\right)$ $\left.(\mathbf{O H}) \mathbf{O}_{2}\right)$. Replacement of both groups leads to a nonacid heading, e.g., Selenic diamide $\left(\mathbf{S e}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{O}_{2}\right)$, Amidoselenonyl fluoride $\left(\left(\mathrm{SeO}_{2}\right)\left(\mathrm{NH}_{2}\right) \mathbf{F}\right)$ (acid halides rank higher than amides (II 106)). An example of a polyselenic acid derivative is Imidodiselenic diamide $\left(\mathbf{N H}\left[\mathrm{Se}\left(\mathbf{N H}_{2}\right) \mathbf{O}_{2}\right]_{2}\right)$.

Sulfur oxo acids are functional parent compounds. Analogs in which sulfur is directly attached to a molecular skeleton, e.g., Benzene, Hydrazine, or Germane, are named as sulfonic, sulfinic, and sulfenic acids (II 165). For thionic acids, see ๆ[ 200. For Hydroxylamine- $O$-sulfonic acid, see §I 193. (Selenium oxo acids are named similarly, except that selenium analogs of Sulfoxylic acid and Hydroxylamine- $O$-sulfonic acid and those thionic acids in which the sulfur has been totally replaced are not recognized in indexing.) The mononuclear sulfur acids are:
$(\mathrm{HO})_{2} \mathrm{~S}$
$(\mathrm{HO})_{2} \mathrm{SO}$
$(\mathrm{HO})_{2} \mathrm{SO}_{2}$

## Sulfoxylic acid

Sulfurous acid (the selenium analog is Selenious acid.)

Sulfuric acid (the selenium analog is Selenic acid.)

Analogs and derivatives of these acids are named by use of nondetachable prefixes such as amido, imido, chloro, azido, thio, seleno, and peroxy, with replacement of the acid class name by the preferred suffix or class term if all hydroxyl groups have been removed. Compounds containing only sulfur (or selenium) and halogen are indexed at binary names, e.g., Sulfur chloride $\left(\mathbf{S C l}_{2}\right)$. Monohydrazides are indexed at hydrazine headings, e.g., Hydrazinesulfonyl chloride for $\mathbf{H}_{2} \mathbf{N N H S O}_{2} \mathbf{C l}$. Some trivial names are employed. For Sulfur diimide, see II 200.

Examples:	
$\mathrm{H}_{2} \mathrm{~N}(\mathrm{HO}) \mathrm{S}$	Amidosulfoxylic acid
$\mathrm{H}_{2} \mathrm{NSCl}$	Amidosulfenyl chloride
$\mathrm{HO}(\mathrm{NC}) \mathrm{SO}$	Cyanosulfurous acid
$\mathrm{Cl}(\mathrm{NC}) \mathrm{SO}$	Thionyl chloride cyanide
$(\mathrm{HO})_{2} \mathrm{~S}(\mathrm{~S})($ or $\mathrm{HO}(\mathrm{HS}) \mathrm{S}(\mathrm{O})$ )	Thiosulfurous acid ( $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}$ )
$\mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{S}=\mathrm{NH}$	Amidoimidosulfurous chloride
$\mathrm{HO}\left(\mathrm{N}_{3}\right) \mathrm{SO}_{2}$	Azidosulfuric acid
$\mathrm{Cl}(\mathrm{HO}) \mathrm{SO}_{2}$	Chlorosulfuric acid
$\mathrm{HO}\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{SO}_{2}$	Sulfamic acid
$\mathrm{Cl}_{2} \mathrm{SO}_{2}$	Sulfuryl chloride
$\mathrm{F}(\mathrm{ON}) \mathrm{SO}_{2}$	Nitrososulfonyl fluoride
$\mathrm{HO}\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{S}(\mathrm{O})=\mathrm{NH}$	Imidosulfamic acid
$\mathrm{F}_{2} \mathrm{~N}\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{SO}_{2}$	Sulfamide, $N$, $N$-difluoro-
$\mathrm{Cl}(\mathrm{HO}) \mathrm{S}(\mathrm{O})=\mathrm{NH}$	Chloroimidosulfuric acid
$\mathrm{Cl}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{S}$	Thiosulfuryl chloride ( $\left(\mathrm{S}_{2} \mathbf{O}\right) \mathrm{Cl}_{2}$ )
$\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{~S}(\mathrm{O})=\mathrm{NH}$	Imidosulfamide
$\mathrm{HOO}(\mathrm{HO}) \mathrm{SO}_{2}$	Peroxymonosulfuric acid
$\mathrm{HO}(\mathrm{HSS}) \mathrm{SO}_{2}$	Thioperoxymonosulfuric acid ((HO)(HSS)SO $\mathbf{2}_{2}$ )

Polynuclear sulfur and selenium acids have such names as Disulfuric acid (for ( HO ) $\mathrm{S}\left(\mathrm{O}_{2}\right) \mathrm{O}\left(\mathrm{O}_{2}\right) \mathrm{S}(\mathrm{OH})$ ), Diselenious acid (for $(\mathrm{HO}) \mathrm{Se}(\mathrm{O}) \mathrm{O}(\mathrm{O}) \mathrm{Se}(\mathrm{OH})$, Trisulfuric acid, etc. Analogs are named by use of nondetachable prefixes and replacement of the acid term (if all hydroxyl groups are absent).

Examples:

$\left(\mathrm{N}_{3}\right) \mathrm{SO}_{2} \mathrm{OSO}_{3} \mathrm{H}$	Azidodisulfuric acid
$\mathrm{HO}\left(\mathrm{SO}_{2} \mathrm{NH}_{2} \mathrm{SO}_{3} \mathrm{H}\right.$	Diimidotrisulfuric acid
$\mathrm{H}_{2} \mathrm{NSO}_{2} \mathrm{NHSO}_{3} \mathrm{H}$	Amidoimidodisulfuric acid
$\mathrm{HO}_{3} \mathrm{SOOSO}_{3} \mathrm{H}$	Peroxydisulfuric acid   $\left(\left[(\mathrm{HO}) \mathbf{S}(\mathbf{O})_{2}\right]_{2}(\mathbf{O})_{2}\right)$
$\mathrm{ClSO}_{2} \mathrm{OSO}_{2} \mathrm{OSO}_{2} \mathrm{Cl}$	Trisulfuryl chloride
$\mathrm{H}_{2} \mathrm{NSO}_{2} \mathrm{OSO}_{2} \mathrm{NH}_{2}$	Disulfamide
$\left(\mathrm{ClSO}_{2}\right)_{2} \mathrm{NNH}_{2}$	1,1-Hydrazinedisulfonyl   dichloride

Phosphorus and arsenic acids. For mononuclear phosphorus and arsenic acids, both nonsubstitutive, e.g., Phosphoric acid, Arsenous acid, and substitutive, e.g., Phosphonic acid, see II 197. There are no official rules for naming polynuclear phosphorus and arsenic acids; they are indexed by $C A$ at names traditionally used in the literature. Pyrophosphoric acid and its analogs and derivatives are indexed at Diphosphoric acid names, and similarly for Pyrophosphorous acid. Specific esters of Metaphosphoric acid $\left(\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}\right)$ are indexed at the heterocyclic parent $\mathbf{1 , 3 , 5 , 2 , 4 , 6}$-Trioxatriphosphorinane (II 197), and other meta acids are treated similarly. Mixed polynuclear phosphoric-phosphorous acids are indexed at headings which include Stock numbers (parenthetical Roman numerals) to indicate the sequence of trivalent and pentavalent phosphorus atoms. When all hydroxyl groups have been replaced, the acid term gives way to acid halide, amide, etc., suffixes. Amides of polyphosphorous acids are indexed by replacing the word "acid" by "amide" preceded by a multiplicative prefix; amides of polyphosphoric acids have names in which "ic acid" is simply replaced by "-amide," e.g., Diphosphorous tetraamide, for $\left[\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{P}\right]_{2} \mathrm{O}$, and Peroxydiphosphoramide, for $\left[\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{O}_{2}$. $\mathrm{P}, \mathrm{P}^{\prime}$, etc., locants are used to designate the position of replacement amido and imino, bridging imido, etc., groups.

Arsenic analogs are named analogously to the phosphorus examples below, except that "Hypo-" and "Isohypo-" names and headings in which mixed valencies are denoted by "III" and "V" terms are not employed.

Examples:


Halide and halogenoid derivatives are indexed at nitryl and nitrosyl names, e.g., Nitrosyl chloride ((NO)Cl). The amides of nitric and nitrous acid are Nitramide and Nitrosamide, respectively; organic derivatives are named as N -nitro and N -nitroso amines.

Halogen oxo acids include:

HOCl	Hypochlorous acid
HOBrO	Bromous acid
$\mathrm{HOClO}_{2}$	Chloric acid
$\mathrm{HOIO}_{2}$	Iodic acid $\left(\mathbf{H I O}_{3}\right)$
$\left(\mathrm{HO}_{2} \mathrm{IO}_{2}\right.$	Iodic acid $\left(\mathbf{H}_{2} \mathbf{I O} \mathbf{H}_{4}\right)$
$\mathrm{HOClO}_{3}$	Perchloric acid
$\mathrm{HOIO}_{3}$	Periodic acid $\left(\mathbf{H I O}_{4}\right)$
$(\mathrm{HO})_{5} \mathrm{IO}$	Periodic acid $\left(\mathbf{H}_{5} \mathbf{I O}\right)$

Mixed halides are indexed at such names as Chloryl fluoride ( $\left.\left(\mathbf{C l O}_{2}\right) \mathbf{F}\right)$.
Silicon oxo acids in CA indexing are named as Silicic acid with one of the following synonym line formulas: $\mathbf{H}_{2} \mathbf{S i O}_{3}, \mathbf{H}_{4} \mathbf{S i O}_{4}, \mathbf{H}_{2} \mathbf{S i}_{2} \mathbf{O}_{5}, \mathbf{H}_{6} \mathbf{S i}_{2} \mathbf{O}_{7}$. The same index heading is employed for cyclic acids of the general formulas $\mathrm{H}_{2 n} \mathrm{Si}_{n} \mathrm{O}_{3 n}$ and $\mathrm{H}_{2 n} \mathrm{Si}_{2 n} \mathrm{O}_{5 n}$ in which n is equal to or greater than 3. The compound $(\mathrm{HO})_{3} \mathrm{SiSi}(\mathrm{OH})_{3}$ is named Disilanehexol. (See also II 199.)

Anhydrides of inorganic oxo acids with carboxylic, sulfonic, etc., acids are indexed at the organic acid heading (II 179); mixed inorganic anhydrides which contain neither free nor esterified hydroxyl groups are given uninverted salt names.

Examples:

$\mathrm{ClONO}_{2}$	Chlorine nitrate $\left(\mathbf{C l}\left(\mathbf{N O}_{3}\right)\right)$
$\mathrm{B}\left(\mathrm{OPO}_{2}\right)_{3}$	Boron metaphosphate $\left(\mathbf{B}\left(\mathbf{P O}_{3}\right)_{3}\right)$

When free (or esterified) hydroxyl groups are present, the index entry is made at the preferred acid heading with an "anhydride with" phrase is the index modification.

Examples:

$\mathrm{EtOSO}_{2} \mathrm{OClO}_{3}$	Perchloric acid   anhydride with ethyl   hydrogen sulfate
	Sulfuric acid   anhydride with silicic acid   $\left(\mathbf{H}_{4} \mathbf{S i O}_{4}\right)(2: 1)$

Mixed anhydrides of inorganic peroxy and thio (etc.) acids are indexed similarly, with use of "anhydrosulfide with" terms when appropriate, but anhydrides with a peroxy, dithio, etc., linkage are indexed at Peroxide, Disulfide, etc.

Example:

## $\mathrm{HO}_{3} \mathrm{SSSP}(\mathrm{O})(\mathrm{OH})_{2}$

## Disulfide, phosphono sulfo

Metal (and helium-group element) salts of inorganic oxo acids and their analogs are indexed at the oxo heading if only one anion is present (otherwise the salt is indexed at its own heading, e.g., Potassium phosphate sulfate $\left(\mathrm{K}_{2} \mathbf{H}_{3}-\right.$ $\left.\left(\mathbf{P O}_{4}\right)\left(\mathbf{S O}_{4}\right)\right)$. A Ewens-Bassett number is cited with a metal of variable valence, and the stoichiometry of the salt is indicated by "mono," multiplicative prefixes, or ratios, when necessary.

Examples:

$3 \mathrm{HClO}_{3} \cdot \mathrm{Al}$	Chloric acid aluminum salt
$3 \mathrm{HNO}_{3} \cdot \mathrm{Ag}$	Nitric acid silver(1+) salt (3:1)
$\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{Ca}$	Sulfuric acid calcium salt (1:1)
$\mathrm{HOSO}_{2} \mathrm{OSO}_{2} \mathrm{OH} \cdot \mathrm{Na}$	Disulfuric acid monosodium salt
$2 \mathrm{H}_{2} \mathrm{NSO}_{2} \mathrm{OH} \cdot \mathrm{Sn}$	$\begin{aligned} & \text { Sulfamic acid } \\ & \operatorname{tin}(2+) \text { salt }(2: 1) \end{aligned}$
$\mathrm{HN}\left(\mathrm{SO}_{2} \mathrm{~F}\right)_{2} \cdot \mathrm{Ag}$	Imidodisulfuryl fluoride silver(1+) salt
$\mathrm{H}_{3} \mathrm{PO}_{4} \cdot \mathrm{NH}_{3} \cdot \mathrm{Mg}$	Phosphoric acid ammonium magnesium salt (1:1:1)
$2 \mathrm{HClO}_{4} \cdot \mathrm{Xe}$	Xenon perchlorate ( $\mathrm{Xe}\left(\mathrm{ClO}_{4}\right)_{2}$ )

Alums, chrome alums, etc., are indexed (a) at oxo acid names, e.g., Sulfuric acid, compounds, aluminum potassium salt (2:1:1), dodecahydrate, $(b)$ at "ium" headings, e.g., Methanaminium, $N, N, N$-trimethyl-, aluminum sulfate (1:1:2) or (c) (if they contain conjugate acids of nitrogen bases) at names of acids and bases, e.g., Sulfuric acid, aluminum salt (2:1), compd. with guanidine (1:1), with an additional entry at Guanidine, compd. with aluminum sulfate (1:1:2).

Anions are indexed at names usually identical with those employed in binary cation-anion headings (see above), e.g., Hydride, for $\mathrm{H}^{1-}$; Carbide, for $\mathrm{C}^{4-}$; Carbide $\left(\mathbf{C}_{2}{ }^{2}\right)$; Hydrazide $\left(\mathbf{H}_{3} \mathbf{N}_{2}{ }^{\mathrm{F}}\right)$. Anions from inorganic oxo acids are indexed at "ate" and "ite" headings with the retained hydrogen atoms or derivatives expressed in the modification; an ion term is expressed for esters and salts. Oxo anions of metals have synonym line formulas; other polyatomic anions are assigned coordination anion names.

Examples:

$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	Phosphate   dihydrogen   $\mathrm{EtSO}_{4}{ }^{-}$
$\mathrm{AlO}_{2}{ }^{-}$	Sulfuric acid,   monoethyl ester, ion(1-)
$\mathrm{NO}_{3}{ }^{2-}$	Aluminate $\left(\mathrm{AlO}_{2}{ }^{1-}\right)$

Anions of elements without "-ide" names are indexed at the element names, with "ion" modification terms followed by a symbol to show the charge and composition, e.g., ion $\left(\operatorname{Re}^{1-}\right)$, ion $\left(\mathrm{Hg}_{2}{ }^{2-}\right)$, ion $\left(\mathrm{S}_{8}{ }^{1-}\right)$.

Cations. The cation of hydrogen in the gas phase is indexed at Proton (II 217). Examples of other cation names are Sulfonium, for $\mathrm{SH}_{3}{ }^{1+}$; Chloronium, for $\mathrm{ClH}_{2}{ }^{1+}$; Ammonium, for $\mathrm{NH}_{4}{ }^{1+}$; Ammoniumyl, for $\mathrm{NH}_{3}{ }^{1+}$; $\mathbf{H y}$ drazinium (1+), for $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{1+}$; Diphosphinium(2+), for $\mathrm{P}_{2} \mathrm{H}_{6}{ }^{2+}$; Thiosulfuric acidium(1+) ( $\left.\mathbf{H}_{3} \mathbf{S}_{2} \mathrm{O}_{3}{ }^{1+}\right)$; Plutonyl ion(1+), for $\mathrm{PuO}_{2}{ }^{1+}$; Nitryl ion, for $\mathrm{NO}_{2}{ }^{1+}$; Magnesium(1+), diiodo--, for $\mathrm{MgI}_{2}{ }^{1+}$; Helium(1+), hydro-, for
$\mathrm{HeH}^{1+}$. Cations of elements are indexed at element headings with the ion specified in the modification, e.g., Carbon, ion ( $\mathrm{C}_{2}{ }^{1+}$ ).

Minerals are indexed at traditional and new mineral names as correlated by the Commission on New Minerals and Mineral Names of the International Mineralogical Association and reported in The American Mineralogist. Other references used to standardize the spelling and transliteration of mineral and rock names, as well as to standardize mineral formulas in the $C A$ indexes are:
(a) American Geological Institute, Glossary of Geology, Washington, D.C., 1972, 857 pp .
(b) E. S. Dana, A Textbook of Mineralogy, 4th ed., revised and enlarged by W. E. Ford, John Wiley and Sons, New York, 1958, 851 pp.
(c) J. D. Dana and E. S. Dana, System of Mineralogy, 7th ed., entirely rewritten and enlarged by C. Palache, H. Berman, and C. Frondel, John Wiley and Sons, New York, Vol. I, 1944; Vol. II, 1951; Vol. III, 1962.
(d) R. W. Fairbridge, The Encyclopedia of Geochemistry and Environmental Sciences (Volume IVA of The Encyclopedia of Earth Sciences series), Van Nostrand Reinhold Co., New York, 1972, 1321 pp.
(e) M. Fleischer, Glossary of Mineral Species, Mineralogical Record, Tucson, Arizona, 1980, 192 pp .
(f) M. H. Hey, An Index of Mineral Species and Varieties, 2nd rev. ed., Trustees of the British Museum (Natural History), London, 1955, 728 pp. Appendixes, 1963, 135 pp ; 1974, 168 pp.
(g) C. Hintze, Handbuch der Mineralogie, Supplement 2, Neue Mineralien und Neue Mineralnamen, Walter de Gruyter, Berlin, 1960, 958 pp.
(h) C. M. Rice, Dictionary of Geological Terms, Edwards Brothers, Ann Arbor, Mich., 1961, 465 pp.
(i) H. Strunz, Mineralogische Tabellen, 4th rev. ed., Akademische Verlagsgesellschaft Geest und Portig K.-G., Leipzig, 1966, 560 pp.
(j) P. W. Thrush, A Dictionary of Mining, Mineral, and Related Terms, U.S. Department of the Interior, 1968, 1269 pp .

Minerals of definite composition have a synonym line formula cited after the name, e.g., Chromatite $\left(\mathbf{C a}\left(\mathbf{C r O}_{4}\right)\right)$. When no mineral formula is given in the original document, the assumed formula is that given in reference $(e)$, above. Cross-references from less preferred to more preferred index names appear in the Index Guide. New minerals are indexed at names and formulas supplied in original documents and collected in each issue of the General Subject Index at New minerals.

When one or more elements have replaced the whole or part of the original element in a mineral, and no new mineral name has been coined, the replacing element is named in the modification at the original heading.

Examples:

$\mathrm{BaSi}_{2} \mathrm{O}_{5}$	Sanbornite $\left(\mathbf{B a}\left(\mathbf{S i}_{2} \mathbf{O}_{5}\right)\right)$
$\mathrm{Li}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}$	Sanbornite   lithium $\left(\mathrm{Li}_{2}\left(\mathbf{S i}_{2} \mathbf{O}_{5}\right)\right)$
$\mathrm{LiNaSi}_{2} \mathrm{O}_{5}$	Sanbornite   lithium sodium $\left(\mathbf{L i N a}\left(\mathbf{S i}_{2} \mathbf{O}_{5}\right)\right)$      $\mathrm{Zn}_{2} \mathrm{SiO}_{4}$
$\mathrm{ZnMgSiO}_{4}$	Willemite $\left(\mathbf{Z n}_{2}\left(\mathbf{S i O}_{4}\right)\right)$
	Willemite   magnesium $\left(\mathbf{Z n M g}\left(\mathbf{S i O}_{4}\right)\right)$

When partial replacement has occurred but stoichiometric information is lacking, or when unusual elements are present, adjectival terms for these elements are cited in the modification in the Chemical Substance Index. The adjectival terms all end in "-an," and are derived from the English or Latin names of the elements, e.g., aluminian, beryllian, hydrogenian, aurian (from gold), sodian, zincian. The forms "-oan" and "-ian" are used for the lower and higher oxidation states of arsenic, copper (cuproan and cuprian), iron (ferroan and ferrian), lead (plumboan and plumbian), manganese, mercury, and uranium.

Example:


Intermetallic compounds are indexed like molecular addition compounds (II 192). Only one index entry is made at the name of metal that is alphabetically preferred.

Example:
$\mathrm{Sb}_{2} \mathrm{Fe}$ Antimony
compd. with iron (2:1)
220. Isotopes. The isotopes of hydrogen of atomic masses two and three are indexed at Deuterium and Tritium, respectively. Isotopes of other elements with a natural abundance less than $98 \%$ are indexed at the usual element names with a phrase in the modification: "isotope of mass..." When the isotope is metastable, this word appears in the descriptive part of the modification, e.g., "formation of metastable." Anions of nonmetals are named in the index headings, metal anions and all cations in the modification.

Examples:
Chloride ( ${ }^{38} \mathrm{Cl}^{1-}$ )
Hydride- $d$ (not Deuteride)
Tin
isotope of mass $120\left({ }^{120} \mathbf{S n}^{1-}\right)$
Chlorine
isotope of mass $37\left({ }^{37} \mathbf{C l}^{1+}\right)$

Molecular forms of isotopic elements are named in the index heading or indexed with "mol." or "ion" terms in the modification; "mol. with" phrases are employed for mixed hydrogen isotopes.

Examples:

```
Iodide (\({ }^{131} \mathrm{I}_{3}{ }^{1-}\))
Nitrogen
 mol. (\(\mathbf{N}^{15} \mathbf{N}\)) (a labeled atom is cited after an unlabeled atom of the same
 element)
```

Helium
mol. ( ${ }^{3} \mathrm{He}_{2}$ )
Deuterium
$\operatorname{ion}\left(D_{2}{ }^{1+}\right)$
Tritium
mol. with hydrogen (HT)

Isotopically labeled organic compounds are indexed by the Boughton system by placing the symbol for the isotope (with a subscript numeral to indicate the number of isotopic atoms) after the name or after the relevant portion of the name; in either case, locants are cited if necessary. The locants (except Greek letters) and symbols are in italics, and hyphens are used to separate them from one another and from the remainder of the names. (In the following examples " $d$ " has been used, but the tritium-labeled compounds are named quite analogously by citation of " $t$." When both " $d$ " and " $t$ " are cited, they are separated by a hyphen, e.g., Ethane-1-d-2-t.)

In labeled heading parents with single-word names and no hydrogen-containing principal group, the $d$ is placed after the parent. No locant is needed if the positions are equivalent or are fully deuterated.

## Examples:

MeD	Methane- $d$
$\mathrm{CD}_{4}$	Methane- $d_{4}$

Fully deuterated alcohols, amines, or imines are indexed similarly, but partially deuterated compounds of these classes have the " $d$ " symbol placed after the appropriate part(s) of the name, with locants if necessary.

Examples:
$\mathrm{D}_{3} \mathrm{CCD}_{2} \mathrm{OD}$

Hydroxylamine- $d_{3}$
$\mathrm{D}_{3} \mathrm{CCD}_{2} \mathrm{OD}$
Ethanol- $d_{6}$
Methan- $d_{3}$-amine, $N$-(methyl- $d_{3}$ )-
Silanamine- $d_{2}$
Hydroxyl- $d$-amine- $d$
Ethan-2- $d$-amine
Methanol- $d$
Methan- $d$-ol
methanesulfonate (isotopically labeled "Class I" alcohols (II 185) belong to "Class II")
Benzene-4- $d$-methane- $\alpha, \alpha-d_{2}-$ thiol
$\mathrm{MeCH}\left(\mathrm{ND}_{2}\right) \mathrm{CO}_{2} \mathrm{D}$
Phen-2,3,4,5- $d_{4}$-ol, 6-methoxy(not Phen-3,4,5,6- $d_{4}$-ol, 2-methoxy-)


1 H -Imidazole-1- $d$-2-carboxylic acid- $d$

When a heading parent contains locants the labeling of each part is expressed separately and locants for the labeling are cited.

Example:
$\mathrm{DOCD}_{2} \mathrm{CD}_{2} \mathrm{OD} \quad$ 1,2-Ethane- $1,1,2,2-d_{4}$-diol- $d_{2}$
The " $d$ " symbol is placed after the appropriate word in multiword headings for classes not yet discussed, e.g., Acetic- $d_{3}$ acid- $d$; Acetyl $-d_{3}$ chloride. In most other cases the " $d$ " is cited after the complete heading parent, and conventional locants or italicized words are often necessary to denote the labeled position.

Examples:
$\mathrm{DCH}_{2} \mathrm{CDO}$
D( $\left.\mathrm{CH}_{2}\right)_{2} \mathrm{CONHD}$


## Acetaldehyde- $1,2-d_{2}$

Propanamide- $N, 3-d_{2}$
Benzaldehyde-formyl-d, 2,4-di-(methyl- $d_{2}$ )- (not "bis(methyl$d_{2}$ )"; the labeled and unlabeled compound names are kept as similar as possible)

Enclosing marks are used with a labeled radical if it is preceded by a locant which expresses its attachment to a heading parent or parent radical, but not if such a locant belongs to the radical itself.

Examples:


Benzene, 1-(ethyl-2,2,2- $d_{3}$ )-4-(methyl- $d_{3}$ )-

Addition of deuterium, alone or with hydrogen, to a ring system is indicated by hydro "substituents" and the " $d$ " symbol. Where there is a choice, deuterium is expressed in the heading parent.

Example:


1-Naphthalen-2,4- $d_{2}$-ol, 1,2,3,4-tetrahydro-4-d-1-methyl-

Labeled protonated species (II 184) are expressed in index modifications by terms such as "conjugate monoacid- $d$ " and "monoprotonated- $d$ ".

When locants are expressed in a heading parent or parent radical for unsaturation, hetero atoms, indicated hydrogen, spiro or ring-assembly junctions, bridges (in fused ring systems), suffixes, or points of attachment (in radicals), locants are cited for the labeled positions, whether or not their use would otherwise be necessary.

Example:

$$
\left(\mathrm{D}_{3} \mathrm{C}\right)_{2} \mathrm{CO} \quad \text { 2-Propanone-1,1,1,3,3,3- } d_{6}
$$

Exceptions are " $d$ " and " $t$ " terms placed after the word "acid" and after the suffixes of amines, imines, alcohols, etc. (see above), for which locants are seldom employed.

The examples above have dealt with organic compounds labeled with deuterium (tritium-labeling is handled similarly). Isotopes of elements other than hydrogen in organic compounds are expressed by the appropriate symbols. Nomenclature is similar, except that the instances in which the isotopic symbol appears within the name are restricted to (a) names comprising more than one word, (b) acids and acid derivatives with "carboxylic", "sulfonic," etc., names, and (c) conjunctive names.

Examples (labeled atoms are indicated by asterisks):

$\underset{\mathrm{MeC}(\mathrm{O}) \mathrm{OH}}{* *}$	Acetic- ${ }^{17} O_{2}$ acid
$\stackrel{*}{\mathrm{PhC}(\mathrm{O}) \mathrm{OMe}}$	Benzoic- ${ }^{18} O$ acid ${ }^{16} \mathrm{O}$-methyl ester
$\stackrel{*}{\mathrm{PhCH}_{2}}{ }^{\left(\mathrm{CO}_{2} \mathrm{H}\right.}$	Benzeneacetic-carboxy, $\alpha_{-}{ }^{14} C_{2}$ acid
MeCOF ${ }^{*}$	Acetyl- ${ }^{17} O$ fluoride
$\stackrel{*}{\mathrm{O}=\mathrm{C}=\mathrm{O}}$	Carbon dioxide- ${ }^{18} \mathrm{O}_{2}$
$\stackrel{*}{*}{ }_{3}{ }^{*} \mathrm{GeCN}$	Germane $-{ }^{74} \mathrm{Ge}$-carbonitrile- ${ }^{15} \mathrm{~N}$


Cyclohexanecarboxylic- ${ }^{14} \mathrm{C}$ acid,
2-(oxo- $\left.-{ }^{17} O\right)$ -
Benzene-2- ${ }^{14} \mathrm{C}$-sulfonic- $-{ }^{35} \mathrm{~S}$ acid 2-chloroethyl ester (labeled "Class I" acids ( $\mathbb{I}$ 185) belong to "Class II")

In general, for all other compounds isotopic labeling of a heading parent is expressed after the name, although, as in the first example below, a combination of these policies with those for " $d$ " (or " $t$ ") is sometimes necessary. Symbols for different isotopic elements which fall together are cited in alphabetical order and separated by hyphens. Labeling of radicals is expressed after the individual simple radical names.

Examples:


Ethan-2- $d$-ol- $1-{ }^{14} C$
$\mathrm{MeCONDCH} 2 \mathrm{CHDMe}_{2}$
Acetamide- $1-{ }^{13} C_{-}{ }^{15} N$


Apart from isotopes of "hydro" (see above), a multiplicity of substituents which are identical except for labeling are named separately. Multiplicative nomenclature is not employed with unsymmetrically labeled parents; instead, that heading parent is chosen which contains $(a)$ the maximum number of isotopic atoms, (b) the alphabetically earliest isotope symbol.

Examples:

$\left.{ }^{*} \mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{SiMe}_{2}$	Silane, dimethyldi(methyl- $\left.{ }^{13} \mathrm{C}\right)-$
${ }^{*}$	
$\mathrm{Cl}_{2} \mathrm{C}:$	Methylene, chloro- ${ }^{35} \mathrm{Cl}$-chloro- ${ }^{37} \mathrm{Cl}$ -

$\mathrm{Me}_{2} \mathrm{CHNHCDMe} 2$
2-Propanamine-2- ${ }^{14} \mathrm{C}, \mathrm{N}$-(1-methylethyl-1- $d$ )- (not 2-Propan-2- $d$-amine, $N$-(1-methylethyl- $1-{ }^{14} C$ )-)

For derivatives named in modifications, labeling is expressed by such terms as "oxime $-{ }^{-15} N$," "calcium $-{ }^{44} C a$ salt," "di(hydrate- $d_{2}$ )." For labeled hydrates and ammoniates, additional index entries will be found at Water- $d_{2}$, Ammo-nia- ${ }^{15} N$, etc. Ammonium- $d_{4}$ salts are treated like the analogous metal salts.

A name containing isotopic symbols is always employed for a labeled compound, regardless of how little of the labeled species is present so long as its nature is known. When the number of labeled atoms is unknown, the heading for the unlabeled compound is indexed and the modification contains a phrase such as "labeled with deuterium" or "labeled with chlorine-37."

Examples:
Acetamide, labeled with carbon-14
1-Propene, 1,1,2,2,3,3,3-hexachloro-, labeled with chlorine-36
When only the positions of the isotopic atoms are unknown, the labeling is indicated, if possible, in the appropriate part of the name without citation of locants. Otherwise a "labeled with..." modification is used.

Examples:
1-Propene- ${ }^{14} C_{2}$, 2-methoxy-
Benzoic acid, 4-(ethyl ${ }^{14} \mathrm{C}$ )-
Benzoic acid, 4-ethyl-, labeled with carbon-14

Isotopically labeled inorganic compounds are named by procedures similar to those above when the unlabeled compounds have unambiguous names. Examples:

DNHT	Ammonia- $d-t$
$\mathrm{P}\left(\mathrm{SiD}_{3}\right)_{3}$	Phosphine, tri(silyl- $\left.d_{3}\right)-$
$\mathrm{DP}(\mathrm{O})\left(\mathrm{O}^{-}\right)_{2}$	Phosphonic- $d$ acid   ion $(2-)$
$\mathrm{H}_{3}{ }^{32} \mathrm{PO}_{4}$	Phosphoric- ${ }^{32} \mathrm{P}$ acid
$\mathrm{H}_{3} \mathrm{PO}_{4} \cdot 3^{22} \mathrm{Na}$	Phosphoric acid   tri(sodium-
	Sulfuric acid- $d$

In other cases labeled inorganic compounds are differentiated by synonym line formulas which contain isotope symbols. Isotopic atoms are cited after unlabeled atoms of the same element.

Examples:

## Hydrogen sulfide ( $\mathrm{D}_{2} \mathrm{~S}$ )

Cobalt iron oxide $\left(\mathrm{CoFe}_{2} \mathrm{O}_{3}{ }^{18} \mathrm{O}\right)$
Molybdenum carbonyl $\left.\left(\mathbf{M o}(\mathbf{C O})_{4}{ }^{13} \mathbf{C O}\right)_{2}\right)$
Nitrogen fluoride $\left(\mathbf{N}^{15} \mathbf{N F}_{2}\right)$
Sodium chloride ( ${ }^{24} \mathrm{NaCl}$ )
Sodium sulfide $\left(\mathbf{N a}_{2}{ }^{35} \mathbf{S}\right)$
Uranium chloride ( ${ }^{213} \mathbf{U C l}_{3}$ )
Salts of inorganic oxo acids with labeled cations are named in the modification by such terms as "strontium $-{ }^{90} \mathrm{Sr}$ salt," "ammonium- $d_{4}$ salt," if no ratio is employed for the unlabeled salt; otherwise the ratio is replaced by a labeled synonym line formula. Such formulas are also needed to indicate unsymmetrical labeling of anions.

Examples:
Phosphoric acid
calcium salt $\left(\mathbf{C a}_{2}{ }^{44} \mathbf{C a}\left(\mathbf{P O}_{4}\right)_{2}\right)$
Phosphoric- ${ }^{32} P$ acid
calcium salt $\left(\mathbf{C a}_{3}\left(\mathbf{P O}_{4}\right)\left({ }^{32} \mathbf{P O}_{4}\right)\right.$ ) (the unlabeled acid is not indexed)
Compounds with indefinite labeled structures are indexed at the unlabeled headings with "labeled with" modification phrases.

Labeled alloys are indexed like the unlabeled counterparts but with isotope symbols included in the elemental composition at each heading, e.g., Aluminum alloy, base, Al 95, ${ }^{233} \mathbf{U} 5$. For intermetallic compounds, synonym line formulas are cited in the modification instead of a ratio, e.g., Iron, compound with uranium ( $\mathrm{Fe}_{2}{ }^{235} \mathbf{U}$ ).

Labeled minerals are indexed at the systematic and mineral names, as well as at the name of the unlabeled mineral if it is studied. Labeling is indicated at the mineral name by synonym line formulas which contain isotope symbols or by modification phrases such as "labeled with boron-10" or "deuterated hydrate."

Coordination compounds (II 215) containing isotopic nuclear atoms are indexed at the labeled element or "ate" term, e.g., Copper- ${ }^{64} \mathrm{Cu}$, Borate(1-)${ }^{10} B$. Labeled ligands have the isotopic symbols appended; the ligand names are enclosed in parentheses if multiplicative prefixes are needed.

Examples:

$$
\begin{aligned}
& \mathrm{D}_{2} \mathrm{O} \stackrel{\mathrm{D}_{2} \mathrm{O}}{3+\mathrm{OD}_{2}} \\
& \mathrm{D}_{2} \mathrm{O}_{\mathrm{D}_{2} \mathrm{O}}^{\mathrm{Al}} \mathrm{OD}_{2}
\end{aligned}
$$

Aluminum(3+), hexa(aqua- $d_{2}$ )-
(OC-6-11)- (see also II 203 III)

Cobalt(3+), pentaammineammine-$d_{3^{-}},(O C-6-22)$-, triperchlorate

Isotopes of hydro ligands, like those of hydro "substituent" prefixes for labeled organic compounds, are expressed by " $d$ " or " $t$ " terms placed after citation of the hydro set.

Example:


Aluminum, ( $\mathrm{N}, \mathrm{N}$-dimethyl<br>methan- $d$-amine) trihydro- $d_{2}$ -(T-4)-

221. Mixtures. Certain mixtures are indexed like individual chemical substances and are assigned CAS Registry Numbers. These are compositions that involve components that are intentionally admixed prior to the intended uses, and remain discrete within the medium of the identified mixtures. Included are commercial products with trade or trivial names, as well as mixtures reported by authors to have particular properties or uses.

Such mixtures are indexed at the name of the preferred component, with all other such components expressed in the modification of the main entry. Solvents, fillers, binders, antioxidants, stabilizers, emulsifiers, plasticizers, and flavoring and coloring agents are disregarded if not specified as "active" in terms of the intended or implied uses of the formulations. Inactive trace materials are also omitted.

The percentage composition is not expressed in the index entry; thus, in the modification term "mixt. with copper(2+) sulfate (1:1)," the ratio refers to the copper sulfate, not to the mixture. Cross-references appear at trade and trivial names encountered in original documents.

The preferred index entry is made at a stereoparent (II 202) if possible, e.g., D-Glucose or Pregn-4-ene-3,20-dione. Choices among stereoparents and nonstereoparents depend on functionality, as for molecular addition compounds (II 192) and polymers (II 222). Components are cited in each modification in alphabetical order, esters and salts being expressed in their uninverted format. Mixtures containing ill-defined, nonregistrable substances such as egg white are indexed as usual, with the Egg white entry appearing in the General Subject Index. The "compounds" functional subdivision (Appendix II, I[ 10B) is used for components that have subdivided headings.

Example:

## Glycine, compounds

mixt. with egg white and sodium chloride $(\mathbf{N a C l})$
(preferred Chemical Substance Index entry; cross-reference at Yumol) Egg white
mixt. contg. (General Subject Index entry)
Mixtures of ten or more indexable components are registered as usual, but, because of the excessive length of index entries which list the components, they are indexed only at the mixture name. "See also" cross-references at the component names in the Index Guide lead the index user to the entries at the mixture heading.

A mixture of salts of a single parent is indexed only once, although all salts are registered.
Example:

## Carrageenan, hydrogen sulfate, calcium salt,

 mixt. with potassium and sodium saltsMixed reactants and impure reaction products are not indexed in this way, nor are unresolved natural products, mixed stereoisomers (other than pure racemates), commercially available mixtures of structural isomers, column fractions from distillations or chromatography, catalyst systems, welding fluxes, polymer blends, composites, or mixtures involved in physicochemical studies (as of phase systems) without emphasis on intended use. In these cases, separate entries are made at the headings for each significant component, with information on other components included in the index modifications (IT 10A).

Certain specific substances that are mixtures, but not regarded as sufficiently well defined to be classified as chemical substances of unique composition, are identified by headings in the General Subject Index. Examples are Air, Copper ores, Gasoline, Granite, Peanut oil, Petroleum.
222. Polymers. Classes of polymers, natural and synthetic, are indexed in the General Subject Index.

Specific polymers are named on the basis of the monomers from which they are formed and/or on the basis of their structure, as represented by a structural repeating unit (SRU). Since original documents do not always provide sufficient structural information to allow generation of the SRU name, the method most frequently used for describing polymeric substances is by citation of the component monomers. A few commercial polymers, each of which accounts for a large number of index entries, are indexed only at the SRU-based systematic polymer name. (Cross-references at the monomer names appear in the Index Guide). Systematic nomenclature is discussed first in the following paragraphs, followed by monomer-based polymer nomenclature.

Systematic (SRU) nomenclature for polymers has been adapted from the system developed by the Committee on Nomenclature of the Division of Polymer Chemistry of the American Chemical Society ${ }^{5}$. Names derived by this system, in addition to monomer-based entries, are cited for polymers whose structural repeating units are well-documented or can confidently be assumed. "Expected," "idealized," or "drawn-for-convenience" SRUs are not given systematic polymer names. Occasionally, when there is no information on the component monomers in the original document, an entry derived from the SRU name is the only index entry available.

The SRU is named by citation of one or more multivalent radicals of regular substitutive nomenclature. Many of these radical names will be found in the Illustrative List of Substituent Prefixes (Section H, I[ 294); others are supplied in the various sections dealing with classes of compounds from which the radicals are derived. The SRU name is enclosed in parentheses or brackets, and prefixed by the term "Poly". Each multivalent radical retains its own numbering and is oriented, if possible, so that the point of attachment written at the left end of the repeating unit is assigned the lowest possible number. This permits the naming of the SRU in a directional manner, reading from left to right. The largest possible multivalent radicals are chosen as all or part of the name, and naming proceeds from left to right, starting with the most preferred multivalent radical. (See the following sections for the choice of most preferred radical.) Unsaturation and substituents are indicated by appropriate locants. Functional derivatives, such as esters and hydrazones and oxides of hetero atoms which are an integral part of the repeating unit are expressed by prefixes rather than by modification terms, and are numbered as low as possible while preserving the preferred names of the parent radicals. Salts of acids and anions of quaternary "-onium" compounds, and oxides of hetero atoms which are an integral part of the repeating unit are cited following the name of the SRU. The number of free valencies between units is minimized; i.e., unsaturated radicals are preferred.

Polymers of unspecified length and chains of reported "average" length, are named by the methods described above. The prefix "oligo-" is not used to differentiate polymers of relatively low molecular weight from high polymers. When, however, the number of structural repeating units is exactly specified, the oligomer is usually named according to the principles of substitutive nomenclature.

Examples:

$$
\begin{aligned}
& \left(-\mathrm{CH}_{2}-\right)_{\mathrm{n}} \\
& \left(-\mathrm{CHMeCH}_{2}-\right)_{\mathrm{n}} \\
& (-\mathrm{CH}=\mathrm{CH}-)_{\mathrm{n}} \\
& \quad\left(\text { not }(=\mathrm{CHCH}=)_{\mathrm{n}}\right) \\
& {\left[-(\mathrm{CO})_{2}\left(\mathrm{CH}_{2}\right)_{2}-\right]_{\mathrm{n}}}
\end{aligned}
$$

## Poly(methylene)

## Poly(1-methyl-1,2-ethanediyl)

Poly(1,2-ethenediyl) (not Poly(1,2ethanediylidene))

Poly(1,2-dioxo-1,4-butanediyl) (not
Poly(1,4-dioxo-1,4-butanediyl))
$\left(-\mathrm{CH}=\mathrm{CHCHMeCH} \mathrm{Z}_{2}\right)_{\mathrm{n}}$
Poly(3-methyl-1-butene-1,4-diyl)

For more complex examples, further criteria for arranging the components of an SRU are required. The descending order of priority of citation (and of structuring of the SRU) is ( $a$ ) heterocyclic rings, $(b)$ acyclic hetero atoms in the order: $\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}, \mathrm{N}, \mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{B}, \mathrm{Hg},(c)$ carbocyclic rings, $(d)$ acyclic carbon chains. If substituents are present, otherwise identical parent radicals in the SRU are chosen by the principles, in turn, of maximum number, lowest locants, and earliest alphabetical order of substituents. The shortest path (smallest number of atoms) is taken from the most preferred multivalent radical to another occurrence of the same radical (if present) within the SRU, then to the next most preferred radical, and so on.

Examples:

$\left[-\mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{2}-\right]_{\mathrm{n}}$
Poly[imino(1-oxo-1,3-propanediyl)]
$\left[-\left(\mathrm{SO}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}-\right]_{\mathrm{n}}$
Poly(disulfonyl-1,2-ethanediyl)


Poly[oxycarbonyloxy(methyl-1,2-
ethanediyl)] (The position of the
methyl group is not assumed in this
polyester from carbonic acid and
1,2-propanediol.)

[^13]

Poly[oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenyl-ene(1-methylethylidene)-1,4phenylene] (With equal numbers of atoms between the oxygen atoms in two possible arrangements, the preferred path includes the other hetero atom, sulfur, as early as possible.)
$\left[-\mathrm{OCH}_{2} \mathrm{SNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{SCH}_{2} \mathrm{NHCH}_{2}-\right]_{\mathrm{n}}$
Poly(oxymethylenethioimino-1,2-ethanediyloxymethylenethiomethyleneiminomethylene) (With equal distances between the two oxygen atoms and between the oxygen and sulfur atoms, the direction is determined by the shortest distance between the oxygen atom and the hetero atom of third preference (nitrogen).)


Poly(iminocarbonyl-1,4-phenylene-iminocarbonyl-1,3-phenylene-carbonylimino-1,4-phenylene-carbonylimino-1,6-hexanediyl) (The citation proceeds in the increasing order of distances between the nitrogen atoms: $5,5,5$, and 6 intervening carbon atoms.)


Poly([2,2'-bithiazole]-4,4'-diyl-1,4-phenyleneazo-1,4-phenylene)

Poly[imino[1-oxo-2-(propoxycarbo-nyl)-1,2-ethanediyl] (not Poly-[imino(1-carboxy-2-oxo-1,2ethanediyl)], propyl ester)


Poly[(dimethyliminio)-1,2-
ethanediyl bromide] (the
ionic derivative term is included in the SRU)

When SRUs are bridged only by metals, systematic polymer nomenclature is not used; instead, the substance is indexed either at the monomeric salt name or by coordination nomenclature (II 215), with a modification phrase, in either case, such as "homopolymer" or "polymer with" (see below).

End groups, when known, are specified by means of appropriate radical names, together with Greek letters " $\alpha$-" and " $\omega$-" expressed as substituents. The $\alpha$-end group is the group attached to the left end of the SRU when the structure is ordered by the specified rules; it is cited first, regardless of alphabetical order.

Examples:

$\mathrm{Cl}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-\mathrm{CCl}_{3}$	Poly(methylene)
	$\alpha$-chloro- $\omega$-(trichloromethyl)-
$\mathrm{Cl}_{3} \mathrm{C}-\left(\mathrm{CF}_{2}-\mathrm{CH}_{2}-\right)_{\mathrm{n}} \mathrm{Cl}$	Poly(1,1-difluoro-1,2-ethanediyl)
	$\alpha$-(trichloromethyl)- $\omega$-chloro-

Linear double-strand ("ladder" and "spiro") polymers may sometimes be named as a chain of quadrivalent radicals. Two pairs of locants, separated by a colon, indicate the distribution of bonds.

Example:

$$
\left[\left.\begin{array}{lll}
-\mathrm{CH}_{2} & & \\
& \mathrm{CH}- \\
& & \mathrm{CH}- \\
-\mathrm{CH}_{2} & &
\end{array}\right|_{n}\right.
$$

Poly(1,4:2,3-butanetetrayl)

When a ladder polymer must be named as an SRU of one or more quadrivalent radicals linked through one or more bivalent radicals (here, these terms are extended to mean radicals attached to four or two different atoms, not only to radicals with four or two free valence bonds) the direction of citation is from the most favored quadrivalent radical by the shortest path to the next most favored quadrivalent radical, and so on; then toward the most favored bivalent radical. Rings are broken (a) to minimize the number of free valencies of the total "mer," $(b)$ to maximize the number of most preferred hetero atoms in the ring system, (c) to maintain intact the most preferred ring system (II 138). End groups, when known, are identified by $\alpha$ and $\alpha^{\prime}$ (at the left terminus as the structure is drawn) and by $\omega$ and $\omega^{\prime}$ (at the right terminus) as locants for substituent prefixes, e.g., $\alpha, \alpha^{\prime}$-dihydroxy- $\omega, \omega^{\prime}$-dihydro-.

Examples:



Poly([1,4]dioxino[2,3-b]-1,4-dioxino $\left[2^{\prime}, 3^{\prime}: 5,6\right]$ pyrazino $[2,3-g]$ -quinoxaline-2,3:9,10-tetrayl-9,10-dicarbonyl) (The same number of free valences can be expressed by breaking the oxygen ring or the partially saturated hydrocarbon ring; the latter course keeps intact the maximum number of heterocyclic rings.)

Poly[1,3-dioxa-2-silacyclohexane-5,2-diylidene-2,2-bis(oxymeth-
 ylene)] (not Poly[1,3-dioxa-2-silacyclohexane-2,5-diylidene-5,5-bis(methyleneoxy)] (The direction is determined by the shortest path from the hetero atom in the ring to the acyclic hetero atom.)

Linear polymers composed of SRUs within SRUs, e.g.,

$$
\left[-\left[\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right]_{\mathrm{m}}-\mathrm{O}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2}-\right]_{\mathrm{n}}
$$

are not assigned systematic names; they are indexed at the monomer names only.

The previous paragraphs described a systematic nomenclature for polymers of well characterized structure, and for polymers whose structural repeating unit (SRU) can be confidently assumed. The latter are restricted to (a) polyamides from a dibasic acid (or derivative) and a diamine, or from an amino acid or lactam; (b) polyesters from a dibasic acid (or derivative) and a dihydric alcohol, or from a hydroxy acid or lactone; (c) polyurethanes from a diisocyanate and a dihydric alcohol; and (d) polycarbonates from carbonic acid (or an ester or halide) and a dihydric alcohol.

Polymers manufactured from known monomers are generally indexed at the monomer names whether or not systematic (SRU) entries are also made. An exception is the treatment of a few very common industrial polymers, e.g., nylon 6 , nylon 66 , terephthalic acid polymer with ethylene glycol, which, to preclude inordinate repetition of a large number of index entries at various names, are cross-referred in the Index Guide from monomer names to SRU names.

## Example:

## Terephthalic acid

See 1,4-Benzenedicarboxylic acid

## 1,4-Benzenedicarboxylic acid, polymers

polymer with 1,2-ethanediol-see Poly(oxy-1,2-ethanediyloxy-carbonyl-1,4-phenylenecarbonyl)

A cross-reference appears also at 1,4-Benzenedicarboxylic acid, esters, dimethyl ester, polymer with 1,2-ethanediol; and two corresponding cross-references at 1,2-Ethanediol, polymers.

Polymers from a single monomer are indexed at the monomer name with the term "homopolymer" cited in the modification. (The terms "peptides," "polyamides," and "polyesters" are not used for specific homopolymers at monomer headings.)

Examples:

$$
\left(\mathrm{BuCH}=\mathrm{CH}_{2}\right)_{\mathrm{n}}
$$

1-Hexene
homopolymer (only index entry)

$$
\left[\mathrm{H}_{2} \mathrm{C}=\mathrm{CMeCO}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{Me}\right]_{\mathrm{n}}
$$

2-Propenoic acid, 2-methyltridecyl ester, homopolymer (only index entry)
$\left[\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CO}_{2} \mathrm{H}\right]_{\mathrm{n}}$
Undecanoic acid, 11-aminohomopolymer (the Formula Index entry appears at $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{2}$; a systematic entry is also made at the assumed SRU name: Poly[imino-(1-oxo-1,11-undecanediyl)], $\left(\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}\right)_{\mathrm{n}}$ )

Polymers formed from two or more monomers are indexed at the preferred monomer name with the modification term "polymer with" followed by the other monomer names in alphabetical order. No attempt is made to indicate the percentage composition of copolymers. The preferred index name is determined by the usual rules for selection of a heading parent (II 138) but a stereoparent is preferred over a nonstereoparent, e.g., D-Glucose, polymer with butanedioic acid. For identical heading parents, the choice is determined by ( $a$ ) maximum number of substituents, (b) lowest locants of substituents, (c) maximum number of occurrences of the index heading parent (in a multiplicative name), (d) earliest index position of the index heading. When the choice is dependent on modification terms, it is determined as follows: (a) underivatized heading preferred over derivatives cited in the modification; thus, a free acid is preferred over an ester; (changes in format caused by elevation of modification terms into the heading for purposes of subdivision (Appendix II, $\mathbb{I}$ I0B) are ignored in applying this rule; thus Acetic acid is preferred over Acetic acid ethenyl ester); (b) class of derivative in the descending order: anhydride, ester, hydrazide, hydrazone, oxime; (c) largest number of (most preferred) derivative; thus, monoester preferred over dioxime preferred over monooxime; (d) lowest expressed locants of derivative terms; thus, for 1,2,4-Benzenetricarboxylic acid, a 1,2-diester is preferred over a 1,4-diester; (e) the earliest alphabetical order; thus, "ethyl ester" preferred over "propyl ester."

Examples:
1(a)

## 1-Heptene

polymer with 1-hexene (preferred index entry)
2(a)

## 2-Propenoic acid

butyl ester, polymer with 1-ethenyl-4-methylbenzene and 2,5-furandione (preferred index entry)

Peptides of established structure are indexed at systematic peptide names such as Glycine, glycylglycyl- (see II 206). Peptides of unknown structure are indexed as polymers.

Example:

$$
\left[\mathrm{HO}_{2} \mathrm{CCH}\left(\mathrm{NH}_{2}\right)\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right]_{\mathrm{n}}
$$

L-Glutamic acid
5-(phenylmethyl) ester, homo-
polymer
and the assumed structural repeating unit:

$$
\left[\begin{array}{c}
\substack{\mid \\
\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}}
\end{array}\right]_{n}
$$

Poly[imino[(2S)-1-oxo-2-[3-oxo-3-(phenylmethoxy)propyl]-1,2ethanediyl]]

When more than one amino acid is present and the sequence is unknown, a copolymer is indexed, and named at the preferred amino acid monomer.

Alternating, block, and graft polymers are distinguished from random polymers by indexing as copolymers at the monomer names. The term "alternating", "block", or "graft" (or a combination thereof) is cited in a special modification after all other structural information but before descriptive phrases relating to properties, uses, etc. Differentiation between the polymeric substrate and the applied monomer is not made; e.g., whether 1-hexene is grafted on 1-heptene homopolymer or vice versa, the preferred index entry is at 1-Heptene, polymer with 1-hexene, graft, with an additional entry at 1-Hexene, polymer with 1-heptene, graft. The term "random" is not employed by $C A$ in indexing specific polymers.

Siloxanes prepared by hydrolytic polymerization of chlorosilanes are indexed at the monomer names with the term "hydrolytic" cited in the modification to indicate the essential role of water in forming a polymer chain of -Si-Ounits. The term "hydrolytic" is used in addition to the term "homopolymer" or "polymer with".

Example:

## Silane, dichlorodimethyl-

polymer with dichlorodiphenylsilane, hydrolytic
Polymers of specific compounds with classes of compounds are indexed at the specific monomers in the Chemical Substance Index and at the class name, e.g., Aldehydes or Nitriles, in the General Subject Index.

Example:

## 1-Hexene, 5-methyl-

polymer with unsatd. nitriles
Nitriles
unsatd.; polymers with 5-methyl-1-hexene
Formaldehyde homopolymers containing only oxymethylene repeating units are indexed only at the heading Poly(oxymethylene) in the Chemical Substance Index. Commercial and impure polyformaldehydes are indexed at Polyoxymethylenes (a plural class heading in the General Subject Index) unless author emphasis is centered on Paraformaldehyde. Formaldehyde copolymers are indexed as polymers formed from two or more monomers (except Formaldehyde copolymers with Phenol, Urea, or 1,3,5-Triazine-2,4,6-triamine which are cross-referred in the Index Guide).

Oligomers of definite structure are indexed as specific compounds by the regular principles of index nomenclature. When the precise structure is not known but the number of units is specific, "dimer," "trimer," etc., is expressed in the modification at the name of the monomer. The term "oligomeric" may be cited after "homopolymer" or "polymer with . . ." if this aspect is stressed in the original document.

Telomers with a definite structure are named systematically.
Examples:

$$
\begin{array}{lr}
\mathrm{Cl}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CCl}_{3} & \text { Heptane, 1,1,1,7-tetrachloro- } \\
\mathrm{Cl}\left(\mathrm{CF}_{2}-\mathrm{CH}_{2}\right)_{\mathrm{n}}-\mathrm{CHCl}_{2} & \text { Poly(1,1-difluoro-1,2-ethanediyl) } \\
& \alpha \text {-chloro- } \omega \text {-(dichloromethyl)- }
\end{array}
$$

Telomers of unknown structure are indexed as copolymers with the term "telomer with . . ." cited in the modification.

Example:

## 1-Hexene

telomer with tetrachloromethane
Methane, tetrachloro-
telomer with 1-hexene
Post-treated polymers are described by modification terms after the polymer has been described.

Examples:
2-Propenoic acid homopolymer, sodium salt
Benzenamine, 4-ethenylpolymer with ethenylbenzene, hydrochloride

2-Propenoic acid, 2-methyldecyl ester, homopolymer, hydrolyzed
Poly[1-(4-sulfophenyl)-1,2-ethanediyl] propyl ester

Ethenol (vinyl alcohol) polymers that are indexed at that heading are exceptions (they are prepared by hydrolysis of ethenol ester polymers). Also, acetals of ethenol polymers are entered in the General Subject Index at the trivially named class terms Polyvinyl acetals and Polyvinyl butyrals with a modification, e.g., "chlorobenzals," to indicate the type of acetal when appropriate. Cross-references or additional entries (in the Chemical Substance Index) are found at the aldehyde names.

Molecular addition compounds of polymers are indexed in the usual way (II 192), e.g., Ethenesulfonic acid, homopolymer, compd. with 4-ethenylpyridine homopolymer, with an additional entry for the other component.

Polyethylene and polypropylene glycols are indexed as specific compounds when the precise structure is reported and not more than ten repeating units are present, e.g., 3,6,9,12,15-Pentaoxaheptadecane-1,17-diol, hexamethyl- (a cross-reference will be found in the Index Guide at Hexapropylene glycol). The position of methyl substituents is not assumed; if it is reported, locants are cited. Glycol polymers of eleven units or more are indexed at Poly(oxy-1,2ethanediyl), $\alpha$-hydro- $\omega$-hydroxy-, and Poly[oxy(methyl-1,2-ethanediyl)], $\alpha$-hydro- $\omega$-hydroxy-. The class term Polyoxyalkylenes in the General Subject Index is used as an additional entry for all specific polyalkylene glycols except when the alkanediyl group is ethanediyl or propanediyl and for cases where the nature of the alkanediyl group is unknown. When it is known, the SRU can be named specifically; thus, Poly[oxy(2-phenyl-1,3-propanediyl)], $\alpha$-hydro- $\omega$-hydroxy-. Polyethylene-polypropylene glycols are named as copolymers: Oxirane, methyl-, polymer with oxirane, with an additional Chemical Substance and Formula Index entry at Oxirane.

Esters and ethers of polyalkylene glycols containing not more than ten repeating units are indexed by the regular principles of substitutive nomenclature. For larger polymers, the ester or ether is expressed as a substituent at the SRU-based heading. Mono derivatives are cited in the $\alpha$-position, with $\omega$-hydroxy at the other terminus. Dissimilar diesters or diethers are expressed in alphabetical order. Ester-ethers have the acyl group assigned to the $\alpha$-position, and the ether at the $\omega$-end. When appropriate information is lacking, an ester or ether term is cited without locant. When multiplying radicals must be employed, they are given $\alpha$-locants.

Examples:


Poly(oxy-1,2-ethanediyl) $\alpha$-(1-oxo-2-propenyl)- $\omega$-(do-decyloxy)-


Poly(oxy-1,2-ethanediyl) $\alpha, \alpha^{\prime}-1,4$-phenylenebis $[\omega-[(1-$ oxooctadecyl)oxy]-

Polynucleotides (cf. Nucleotides, $\mathbb{C}$ 210) are indexed as "homopolymer" or "polymer with . . ." at the "-ylic acid" monomers ( 5 '-isomers).

Examples:

## 5'-Adenylic acid

homopolymer

## Cytidine, $5^{\prime}$ - $O$-phosphonoadenylyl-( $\mathbf{3}^{\prime} \rightarrow \mathbf{5}^{\prime}$ )- <br> homopolymer

## 5'-Guanylic acid

polymer with $\mathbf{5}^{\prime}$-adenylic acid and $\mathbf{5}^{\prime}$-cytidylic acid (additional Chemical Substance and Formula Index entries at 5'-Adenylic acid and $\mathbf{5}^{\prime}$-Cytidylic acid

Polynucleotides in which different primary chains are associated intermolecularly by hydrogen bonds are indexed as molecular addition compounds at each component (the modification term "complex" is used in this special case); e.g., $5^{\prime}$-Adenylic acid, homopolymer, complex with $5^{\prime}$-uridylic acid homopolymer (1:1).

In more complicated cases, a combination of policies is applied.
Examples:

$$
: p-A-p-G \div p-U \div p-A-p-G \div p-C-p-U \div p-A-p-G \div p-U \div
$$

Guanosine, $5^{\prime}$ - $\boldsymbol{O}$-phosphonoadenylyl$\left(3^{\prime} \rightarrow 5^{\prime}\right)$ - polymer with $5^{\prime}$-cytidylic acid and $5^{\prime}$-uridylic acid (additional Chemical Substance and Formula Index entries at $\mathbf{5}^{\prime}$-Cytidylic acid and $\mathbf{5}^{\prime}$-Uridylic acid)


5'-Guanylic acid
polymer with $5^{\prime}$-adenylic acid,
complex with $5^{\prime}$-uridylic acid, polymer with $5^{\prime}$-cytidylic acid (1:1) (three additional Chemical Substance and Formula Index entries at the names of the other components)

Trade names are frequently used for polymers and are cross-referred to specific polymers if the components can be structurally defined. If the polymer components are unknown, or only partially known, or cannot structurally be defined, an index citation is made at the trade name and at the appropriate polymer class name.

Natural rubber is indexed at the General Subject Index heading Natural rubber and chlorine-treated rubber at Chlorinated natural rubber. When a synthetic rubber is indexed at Butadiene rubber, Isoprene rubber, etc., no additional entry will be found in the printed Chemical Substance Index, but for studies indexed at Synthetic rubber, Urethane rubber, or at Polysulfide rubber, information will also be found, when available, at the appropriate printed chemical compound or polymer heading, with "rubber" cited in the index modification

Examples:

## Synthetic rubber

styrene-vinyl bromide
(General Subject Index entry)

## Benzene, ethenyl-

polymer with bromoethene, rubber
(preferred Chemical Substance Index entry)

## Ethene, bromo-

polymer with ethenylbenzene, rubber
(additional Chemical Substance Index entry)
General subject headings for fibers are presented under the Top Term Fibers in Appendix I. For studies indexed at Rayon, Acetate fibers, etc., no additional index entries will be found, but for studies of fibers of specific chemical composition entered at Polyamide fibers, Synthetic polymeric fibers, etc., additional information is entered at the appropriate chemical substance name, except where a cross-reference to the fiber class appears.

Example:

## Synthetic polymeric fibers

adipic acid-butanediol (General Subject Index entry)

## Hexanedioic acid

polymer with 1,4-butanediol, fiber (additional Chemical Substance Index entries at 1,4-Butanediol and at the SRU name)

Stereochemistry of polymers is expressed by special modification terms when the necessary information is reported; such terms include isotactic, syndiotactic, threo-diisotactic, erythro-diisotactic, and disyndiotactic. The term "atactic" (for a random configuration) is not employed by $C A$ in indexing specific polymers.

In addition to the special terms above, polymer stereochemistry is defined, when appropriate, by the regular descriptors $E, Z, R, S, R^{*}$, and $S^{*}$ (II 203 I). For commercial elastomeric polymers, which cannot generally be assumed to be stereochemically homogeneous, terms such as "1,2-configuration," and "cis-1,4-configuration" are included in the descriptive portions of index modifications, but are not made part of the unique preferred $C A$ index names.
223. Porphyrins and Bile pigments. The porphyrins embrace all cyclic tetrapyrroles in which single methene groups link pairs of pyrrole rings. The parent $\mathbf{2 1 H}, \mathbf{2 3} \mathrm{H}$-Porphine is used, with a suffix to express principal groups if present, for all derivatives, including hydrogenated derivatives, unless an author emphasizes the absence of hydrogen at the 21-and 23-positions.

Example:


## 21 $\mathrm{H}, \mathbf{2 3 H}$-Porphine

Porphyrin analogs containing additional hetero atoms are indexed by organic replacement nomenclature (II 127) at such names as 21 H -5-Thiaporphine and $\mathbf{2 1 H}, \mathbf{2 3 H}-\mathbf{5}, \mathbf{1 5}$-Diazaporphine. The trivial name $\mathbf{2 1 H}, \mathbf{2 3} \mathrm{H}$-Porphyrazine is employed instead of $21 H, 23 H-5,10,15,20-$ Tetraazaporphine, and its fused tetrabenzo derivative is $29 \mathrm{H}, \mathbf{3 1} \mathrm{H}$-Phthalocyanine. Radicals are formed in the regular way; e.g., $21 \mathrm{H}, 23 \mathrm{H}$-porphin- 2 -yl, $29 \mathrm{H}, 31 \mathrm{H}$-phthalocyanine-2,9,17,24-tetrayl.

The metal complexes, including the biologically important porphyrin iron and magnesium complexes (hemes and chlorophylls) are indexed as coordination compounds (II 215) with italic letter locants to indicate coordinating atoms.

Example:


Phorbine is a cyclopentaporphine derivative:


## Phorbine

Indicated hydrogen is not expressed with Phorbine, which contains six saturated centers. Removal of hydrogen is indicated by dehydro terms, e.g., Phorbine, 3,4-didehydro-. Metal complexes, radicals, etc., are named as for the analogous porphine derivatives.

Example:


Bile pigments are indexed at $\mathbf{2 1} \mathrm{H}$-Biline, the numbering system of which derives from that of porphyrin (the carbon atom involved in ring closure, C-20, is omitted from the numbering system).


21 $H$-Biline

All derivatives, including hydrogenated derivatives, are indexed at $\mathbf{2 1} \mathrm{H}$ Biline unless hydrogen is absent at the 21-position, in which case the 22 H -parent is preferred over lower positions. The (all-Z) stereochemistry shown in the diagram above is assumed. The 1,19-dihydroxy derivatives are tautomeric with the dioxo compounds, which are preferred in indexing.

Example:
(CH2

For derivatives of Corrin, see Vitamin $\mathbf{B}_{12}$ (II 224).
224. Vitamins, being structurally diverse, are indexed by more than one method. The headings Vitamin B, Vitamin K, etc., are used to index groups of compounds having similar physiological activities, especially for biological studies. Such headings as Vitamin $\mathbf{B}_{4}$, Vitamin $\mathbf{B}_{6}$, Vitamin F, may each refer to one or more specific compounds or to nothing more than an ill-defined vitamin activity. They are used in indexing when employed in original documents, and CAS Registry Numbers are assigned to them, but "see also" crossreferences in the Index Guide lead from these names to more specific related headings whenever possible. Vitamin names occasionally still encountered, e.g., Vitamin $\mathbf{P}_{4}$, Vitamin U, but not discussed in the present account will usually be found cross-referred in the Index Guide to the preferred index names.

Vitamin $\mathbf{A}$ is a heading parent employed for the group of A vitamins and for vitamin A activity in general. Vitamin $\mathrm{A}_{1}$ is indexed at the carotenoid heading Retinol (II 212); Vitamin $A_{2}$ is indexed at Retinol, 3,4-didehydro-. Related trivially named heading parents are Retinoic acid and Retinal. In all these cases, an all-trans-configuration about the double bonds is implied by the names. Abnormal stereochemistry is specifically cited in the modification.

Vitamin B is a heading parent employed for the B-complex and vitamin B activity in general. Vitamin $\mathbf{B}_{1}$ and related compounds are indexed at the systematic names. (The trivial name Thiamine, not used as a $C A$ index heading, implies presence of a chloride anion.)

Example:


Thiazolium, 3-[(4-amino-2-
methyl-5-pyrimidinyl)methyl]-5-(2-hydroxyethyl)-4-methylchloride
(cross-references from Aneurine; Thiamine; and Vitamin $B_{1}$ )

The diphosphoric (pyrophosphoric) acid ester of Vitamin $\mathrm{B}_{1}$ (cocarboxylase) is indexed by expressing the ester as an "a"-named substituent; i.e., the 5-(2-hydroxyethyl) group becomes 5-(4,6,6-trihydroxy-4,6-dioxido-3,5-dioxa-4,6-diphosphahex-1-yl)-. Vitamin $\mathrm{B}_{2}$ contains a ribitol residue and is indexed at the stereoparent

## Riboflavin:

Plain locants are employed for ring substituents, primed locants for the ribitol moiety. Binary headings analogous to those for nucleotides (II 210) are used for phosphates, diphosphates (pyrophosphates), etc., e.g., Riboflavin 5'(dihydrogen phosphate). Functional derivatives of Riboflavin are expressed in the modification, e.g., $2^{\prime}, 3^{\prime}, 4^{\prime}$-triacetate, other derivatives as substituents. Analogs in which ribitol is replaced by other alditols are indexed at the alditol stereoparent names, e.g., D-Galactitol, 1-deoxy-1-(3,4-dihydro-7,8-dimeth-yl-2,4-dioxobenzo[g]pteridin-10(2H)-yl)- (cross-reference in the Index Guide at Galactoflavin).

Vitamin $B_{3}$ is indexed at 3-Pyridinecarboxamide; Vitamin $B_{5}$ is a littleused term for Pantothenic acid, which is indexed at $\beta$-Alanine:
$\mathrm{HOCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}$
$\beta$-Alanine, $\mathbf{N}-[(2 R)$-2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)-] (crossreference from Pantothenic acid) (The $(R)$-isomer is assumed unless otherwise stated in the original document.)

Vitamin $\mathbf{B}_{6}$ is a heading parent employed for studies in which the precise compound is not further specified. The individual compounds and their derivatives are indexed systematically at pyridine headings.

Examples:


4-Pyridinecarboxaldehyde, 3-hydroxy-5-(hydroxymethyl)-2-methyl-
(cross-reference from Pyridoxal)


3-Pyridinemethanol, 4-(amino-methyl)-5-hydroxy-6-methyl-(cross-reference from Pyridoxamine)


3,4-Pyridinedimethanol, 5-
hydroxy-6-methyl-
(cross-references from Pyridoxine; Pyridoxol)

Vitamin $\mathbf{B}_{12}$ is an index heading used for the vitamin itself:


Vitamin $\mathbf{B}_{12}$
(cross-references from Cobalamin, cyano-; Cobamin; Cobinamide, cyanide, dihydrogen phosphate (ester), inner salt, $3^{\prime}$-ester with 5,6-dimethyl-1- $\alpha$-D-ribofuranosyl-1 $H$-benzimidazole; and Cyanocobalamin)

The terms Cyanocobalamin and Cobalamin are not used in index names. Derivatives, other than functional derivatives, of Vitamin $\mathrm{B}_{12}$ are indexed largely in accordance with rules of the International Union of Pure and Applied Chemistry, ${ }^{6}$ which should be consulted for details.

The fundamental ring system is Corrin, which is numbered like Porphyrin, the locant " 20 " being omitted to facilitate analogous treatment of derivatives; the methene bridges which remain are numbered " 5 ," " 10 ," and " 15 ." The index heading (in the General Subject Index) for this class of compounds is Corrinoids, and specific compounds are generally indexed at the largest appropriate heading parent chosen from the following: Cobyrinic acid, Cobinic acid, Cobamic acid, or the corresponding amides.

$\mathrm{R}=\mathrm{R}^{1}=\mathrm{OH} \quad$ Cobyrinic acid
$\mathrm{R}=\mathrm{R} 1=\mathrm{NH} 2 \quad$ Cobyrinamide acid
$\mathrm{R}=\mathrm{OH} ; \mathrm{R}^{1}=\mathrm{NHCH}_{2} \mathrm{CHMeOH} \quad$ Cobinic acid (in Cabinamide, $\mathrm{R}=\mathrm{NH}_{2}$ )
$\mathrm{R}=\mathrm{OH} ; \mathrm{R}^{1}=\mathrm{NHCH}_{2} \mathrm{CHMe}^{\text {CHe }}$ ( Cobamic acid (in Cobamide, $\mathrm{R}=\mathrm{NH}_{2}$ )
$\mathrm{OP}(\mathrm{O})(\mathrm{O}) \mathrm{O}^{-} \mathrm{OH}$

In Cobamic acid and Cobamide, the structures (above) have been shown as inner salts; the cobalt(3+) nucleus is also coordinated with the nitrogen atoms with loss of one proton overall. The compound therefore still possesses a $1+$ charge. Similarly, Cobyrinic and Cobinic acids (and their amides), which lack the phosphate group, have a $2+$ charge, and can form dihydroxides, cyanide hydroxides, etc. Partial amides of Cobyrinic acid are designated by use of the small italic locants shown in the diagram above; e.g., Cobyrinic acid-abcdeg-hexamide, dicyanide. Substitution on amide groups is indicated by $N$ with a superscript, e.g., $N^{f}$-(carboxymethyl)-. In modifications at corrinoid headings, the various types of derivatives are cited in the following order: (a) groups linked to the cobalt atom, e.g., Co-ammine, Co-methyl deriv., Co-(pyridine); followed by anions, e.g., cyanide, acetate (salt); and then "hydrate" if present; (b) lactones and lactams formed between acetic or propanoic residues and existing or added hydroxyl and amino groups; (c) esters of the corrin moiety, e.g., dihydrogen phosphate (ester); (d) "inner salt" (for zwitterionic structures); ( $e$ ) further ester terms for a polybasic acid residue such as phosphoric acid, e.g., "3-ester with. ..."

When the cobalt is in a $2+$ rather than a $3+$ oxidation state, Ewens-Bassett numbers ( $([215)$ or Stock numbers are cited in the heading; e.g., Cobinamide$C o(1+), C o$-ethyl deriv., monohydrate (the " $1+$ " designation belongs to the entire cobinamide parent, and results from coordination of the $\mathrm{Co}(2+)$ atom with loss of a proton from corrin; the modification term renders the total compound neutral); Cobamide- $\operatorname{Co}(\mathbf{I I})$ (the Stock number is employed because no charge remains; a proton has been lost from corrin and another from the phosphoric acid group by inner salt formation).

Analogs of Cobyrinic acid, etc., in which cobalt is replaced by another metal are named by substituting a suitable term for "Co-" in the original name. Thus, the iron(2+) and nickel(3+) analogs of cobyrinic acid are named Ferrobyrinic acid and Nickelibyrinic acid, respectively. The hydrogen analog is Hydrogenobyrinic acid.

Vitamin C is indexed at L-Ascorbic acid:


## L-Ascorbic acid

(cross-references from L-threo-
Hex-2-enonic acid, $\gamma$-lactone;
Vitamin C)

[^14]${ }^{6}$ IUPAC, "Nomenclature of Corrinoids (Rules approved 1975)", Pure Appl. Chem. 1976, 48, 495-502; Biochemistry 1974, 13, 1555-60.

Examples:

9,10-Secoergosta-5,7,10(19),22-tet-
raen-3-ol
$(\mathbf{3} \beta, 5 Z, 7 E, 22 E)$ - (cross-references
from Calciferol, Ergocalciferol, and Vitamin $D_{2}$ )

9,10-Secocholesta-5,7,10(19)-
trien-3-ol
$(\mathbf{3} \beta, 5 Z, 7 E)$ - (cross-references from
Cholecalciferol and Vitamin $D_{3}$ )

Vitamin $\mathbf{E}$ is used as a heading for Vitamin E activity in general. Individual compounds, notably $\alpha$-tocopherol, exhibiting this activity are indexed systematically.

Example:
Me


Me
2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-[(4R,8R)-4,8, 12-trimethyltridecyl]-, (2R-) (cross-reference from $\alpha$-Tocopherol; "see also" cross-reference at Vi$\operatorname{tamin}$ E)

Vitamin $\mathbf{K}$ is used as a group heading; the specific compounds are named systematically.

Examples:


1,4-Naphthalenedione, 2-methyl-3-[(2E,7R,11R)-3,7,11,15-tetrame-thyl-2-hexadecenyl]-(cross-references from Phylloquinone and Vitamin $\mathrm{K}_{1(20)}$ )



1,4-Naphthalenedione, 2-[(2E,6E,10E,
$14 E, 18 E)-3,7,11,15,19,23$-hexame-thyl-2,6,10,14,18,22-tetracosa-hexaenyl]-3-methyl-
(cross-references from
Farnoquinone, and Vitamin $\mathrm{K}_{2(30)}$ )

## G. CHEMICAL SUBSTANCE NAMES FOR RETROSPECTIVE SEARCHES

Introduction	If 225	Ketene	If 261
Acetals	226	Ketones	262
Acid halides	227	Locants	263
Acids	228	Metallocenes	264
Additive Nomenclature	228A	Mixtures	265
Alcohols and Phenols	229	Molecular addition compounds	265A
Aldehydes	230	Multiplicative prefixes	266
Alkaloids	231	Nitriles	267
Alloys	232	Nitrone	268
Amides	233	Nucleosides and Nucleotides	269
Amidines	234	Onium compounds	270
Amines	235	Order of precedence of compound classes	271
Amino acids	236	Organometallic compounds	272
Anhydrides	237	"Oxo" acids	273
Azo and azoxy compounds	238	Peptides	274
Boron compounds	239	Peroxides	275
Carbohydrates	240	Phosphorus compounds	276
Carbonic acid and relatives	241	Polymers	277
Coordination compounds	242	Porphyrins and Bile pigments	278
Diazo compounds	243	Replacement ("a") nomenclature	279
Dyes	244	Replacement nomenclature for functions	280
Elementary particles	245	Ring systems	281
Enzymes	246	Salts	281A
Esters	247	Silicon compounds	282
Ethers	248	Spelling	283
Formazan	249	Stereochemistry	284
Functional derivatives	250	Stereoparents	285
Guanidine and relatives	251	Steroids	286
Hydrazine	252	Substituent prefixes (radicals)	287
Hydroxylamine	253	Sulfur compounds	288
Imines	254	Sulfones and Sulfoxides	289
Index name selection	255	Tautomers	289A
Indicated hydrogen	256	Terpenes	290
Inorganic compounds	257	Thiols	291
Inositols	258	Urea	292
Iodine compounds	259	Vitamins	293
Isocyanides	260	Zwitterionic compounds	293A

225. Introduction. The current name-selection policies for chemical substances described in Sections A through F above were introduced in 1972. These policies, which are now well-established, enable the index user to derive preferred CA names for substances of specific molecular structure and thereby to find information about them in current and recent indexes. However, in carrying searches back beyond 1972, difficulties can arise. The current $C A$ name of our compound has been determined; but where will we find this same substance in older $C A$ indexes? Cross-references in these indexes are helpful, but of course none exist that lead from current names to those in Eighth (and earlier) Collective Indexes. As a last resource, the Formula Indexes can be consulted. But a simpler method, especially in searching for groups of compounds, is to read the appropriate paragraphs of this section. Although published originally (in the Volume 76 Index Guide under the title "Ninth Collective Index Changes") to alert index users to prospective changes, it will now be found most serviceable to remind retrospective searchers of the main nomenclature changes occurring in 1972. For example, $\mathbb{I}[228$ (below) indicates that peroxoic acids, in Volume 75 and earlier indexes, will be found at Peroxy headings, that aldehydic, anilic, and hydroxamic acid headings were also employed, and that many acids were indexed at trivial names; II 270 explains that cationic compounds currently indexed at aminium headings were formerly entered at Ammonium; and đI 281 gives examples of current and former names for cyclic epoxides.

The changes in name selection policies described in this section are 1972 changes unless otherwise specified. The very few revisions found necessary in the Tenth (1977-1981) and Eleventh (1982-1986) Collective Index periods mainly affect inorganic compounds and are described in GIII 239, 257, and 273. Changes in name-selection policies for the Twelfth (1987-1991) and Thirteenth (1992-1996) Collective Index periods affect alloys, carbohydrates (lactams), coordination compounds, formazans, index name-selection (multiplicative names), inorganic compounds (line formulas of clusters, intermetallic compounds), molecular addition compounds (common components; hydrates), nitrilimines, onium compounds (free radicals), peptides, phosphonium ylides, phosphoryl-halides and halogenoids, polymers (block, graft, and hydrolytic), ring systems (list of common systems), salts (list of common anions), stereochemistry (sign of optical rotation), and zwitterions (inner salts, sydnones). These are described in this section at their respective paragraphs listed above.

The changes for the Fourteenth (1997-2001) Collective Index periods affect coordination nomenclature, stereochemical practices, and stereoparents and are described in I[ II 242, 284, and 285.

The arrangement of subjects is alphabetic, and references are supplied in each case to the paragraphs in Sections A through F where a complete account of current policies will be found. The index (Section M) may also be consulted.

Headings found in current indexes are shown in boldface within the following paragraphs.
226. Acetals are indexed like ethers (II 196); thus, Acetone, diethyl acetal became Propane, 2,2-diethoxy-. Cyclic acetals, except those of stereoparents
(II 202), are indexed at the ring names. Epoxides are likewise indexed at the names of the appropriate ring systems, e.g., Oxirane.
227. Acid halide names ( $(\mathbb{I} 170)$ were affected by the discontinuance of most trivial acid names. Isocyanates, isothiocyanates, and isocyanides are now named like the halides. In the following examples, names prior to 1972 are shown in parentheses.

(Hydrocinnamoyl chloride)
(Butyryl fluoride, thio-)
(Benzenesulfonic acid, anhydride
with isocyanic acid)
228. Acids. Carbonic acid and related compounds including Formic acid (II 183) are now relegated to a position below "organic" acids and above inorganic "oxo" acids (II 106).

Among carboxylic acids, the only trivial names retained were Acetic acid and Benzoic acid. (When oxygen in the functional group of these two acids is replaced, systematic functional replacement names, e.g., Ethanimidic acid, Benzenecarbothioic acid, are employed.) All other organic acids (carboxylic, sulfonic, sulfinic, etc.) are named systematically (II 165); e.g., Propanoic acid (formerly Propionic acid); Benzoic acid, 2-hydroxy- (Salicylic acid); 2Butenedioic acid ( $E$ )- (Fumaric acid); Benzenesulfonic acid, 4-amino- (Sulfanilic acid).

Use of replacement affixes (II 129) for modified carboxylic, sulfonic, etc., groups was extended for Volume 76. In the following examples, the names formerly used are shown in parentheses:

```
Ethanimidothioic acid
3-Pyridinecarbohydrazonic
 acid
 methyl ester
Butanediperoxoic acid
2-Propanesulfeno(thioper-
 oxoic) acid
```

Aldehydic, amic, anilic, hydroxamic, hydroximic, nitrolic, and nitrosolic acids are now named as derivatives of carboxylic acids, amides, etc. Examples:

1-Naphthalenecarboxylic   acid, 8-formyl-   Propanoic acid,   3-amino-3-oxo-	(Naphthalaldehydic acid)
Butanoic acid,   4-oxo-4-(phenylamino)-	(Malonamic acid)
Acetamide, $N$-hydroxy-   Acetaldehyde, 1-nitro-   oxime	(Succinanilic acid)
See also Oxo acids (II 273).	(Acetonitrolic acid)

228A. Additive Nomenclature. The terms oxide, sulfide selenide and telluride are used as part of the modification to describe the presence of a chalcogen atom attached to trivalent antimony, arsenic, bismuth, nitrogen or phosphorus, or to divalent sulfur, selenium or tellurium (II 123). However, acceptable unambiguous locants are often lacking to describe the exact location when multiple possibilities are present and the result is a name which is less specific than the structure.

Effective with Volume 124, oxides, etc. attached to the parent portion of the name continue to be cited as oxide, sulfide, etc., with an appropriate locant in the modification portion of the name, however, if the attachment is not to the parent, terms such as oxido, sulfido, selenido, or tellurido will be cited with locants, in the substituent or modification, as appropriate.
229. Alcohols and Phenols (II 175) are treated as of equal seniority in the order of chemical functions; previously, alcohols (in which the hydroxyl group is formally attached to a saturated carbon atom) were placed just ahead of phenols. Now, the preference of cyclic over acyclic hydrocarbons (II 138) often causes a change of nomenclature unless a conjunctive name can be used.

Examples:
$\mathrm{SCH}_{2} \mathrm{OH}$

Phenol, 3-[(hydroxymethyl)thio]-
(formerly Methanol, [( $m$-hydroxy-
phenyl)thio]- phenyl)thio]-

Benzenemethanol, 2-hydroxy-
(formerly Benzyl alcohol, $o$-hydroxy-) (the preferred heading parent is larger than Phenol)

Radicofunctional names previously used for unsubstituted Ethyl through Dodecyl alcohol were replaced by Ethanol, 1-Propanol, etc. Iso-, sec- and tert-names are no longer used, except to index "isooctanol," etc., when no further information is provided. Isopropyl alcohol is now indexed at 2-Propanol; sec-Butyl alcohol at 2-Butanol; and tert-Butyl alcohol at 2-Propanol, 2-methyl-. Phenol was retained as a heading parent, but all other trivially named phenols, including polyhydric benzene derivatives, are named systematically at such names as Phenol, 2-methyl- (formerly $o$-Cresol) and 1,3,5Benzenetriol. Naphthalenol (formerly Naphthol) and Anthracenol (formerly Anthrol) are now spelled out.
230. Aldehydes (II 173) are named systematically by use of the suffixes "-al" and "-carboxaldehyde," except for the three trivial names Acetaldehyde, Formaldehyde, and Benzaldehyde. Chalcogen analogs are all named systematically. Examples (previous index names are on the right):

## Propanal <br> Benzaldehyde, <br> 2-hydroxy-3-methyl- <br> Benzenecarbothioaldehyde

Butanedithial

## (Propionaldehyde)

(2,3-Cresotaldehyde)
(Benzaldehyde, thio-)
(Succinaldehyde, dithio-)
231. Alkaloids (II 204). Many alkaloids indexed prior to 1972 at trivial names are now indexed systematically. The remaining trivial headings (stereoparents) are limited to alkaloids exhibiting stereochemical complexity. Class A alkaloids (named systematically) therefore comprise a much larger group than previously, when it was restricted to compounds containing no asymmetric center. Classes B and C are largely unchanged, except that the number of Class B alkaloid stereoparents ("systematic" alkaloid names) has been greatly increased with a consequent reduction in the number of Class C alkaloid stereoparents (trivial names for alkaloids of known constitution, including all stereochemistry). Class D alkaloids (those not fully elucidated) are indexed at systematic names without stereodescriptors if sufficient information is available, otherwise at author names or as Class B stereoparents with partial stereochemical information.
232. Alloys (II 214) are now indexed and registered as specific chemical substances. The components, if known, are cited as symbols in the modification with their percentage compositions (when present to the extent of $0.1 \%$ or more). Cross-references from trade names and some code designations have been provided (without percentage compositions); e.g., Alnico V. See Iron alloy, base, $\mathrm{Fe}, \mathrm{Al}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Si}, \mathrm{Ti}$ (Alnico V). Beginning in 1992 "nonbase" headings, e.g., Cobalt alloy, nonbase, for the other component elements are no longer made. For alloys of unknown percentage composition, only the "nonbase" headings for the components are employed.
233. Amides (II 171) are named systematically by use of the suffixes "-amide" and "-carboxamide." The three remaining exceptions are Formamide, Acetamide, and Benzamide, but their chalcogen and imidic analogs are now named systematically; for example, Acetamide, thio- is named as Ethanethioamide. Anilides are now indexed as $N$-phenyl amides. Secondary and tertiary amides are named at the preferred primary amide name. Thio analogs of sulfonamides are named as sulfonothioamides and sulfonodithioamides. See also Urea (II 292).
234. Amidines (IL 171) are indexed systematically as imidamides, i.e., as amides of imidic acids; thus, Formamidine in Volume 76 became Methanimidamide. Amidoximes are named as $N$-hydroxy imidamides.
235. Amines (II 176) are all named systematically; Aniline is indexed at Benzenamine; Methylamine became Methanamine. Derivation of amine names for amino derivatives of nitrogen heterocycles is now permitted; Pyridine, 2-amino- (pre-1972 name), is now 2-Pyridinamine; and Piperidine, 4-(2-aminopropyl)-, became 4-Piperidineethanamine, $\alpha$-methyl-. Secondary and tertiary amines are named as derivatives of the preferred primary amines, e.g.,

Ethanamine, $N$-ethyl- (formerly Diethylamine). Amino derivatives of the hydrides Borane, Phosphorane, and Stannane are now indexed at Boranamine, Stannanediamine, etc.
236. Amino acids (II 205) which are biologically significant are usually indexed at the trivial (or "common") names which are now classed as stereoparents. A few trivial names of $\alpha$-amino carboxylic acids (Allocystathionine, Carnosine, Creatine, Cystathionine, Ethionine, Hippuric acid, Lanthionine, Pantothenic acid, Sarcosine, Thyronine, Thyroxine) and all trivial names of amino sulfonic acids were discontinued. The configurational descriptor is now placed in the heading as a prefix, thus: L-Leucine. The new stereoparent Phenylalanine is now employed, instead of Alanine, phenyl-, for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}$ $\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$. Amino acid radicals are now employed only in naming peptides. $O$ - and $S$-Derivatives of hydroxyl- and mercapto-group-containing amino acids, e.g., Serine and Cysteine, are now indexed at those heading parents. Esters of stereoparent amino acids with systematically named hydroxy compounds are indexed at the stereoparents. An ester with another stereoparent is indexed at the component possessing the higher function. Normally, only one entry is now made for each ester (II 247).

Beginning in 1992, primed locants are assigned to the side-chain methyl group of isoleucine, alloisoleucine, leucine, valine, and isovaline. Such branched-chained derivatives of these acids are no longer named as derivatives of the linear acid (Butanoic acid or Norvaline).
237. Anhydrides (II 179) of unsubstituted monobasic organic acids prior to Volume 76 (1972) were named in the heading, e.g., Acetic anhydride; now they are cited in the modification at the acid heading. Anhydrides of organic acids with inorganic monobasic oxo acids are named at the organic acid heading with an "anhydride with..." phrase in the modification, not at such former headings as Acetyl nitrate, but anhydrides of organic acids with isocyanic and isothiocyanic acids are treated like the corresponding acid halides. The term "bimol. monoanhydride" is employed when appropriate, with locants before the second word if necessary, at polybasic organic acid headings.

Cyclic anhydrides are now indexed as diones at the oxygen heterocycle names. Heading parents such as Dicarbonic, Dicarbonimidic, and Tricarbonic acid are used for carbonic acid anhydrides and their analogs (II 183). Anhydrides of phosphonic, phosphorous, arsonic, and arsonous acids are now treated like phosphoric acid anhydrides, e.g., Diphosphonic acid. "A" names are used for anhydrides when the requirements (II 127) are met.
238. Azo and azoxy compounds (II 193) in the absence of higher functions (e.g., nitrogen heterocycles, or functions expressible by a suffix) are indexed at Diazene, HN=NH (formerly Diimide). Azobenzene thus became Diazene, diphenyl-, and Naphthalene-2-NNO-azoxymethane became Diazene, methyl-2-naphthalenyl-, 1-oxide. Prior to 1992, formazans were of higher functionality than azo and azoxy compounds, but now have no special rank (II 249).
239. Boron compounds (IIII 159, 182). Cyclic compounds in which ligands bridge two boron atoms are named as coordination compounds; for example, Diazoniadiboratacyclobutane

is now indexed at Diborane(6), di- $\mu$-amino-. Derivatives of polyboranes are given low numbers for substituents regardless of the direction of numbering. Boronic acid is treated as an independent index heading parent; thus, Benzeneboronic acid was renamed Boronic acid, phenyl- in 1972.

Since the Tenth Collective Index period (1977-81), most molecular addition compounds of boron have been indexed as coordination compounds. From the same date, Hypoboric acid, $\left((\mathrm{HO})_{2} \mathrm{BB}(\mathrm{OH})_{2}\right)$, has been indexed at Diborane(4), tetrahydroxy-.
240. Carbohydrates (II 208). Glycosides of known constitution are now indexed at the systematic names; they are ranked as polyhydric alcohols, not as aldehydes or ketones, and when attached to a carbon atom of an aglycone containing a higher chemical function are indexed at a name which expresses that function. $N$-Glycosyl derivatives of heterocycles have continued to be indexed at the heterocyclic parents.

Radical (substituent prefix) names are no longer formed from alditols.
Oligosaccharides indexed prior to Volume 76 at common names, e.g., Sucrose, are now named by systematic carbohydrate nomenclature.

The names Erythrose and Threose were discontinued except in the naming of polysaccharides. "Arrow" nomenclature was extended to all tri- and higher oligosaccharides, including those indexed at "-oside" heading parents.

Configurational descriptors (D-, L-, and DL-) are now always placed ahead of the heading parent; e.g., D-Glucopyranoside.

The index parent Cellulose acetate was discontinued; entries since 1972 have been made instead at Cellulose, esters, with modifications such as "monoacetate," "diacetate," and (for the indefinite ester) "acetate."

The naming of intramolecular amides of carbohydrate acids as lactams was discontinued for the Twelfth Collective Index. Such amides are named systematically as heterocyclic derivatives (II 171).
241. Carbonic acid and relatives (II 183) underwent name changes in several respects. Carbonic acid itself was retained but is now classed below all "organic" acids, including carboxylic and sulfonic acids, and above inorganic oxo acids (II 106). It is the parent of numerous acids, amides, acid halides, etc., derived from it by the use of affixes and suffixes. Thus, Carbonic acid, thio-, became Carbonothioic acid; Imidocarbonic acid, $\mathrm{HN}=\mathrm{C}(\mathrm{OH})_{2}$, became Carbonimidic acid; Formic acid, chlorothio-, hydrazone, $\mathrm{H}_{2} \mathrm{NN}: \mathrm{C}(\mathrm{Cl}) \mathrm{SH}$, became Carbonochloridohydrazonothioic acid. Cyanic acid, Thiocyanic
acid, etc., were retained. Carbamic acid was kept as an acceptable abbreviated version of Carbonamidic acid; the abbreviation is also employed when other affixes are present, as indicated in the following list of revised names.

Carbamic acid	$\mathrm{H}_{2} \mathrm{NCO}_{2} \mathrm{H}$
Carbamohydrazonic acid	$\mathrm{H}_{2} \mathrm{NC}\left(=\mathrm{NNH}_{2}\right) \mathrm{OH}$
Carbamimidic acid	$\mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH}) \mathrm{OH}$
Carbamothioic acid   $\quad$-ethyl ester	$\mathrm{H}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{SEt}$
Carbamo(dithioperox)imidic   $\quad$ acid	$\mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH}) \mathrm{SSH}$

Carbonic acids with a single hydrazide residue replacing an acid group are indexed, not as Carbonohydrazidic acid derivatives, but at Hydrazine index heading parents such as Hydrazinecarboxylic acid. The dihydrazide is named Carbonic dihydrazide. Phosgene, $\mathrm{C}(: \mathrm{O}) \mathrm{Cl}_{2}$, is indexed at Carbonic dichloride.

Carbonic acid is now a "Class I" acid in the naming of esters (IIII 185, 247) as are Formic acid, Carbamic acid, Carbamic acid, methyl-, and Carbamic acid, phenyl-
242. Coordination compounds (If 215). Beginning in Volume 76 (1972), the stereochemistry (when known) of mononuclear coordination complexes has been described in the index name modification by capital italic letter symbols (II 203 III).

The ligating atoms of ligands, with certain limitations, are denoted by capital italic element-symbol locants for mononuclear complexes and for nonbridging ligands of polynuclear complexes. Use of these locants has resulted in a change in some simple inorganic ligand names; thus nitrito became (nitrito$O$ ) and nitro became (nitrito- $N$ ).

Delocalized ligands are now denoted by the "hapto" convention, in which the Greek letter eta $(\eta)$ is employed, along with locants to indicate the particular ligand atoms involved, or else a superscript indicating the total number of such atoms (when all are involved).

Compounds containing more than one complex anion are indexed at the preferred anion while other anions are cited with (simple) cations in the modification.

Ligands containing ester groups now normally include the esters in the ligand names. The rules for choice of a radical name for a ligand, rather than a name ending in "-ato," underwent some modification. Enclosing marks are employed around all "-ato" ligand names, and additional enclosing marks are added for bridging ligands when the ligand name itself requires enclosing marks; e.g., $\left[\mu\right.$-(acetato- $\left.\left.O: O^{\prime}\right)\right]$.

Beginning in Volume 106 (1987) salts of dithio(seleno, telluro) organic acids and polythio(seleno, telluro) arsenic and phosphorus acids with coordination metals are structured and named at the chelated forms.

Metal "radical" names, e.g., "aluminio," are no longer employed for attachment of one metal to another in a binuclear complex, or as multiplicative radicals (II 194).

Numerical prefixes gave way to numerical ratios when mixed cations and anions (or at least one multivalent ion) are expressed in the modification. The terms "ion (1+)," "ion(2+)," etc., are not cited in modifications.

Chemical Substance Index entries at the names of the ligands, with certain exceptions such as uncommon stereoparents, rings, and heterocyclic parents (II 215), were discontinued for the Twelfth Collective Index period.

Beginning in Volume 126 (1997), the Kappa system replaces the donor atom system for describing the position of ligand attachment to a coordination center. In the Kappa system, when it is necessary to indicate the attachment of a ligand to a coordination center, the ligating atom(s) are indicated by the italic element symbol of the atom(s) preceded by a Greek Kappa (к). This combination of italic element symbol and Greek Kappa is placed after that portion of the index name to which it directly applies; e.g., (2-aminoethanolato- $\kappa O$ ).

Beginning with Volume 129, some substances which have had coordination names will receive ring names. These are heteroatom rings that have no coordinate bonds and that meet the criteria for rings as outlined in Section B of Index Guide Appendix IV.
Old Name Sulfur, mercaptomethylperoxy-, (T-4)-
New Name Dioxathiirane, 3,3-dihydro-3-mercapto-3-methyl-
243. Diazo compounds, including diazohydroxides, etc., are now often named at Diazene headings (II 193).

Example:


Diazenecarbonitrile, (4-chloro-phenyl)- (formerly Benzenediazocyanide, $p$-chloro-)

The unsubstituted radical $\mathrm{HN}=\mathrm{N}-$ is now named diazenyl (formerly diazeno).
244. Dyes (II 216) of known constitution are now always indexed at their systematic names. Previously, azo dyes and a few other classes were given C.I. (Colour Index) names for indexing purposes. Mixed dyes are indexed (like other mixtures, $\mathbb{I}$ 221) at the names of their components when these are known. C.I. names are employed, when available, for dyes of unknown composition.
245. Elementary particles (II 217) are now indexed and registered as chemical substances.

## Examples:

Lepton
Meson, $\pi^{-}$(140)
Muon, $\mu^{+}$(106)
Nucleon
resonance $\mathrm{N}^{*}$ (2040)
Positron
leptonic mol. with chlorine $\left(\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{Cl}^{0}\right)$
Proton
246. Enzymes (II 218) are now indexed as chemical substances to which CAS Registry Numbers are assigned. At the index heading Enzyme Commission in the Index Guide, a list of E.C. numbers will be found from which crossreferences lead to the $C A$ index names. These are inverted if they consist of more than one word.

Examples:
Dehydrogenase, lactate
Phosphatase, adenosine tri-
Asparaginase
Papain
The heading may contain further information regarding secondary activities, etc.; thus: Dehydrogenase, malate (decarboxylating).
247. Esters (II 185). Some changes were made in the list of "Class I" (i.e., common) acids. The following acids were added:

Benzoic acid, amino- (all isomers)
Carbamic acid, methyl-
Carbonic acid
Phosphorodithioic acid
Phosphorothioic acid
Inorganic oxo acids other than Boric acid $\left(\mathbf{H}_{3} \mathbf{B O}_{3}\right)$, Nitric, Phosphoric, Phosphorous, Sulfuric, and Sulfurous acids were removed from the Class I list and therefore are now preferred as the heading parents for esters with Class I and Class II alcohols. (Additional entries for esters were discontinued.)

Cyclic esters are named as heterocycles. Esters of stereoparents with systematically named acids are indexed at the stereoparents (II 202).

The use of a radical term ending in "-yl ester" is now preferred to "ester with...," even when the alcoholic component contains a chemical function higher than alcohol (see I[ 250), unless the latter phrase is followed by a stereoparent, as in " 5 '-ester with adenosine," or by an acid requiring a synonym line formula, as in "triester with boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$." When the "-ate" form of a polybasic acid name is cited in the modification at an alcohol heading, all free acid groups are denoted by the word "hydrogen," e.g., Cyclohexanol, 4-bromo-, dihydrogen phosphate.

Esters of substituents of index heading parents are expressed as substituents. Thus, the acetate of Benzenesulfonic acid, 4-hydroxy- is named Benzenesulfonic acid, 4-(acetyloxy)-, and the methyl ester of Pyridinium, 3-carboxy-1-methyl-, chloride, is indexed at Pyridinium, 3-(methoxycarbon-yl)-1-methyl-, chloride.

Ortho esters are named as ethers, i.e., as alkyloxy and aryloxy substituents. Organic replacement "a" names are used for esters where appropriate (II 127).
248. Ethers (II 196) are named as substituents of hydrocarbons and other index heading parents; Ether as a heading parent was discontinued. Thus, Ethyl ether became Ethane, 1,1'-oxybis-. Polyethers may often be named by organic replacement nomenclature ("a" names) (II 127). Methylenedioxy derivatives of benzene and its hydrogenated derivatives are named at 1,3-Benzodioxole.
249. Formazan (II 193) was retained in 1972, but was ranked just below imines as the highest of the nitrogen compound classes lacking functional suffixes. Formazan radicals were also retained. However, beginning with the Thirteenth Collective period formazan, in all its aspects, is named systematically (II 193).
250. Functional derivatives (II 112) (now restricted to acyclic anhydrides, esters, hydrazides, hydrazones, and oximes) of principal chemical functions have continued to be expressed in the index modifications at boldface index headings, but derivatives of subsidiary functions are usually included in the substituent prefixes which follow the comma of inversion in an inverted heading. Hence Benzoic acid, $p$-hydroxy-, ethyl ester, acetate, is now named Benzoic acid, 4-(acetyloxy)-, ethyl ester (II 185). Esters are always expressed by use of an "-yl ester" phrase when possible, not by an "ester with" phrase, unless a stereoparent or an acid which requires a synonym line formula is being cited in a modification. Prior to Volume 76, "ester with" was used when the alcoholic component contained a higher functon; now, "ester with glycolic acid" becomes "carboxymethyl ester."
251. Guanidine and relatives. Guanidine (II 183) was retained as an index heading parent for Carbonimidic diamide with the locants shown (numerical locants were formerly employed):

$$
\mathrm{H}_{2} \mathrm{~N} \mathrm{~N}\left(\underset{N^{\prime \prime}}{=\mathrm{NH}}\right){\underset{N}{ }}^{\mathrm{N}^{\prime}} \mathrm{H}_{2}
$$

It is ranked below Urea (carbonic diamide).
Biguanidine is now named 1,2-Hydrazinedicarboximidamide with the locants shown:

$$
\mathrm{H}_{2} \mathrm{NC}\left(=\underset{N^{\prime}}{ } \mathrm{NH}\right) \mathrm{NHN}_{2} \underset{N^{\prime \prime \prime}}{N_{N^{\prime \prime}}}
$$

It ranks as the amide of a diimidic acid of a nitrogen acyclic parent, e.g., above Benzenedicarboximidamide but below Benzamide.

Biguanide and Triguanide are now named systematically as Imidodicarbonimidic diamide and Diimidotricarbonimidic diamide, respectively.
252. Hydrazine (II 193) was retained as a trivial name for Diazane, and functional suffixes may be appended to it; thus, Hydrazinecarboxylic acid, $\mathrm{H}_{2} \mathrm{NNHCO}_{2} \mathrm{H}$ (formerly Carbazic acid), ranks above monocarboxylic acids derived from carbon skeletons.

Hydrazides (II 189) and hydrazones (II 190) of principal chemical functions expressed in the heading parent are cited in the modification as before, but these derivatives of functions expressed as substituents are now "named through" as in the case of esters ( $I[1[247,250$ ), by use of hydrazino and hydrazono radicals.

Diacyl hydrazines are now indexed not at Hydrazine but as acyl hydrazides of the preferred acid (I[189). Semicarbazones of nonstereoparents are no longer indexed as such but as derivatives of Hydrazinecarboxamide, either as an index heading parent or as an appropriate substituent. Semioxamazones are treated as alkylidene hydrazides of Acetic acid, aminooxo-, RCH:NNHC(:O)$\mathrm{C}(: \mathrm{O}) \mathrm{NH}_{2}$. The heading parent Carbonic dihydrazide (I[ 183) was introduced for $\mathrm{H}_{2} \mathrm{NNHC}(\mathrm{O}) \mathrm{NHNH}_{2}$ (formerly Carbohydrazide) and its derivatives, including compounds previously indexed as carbohydrazones of oxo parents.
253. Hydroxylamine ( $\mathbb{I}$ 193) was retained as a heading parent; it ranks low among nonfunctional nitrogen parents between Hydrazine, $\mathrm{H}_{2} \mathrm{NNH}_{2}$, and Thiohydroxylamine, $\mathrm{H}_{2} \mathrm{NSH}$ (formerly Hydrosulfamine). N -Acyl derivatives of Hydroxylamine are now indexed at amide headings; $N$-alkyl derivatives at amine names. In the absence of $N$-substituents, $O$-derivatives are usually indexed at Hydroxylamine. Alkylidene derivatives are indexed as oximes of the corresponding carbonyl compounds unless higher functions are present, in which case a (hydroxyimino) substituent prefix is employed (see I[ 195).
254. Imines ( $\mathbb{C}$ 177) are indexed by means of the suffix "-imine" appended to the molecular skeleton, which may now be a nitrogen heterocycle; e.g., 4(1H)-Pyridinimine (formerly Pyridine, 1,4-dihydro-4-imino-). Cyclic imines are indexed at the ring names; e.g., Aziridine (formerly Ethylenimine). Imines rank below amines and all other compounds expressed by functional suffixes. 1-Iminoalkyl radicals are so named, not as imidoyl radicals; hence, formimidoyl has become (iminomethyl), and propionimidoyl is indexed as (1-iminopropyl)
255. Index name selection policies for chemical substances ( $\mathbb{I}$ 138) were revised for Volume 76 and subsequent volumes as follows:
(a) "Like treatment of like things" was abandoned.
(b) The principle of "complexity" (a measure of the number of parentheses and brackets in a name) is no longer employed.
(c) The principle of "lowest locants" of substituents on an index heading parent (IIT[ 137,138 ) was introduced on a regular basis.
(d) The principle of "centrality" is now applied when a compound contains a sequence of three or more occurrences of the same heading parent.
(e) Conjunctive nomenclature (II 124) was extended for the first time to benzene with a single acyclic functional substituent, as in Benzenemethanol (names such as Benzenediacetic acid were used previously). It was discontinued for compounds in which ring attachment is by a double bond, and for Carbamic and Sulfamic acids, unsaturated acyclic functional compounds, and acyclic difunctional compounds.
(f) Multiplicative nomenclature ( I 125) based on hydrocarbons is now permitted, as in Ethane, 1,1'-oxybis-, and Benzene, 1, $\mathbf{1}^{\prime}$-[1,2-ethanediyl-bis(thio)]bis-. The terms "bis," "tris," etc., not "di-," "tri-," etc., are always employed in multiplying a parent. The use of two-part unsymmetrical multiplying radicals prior to 1972 meant that names such as (ethylidenesilylene) could be misconstrued to be either $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{Si}=$ or $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{SiH}_{2}-$. Thus, in 1972 the use of "ylidene" radicals in combination with other bivalent radicals in forming names of multiplying radicals was forbidden. Now, stringent symmetry is required of compounds for which multiplicative names may be used, and thus, beginning in 1994 such combinations in forming multiplying radicals are no longer prohibited ( $\mathbb{I} 125$ ). (Ethylidenesilylene) can only represent $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{Si}=$ in a multiplicative $C A$ index name.

Beginning with Volume 119, the principle of selection of a parent based on preferred atomic content ( $(\mathbb{I} 138$ (b)) is also applied to a choice between two acyclic skeletons named by organic replacement nomenclature ("a" names).
256. Indicated hydrogen ( $[$ 135) is always cited, never implied; thus, Indene became $\mathbf{1 H}$-Indene, and Fluorene is now named $\mathbf{9 H}$-Fluorene. Hydrogen not required for formation of a ring system, but "added" at the same time as a functional (or radical) suffix is now described as "added hydrogen" (II 136). In tautomeric systems (II 122), lowest locants for indicated hydrogen are normally preferred; thus $\mathbf{1 H}$-Purine, not 7 H -Purine, is indexed in the absence of information to the contrary.
257. Inorganic compounds ( $\mathbb{T} 219$ ) are largely indexed at names previously used. Binary names for derivatives of elements possessing hydride names were changed to derivatives of the hydrides; e.g., Silane, tetrachloro- (formerly Silicon chloride $\left(\mathrm{SiCl}_{4}\right)$ ); Borane, trifluoro- (formerly Boron trifluoride). When the compound is the halide of a recognized acid, it is so named; e.g., Phosphorous trichloride (formerly Phosphorus chloride $\left(\mathrm{PCl}_{3}\right)$ ). Pyrophosphoric acid, $(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OP}(\mathrm{O})(\mathrm{OH})_{2}$, was renamed Diphosphoric acid, and analogous compounds are named similarly; for example, Diphosphoryl chloride, $\mathrm{Cl}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OP}(\mathrm{O}) \mathrm{Cl}_{2} ; P, P^{\prime}$-Diamidodiphosphoryl fluoride, $\left(\mathrm{H}_{2} \mathrm{~N}\right) \mathrm{FP}(\mathrm{O}) \mathrm{O}$ $\mathrm{P}(\mathrm{O}) \mathrm{F}\left(\mathrm{NH}_{2}\right) ; P^{\prime}$-Amidodiphosphoric $(\mathbf{I I I}, \mathbf{V})$ acid, $(\mathrm{HO})_{2} \mathrm{POP}(\mathrm{O})(\mathrm{OH})\left(\mathrm{NH}_{2}\right)$.

Since the Tenth Collective Index period (1977-81), antimony has been classed as a metal, and synonym line formulas have been cited in index headings with all binary salt-type names, e.g., Sodium chloride (NaCl). See also $\operatorname{IIT}$ 239, 273. Graphite derivatives have been indexed as molecular addition
compounds instead of at the pre-1977 headings Graphitic acid, Graphite nitrate, etc.

Beginning in 1982, elements of atomic number 104 and above have been indexed at names derived from these numbers, e.g., Unnilquadium (formerly Element 104).

Starting with Volume 122, for elements 104-109, CAS follows the recommendations of the ACS Committee on Nomenclature: 104 - Rutherfordium (Rf); 105 - Dubnium (Db); 106 - Seaborgium (Sg); 107 - Bohrium (Bh); 108 Hassium (Hs); and 109 - Meitnerium (Mt).

Starting in 1987 inorganic line formulas may be expressed with decimals or numerical ranges as well as integers, e.g. Aluminum gallium arsenide $\left(\mathbf{A l}_{0.15} \mathbf{G a}_{0.85} \mathbf{A s}\right)$.

For intermetallic compounds, beginning in 1992, additional entries for the metals with the less alphabetically preferred names are discontinued.
258. Inositols (II 209) are now indexed at the separate stereoparents derived by combining individual configurational prefixes with the name Inositol, e.g., myo-Inositol; scyllo-Inositol. These names in turn are preceded by the configurational descriptors D - and $\mathrm{L}-$. When a choice must be made for derivatives, the earliest alphabetic prefix is preferred; then the prefix $D$ - is selected, rather than L-; finally, lowest locants are assigned to substituent prefixes. Inosose and Streptamine are retained as stereoparents.
259. Iodine compounds ( $\mathbb{I}$ 188) with abnormal valencies are indexed by coordination nomenclature (II 215); e.g., Iodine, dichlorophenyl- (formerly Benzene, (dichloroiodo)-
260. Isocyanides (II 188). Alkyl isocyanides, RNC, are now indexed substitutively; acid isocyanides are treated like acid halides. For example, Isopropyl isocyanide became Propane, 2-isocyano-; 2-Naphthalenecarbonyl isocyanide was formerly indexed at 2-Naphthoic acid, anhydride with hydroisocyanic acid.
261. Ketene ( $\mathbb{I}$ 174) is now indexed systematically at Ethenone; Ketene, thio- at Ethenethione. Cyclic ketenes are named as cycloalkylidene (etc.) derivatives of the new heading parent Methanone, $\mathrm{H}_{2} \mathrm{CO}$. Unsubstituted $\mathrm{H}_{2} \mathrm{CO}$ is still indexed at Formaldehyde, but unsubstituted $\mathrm{CH}_{2} \mathrm{~S}$ is named Methanethial. In the presence of chemical functions higher than ketone, the $=\mathrm{CO}$ radical is named carbonyl (if the carbon atom does not form part of an acyclic chain) or as (oxoalkyl). The isolated $=$ CS radical is named carbonothioyl if both free valencies are attached to a single atom, or if it is used in a multiplying prefix; otherwise as (thioxomethyl).
262. Ketones (II 174). All trivial names (including Acetone, Chalcone, Benzil, Benzoin, and all flavone, quinone, phenone and naphthone headings) were abandoned. The heading parent Ketone was discontinued. Methanone, $\mathrm{H}_{2} \mathrm{C}: \mathrm{O}$, is used to index ketones having two ring systems directly attached. The analogous headings Methanethione, $\mathrm{H}_{2} \mathrm{C}=\mathrm{S}$, etc., were introduced. Acetone was changed to 2-Propanone, Acetophenone to Ethanone, 1-phenyl-, Acetophenone, thio- to Ethanethione, 1-phenyl-, Anthraquinone to 9,10-Anthracenedione, Benzil to Ethanedione, diphenyl-, Flavone to 4H-1-Benzopyran-4-one, 2-phenyl-, and Uracil to 2,4(1H,3H)-Pyrimidinedione. For a discussion of this last name, see $\mathbb{I}[289 \mathrm{~A}$.

The ketone function is no longer overstepped; hence Ethanone, 1,1'-(1,5-naphthalenediyl)bis- (formerly Naphthalene, 1,5-diacetyl-).
263. Locants ( $I T[114,137$ ). The locants $o-, m$-, and $p$ - were replaced by Arabic numerals in all cases; as-, $s$-, and $v$ - were likewise replaced, except in $a s$ - and $s$-Indacenes and their fused derivatives. Locants for unsaturation are now always cited for molecular skeletons of three or more atoms except for monocyclic hydrocarbons containing one multiple bond. Polyvalent radicals with free valencies located at two or more positions now have all locants cited; thus, ethylene became 1,2-ethanediyl. In ring assemblies, locants for positions of attachment are always cited except for two-component assemblies of cycloalkenes, cycloalkadienes, etc. Thus, 4-Biphenylamine became [1,1'-Biphe-nyl]-4-amine.

In multiplicative names, locants are now cited to indicate positions of attachment of the multiplying radical to the heading parent, unless such a parent (a) contains only one skeletal atom, e.g., Methanone, Silane; $(b)$ is a functional parent compound (II 130) possessing replaceable hydrogen at only one position, e.g., Carbamic acid, Formic acid, Phosphonic acid; or (c) is a radicofunctional heading parent, e.g., Disulfide.

Special rules whereby locants for fully halogenated compounds and radicals were sometimes omitted are now discontinued.

Urea is now assigned the locants $N$ - and $N^{\prime}$ - in place of 1- and 3- (II 183).
When locants are required for derivatives, e.g., esters, cited in modifications, all such locants are used (I[ 119).

Letter locants are now employed with ligand names in coordination nomenclature to define the ligating atoms ( $\mathbb{I} 215$ ).
264. Metallocenes ( I 215), including Ferrocene and its derivatives, are now considered to be neutral coordination complexes. Suffix-type names and conjuctive names are no longer used; hence Ferrocenecarboxylic acid is now indexed at Ferrocene, carboxy-; and $1,1^{\prime}$-Ferrocenediacetic acid at Ferrocene, 1,1'-bis(carboxymethyl)-.
265. Mixtures ( $\mathbb{I}$ 221) are now indexed and registered as individual chemical substances if they are considered significant in their own right, e.g., pharmaceutical and pesticide mixtures which possess trade names, or mixtures which are emphasized in an original document as possessing special properties. Ingredients which are considered to be inactive within the intended use of a mixture are disregarded, e.g., solvents, fillers, and inactive trace components. Ratios of components are not cited. Cross-references from trade names, etc., are provided; e.g., Terracoat. See 1,2,4-Thiadiazole, 5-ethoxy-3-(trichlorom-ethyl)-, mixt. with pentachloronitrobenzene; an index entry appears also at Benzene, pentachloronitro-, mixt. contg.

265A. Molecular addition compounds ( $\mathbb{I}$ 192). Ten additions were made to the list of common components for the Twelfth Collective Index. The new additions are Acetic acid, trifluoro-; Acetonitrile; Benzene; Benzene, methyl-; Benzenesulfonic acid; Benzoic acid; Borate(1-), tetrafluoro-, hydrogen; Ethanamine, $N, N$-diethyl-; Methane, dichloro-; and Pyridine.

The prefixes hemi- and sesqui- were replaced by the ratios (2:1) and (2:3), respectively in names of hydrates and ammoniates for the Twelfth Collective Index.

Beginning with the Thirteenth Collective Index period, restriction of the expression of the number of molecules of solvation to fifteen (pentadeca) is abandoned. Fractional coefficients are limited to two digits in both the numerator and the denominator.
266. Multiplicative prefixes ( $\mathbb{C}$ 110). Bis-, tris-, etc., are used in multiplicative names instead of di-, tri-, etc., even when the heading parent is not otherwise substituted. Bis-, tris-, etc., are used with methylene in every circumstance in general index nomenclature (but "di- $O$-methylene" is used with sugar names), and with oxy and thio, etc., to denote a multiplicity of single chalcogen atoms; thus, [methylenebis(oxy)] denotes $-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-$, while (me-thyldioxy)- denotes $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{O}-$. Bi-, etc., names for ring assemblies were discontinued for assemblies of rings joined by double bonds. All ring-assembly names are enclosed in brackets when followed by a suffix; derived radicals are treated similarly. Binaphthyl and Bianthryl become Binaphthalene and Bianthracene (see II 281). Bi-, etc., names derived from acyclic compounds, e.g., Bicarbamic acid, Triguanide, are discontinued.
267. Nitriles (II 172). Only the trivial names Acetonitrile and Benzonitrile are retained; otherwise, changes in nitrile names are almost entirely parallel to those for the carboxylic acids (II 165) from which they and their names are derived. Thus, Hydrocinnamonitrile became Benzenepropanenitrile. Cyanamide was retained for $\mathrm{H}_{2} \mathrm{NCN}$, but conjunctive "-carbamonitrile" names were discontinued.

The zwitterionic nitrilimines $\left(\mathrm{RC} \equiv \mathrm{N}-\mathrm{N}^{+} \mathrm{R}^{\prime}\right)$ are named as substituted hydrazinium hydroxide inner salts (II 201) beginning in the Twelfth Collective period.
268. Nitrone, $\mathrm{H}_{2} \mathrm{C}=\mathrm{NH}=\mathrm{O}$, was renamed Methanimine, N -oxide (II 177); N -alkyl nitrones are indexed as oxides at amine index heading parents; $N$-acyl nitrones at amide headings.
269. Nucleosides and Nucleotides (II 210) have continued to be indexed at trivial names, e.g., Adenosine, Cytidine, although the purine and pyrimidine bases from which they are derived are now named systematically; e.g., Cytosine is indexed at 2(1H)-Pyrimidinone, 4-amino- (II 122). N -Acyl derivatives of nucleosides are indexed at the nucleoside parents instead of at amide names, but higher functions have continued to be indexed at the parents which express them.

Substituents are now expressed at nucleotide headings, e.g., $\mathbf{5}^{\prime}$-Uridylic acid, $2^{\prime}$-amino- $2^{\prime}$-deoxy- $\mathbf{3}^{\prime}$-thio-. Mixed phosphate esters are indexed at the preferred phosphate heading rather than at the plain nucleoside name; e.g., Inosine $5^{\prime}$-(trihydrogen diphosphate), $2^{\prime}$-(dihydrogen phosphate). Nucleosides and nucleotides are considered to be stereoparents (II 203), and their esters with systematically named substances are therefore indexed at nucleoside or nucleotide index heading parents.
270. Onium compounds (II 184). Ammonium compounds are named from the corresponding preferred amines by use of "-aminium" as a suffix and expression of the remaining groups as $N$-substituents; e.g., Ethanaminium, $N$ -ethyl- $\mathrm{N}, \mathrm{N}$-dimethyl-, iodide (formerly Ammonium, diethyldimethyl-, iodide). Naming of cyclic quaternary nitrogen compounds and other cationic species, e.g., sulfonium compounds, is largely unchanged.

Localized cationic free radicals centered on hetero atoms (II 184) were named as derivatives of the index heading parents Ammoniumyl, Oxoniumyl, Sulfoniumyl, etc. prior to the Thirteenth Collective period.
271. Order of precedence of compound classes (II 106) has continued to play an important role in the selection of a preferred index name. Changes include the following:
(a) more emphasis is placed on the presence of a principal chemical functional group (expressed as a suffix attached to a molecular skeleton). Thus Ethanamine (a functional compound) is ranked above Quinoline (a nonfunctional molecular skeleton).
(b) Ferrocene and other metallocenes are ranked with neutral coordination complexes.
(c) Peroxy acids expressed as principal groups are ranked, as a class, higher than all other acids. Previously, each such acid was placed just above the corresponding parent acid. Carbonic acid and related compounds are placed below those acids, e.g., carboxylic and sulfonic, expressed as functional suffixes, and above inorganic "oxo" acids. Derivatives of Arsonic and Boronic acids are named like those of other inorganic "oxo" acids with replaceable nuclear hydrogen atoms; thus, Benzenearsonic acid has become Arsonic acid, phenyl-. Derivatives of isocyanic acid and its chalcogen analogs are named substitutively by use of the prefixes isocyanato, isothiocyanato, etc.
(d) Alcohols and phenols now rank as equal in precedence.
(e) Ether, Sulfide, Selenide, and Telluride are no longer employed as heading parents and are therefore not listed in the Order of Precedence. Single chalcogen atoms are named substitutively (by use of oxy, thio, etc., radicals) or at organic replacement ("a") names.
(f) Phosphorus compounds without functional suffixes are ranked together (following nitrogen compounds). Formerly, phosphine oxide was placed above amines with phosphine and phosphorane following them. The same policy is adopted in descending order for nonfunctional heading parents derived from arsenic, antimony, bismuth, boron, silicon, germanium, tin, and lead. Then follow nonfunctional oxygen parents in the order: oxygen heterocycles, acyclic polyoxides (Trioxide, Peroxide), acyclic "oxa" names. Other
chalcogens are ranked below oxygen in the order: sulfur, selenium, tellurium. Lowest in order of precedence are nonfunctional carbon skeletons.
(g) In each class of nonfunctional compounds, ranked in the order of the most preferred heteroatom it contains, cyclic compounds are preferred over acyclic, and acyclic parents named by "a" nomenclature are less preferred than other acyclic parents of that hetero-atom class. Among carbon compounds, similarly, carbocycles are preferred to acyclic carbon chains, regardless of length. Unsaturated skeletons are preferred to saturated skeletons with the same number and type of skeletal atoms; thus, Benzene is preferred to Cyclohexane (no policy change), and Pyridine is preferred to Piperidine (reversal of policy).
272. Organometallic compounds (II 194). Binary compounds of element hydrides, e.g., Arsorane, $\mathrm{AsH}_{5}$, Plumbane, $\mathrm{PbH}_{4}$, Germane, $\mathrm{GeH}_{4}$, are indexed at those headings. Thus, Lead chloride $\left(\mathrm{PbCl}_{4}\right)$ became Plumbane, tetrachloro-. (In the carbon series, Carbon tetrachloride became Methane, tetrachloro-.) Amino derivatives of hydrides are now assigned "-amine" names, e.g., Germanediamine, and other functional suffixes are also employed, e.g., Bismuthinecarboxylic acid, but "-ol" to express a hetero-atomattached hydroxyl is used only with carbon and silicon. "A" names must (as usual) be employed when appropriate.
273. Oxo acids (II 219). Some changes (II 185) were made in 1972 to the content of the "Class I" list for esters of inorganic "oxo" acids. Pyrophosphoric acid, $(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OP}(\mathrm{O})(\mathrm{OH})_{2}$, was renamed Diphosphoric acid. The new heading parent Diphosphonic acid was previously indexed at Phosphonic acid, anhydride. Since 1972, arsenic mononuclear acids have been treated analogously to phosphorus acids.

Examples:

$$
\text { Arsenic acid }\left(\mathbf{H}_{3} \mathbf{A s O}_{4}\right) \quad(\mathrm{HO})_{3} \mathrm{AsO}
$$

Arsonic acid $\quad(\mathrm{HO})_{2} \mathrm{HAsO}$
Arsinic acid $\quad(\mathrm{HO}) \mathrm{H}_{2} \mathrm{AsO}$

Arsenenic acid $\mathrm{HOAsO}_{2}$
Cyclic esters of arsenic and phosphorus acids are indexed at the ring names. Since the Tenth Collective Index period (1977-81), metal oxo acids (including oxo acids of antimony) and their salts have been indexed as coordination compounds or as mixed salts. The only exceptions are Chromic acid $\left(\mathrm{H}_{2} \mathrm{CrO}_{4}\right)$, Chromic acid $\left(\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$, Manganic acid $\left(\mathrm{H}_{2} \mathbf{M n O}_{4}\right)$ and Permanganic acid $\left(\mathbf{H M n O}_{4}\right)$, which were retained as index heading parents. A few little-used nonmetallic oxo acid names, e.g., Mesosulfuric acid, were also discontinued.
274. Peptides (II 206), other than biologically active peptides with trivial names, containing two through twelve amino-acid residues are now indexed at the name of the $C$-terminal unit in every case; peptide amides are treated analogously. No change was made in the treatment of larger peptides. Some trivial acyl names were changed starting in the Twelfth Collective period (19871991). Thus $\alpha$-aminobutyryl became 2 -aminobutanoyl and lactoyl became 2 hydroxypropanoyl. Cyclic peptides of two or three units are indexed at systematic ring-system names, larger compounds at "Cyclo" names such as Cyclo[L-alanyl- $N^{5}$-acetyl-D-ornithylglycyl-L-alanyl-D-propyl- $O$-(1,1-dimethyleth-yl)-L-seryl] in which the units are cited in the order of occurrence, with preference given to the lowest alphabetic arrangement of parent amino-acid radicals. Prior to 1987 the term "Cyclic" was used instead of "Cyclo". Additional entries are made at ring-system names. Peptides with fewer than four units and which contain disulfide linkages are now indexed, like larger peptides, at cysteine rather than cystine names.

Linear depsipeptides are now usually indexed at the $C$-terminal amino-acid names; terminal hydroxy acids are expressed as carboxyalkyl esters. Cyclic depsipeptides are indexed at ring names or "Cyclo" names in analogy with peptides.

Effective with Volume 129, the rules for naming peptites have been revised as follows: (1) In depsipeptide nomenclature, the chalcogen in a nonterminal hydroxy, mercapto, selenyl, or telluryl acid residue need no longer be $\alpha$ to the carbonyl. Any position is acceptable. (2) In $\psi$ nomenclature (adopted in Volume 126 for certain pseudopeptides), glycine may now serve as one of the $\psi$ residues - the amino acids cited before and after the $\psi$ term--provided the other $\psi$ residue is a standard chiral amino acid. In addition, a $\psi$ residue may now be N-terminal, provided its CO is not replaced, or C-terminal, provided its NH is not replaced.

Naturally-occurring biologically active peptides and depsipeptides of six to fifty units are indexed at the trivial names; those of five or fewer units are named like other peptides at the $C$-terminal amino acid or "Cyclo" name; trivially named stereoparents such as Bradykinin and Gramicidin $\mathbf{S}$ have continued to be employed for substances containing six through fifty units. Small species variations in trivially-named peptides are now interrelated by using one form as the reference compound; e.g., Fibrinopeptide B (orang-utan). See Fibrinopeptide B (human), 10-L-leucine-12-glycine-; similar cross-references are now made between trivial names of closely-related peptides and corticotropin sequences; e.g., Kallidin. See Bradykinin, $N^{2}$-L-lysyl-; $\boldsymbol{\alpha}^{1,39}$-Corticotropin (human). See $\alpha^{1,39}$-Corticotropin (pig), 31-L-serine-.

Esters of hydroxy and mercapto groups in amino-acid radicals of peptides are now expressed as substituents; e.g., $O$-acetyl-L-seryl. Functional derivatives of carboxy substituents are expressed by radicals which include the carboxyl group; e.g., $N$-[(phenylmethoxy)carbonyl].

Such former headings as Angiotensins were made singular in Volume 76. The indexing of Oxytocins and Vasopressins was further refined. Bovine
insulin is now the reference compound for insulins, with the name Insulin (ox); cross-references in the Index Guide show the species relationships; thus, Insulin (human-B reduced). See Insulin (ox-B reduced), 30-L-threonine-. Actinomycin D is the reference stereoparent to which other actinomycins are related for indexing purposes.

Proteins (II 207) are indexed at trivial names, with accompanying species information.
Synthetic peptides are indexed like polymers; the term "polymer with" is used instead of "peptide with" at amino-acid monomer names.
275. Peroxides (II 196). Binary headings were discontinued; Isopropyl peroxide became Peroxide, bis(1-methylethyl). The heading Peroxide is a nonfunctional oxygen compound; in the presence of more preferred compound classes, such radicals as (ethyldioxy) are employed. Hydroperoxide is a functional oxygen compound ranking just above amines; such names as Peroxyacetyl hypochlorite are replaced by Peroxide, acetyl chloro, etc.
276. Phosphorus compounds ( $\mathbb{I f} 197,219$ ). Functional suffixes are now employed with phosphorus hydride names; e.g., Phosphinecarboxylic acid (formerly Formic acid, phosphino-) and Phosphoranamine (formerly Phosphorane, amino-). The phosphoro radical, $-\mathrm{P}=\mathrm{P}-$, was renamed 1,2-diphosphenediyl; phosphino was retained, but diphosphino, $\mathrm{H}_{2} \mathrm{P}-\mathrm{PH}-$, was renamed diphosphinyl, and diphosphinetetrayl became 1,2-diphosphinediylidene. Phosphorothioic and Phosphorodithioic acids were added to Phosphoric and Phosphorous acids in "Class I" (II 185) for the indexing of esters. Pyrophosphoric acid was renamed Diphosphoric acid. Diphosphonic acid became the new name for Phosphonic acid, anhydride.

Phosphonium ylides are indexed only as ylidene derivatives of Phosphorane (II 201). Prior to the Twelfth Collective period an additional Chemical Substance and Formula Index entry appeared for the phosphonium ylide name.

The phosphoryl radical was eliminated for non-acid mononuclear analogs of phosphoric acid in Volume 120; thus phosphoryl chloride $\left(\mathrm{POCl}_{3}\right)$ is now phosphoric trichloride.
277. Polymers (II 222). Polymers whose component monomers are known are now indexed at the names of each of the component monomers as actually reported in the original document. Names based on structural repeating units (SRUs) have continued to be used as additional index names for polymers of well characterized or assumed structure. In the cases of very common tradenamed industrial polymers of known composition for which cross-references are used, the SRU name is preferred. Thus, $\mathbf{1 , 4}$-Benzenedicarboxylic acid, polymers, polymer with 1,2-ethanediol. See Poly(oxy-1,2-ethanediyloxycar-bonyl-1,4-phenylenecarbonyl); Nylon 6. See Poly[imino(1-oxo-1,6-hexanediyl)]. At monomer names, the terms "polymers," "polyamides," "polyesters," etc., were replaced by "homopolymer" except for general studies; "polymer with" was retained for copolymers named at monomer headings and replaced such terms as "polyamide with", "polyester with", etc.; "copolymers" is an acceptable general term. Block, graft, and alternating copolymers are registered and indexed with their own specific Registry numbers starting in the Twelfth Collective period (1987-1991). The terms "block", "graft" and "alternating" are part of the index name for these kinds of polymers.

Siloxanes prepared by hydrolytic polymerization of chlorosilanes are now, starting in 1994, registered and indexed at the monomer names with the term "hydrolytic" cited in the modification, along with the term "homopolymer" or "polymer with".

Phenol condensation products are now indexed at Phenol polymers, with "polymer with formaldehyde" or other appropriate term cited in the modification. Urea condensation products are named analogously at Urea polymers.
278. Porphyrins and Bile pigments (II 223) were affected by the new rule that indicated hydrogen of ring systems is always cited. $\mathbf{2 1} \mathrm{H}, \mathbf{2 3} \mathrm{H}$-Porphine and $\mathbf{2 1 H}, \mathbf{2 3} \mathrm{H}$-Porphyrazine are the forms preferred for these and related substances unless an original document emphasizes the absence of hydrogen at these positions. The $\mathbf{2 9 H}, \mathbf{3 1} \mathrm{H}$-form of Phthalocyanine is preferred; the heading $\mathbf{2 1} \mathrm{H}$ Biline is employed unless hydrogen is absent from that position, in which case $\mathbf{2 2 H}$-Biline is indexed. (An (all-Z) form is now assumed for Biline.)

Radicals. See Substituent prefixes (II 287).
279. Replacement ("a") nomenclature (II 127), in which replacement of carbon by heteroatoms is indicated by terms such as "aza," "oxa," and "thia," was unchanged for cyclic skeletons, but was amended for acyclic compounds, primarily to eliminate exceptions for certain classes, including silicon compounds. Now, "a" names are used whenever four or more "hetero units" (isolated hetero atoms, homogeneous hetero chains, or groups for which simple radical names are employed, such as disiloxanediyl) are present, so long as the resulting name, including functional suffixes, does not express a lower functionality than the alternative conventional name. The hetero atoms must not be in an abnormal valency state (unless this valency can be readily expressed), and the "a"-named chain must not be terminated by a nitrogen or chalcogen atom. ("A" names are not used for peptides, polymers or purely inorganic chains.)
280. Replacement nomenclature for functions (II 129) was extended to various classes of acids and acid derivatives, as outlined by the following examples (former names are in parentheses):

## Ethanethioic acid <br> Ethane(dithioic) acid <br> Ethaneperoxoic acid <br> Butanebis(thioic) acid <br> Carbonothioic acid <br> Carbamodithioic acid <br> Methanimidamide <br> Imidodicarbonic acid <br> Diimidotricarbonimidic diamide <br> 1,3-Benzenedisulfonothioic acid

(Acetic acid, thio-)
(Acetic acid, dithio-)
(Peroxyacetic acid)
(Succinic acid, 1,4-dithio-)
(Carbonic acid, thio-)
(Carbamic acid, dithio-)
(Formamidine)
(Imidodicarboxylic acid)
(Triguanide)
( $m$-Benzenedisulfonic acid, 1,3-dithio-)
281. Ring systems (IIII 145-157). Fused oxireno and thiireno derivatives of hydrocarbon rings are now indexed according to the general rule that the base component should be a heterocycle; thus, Naphthalene, 2,3-epoxy- has become Naphth[2,3-b]oxirene. Adamantane and its replacement derivatives are indexed at Tricyclo[3.3.1.1 ${ }^{3,7}$ ]decane, 2-Thiatricyclo[3.3.1.1 ${ }^{3,7}$ ] decane, etc. (II 155). The locants $o-, m-, p-$, and $v$ - in ring names were replaced by numerals; as- and $s$ - are used only with Indacene and its fused derivatives; thus, $m$ Dioxane became 1,3-Dioxane; $p$-Terphenyl became 1,1':4', $\mathbf{1}^{\prime \prime}$-Terphenyl; $s$ Triazine became 1,3,5-Triazine; and Benz[ $e]$-as-indacene is unchanged. Some trivial names were replaced; thus, Quinuclidine was renamed 1-Azabicyclo[2.2.2]octane. Radical names from these ring systems were changed correspondingly.

Special names for partially hydrogenated ring systems, e.g., Acridan, Indan, Indoline, Phthalan, Pyrroline, were abandoned; thus Indan became 1 H -Indene, 2,3-dihydro-. Norbornane, Norcarane, and Norpinane are now indexed at the systematic "Bicyclo-" names.

Ring systems containing metals other than antimony, tin, lead, germanium, or bismuth are now indexed by coordination nomenclature.

In ring-assembly names, points of attachment are now cited, except for twocomponent assemblies of cycloalkenes. Thus, $\mathbf{1 , 1} \mathbf{1}^{\prime}$-Biphenyl, $\mathbf{1 , 2}^{\prime}$-Binaphthalene (formerly 1,2'-Binaphthyl), Bi-2-cyclohexen-1-yl. Ring assemblies in which component rings are joined by double bonds are now indexed at a component name, e.g., Cyclopentane, cyclopentylidene- (formerly Bicyclopentylidene).

The Hantzsch-Widman system (II 146) was extended, beginning in 1987, to partially or fully saturated rings, formerly named by organic replacement nomenclature, e.g. Stannolane (formerly Stannacyclopentane). Prior to Volume 121 the rings 1,2,5-Oxadiazole and 2,1,3-Benzoxadiazole were named Furazan and Benzofurazan, respectively.

Non-standard valence states (II 158) of certain ring heteroatoms were denoted by the greek letter lambda ( $\lambda$ ) starting in 1987, e.g. $1 \lambda^{4}, 3 \lambda^{4}, 5 \lambda^{4}, 7 \lambda^{4}$ $\mathbf{1 , 3 , 5 , 7 , 2 , 4 , 6 , 8}$-Tetrathiatetrazocine (formerly $1 H, 3 H, 5 H, 7 H-1,3,5,7,2,4,6,8-$ Tetrathiatetrazocine).

Names for cyclic systems containing ring heteroatoms in non-standard valence states described by the "hydro" prefix (II 158) were changed beginning in 1987 to allow the expression of principal suffixes and radicals, e.g. $\mathbf{2 H - 1 , 4 -}$ Selenazin-2-one, 1,1-dihydro-1,1-dimethyl-(formerly $2 H-1,4$-Selenazine, 1,1-dihydro-1,1-dimethyl-2-oxo-).

281A. Salts (I[ 198). Beginning with the Twelfth Collective Index, salts of substitutive cations no longer have additional index entries at the following common anions: Acetic acid, trifluoro-, ion(1-); Borate(1-), tetrafluoro-; Borate(1-), tetraphenyl-; Methanesulfonic acid, trifluoro-, ion(1-); Phenol, 2,4,6-trinitro-, ion(1-); Phosphate(1-), hexafluoro-; Sulfuric acid, monoethyl ester, ion(1-).
282. Silicon compounds (II 199). Former binary names for silicon halides are now indexed at Silane; for example, Silicon chloride $\left(\mathrm{SiCl}_{4}\right)$, is now indexed at Silane, tetrachloro-. Functional suffixes are now appended to Silane, Disilane, Disiloxane, etc., but conjunctive names are not formed from them. Silanol and Silanediol now rank above all carbon-skeleton monohydric and dihydric alcohols, respectively, by reason of their hetero atom content (II 106). Similarly, Silanamine ranks above Benzenamine, etc.

Silthianes are now spelled out as silathianes; 1,3-disiloxanediyl, 1,5-trisilathianediyl, 1,7-tetrasilazanediyl, etc., all rank as single hetero units (II 127) in the formation of "a" names. A total of four such units (of any kind) are now necessary for a compound to be named by replacement nomenclature.

Silicic acids now all belong to "Class II" in the naming of esters (II 185). Since the Tenth Collective Index period, the Silicic acid heading has been generally restricted to mono- and dinuclear oxo acids of silicon.
283. Spelling (II 107). Elided forms of radicals were largely discontinued. Nitramino became (nitroamino); acetoxy became (acetyloxy); naphthyl became naphthalenyl. Ethoxy, methoxy, propoxy, butoxy, phenoxy, and thienyl were retained, but branched-chain radicals are now named as derivatives of the straight-chain alkoxy parents; thus, isopropoxy became (1-methylethoxy). Elided forms of heading parents (Pyridol; Pyridone) are now spelled out (Pyridinol; Pyridinone). Punctuation in compound names is unchanged.
284. Stereochemistry (II 203). Major revisions were made in this area for the Ninth Collective Index Period (1972-76). The concept of stereoparents (II 285) was introduced for those substances, mainly natural products, containing complex stereochemistry and not readily indexed at systematic names. For other substances, the stereochemistry is expressed in the name by use of relative and absolute descriptors, including cis- and trans-; endo- and exo-; $\alpha-$ and $\beta$-; $E$ - and $Z-; R$ - and $S$-; and $R^{*}$ - and $S^{*}$-. The Sequence Rule of Cahn, Ingold, and Prelog is applied in the assignment of these descriptors. A special system was developed for coordination compounds (II 203 III).

Beginning with Volume 120, the sign of optical rotation (+), (-), or ( $\pm$ )- is assigned to substances with visual wavelengths other than the sodium-D line.

Beginning with Volume 126 (1997), in order to provide more accurate descriptions of and improved access to substances whose stereochemistry has not been completely defined, CAS now registers and names substances with partially defined stereochemistry. Previously, partial stereochemistry was generally ignored. The presence of unknown chiral centers is indicated by the addition of ther term "[partial]-" to the end of the normal stereochemical descriptor. When the reference ring or chain has incompletely defined chiral atoms/bonds, the format cites the stereo using $R$ and $S$ terms with their nomenclature locants for all known centers. If this method is used to describe a substance for which only relative stereochemistry is known, "rel" is added to the stereochemical descriptor. Racemic mixtures of substances with single chiral centers are now indexed, registered, and named as non-stereospecific substances. Racemates having more than one chiral center are indexed, registered, and named as having only relative stereochemistry.

Stereochemical descriptors were simplified beginning with Volume 129. The need for a single expression to describe the total stereochemistry of a molecule has been eliminated. Stereochemical terms are now placed within the parts of a chemical name to which the stereochemical information applies. Only the stereochemistry contained in the heading parent is expressed in the name modification following all other structural information. The use of the term "[partial]" has been discontinued.

The terms $R$ and $S$ are employed for chiral elements possessing either absolute or relative stereochemistry. The term rel is used in conjunction with $R$ and $S$ for structures with only relative stereochemistry. $E$ and $Z$ are used primarily to describe geometrical isomerism about double bonds. The relative terms cis, trans, endo, exo, syn, anti, $\alpha$, and $\beta$ are used as alternatives to $R$ and $S$ in certain limited situations.
285. Stereoparents (II 202) are heading parents whose names imply stereochemistry, as indicated by structural diagrams shown at these names in the Chemical Substance Index. Synonyms and cross-references for the systematic names are always provided. The stereochemistry implied by the stereoparent, and shown in the diagram, may be augmented or selectively reversed in the name. Stereoparents include biologically significant amino acids, carbohydrates, and cyclic natural products (alkaloids, steroids, terpenes) within certain limitations. Stereoparents are preferred to systematically named substances of higher functionality in the naming of esters, mixtures, molecular addition compounds, and polymers. Derivatives of stereoparents are kept at the stereoparent names as much as practicable, but substituents (II 287) are named systematically in accordance with the changes in general index nomenclature.

Beginning with Volume 126 (1997), infrequently used terpene, steroid, alkaloid, and antibiotic stereoparent terms have been replaced by systematic names. For example, Nemuarine and 15-Thialanostane are no longer used in index names. Frequently occurring stereoparents, such as Pregnane, Cholane, Cholestane, 9, 10-Secocholestane, Morphinan, Retinoic acid, and Erythromycin are maintained. Cross-references from the previously used stereoparent names will guide users to the corresponding systematic index names. Amino acid sequence names are now assigned to most systematically named linear peptides. In an amino acid sequence name, the C-terminal residue is the index heading parent, and the other residues are cited in the substituent, beginning with N -terminal residue and continuing from left to right in the sequence; e.g., L-Lysine, D-alanylglycyl-L-leucyl-. Psi ( $\psi$ ) nomenclature is now used to describe certain modifications of the peptide bond. The Greek letter $\psi$ conveys the fact that a peptide bond has been replaced by a pseudopeptide bond. In an amino acid sequence name, the format of the $\psi$ term is $\ldots-\mathrm{A}-\psi\left(\mathrm{X}-\mathrm{X}^{\prime}\right)-\mathrm{B}-\ldots$, where A is the amino acyl radical whose carbonyl group has been modified to X and B the amino acyl radical whose $\alpha$-amino group has been modified to X '. X and X ' are shown as strings of element symbols, separated by a bond; e. g., ..-L-valyl- $\psi\left(\mathrm{CH}_{2}-\mathrm{NH}\right)$-L-tyrosyl-.
286. Steroids (II 211). Stereochemical descriptors, e.g., " $5 \alpha-$-," which formerly appeared as a prefix at steroid names, were combined in Volume 76 with descriptors required for suffixes and substituent prefixes and are now cited in parentheses in their own field.

Cyclogonanes were discontinued as the names of ring systems; they are now cross-referred to systematic ring names. Cyclogonane stereoparents are retained, with stereochemistry defined by illustrative diagrams in the Chemical Substance Index and the Index Guide.

Trivial names for steroids, including Cholesterol, Ergocalciferol, and Testosterone, were discontinued as heading parents.

Use of "homo" (to denote ring enlargement), "nor" (to denote ring contraction), and "seco" (to denote ring fission), are now further restricted.

Functional derivatives of steroids are indexed at the steroid names, either in the substituents (for derivatives of subsidiary functions) or in the modifications (for derivatives of the principal functions). Acyclic acetals are expressed by alkyloxy or aryloxy substituents (II 196); cyclic acetals with formaldehyde by methylenebis(oxy) radicals; other cyclic acetals by a modification phrase such as "cyclic 1,2-ethanediyl acetal" (if a principal group has been acetalized) or by an alkanediylbis(oxy) or alkylidenebis(oxy) substituent. Steroidal lactones are "opened" to permit the steroid stereoparent to be used; the lactone is then cited in the modification.
287. Substituent prefixes (radicals) (IIII 132, 161). Groups always expressed as substituents now include isocyano, isocyanato, isothiocyanato, etc., and groups terminating in oxy, thio, sulfinyl, sulfonyl, and their analogs, such as seleno and telluronyl.

Changes in radical names include iodosyl (instead of iodoso) for -IO; and iodyl (instead of iodoxy) for $-\mathrm{IO}_{2}$. Morpholino was changed in Volume 76 to 4-morpholinyl; piperidino to 1-piperidinyl; the unsubstituted diazeno radical, $\mathrm{HN}=\mathrm{N}-$, to diazenyl; $p$-phenylene, etc., to 1,4-phenylene, etc.; $v$-phenenyl to 1,2,3-benzenetriyl; benzyl to (phenylmethyl); styryl to (2-phenylethenyl); ptolyl to (4-methylphenyl); 2,4-xylyl to (2,4-dimethylphenyl); and similarly for other radicals containing a benzene ring and one or more acyclic chains. Thenyl became (thienylmethyl) and furfuryl became (2-furanylmethyl).

Ring-assembly radicals are now based on the ring assembly names, as, [1,2'-binaphthalen]-8'-yl and [1, 1'-biphenyl]-4,4'-diyl (II 161).

Acyl radicals in substitutive names were replaced by substituted radicals (exceptions are acetyl, benzoyl, carbonyl, and, when unsubstituted, formyl). Hence propionyl became (1-oxopropyl); acetimidoyl became (1-iminoethyl); succinoyl became (1,4-dioxo-1,4-butanediyl). The three radicals carbonimidoyl, - $\mathrm{C}(: \mathrm{NH})-$; carbonohydrazonoyl, $-\mathrm{C}\left(: \mathrm{NNH}_{2}\right)-$, and carbonothioyl, $\mathrm{C}(: \mathrm{S})$ - were introduced for use in multiplicative nomenclature and for cases in which both free valencies are attached to the same atom. In other cases, (iminomethyl) (formerly formimidoyl), (thioxomethyl), etc., are employed.

Replacement ("a") names for acyclic radicals (II 128) were introduced under the same restrictions as for heading parents. The free valencies, not the
hetero atoms, are preferred for lowest locants, which are always cited; e.g. 4,12-dioxa-7,9-dithiatetradec-1-yl.

Compound and complex radicals are now constructed in accordance with revised rules which reflect the new policies for compounds. The most important changes were emphasis on hetero-atom content of the parent radical, abandonment of "like treatment of like things" and the "complexity" principle, elimination of preference for unsaturated acyclic radicals regardless of size, consistent application of the principle of "lowest locants" for substituents on the parent radical, and adoption of more systematic radical names.

A list of substituent prefixes (radicals) as revised for the Ninth Collective Index Period (1972-1976) constitutes Section H (II 294).
288. Sulfur compounds (II 200). Sulfide was discontinued as a heading parent in Volume 76, as were such binary headings as Phenyl sulfide. Compounds containing one or more single sulfur atoms are now indexed substitutively by use of thio radicals or at "thia"-named index parents (II 127). Thus, Sulfide, ethyl phenyl, became Benzene, (ethylthio)-, and Propyl sulfide is now indexed at Propane, 1, $\mathbf{1}^{\prime}$-thiobis-. The retained headings Disulfide, Trisulfide, etc., rank as nonfunctional acyclic sulfur parents, below oxygen compounds and above selenium compounds. Within the class, a partial descending order is: heterocyclic sulfur compounds, e.g., Thiophene; "a"-named acyclic hetero systems, e.g., 2,6,9,12,13-Pentathiapentadecane; acyclic trisulfide, disulfone, disulfoxide, disulfide

1,2-Episulfides are named as Thiirane or Thiirene derivatives; 1,3-episulfides as Thietane or Thiete derivatives. Acyclic mercaptals and mercaptoles are now named like sulfides by use of thio radicals.

Selenium and tellurium compounds are treated in strict analogy with sulfur compounds.
289. Sulfones and Sulfoxides (II 200). Sulfone was discontinued as a heading parent, as were binary sulfone headings like Isopropyl sulfone, now indexed at Propane, 2,2'-sulfonylbis-. Sulfonyl radicals are used for all compounds containing single $\mathrm{SO}_{2}$ groups, e.g., Butane, 1-chloro-3-(methyl-sul-fonyl)- (formerly Sulfone, 3-chloro-1-methylpropyl methyl). Disulfone, Trisulfone, etc., are retained. Sulfoxides are indexed in an analogous manner by use of sulfinyl radicals. Acyclic skeletons containing four or more sulfur units may be indexed at "thia"- names with oxide terms in the index modification. Cyclic sulfones and sulfoxides are indexed at ring names; e.g., Thiirane, 1,1-dioxide (formerly Ethylene sulfone).

289A. Tautomers (IT 122). To avoid scattering of information in the index, $C A$, aided by new machine programs, now indexes certain common tautomeric systems at single preferred index names, regardless of the particular structures presented in original documents. The most common tautomers handled in this way include compounds containing the nitrogenous skeletons $\mathrm{N}-\mathrm{N}-\mathrm{N}, \mathrm{N}-\mathrm{C}-\mathrm{N}$, $\mathrm{N}-\mathrm{C}-\mathrm{O}$, and $\mathrm{N}-\mathrm{C}-\mathrm{S}$, as well a certain phosphorus and sulfur acids and amides. In general, the preferred index name expresses the tautomeric form in which a double bond extends to an oxygen atom, rather than to a sulfur or nitrogen; after this condition has been satisfied, the preferred name usually expresses the maximum number of highest functions. Cross-references in the Index Guide reflect these policies; thus, Uracil is cross-referred to $\mathbf{2 , 4}(\mathbf{1} H, \mathbf{3} H)$-Pyrimidinedione, not to 2,4-Pyrimidinediol.
290. Terpenes (II 212) are now named at stereoparent names (II 285) only when they contain four or more rings or possess complex stereochemistry. Hence, many trivial names formerly employed as index headings are now cross-referred to systematic names; e.g., Eudesmane. See Naphthalene, decahydro-1,4a-dimethyl-7-(1-methylethyl)-, (1R,4aR,7R,8aS)-.

Illustrative diagrams for terpene stereoparents, e.g., Gammacerane, Lanostane, showing the stereochemistry for each, are provided in the Chemical Substance Index and the Index Guide. New stereoparents, formed by ring enlargement, contraction, scission, or addition, are adopted as they are needed. When ring scission results in a structure which does not qualify for a terpene stereoparent name, systematic nomenclature is used.

Cyclic acetals of terpenes are expressed at stereoparent names, either in the modification or by use of appropriate substituents, in analogy with steroids (II 286). Lactones are expressed in the modification at terpene acid headings.
291. Thiols (II 175) have been affected only by the general changes in indexing policy (II 255), including those for conjunctive names, abandonment of trivial names, and discontinuance of like treatment of like things. Thus, $\alpha-$ Toluenethiol became Benzenemethanethiol; $p$-Cymene-2-thiol became Benzenethiol, 2-methyl-5-(1-methylethyl)-; and Ethanethiol, 1,2-diphenyl-, became Benzeneethanethiol, $\alpha$-phenyl-.
292. Urea (II 183) was retained as a heading parent; Urea, thio-, and its derivatives are now indexed at Thiourea. In both cases, the locants 1- and 3- were replaced by $N$ - and $N^{\prime}$. Urea ranks as an amide of Carbonic acid, which is now placed below the "organic" acids, including carboxylic and sulfonic acids. Acyclic acyl ureas are therefore indexed at "organic" amide names. Pseudourea was renamed Carbamimidic acid. In the following list, former names are shown in parentheses:

Urea, $N^{\prime}$-ethyl- $N, N$-di-methyl-
Acetamide, $N$-(amino carbonyl)-
Ethanethioamide, $N$-(ami nocarbonyl)-
Urea, (aminoiminomethyl)-
1,2-Hydrazinedicarboxamide
Imidodicarbonic diamide
Urea, $N, N^{\prime}$-diphenyl-
Diimidotricarbonic diamide
Carbamimidothioic acid, methyl-, ethyl ester
(Urea, 3-ethyl-1,1-dimethyl-)
(Urea, acetyl-)
(Urea, (thioacetyl)-)
(Urea, amidino-)
(Biurea)
(Biuret)
(Carbanilide)
(Triuret)
(Pseudourea, 2-ethyl-3-methyl-2-
thio-)
293. Vitamins (II 224). Index headings such as Vitamin B, Vitamin F, are used for general discussions of vitamin activity and for ill-defined substances named by authors. Otherwise, many specific vitamin names have been crossreferred to more systematic names. The stereoparent Retinol is used for Vitamin $\mathrm{A}_{1}$ (Vitamin $\mathrm{A}_{2}$ is indexed at Retinol, 3,4-didehydro-); Riboflavine (Riboflavin beginning in Volume 86) for Vitamin $B_{2}$; and L-Ascorbic acid for Vitamin C. Vitamin $\mathbf{B}_{12}$ is the only specific vitamin name retained as a heading parent; related compounds have continued to be indexed at names such as Cobinamide and Cobyrinic acid.

293A. Zwitterionic compounds (IIfI 201, 224). Prior to Volume 119 the expression "hydroxide, inner salt" was used in the modification of names of zwitterionic compounds at "-ium" headings. "Hydroxide" was used as the salt phrase in the modification. Conceptually, a molecule of water (comprised of the hydroxide anion and a hydrogen atom attached to a hetero atom) was "removed" by the use of the phrase "inner salt". The term "inner salt" now indicates an unspecified compensating anion located in the same molecule as the cation. The assumed "hydroxide" anion is no longer expressed.

Beginning with Volume 121 meso-ionic Sydnone and Sydnone imine derivatives (II 201) are structured and named systematically as inner salts of 5 -Hydroxy-3-substituted-1,2,3-oxadiazolium and 5-Amino-3-substituted-1,2,3-oxadiazolium, respectively. Hydrohalide salts of sydnone imines are structured and named as onium halides.

## H. ILLUSTRATIVE LIST OF SUBSTITUENT PREFIXES

294. 

(The equals (=) directs the user from the boldface name to the current $C A$ name; absence of the sign indicates that the boldface name is correct.)
abietamido $=[[[1,2,3,4,4 \mathrm{a}, 4 \mathrm{~b}, 5,6,10,10 \mathrm{a}$-decahy-dro-1,4a-dimethyl-7-(1-methylethyl)-1-phenathrenyl]carbonyl]amino] $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{CONH}-$
acenaphthenyl $=(1,2$-dihydroacenaphthylenyl) $\left(\mathrm{C}_{12} \mathrm{H}_{9}\right)-$
1,2-acenaphthenylene $=$ (1,2-dihydro-1,2-acenaphthylenediyl) $-\left(\mathrm{C}_{12} \mathrm{H}_{8}\right)-$
1-acenaphthenylidene $=1(2 \mathrm{H})$-acenaphthylenylidene $\left(\mathrm{C}_{12} \mathrm{H}_{8}\right)=$
acetamido $=($ acetylamino $) \mathrm{AcNH}-$
acetenyl = ethynyl $\mathrm{HC} \equiv \mathrm{C}$ -
acetimido $=($ acetylimino $)$ or ( 1 -iminoethyl $) \mathrm{AcN}=$ or $\mathrm{MeC}(=\mathrm{NH})-$
acetimidoyl $=(1$-iminoethyl $) \mathrm{MeC}(=\mathrm{NH})-$
acetoacetamido $=[(1,3$-dioxobutyl $)$ amino $]$ $\mathrm{MeCOCH}_{2} \mathrm{CONH}-$
acetoacetyl $=(1,3$-dioxobutyl $) \mathrm{MeCOCH}_{2} \mathrm{CO}-$
acetohydroximoyl = [1-(hydroxyimino)ethyl] $\mathrm{MeC}(=\mathrm{NOH})-$
acetonyl = (2-oxopropyl) $\mathrm{MeCOCH}_{2}-$
acetonylidene $=(2$-oxopropylidene $) \mathrm{MeCOCH}=$
acetoxy $=($ acetyloxy $) \mathrm{AcO}-$
acetyl Ac (MeCO-)
acetylene $=1,2$-ethanediylidene $=\mathrm{CHCH}=$
acridanyl $=(9,10$-dihydroacridinyl $)\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}\right)$ -
acryloyl $=\left(1\right.$-oxo-2-propenyl) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCO}-$
acrylyl $=$ (1-oxo-2-propenyl) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCO}-$
adamantyl = tricyclo[3.3.1.1 ${ }^{3,7}$ ddecyl $\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)$ -
adamantylene $=$ tricyclo[3.3.1.1 ${ }^{3,7}$ ]decanediyl $-\left(\mathrm{C}_{10} \mathrm{H}_{14}\right)-$
adipaldehydoyl $=(1,6$-dioxohexyl $)$ $\mathrm{HCO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-$
adipamoyl $=(6$-amino-1,6-dioxohexyl) $\mathrm{H}_{2} \mathrm{NCO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-$
adipaniloyl = [1,6-dioxo-6-(phenylamino)hexyl] $\mathrm{PhNHCO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-$
adipoyl $=(1,6$-dioxo-1,6-hexanediyl $)$ $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-$
adipyl $=(1,6$-dioxo-1,6-hexanediyl) $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-$
alaninamido $=[(2$-amino-1-oxopropyl $)$ amino $]$ $\operatorname{MeCH}\left(\mathrm{NH}_{2}\right) \mathrm{CONH}-$
alanyl ${ }^{1}=(2$-amino-1-oxopropyl)
$\mathrm{MeCH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
$\beta$-alanyl ${ }^{1}=(3$-amino-1-oxopropyl) $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
aldo $^{2}=$ oxo $\mathrm{O}=$
alloisoleucyl ${ }^{1}=(2$-amino-1-methyl-1-oxopentyl $)$ $\mathrm{EtCHMeCH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
allophanamido $=[[[($ aminocarbonyl $)$ amino $]$ carbonyl]amino] $\mathrm{H}_{2} \mathrm{~N}(\mathrm{CONH})_{2}-$
allophanoyl $=[[($ aminocarbonyl $) \mathrm{amino}]$ carbonyl $]$ $\mathrm{H}_{2} \mathrm{NCONHCO}-$
allothreonyl ${ }^{1}=(2$-amino-3-hydroxy-1-oxobutyl) $\mathrm{MeCH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
allyl = 2-propenyl $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}-$
$\beta$-allyl $=\left(1\right.$-methylethenyl) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}-$
$\pi$-allyl $=\left(\eta^{3}-2\right.$-propenyl $)$

$$
\left[\mathrm{CH}_{2}=-\mathrm{CH}=-\mathrm{CH}_{2}\right]-
$$

allylidene $=2$-propenylidene $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}=$
ambrosan-6-yl = [decahydro-3a,8-dimethyl-5-(1-methylethyl)-4-azulenyl] $\left(\mathrm{C}_{15} \mathrm{H}_{27}\right)$ -
amidino $=($ aminoiminomethyl $) \mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH})-$
amidoxalyl $=($ aminooxoacetyl $) \mathrm{H}_{2} \mathrm{NCOCO}-$
amino $\mathrm{H}_{2} \mathrm{~N}-$
(aminoamidino) $=$ (aminohydrazonomethyl) or (hydrazinoiminomethyl) $\mathrm{H}_{2} \mathrm{NC}\left(=\mathrm{NNH}_{2}\right)-$ or $\mathrm{H}_{2} \mathrm{NNHC}(=\mathrm{NH})-$
(aminoiminophosphoranyl) $=(P$-aminophosphinimyl) $\mathrm{H}_{2} \mathrm{NPH}(=\mathrm{NH})-$
ammonio $\mathrm{H}_{3} \mathrm{~N}^{+}$-
amoxy $=$ (pentyloxy) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}-$
amyl $=$ pentyl $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$
tert-amyl $=\left(1,1\right.$-dimethylpropyl) $\mathrm{EtCMe}_{2}-$
amylidene $=$ pentylidene $\mathrm{BuCH}=$
anilino $=$ (phenylamino) $\mathrm{PhNH}-$
anisal $=$ [(methoxypheny $]$ )methylene $]$
$\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}=$
anisidino $=$ [(methoxyphenyl)amino] $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}-$
anisoyl $=($ methoxybenzoyl $) \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CO}-$
anisyl $=$ (methoxyphenyl) or $[$ (methoxyphenyl)methyl] $\mathrm{MeOC}_{6} \mathrm{H}_{4}$ - or $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$
anisylidene $=[($ methoxyphenyl $)$ methylene $]$ $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}=$
anthranilamido $=[(2-$ aminobenzoyl $)$ amino $]$ $2-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CONH}-$
anthraniloyl = (2-aminobenzoyl)
$2-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CO}-$
anthranoyl $=\left(2\right.$-aminobenzoyl) $2-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CO}-$
anthraquinonyl $=$ ( 9,10 -dihydro- 9,10 -dioxoanthracenyl) $\left(\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{O}_{2}\right)-$
anthraquinonylene $=$ ( 9,10 -dihydro- 9,10 -dioxoanthracenediyl) $-\left(\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{2}\right)-$
anthroyl $=($ anthracenylcarbonyl $)\left(\mathrm{C}_{14} \mathrm{H}_{9}\right) \mathrm{CO}-$
anthryl $=$ anthracenyl $\left(\mathrm{C}_{14} \mathrm{H}_{9}\right)-$
anthrylene $=$ anthracenediyl $-\left(\mathrm{C}_{14} \mathrm{H}_{8}\right)-$
antimono $=1,2$-distibenediyl $-\mathrm{Sb}=\mathrm{Sb}-$
antipyrinyl (antipyryl) $=$ (2,3-dihydro-1,5-di-methyl-3-oxo-2-phenyl-1 H -pyrazol-4-yl)

antipyroyl $=$ [(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1 H -pyrazol-4-yl)carbonyl]

apocamphanyl $=(7,7$-dimethylbicyclo[2.2.1]heptyl) $\left(\mathrm{C}_{9} \mathrm{H}_{15}\right)-$
apotrichothecanyl $=($ decahydro-3a,6,8a,8b-tetra-methyl- 1 H -cyclopenta $[b]$ benzofuranyl)
$\left(\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}\right)-$
arginyl $^{1}=[2$-amino-5-[(aminoiminomethyl)-amino]-1-oxopentyl] $\mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH}) \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
arseno $=1,2$-diarsenediyl $-\mathrm{As}=\mathrm{As}-$
arsenoso OAs-
arsinico ${ }^{3,4} \mathrm{HOAs}(\mathrm{O})=$
arsinidenio $\mathrm{H}_{2} \mathrm{As}^{+}=$
arsinimyl AsH 2 ( $=\mathrm{NH}$ )-
arsino $\mathrm{AsH}_{2}-$
arsinothioyl $\mathrm{AsH}_{2}(\mathrm{~S})-$
arsinyl $\mathrm{AsH}_{2}(\mathrm{O})-$
arsinylidene $\mathrm{AsH}(\mathrm{O})=$
arso $\mathrm{O}_{2} \mathrm{As}-$
arsonio $\mathrm{H}_{3} \mathrm{As}^{+}-$
arsono $^{4}(\mathrm{HO})_{2} \mathrm{As}(\mathrm{O})-$
arsononitridyl $\mathrm{AsH}(\equiv \mathrm{N})-$
arsoranyl $\mathrm{AsH}_{4}-$
arsoranylidene $\mathrm{H}_{3} \mathrm{As}=$
arsoranylidyne $\mathrm{AsH}_{2} \equiv$
arsylene $=$ arsinidene $\mathrm{AsH}=$
arsylidyne $=$ arsinidyne $\mathrm{As} \equiv$
asaryl $=(2,4,5$-trimethoxyphenyl) $2,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}-$
asparaginyl ${ }^{1}=(2,4$-diamino-1,4-dioxobutyl) $\mathrm{H}_{2} \mathrm{NCOCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
$\alpha$-asparaginyl ${ }^{1}=(3,4$-diamino-1,4-dioxobutyl) $\mathrm{H}_{2} \mathrm{NCOCH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{CO}-$
asparagyl $=$ asparaginyl
aspartoyl ${ }^{1}=(2$-amino-1,4-dioxo-1,4-butanediyl) $-\mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
aspartyl $=$ aspartoyl or unspecified aspartyl (see below)
$\alpha$-aspartyl ${ }^{1}=$ (2-amino-3-carboxy-1-oxopropyl) $\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
$\beta$-aspartyl ${ }^{1}=$ (3-amino-3-carboxy-1-oxopropyl) $\mathrm{HO}_{2} \mathrm{CCH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{CO}-$
astato At-
astatoxy = astatyl $\mathrm{O}_{2} \mathrm{At}-$
atisanyl (from atisane) $\left(\mathrm{C}_{20} \mathrm{H}_{33}\right)$ -
atropoyl $=$ (1-oxo-2-phenyl-2-propenyl) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CPhCO}-$
azelaoyl $=$ (1,9-dioxo-1,9-nonanediyl) $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
azelaaldehydoyl $=(1,9$-dioxononyl) $\mathrm{HCO}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
$\mathbf{a z i}^{5}$ (see also azo) $-\mathrm{N}=\mathrm{N}-$
azido $\mathrm{N}_{3}-$
(azidoformyl) $=\left(\right.$ azidocarbonyl) $\mathrm{N}_{3} \mathrm{CO}-$
$\boldsymbol{a z i n o}=\mathrm{NN}=$
azo 6 (see also azi) $-\mathrm{N}=\mathrm{N}-$
azoxy $-\mathrm{N}(\mathrm{O})=\mathrm{N}-$
benzal $=($ phenylmethylene $) \mathrm{PhCH}=$
benzamido $=$ (benzoylamino) $\mathrm{BzNH}-$
benzenesulfenamido $=[($ phenylthio $)$ amino $]$ PhSNH-
benzenesulfonamido $=[($ phenylsulfonyl $)$ amino $]$ $\mathrm{PhSO}_{2} \mathrm{NH}-$
benzenetriyl $\mathrm{C}_{6} \mathrm{H}_{3} \equiv$
benzenyl $=($ phenylmethylidyne $) \mathrm{PhC} \equiv$
benzhydryl $=$ (diphenylmethyl) $\mathrm{Ph}_{2} \mathrm{CH}-$
benzhydrylidene $=($ diphenylmethylene $) \mathrm{Ph}_{2} \mathrm{C}=$
benzidino $=\left[\left(4^{\prime}\right.\right.$-amino $\left[1,1^{\prime}\right.$-biphenyl $]-4$-yl)amino $]$ 4- $\left(4-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}-$
benziloyl = (hydroxydiphenylacetyl) $\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CO}-$
(3-benziloylpropyl) $=$ (5-hydroxy-4-oxo-5,5-diphenylpentyl) $\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CO}\left(\mathrm{CH}_{2}\right)_{3}-$
benzimidazolinyl $=(2,3$-dihydro- 1 H -benzimidazolyl) $\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}\right)-$
2-benzimidazolyl $=1 \mathrm{H}$-benzimidazol-2-yl $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2}\right)-$
benzimido $=$ (benzoylimino) or (iminophenylmethyl) $\mathrm{BzN}=$ or $\mathrm{PhC}(=\mathrm{NH})-$
benzimidoyl $=$ (iminophenylmethyl) $\mathrm{PhC}(=\mathrm{NH})-$
benzofuryl = benzofuranyl $\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}\right)$ -
benzohydroximoyl $=$ [(hydroxyimino $)$ phenylmethyl] $\mathrm{PhC}(=\mathrm{NOH})-$
$o$-benzoquinon-3-yl $=$ (5,6-dioxo-1,3-cyclohexa-dien-1-yl) $\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ -
$p$-benzoquinon-2,5-ylene $=$ (3,6-dioxo-1,4-cyclo-hexadiene-1,4-diyl) - $\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{2}\right)-$
benzoselenophene-yl $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Se}-$
benzoxy = (benzoyloxy) BzO-
benzoyl Bz (PhCO-)
(benzoylacetyl) $=$ (1,3-dioxo-3-phenylpropyl) $\mathrm{PhCOCH}_{2} \mathrm{CO}-$
(benzoylformyl) $=($ oxophenylacetyl $) \mathrm{PhCOCO}-$
benzyl $=($ phenylmethyl $) \mathrm{PhCH}_{2}{ }^{-}$
benzylidene $=($ phenylmethylene $) \mathrm{PhCH}=$
benzylidyne $=$ (phenylmethylidyne) $\mathrm{PhC} \equiv$
(benzyloxy) $=($ phenylmethoxy $) \mathrm{PhCH}_{2} \mathrm{O}-$
(benzylselenyl) $=$ [(phenylmethyl)seleno] $\mathrm{PhCH}_{2} \mathrm{Se}-$
bicarbamoyl = (hydrazodicarbonyl) -CONHNHCO-
bicyclo[1.1.0]butylene $=$ bicyclo[1.1.0]butanediyl $-\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)-$
biphenylyl $=\left[1,1^{\prime}\right.$-biphenyl $] y 1 \mathrm{PhC}_{6} \mathrm{H}_{4}-$
biphenylene $=\left[1,1^{\prime}\right.$-biphenyl $]$ diyl $-\left(\mathrm{C}_{12} \mathrm{H}_{8}\right)-$
biphenylylene $=\left[1,1^{\prime}\right.$-biphenyl $]$ diyl $-\left(\mathrm{C}_{12} \mathrm{H}_{8}\right)-$
bismuthino $\mathrm{BiH}_{2}-$
bismuthylene $\mathrm{BiH}=$
bismuthylidyne $\mathrm{B} \equiv$
[2,2'-bithiophen]-5-yl $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~S}_{2}$ -
2-bornyl $=(1,7,7$-trimethylbicyclo[2.2.1]hept-2yl) $\left(\mathrm{C}_{10} \mathrm{H}_{17}\right)-$
3-bornylidene $=(4,7,7$-trimethylbicyclo[2.2.1]-hept-2-ylidene) $\left(\mathrm{C}_{10} \mathrm{H}_{16}\right)=$
borono ${ }^{4}(\mathrm{HO})_{2} \mathrm{~B}-$
boryl $\mathrm{BH}_{2}-$
borylene $\mathrm{BH}=$
borylidyne $\mathrm{B} \equiv$
bromo $\mathrm{Br}-$
1,3-butadienediylidene $=1,3$-butadiene-1,4-diylidene $=\mathrm{C}=\mathrm{CHCH}=\mathrm{C}=$
butadiynylene $=1,3$-butadiyne-1,4-diyl $-\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{C}-$
2-butenylene $=2$-butene-1,4-diyl
$-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}-$
butoxy BuO-
sec-butoxy = (1-methylpropoxy) EtCHMeO-
tert-butoxy $=(1,1$-dimethylethoxy $) \mathrm{Me}_{3} \mathrm{CO}$
butyl $\mathrm{Bu}\left(\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3}{ }^{-}\right)$
butyl ${ }^{\beta}=\left(2\right.$-methylpropyl) $\mathrm{Me}_{2} \mathrm{CHCH}_{2}-$ buty ${ }^{\gamma}=\left(1,1\right.$-dimethylethyl) $\mathrm{Me}_{3} \mathrm{C}-$
sec-butyl = (1-methylpropyl) EtCHMe-
tert-butyl $=\left(1,1\right.$-dimethylethyl) $\mathrm{Me}_{3} \mathrm{C}-$
1,4-butylene $=1,4$-butanediyl $-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$
sec-butylidene $=(1$-methylpropylidene $) \mathrm{EtCMe}=$
(butyloxy) $=$ butoxy BuO-
butynedioyl $=$ (1,4-dioxo-2-butyne-1,4-diyl) $-\mathrm{COC} \equiv \mathrm{CCO}-$
butyryl $=(1-$ oxobutyl $)$ PrCO -
cacodyl $=$ (dimethylarsino) $\mathrm{Me}_{2} \mathrm{As}-$
cadinan-1-yl $=$ [octahydro-4,7-dimethyl-1-(1-methylethyl)-4a(2H)-naphthalenyl] $\left(\mathrm{C}_{15} \mathrm{H}_{29}\right)-$
2-camphanyl $=(4,7,7$-trimethylbicyclo[2.2.1]hept-2-yl) $\left(\mathrm{C}_{10} \mathrm{H}_{17}\right)-$
camphoroyl (from camphoric acid) $=[(1,2,2$-tri-methyl-1,3-cyclopentanediyl)dicarbonyl] $-\mathrm{CO}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{CO}-$
5-camphoryl (from camphor) $=$ (4,7,7-trimethyl-5-oxobicyclo[2.2.1]hept-2-yl) $\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}\right)-$
canavanyl $=[O-[($ aminoiminomethyl $)$ amino $]-$ homoseryl $]{ }^{1}$ or $[2$-amino-4-[[(aminoiminome-thyl)amino]oxy]-1-oxobutyl]
$\mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH}) \mathrm{NHO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
caprinoyl $=(1$-oxodecyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CO}-$
caproyl (from caproic acid) $=(1$-oxohexyl $)$ $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-$
capryl $($ from capric acid $)=(1-$ oxodecyl $)$ $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CO}-$
capryloyl (from caprylic acid) $=(1-$ oxooctyl $)$ $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CO}-$
caprylyl (from caprylic acid) $=(1-$ oxooctyl $)$ $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CO}-$
carbamido $=$ [(aminocarbonyl)amino] $\mathrm{H}_{2} \mathrm{NCONH}-$
carbamoyl = (aminocarbonyl) $\mathrm{H}_{2} \mathrm{NCO}-$
carbamyl $=($ aminocarbonyl $) \mathrm{H}_{2} \mathrm{NCO}-$
carbanilino $=[($ phenylamino $)$ carbonyl $]$ PhNHCO-
carbaniloyl $=[$ (phenylamino) carbonyl $]$ PhNHCO-
carbazimidoyl = (hydrazinoiminomethyl) $\mathrm{H}_{2} \mathrm{NNHC}(=\mathrm{NH})-$
carbazol-9-yl $=9 \mathrm{H}$-carbazol-9-yl $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}\right)$ -
carbazoyl = (hydrazinocarbonyl) $\mathrm{H}_{2} \mathrm{NNHCO}-$
carbethoxy $=$ (ethoxycarbonyl) $\mathrm{EtO}_{2} \mathrm{C}-$
carbobenzoxy $=[($ phenylmethoxy $)$ carbonyl $]$ $\mathrm{PhCH}_{2} \mathrm{O}_{2} \mathrm{C}-$
carbonimidoyl ${ }^{7}$ (see also (iminomethyl)) $-\mathrm{C}(=\mathrm{NH})-$
carbonothioyl ${ }^{7}$ (see also (thioxomethyl)) -CS-
carbonyl-CO-
(carbonyldioxy) $=[$ carbonylbis(oxy) $]-\mathrm{OCO}_{2}-$
$(1-$ carbonylethyl $)=($ methyloxoethenyl $)$ $\mathrm{O}=\mathrm{C}=\mathrm{CMe}-$
(carbonylmethyl) $=($ oxoethenyl $) \mathrm{O}=\mathrm{C}=\mathrm{CH}-$
(carbonylmethylene) $=(1$-oxo-1,2-ethanediyl) $-\mathrm{COCH}_{2}$ - or (oxoethenylidene) $\mathrm{O}=\mathrm{C}=\mathrm{C}=$
carboxy ${ }^{4} \mathrm{HO}_{2} \mathrm{C}-$
(carboxyformyl) $=($ carboxycarbonyl $) \mathrm{HO}_{2} \mathrm{CCO}-$
(5-carboxyvaleryl) $=(5$-carboxy-1-oxopentyl) $\mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-$
carnosyl $=(N \text { - } \beta \text {-alanylhistidyl })^{1}$ or [2-[(3-amino-1-oxopropyl)amino]-3-( 1 H -imidazol-4-yl)-1oxopropyl]

caronaldehydoyl $=[(3$-formyl-2,2-dimethylcyclopropyl)carbonyl]

carvacryl = [2-methyl-5-(1-methylethyl)phenyl]

carvomenthyl $=$ [2-methyl-5-(1-methylethyl)cyclohexyl]


10-caryl $=$ [(7,7-dimethylbicyclo[4.1.0]hept-3-yl)methyl] $\left(\mathrm{C}_{9} \mathrm{H}_{15}\right) \mathrm{CH}_{2}-$
cathyl $=[($ ethoxycarbonyl $)$ oxy $] \mathrm{EtOCO}_{2}-$
cedranyl $=$ (octahydro-3a,6,8,8-tetramethyl- 1 H 3a, 7 -methanoazulenyl) $\left(\mathrm{C}_{15} \mathrm{H}_{25}\right)$ -
cetyl = hexadecyl $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{15}{ }^{-}$
chaulmoogroyl (from chaulmoogric acid) $=$ [13-(2-cyclopenten-1-yl)-1-oxotridecyl] $\mathrm{C}_{5} \mathrm{H}_{7}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CO}-$
chaulmoogryl (from chaulmoogryl alcohol) $=[13-$
(2-cyclopenten-1-yl)tridecyl] $\mathrm{C}_{5} \mathrm{H}_{7}\left(\mathrm{CH}_{2}\right)_{13}{ }^{-}$
chloro $\mathrm{Cl}^{-}$
$($ chloroformyl $)=($ chlorocarbonyl $) \mathrm{ClCO}-$
$($ chloroglyoxyloyl $)=($ chlorooxoacetyl $) \mathrm{ClCOCO}-$
$($ chlorooxalyl $)=($ chlorooxoacetyl $) \mathrm{ClCOCO}-$
chlorosyl $\mathrm{OCl}-$
chloryl $\mathrm{O}_{2} \mathrm{Cl}-$
cholesteryl $($ from cholesterol $)=$ cholest-5-en-3-yl (from cholestene) $\left(\mathrm{C}_{27} \mathrm{H}_{45}\right)-$
choloyl $($ from cholic acid $)=(3,7,12$-trihydroxy-24-oxocholan-24-yl) $(\mathrm{HO})_{3}\left(\mathrm{C}_{23} \mathrm{H}_{36}\right) \mathrm{CO}-$
chromanyl $=$ (3,4-dihydro-2H-1-benzopyranyl) $\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}\right)-$
cinchoninoyl (from cinchoninic acid) $=(4$-quinolinylcarbonyl) $\left(4-\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right) \mathrm{CO}-$
cinnamal $=$ (3-phenyl-2-propenylidene) $\mathrm{PhCH}=\mathrm{CHCH}=$
cinnamenyl $=(2$-phenylethenyl $) \mathrm{PhCH}=\mathrm{CH}-$
cinnamoyl = (1-oxo-3-phenyl-2-propenyl) $\mathrm{PhCH}=\mathrm{CHCO}-$
cinnamyl $=$ (3-phenyl-2-propenyl) $\mathrm{PhCH}=\mathrm{CHCH}_{2}-$
cinnamylidene $=(3$-phenyl-2-propenylidene $)$ $\mathrm{PhCH}=\mathrm{CHCH}=$
citraconimido $=(2,5$-dihydro-3-methyl-2,5-dioxo$1 H$-pyrrol-1-yl)

citraconoyl $=$ (2-methyl-1,4-dioxo-2-butene-1,4diyl) $-\mathrm{COCMe}=\mathrm{CHCO}-$
conaninyl (from conanine) $\left(\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}\right)-$
cresotoyl (from cresotic acid) $=$ (hydroxymethylbenzoyl) $\mathrm{HO}(\mathrm{Me}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
cresoxy $=($ methylphenoxy $) \mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{O}-$
cresyl $=$ (hydroxymethylphenyl) $\mathrm{HO}(\mathrm{Me}) \mathrm{C}_{6} \mathrm{H}_{3}$ - or (methylphenyl) $\mathrm{MeC}_{6} \mathrm{H}_{4}-$
cresylene $=($ methylphenylene $)-\left(\mathrm{MeC}_{6} \mathrm{H}_{3}\right)-$
crotonoyl $=(1$-oxo-2-butenyl $) \mathrm{MeCH}=\mathrm{CHCO}-$
crotonyl $=$ (1-oxo-2-butenyl) $\mathrm{MeCH}=\mathrm{CHCO}-$
crotyl $=2$-butenyl $\mathrm{MeCH}=\mathrm{CHCH}_{2}-$
cumal $=[[4-(1-$ methylethyl $)$ phenyl $]$ methylene $]$ 4-( $\left.\mathrm{Me}_{2} \mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=$
cumenyl $=[(1$-methylethyl $)$ phenyl $] \mathrm{Me}_{2} \mathrm{CHC}_{6} \mathrm{H}_{4}-$
cumidino $=$ [[4-(1-methylethyl)phenyl $]$ amino $]-4-$ $\left(\mathrm{Me}_{2} \mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}-$
cuminal $=$ [ [4-(1-methylethyl)phenyl]methylene] $4-\left(\mathrm{Me}_{2} \mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=$
cuminyl $=$ [[4-(1-methylethyl)phenyl]methyl] 4-( $\left.\mathrm{Me}_{2} \mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$
cuminylidene $=[[4-(1-$ methylethyl $)$ phenyl $]$ methylene] $4-\left(\mathrm{Me}_{2} \mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=$
cumoyl $=$ [4-(1-methylethyl)benzoyl] $4-\left(\mathrm{Me}_{2} \mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}-$
cumyl ${ }^{8}=[(1$-methylethyl $)$ phenyl $]\left(\mathrm{Me}_{2} \mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4}-$
$\alpha$-cumyl = (1-methyl-1-phenylethyl) $-\mathrm{PhCMe}_{2}{ }^{-}$
cyanamido $=($ cyanoamino $) \mathrm{NCNH}-$
cyanato NCO-
cyano $\mathrm{NC}-$
cyclodisiloxan-2-yl

cyclohexadienylene $=$ cyclohexadienediyl $-\mathrm{C}_{6} \mathrm{H}_{6}-$ cyclohexanecarboxamido $=[$ (cyclohexylcarbonyl)amino] $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CONH}-$
1,2-cyclohexanedicarboximido $=($ octahydro- $1,3-$ dioxo- 2 H -isoindol-2-yl)

cymyl $=[$ methyl(1-methylethyl)phenyl] $\mathrm{Me}\left(\mathrm{Me}_{2} \mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{3}-$
cysteinyl ${ }^{1}=$ (2-amino-3-mercapto-1-oxopropyl) $\mathrm{HSCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
cysteyl $=\left(3\right.$-sulfoalanyl) ${ }^{1}$ or (2-amino-1-oxo- 3 -sulfopropyl) $\mathrm{HO}_{3} \mathrm{SCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
dansyl $=$ [[5-(dimethylamino)-1-naphthalenyl]sulfonyl]

decanedioyl $=(1,10$-dioxo-1,10-decanediyl $)$ $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CO}-$
decanoyl $=(1$-oxodecyl $) \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CO}-$
decasiloxanylene $=1,19$-decasiloxanediyl $-\mathrm{SiH}_{2}\left(\mathrm{OSiH}_{2}\right)_{8} \mathrm{OSiH}_{2}-$
desyl $=(2$-oxo-1,2-diphenylethyl) $\mathrm{PhCOCHPh}-$
diarsenyl HAs=As-
diarsinetetrayl $=1,2$-diarsinediylidene $=$ AsAs $=$
diarsinyl $\mathrm{H}_{2} \mathrm{AsAsH}-$
1,2-diazenediyl = azi or azo $-\mathrm{N}=\mathrm{N}-$
diazeno $=$ diazenyl 4 (see also azo) $\mathrm{HN}=\mathrm{N}-$
$\operatorname{diazo}{ }^{5} \mathrm{~N}_{2}=$
diazoamino $=1$-triazene-1,3-diyl $-\mathrm{NHN}=\mathrm{N}-$
diazonio $\mathrm{N}_{2}{ }^{+}-$
dibenzothiophene-yl $=$ dibenzothienyl $\left(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~S}\right)$ -
diborane(4)tetrayl = 1,2-diborane(4)diylidene $=\mathrm{BB}=$
1,2-dicarbadodecaboran(12)-1-yl $\left(\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{~B}_{10}\right)$ -
digermanylene $=1,2$-digermanediyl $-\mathrm{GeH}_{2} \mathrm{GeH}_{2}-$
digermthianyl $=$ digermathianyl $\mathrm{H}_{3} \mathrm{GeSGeH}_{2}-$
diglycoloyl $=$ [oxybis(1-oxo-2,1-ethanediyl) $]$ $-\mathrm{COCH}_{2} \mathrm{OCH}_{2} \mathrm{CO}-$
(dimethyliminio) $\mathrm{Me}_{2} \mathrm{~N}^{+}=$
dioxy ${ }^{9}$ (see also epidioxy) -OO-
1,2-diphosphinediyl-PHPH-
diphosphinetetrayl $=1,2$-diphosphinediylidene $=\mathrm{PP}=$
diphosphino $=$ diphosphinyl $\mathrm{H}_{2} \mathrm{PPH}-$
diphosphinylidene $\mathrm{H}_{2} \mathrm{P}-\mathrm{P}=$
diseleno ${ }^{9}$ (see also epidiseleno and seleninoselenoyl) $-\mathrm{SeSe}-$
disilanoxy $=($ disilanyloxy $) \mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{O}-$
disilanyl $\mathrm{H}_{3} \mathrm{SiSiH}_{2}-$
disilanylene $=1,2$-disilanediyl $-\mathrm{SiH}_{2} \mathrm{SiH}_{2}-$
disilazanoxy $=($ disilazanyloxy $) \mathrm{H}_{3} \mathrm{SiNHSiH}_{2} \mathrm{O}-$
disilazanyl $\mathrm{H}_{3} \mathrm{SiNHSiH}_{2}-$
2-disilazanyl $=($ disilylamino $)\left(\mathrm{H}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}$ -
disiloxanediylidene $=1,3$-disiloxanediylidene $=\mathrm{SiHOSiH}=$
disiloxanoxy $=$ (disiloxanyloxy) $\mathrm{H}_{3} \mathrm{SiOSiH}_{2} \mathrm{O}-$
disiloxanylene $=1,3$-disiloxanediyl $-\mathrm{SiH}_{2} \mathrm{OSiH}_{2}-$
disilthianoxy $=($ disilathianyloxy $) \mathrm{H}_{3} \mathrm{SiSSiH}_{2} \mathrm{O}-$
distannanylene $=1,2$-distannanediyl $-\mathrm{SnH}_{2} \mathrm{SnH}_{2}-$
distannthianediylidene $=1,3$-distannathianediylidene $=\mathrm{SnHSSnH}=$
disulfinyl ${ }^{6}-\mathrm{S}(\mathrm{O}) \mathrm{S}(\mathrm{O})-$
disulfonyl $-\mathrm{SO}_{2} \mathrm{SO}_{2}-$
dithio ${ }^{9}$ (see also epidithio and sulfinothioyl) -SS-
$($ dithiobicarbamoyl $)=($ hydrazodicarbonothioyl $)$ -CSNHNHCS-
(dithiocarboxy) $\mathrm{HS}_{2} \mathrm{C}-$
(dithiohydroperoxy) $=(\text { thiosulfeno })^{4}$ HSS-
dodecanoyl $=(1$-oxododecyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CO}-$
duryl $=(2,3,5,6$-tetramethylphenyl) 2,3,5,6$\mathrm{Me}_{4} \mathrm{C}_{6} \mathrm{H}^{-}$
durylene $=(2,3,5,6$-tetramethyl-1,4-phenylene $)$
$-\left(2,3,5,6-\mathrm{Me}_{4} \mathrm{C}_{6}\right)$ -
enanthoyl $=(1$-oxoheptyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$
enanthyl $=(1$-oxoheptyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$ epidioxy ${ }^{10}$ (see also dioxy) -OO-
epidiseleno ${ }^{10}$ (See also diseleno and seleninoselenoyl) - SeSe -
epidithio ${ }^{10}$ (see also dithio and sulfinothioyl) -SSepioxy = epoxy (see also oxy and oxo) -O-
episeleno ${ }^{10}$ (see also seleno and selenoxo) $-\mathrm{Se}-$
epithio ${ }^{10}$ (see also thio and thioxo) -S-
epoxy ${ }^{10}$ (See also oxy and oxo) -O-
(epoxyethyl) $=$ oxiranyl

(2,3-epoxypropyl) $=($ oxiranylmethyl $)$

$$
{ }_{3}^{1} \mathrm{O}>\mathrm{CH}_{2}-
$$

eremophilan-1-yl $=$ [decahydro-4,4a-dimethyl-5-
(1-methylethyl)-1-naphthalenyl] $\left(\mathrm{C}_{15} \mathrm{H}_{27}\right)$ -
ethanediylidene $=1,2$-ethanediylidene $=\mathrm{CHCH}=$
1,2-ethenediyl - $\mathrm{CH}=\mathrm{CH}-$
ethinyl = ethynyl $\mathrm{HC} \equiv \mathrm{C}-$
ethoxalyl = (ethoxyoxoacetyl) $\mathrm{EtO}_{2} \mathrm{CCO}-$
ethoxy EtO-
(ethoxycarbonyl) $\mathrm{EtO}_{2} \mathrm{C}$ -
(1-ethoxyformimidoyl) $=$ (ethoxyiminomethyl) $\mathrm{EtOCH}(=\mathrm{NH})-$
(ethoxyphosphinyl) $\mathrm{EtOPH}(\mathrm{O})-$
ethyl $\mathrm{Et}\left(\mathrm{MeCH}_{2}-\right)$
ethylene $=1,2$-ethanediyl $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$
[ethylenebis(nitrilodimethylene) $]=[1,2$-ethanediylbis[nitrilobis(methylene)] $\left(-\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}-\right)_{2}$
(ethylenedioxy) $=[1,2$-ethanediylbis $(o x y)]$ $-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-$
ethylidene $\mathrm{CH}_{3} \mathrm{CH}=$
ethylidyne $\mathrm{CH}_{3} \mathrm{C} \equiv$
1-ethylium-1-ylidene $\mathrm{CH}_{3} \mathrm{C}^{+}=$
$($ ethyloxy $)=$ ethoxy EtO-
$($ ethylselenyl $)=($ ethylseleno $) \mathrm{EtSe}-$
(ethylthio) EtS-
eudesman-8-yl $=$ [decahydro-5,8a-dimethyl-2-(1-methylethyl)-2-naphthalenyl] $\left(\mathrm{C}_{15} \mathrm{H}_{27}\right)$ -
farnesyl (from farnesol) $=$ (3,7,11-trimethyl-2,6,-10-dodecatrienyl) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}=\mathrm{CH}$ $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}=\mathrm{CHCH}_{2}-$
fenchyl $=$ (1,3,3-trimethylbicyclo[2.2.1]hept-2-yl) $\left(\mathrm{C}_{10} \mathrm{H}_{17}\right)-$
1,1'-ferrocenediyl- $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ -
fluoranyl $=$ ( 3 -oxospiro $\left[\right.$ isobenzofuran $-1(3 H), 9^{\prime}-$ [ 9 H$]$ xanthen]yl $\left(\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{O}_{3}\right)-$
fluoren-9-ylidene $=9 \mathrm{H}$-fluoren-9-ylidene $\left(\mathrm{C}_{13} \mathrm{H}_{8}\right)=$
fluoro F -
formamido $=$ (formylamino) $\mathrm{HCONH}-$
1-formazano = [(hydrazonomethyl)azo] $\mathrm{H}_{2} \mathrm{NN}=\mathrm{CHN}=\mathrm{N}-$
5-formazano $=$ [(diazenylmethylene)hydrazino $]$ $\mathrm{HN}=\mathrm{NCH}=\mathrm{NNH}-$
formazanyl = (diazenylhydrazonomethyl) $\mathrm{HN}=\mathrm{N}-\mathrm{C}\left(=\mathrm{NNH}_{2}\right)-$
formazyl $=[($ phenylazo $)$ (phenylhydrazono) methyl] $\mathrm{PhN}=\mathrm{NC}(=\mathrm{NNHPh})-$
formimidoyl $=$ (iminomethyl) $\mathrm{CH}(=\mathrm{NH})-$
(1-formimidoylformimidoyl) $=$ (1,2-diiminoethyl) $\mathrm{HC}(=\mathrm{NH}) \mathrm{C}(=\mathrm{NH})-$
(formimidoylformyl) $=($ iminoacetyl $)$ $\mathrm{CH}(=\mathrm{NH}) \mathrm{CO}-$
$($ formimidoylmethyl $)=(2$-iminoethyl $)$ $\mathrm{HC}(=\mathrm{NH}) \mathrm{CH}_{2}-$
formy ${ }^{4} \mathrm{HCO}-$
fucosyl $=(6$-deoxygalactosyl $)\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{4}\right)-$
fumaraniloyl $=[1,4$-dioxo- 4 -(phenylamino)-2butenyl] $\mathrm{PhNHCOCH}=\mathrm{CHCO}-$
fumaroyl $=$ ( 1,4 -dioxo-2-butene-1,4-diyl) $-\mathrm{COCH}=\mathrm{CHCO}-$
furfural = (2-furanylmethylene)

furfuryl = (2-furanylmethyl)

furfurylidene $=(2$-furanylmethylene $)$

furoyl $=$ (furanylcarbonyl) $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right) \mathrm{CO}-$
furyl = furanyl $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right)$ -
galloyl $=(3,4,5-$ trihydroxybenzoyl $)$ $3,4,5-(\mathrm{HO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CO}-$
gentisoyl $=(2,5$-dihydroxybenzoyl $)$
2,5-(HO) $)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
geranyl (from geraniol) $=(3,7$-dimethyl- 2,6 -octadienyl) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}=\mathrm{CHCH}_{2}-$
germacran-6-yl $=[5,9=$ dimethyl-2-(1-methylethyl)cyclodecyl] $\left(\mathrm{C}_{15} \mathrm{H}_{25}\right)$ -
germanetetrayl $=\mathrm{Ge}=$
germyl $\mathrm{H}_{3} \mathrm{Ge}-$
germylene $\mathrm{H}_{2} \mathrm{Ge}=$
germylidyne $\mathrm{HGe}=$
gibbanyl (from gibbane) $\left(\mathrm{C}_{15} \mathrm{H}_{23}\right)$ -
(glucosyloxy) $\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right) \mathrm{O}-$
glutaminyl ${ }^{1}=(2,5$-diamino-1,5-dioxopentyl $)$ $\mathrm{H}_{2} \mathrm{NCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
$\alpha$-glutaminyl ${ }^{1}=(4,5$-diamino-1,5-dioxopentyl) $\mathrm{H}_{2} \mathrm{NCOCH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}-$
glutamoyl ${ }^{1}=(2$-amino-1,5-dioxo-1,5-pentanediyl) - $\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
glutamyl = glutamoyl or unspecified glutamyl (see below)
$\alpha$-glutamyl ${ }^{1}=(2$-amino-4-carboxy-1-oxobutyl) $\mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
$\gamma$-glutamyl ${ }^{1}=(4$-amino-4-carboxy-1-oxobutyl) $\mathrm{HO}_{2} \mathrm{CCH}\left(\mathrm{NH}_{2}\right)\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
glutaryl $=(1,5$-dioxo-1,5-pentanediyl $)$ $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}-$
glyceroyl = (2,3-dihydroxy-1-oxopropyl) $\mathrm{HOCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}-$
glyceryl $=1,2,3$-propanetriyl $-\mathrm{CH}\left(\mathrm{CH}_{2}-\right)_{2}$
glycidyl $=$ (oxiranylmethyl)

$$
{ }_{3}^{1 \mathrm{O}}
$$

glycinamido $=[($ aminoacetyl) $)$ amino $]$ $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CONH}-$
glycinimidoyl = (2-amino-1-iminoethyl $)$ $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{C}(=\mathrm{NH})-$
glycoloyl = (hydroxyacetyl) $\mathrm{HOCH}_{2} \mathrm{CO}-$
glycolyl $=$ (hydroxyacetyl) $\mathrm{HOCH}_{2} \mathrm{CO}-$
glycyl ${ }^{1}=($ aminoacetyl $) \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}-$
glyoxalinyl = imidazolyl $\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)-$
glyoxylimidoyl $=(1$-imino-2-oxoethyl $)$ $\mathrm{HCOC}(=\mathrm{NH})-$
glyoxyloyl = (oxoacetyl) HCOCO-
(glyoxyloylmethyl) $=(2,3$-dioxopropyl) $\mathrm{HCOCOCH}_{2}{ }^{-}$
glyoxylyl = (oxoacetyl) HCOCO-
guaiacyl $=$ (4-hydroxy-3-methoxyphenyl) 4-OH-3- $\left(\mathrm{CH}_{3} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{3}-\quad$ or (2-methoxyphenyl) $2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}-$
guaian-8-yl = [decahydro-1,4-dimethyl-7-(1-meth-ylethyl)-6-azulenyl] $\left(\mathrm{C}_{15} \mathrm{H}_{27}\right)$ -
guanidino $=[($ aminoiminomethyl $)$ amino $]$ $\mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH}) \mathrm{NH}-$
(guanidinoazo) $=$ [3-(aminoiminomethyl)-1-triazenyl] $\mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH}) \mathrm{NHN}=\mathrm{N}-$
guanyl $=$ (aminoiminomethyl) $\mathrm{H}_{2} \mathrm{NC}(=\mathrm{NH})-$
heptadecanoyl $=(1$-oxoheptadecyl $)$ $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{15} \mathrm{CO}-$
heptanamido $=[(1-$ oxoheptyl $)$ amino $]$ $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CONH}-$
heptanedioyl $=(1,7$-dioxo-1,7-heptanediyl $)$ $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$
heptanoyl $=(1$-oxoheptyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$
hexadecanoyl $=(1$-oxohexadecyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CO}-$
2,4-hexadiynylene $=2,4$-hexadiyne- 1,6 -diyl $-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CCH}_{2}-$
hexamethylene $=1,6$-hexanediyl $-\left(\mathrm{CH}_{2}\right)_{6}-$
hexanedioyl $=(1,6$-dioxo-1,6-hexanediyl $)$ $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-$
hexanethioyl = (1-thioxohexyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CS}-$
hippuroyl $=(N \text {-benzoylglycyl })^{1}$ or [(benzoylamino)acetyl] $\mathrm{BzNHCH}_{2} \mathrm{CO}-$
hippuryl $=(N \text {-benzoylglycyl })^{1}$ or [(benzoylamino)acetyl] $\mathrm{BzNHCH}_{2} \mathrm{CO}-$
histidyl ${ }^{1}=[2$-amino-3-(1H-imidazol-4-yl)-1-oxopropyl]

homocysteinyl ${ }^{1}=(2$-amino-4-mercapto-1-oxobutyl) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
homomyrtenyl = [2-(6,6-dimethylbicyclo[3.1.1]-hept-2-en-2-yl)ethyl] $\left(\mathrm{C}_{9} \mathrm{H}_{13}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}-$
homopiperonyl $=$ [2-(1,3-benzodioxol-5-yl)ethyl] $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}-$
homoseryl ${ }^{1}=(2$-amino-4-hydroxy-1-oxobutyl) $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
homoveratroyl = [(3,4-dimethoxyphenyl)acetyl $]$ $3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CO}-$
homoveratryl [2-(3,4-dimethoxyphenyl)ethyl] $3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-$
hydantoyl $=[N \text {-(aminocarbonyl)glycyl }]^{1}$ or [[(aminocarbonyl)amino]acetyl] $\mathrm{H}_{2} \mathrm{NCONHCH}_{2} \mathrm{CO}-$
hydnocarpoyl (from hydnocarpic acid) $=[11-(2-$ cyclopenten-1-yl)-1-oxoundecyl] $\left(\mathrm{C}_{5} \mathrm{H}_{7}\right)\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CO}-$
hydnocarpyl (from hydnocarpyl alcohol) $=[11-(2-$ cyclopenten-1-yl)undecyl] $\left(\mathrm{C}_{5} \mathrm{H}_{7}\right)\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{2}-$
hydracryloyl = (3-hydroxy-1-oxopropyl) $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
hydratropoyl $=$ (1-oxo-2-phenylpropyl) PhCHMeCO-
hydrazi ${ }^{5}$ (see also hydrazo) -NHNH-
1,2-hydrazinediylidene $=$ azino $=\mathrm{NN}=$
hydrazino $\mathrm{H}_{2} \mathrm{NNH}-$
1-hydrazinyl-2-ylidene $-\mathrm{NHN}=$
hydrazo ${ }^{3,6}$ (see also hydrazi) -NHNH-
hydrazono $\mathrm{H}_{2} \mathrm{NN}=$
hydrocinnamoyl = (1-oxo-3-phenylpropyl) $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
hydrocinnamyl $=(3$-phenylpropyl $) \mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3}-$ hydroperoxy ${ }^{4}$ HOO-
$($ hydroperoxyformyl $)=($ hydroperoxycarbonyl $)$ HOOCO-
hydroxamino $=$ (hydroxyamino) HONH-
hydroximino $=$ (hydroxyimino) $\mathrm{HON}=$
hydroxy ${ }^{4} \mathrm{HO}-$
$($ hydroxyarsinylidene $)=\operatorname{arsinico}^{3,4} \mathrm{HOAs}(\mathrm{O})=$
hydroxyl = hydroxy ${ }^{4} \mathrm{HO}-$
(hydroxyphosphinyl) $\mathrm{HOPH}(\mathrm{O})-$
(hydroxyphosphinylidene) $=$ phosphinico ${ }^{3,4}$ $\mathrm{HOP}(\mathrm{O})=$
hygroyl = (1-methylprolyl $)^{1}$ or [(1-methyl-2-pyrrolidinyl)carbonyl]

imidazolidyl $=$ imidazolidinyl $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{2}\right)-$
imidazolinyl $=($ dihydro- 1 H -imidazolyl $)$ $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)-$
imidocarbonyl $=$ carbonimidoyl ${ }^{7}-\mathrm{C}(=\mathrm{NH})-$
(imidocarbonylamino) $=($ carbonimidoylamino $)$ $\mathrm{HN}=\mathrm{C}=\mathrm{N}-$
imino $\mathrm{HN}=$
iminio $\mathrm{H}_{2} \mathrm{~N}^{+}=$
(3-iminoacetonyl) $=$ (3-imino-2-oxopropyl) $\mathrm{HN}=\mathrm{CHCOCH}_{2}-$
(iminodisulfonyl) = [iminobis(sulfonyl) $]$ $-\mathrm{SO}_{2} \mathrm{NHSO}_{2}-$
(iminomethyl) (see also carbonimidoyl) $\mathrm{HN}=\mathrm{CH}-$
(iminonitrilo) $=1$-hydrazinyl-2-ylidene $-\mathrm{NHN}=$
(iminophosphoranyl) $=$ phosphinimyl $\mathrm{H}_{2} \mathrm{P}(=\mathrm{NH})-$
indanyl $=(2,3$-dihydro- $1 H$-indenyl $)\left(\mathrm{C}_{9} \mathrm{H}_{9}\right)-$
indenyl $=1 H$-indenyl $\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)-$
1-indolinyl $=(2,3$-dihydro- 1 H -indol-1-yl)
$\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}\right)-$
2-indolinylidene $=(1,3$-dihydro- $2 H$-indol-2ylidene) $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}\right)=$
indyl $=1 H$-indolyl $\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}\right)-$
iodo I-
iodoso $=$ iodosyl $\mathrm{OI}-$
iodoxy = iodyl $\mathrm{O}_{2} \mathrm{I}-$
isoallyl = 1 -propenyl $\mathrm{MeCH}=\mathrm{CH}-$
isoamoxy $=\left(3\right.$-methylbutoxy) $\mathrm{Me}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-$
isoamyl $=(3$-methylbutyl $) \mathrm{Me}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}{ }^{-}$
sec-isoamyl = (1,2-dimethylpropyl)
$\mathrm{Me}_{2} \mathrm{CHCHMe}-$
isoamylidene $=(3$-methylbutylidene $)$ $\mathrm{Me}_{2} \mathrm{CHCH}_{2} \mathrm{CH}=$
isobornyl (from isoborneol) $=(1,7,7$-trimethylbi-
cyclo[2.2.1]hept-2-yl) $\left(\mathrm{C}_{10} \mathrm{H}_{17}\right)$ -
isobutenyl $=$ (2-methyl-1-propenyl) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}-$
isobutoxy $=\left(2\right.$-methylpropoxy) $\mathrm{Me}_{2} \mathrm{CHCH}_{2} \mathrm{O}-$
isobutyl = (2-methylpropyl) $\mathrm{Me}_{2} \mathrm{CHCH}_{2}-$
isobutylidene $=$ (2-methylpropylidene)
$\mathrm{Me}_{2} \mathrm{CHCH}=$
isobutyryl $=$ (2-methyl-1-oxopropyl) $\mathrm{Me}_{2} \mathrm{CHCO}-$
isocrotyl $=$ (2-methyl-1-propenyl) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}-$
isocyanato $\mathrm{OCN}-$
isocyano CN -
isodiazenyl $\mathrm{N} \equiv \mathrm{NH}$ - or $\mathrm{N}=\mathrm{NH}-$
isodiazenylidene ${ }^{6}$ (see also diazo)
isohexyl $=(4$-methylpentyl $) \mathrm{Me}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3}{ }^{-}$
isohexylidene $=(4$-methylpentylidene $)$ $\mathrm{Me}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}=$
2-isoindolinyl $=(1,3$-dihydro- 2 H -isoindol-2-yl) $\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}\right)-$
isoleucyl ${ }^{1}=(2$-amino-3-methyl-1-oxopentyl) EtCHMeCH $\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
isonicotinoyl = (4-pyridinylcarbonyl)

isonipecotoyl = (4-piperidinylcarbonyl)

isonitro $=a c i$-nitro $\operatorname{HON}(\mathrm{O})=$
isonitroso $=$ (hydroxyimino) $\mathrm{HON}=$
1-isopentenyl = (3-methyl-1-butenyl) $\mathrm{Me}_{2} \mathrm{CHCH}=\mathrm{CH}-$
isopentyl = (3-methylbutyl) $\mathrm{Me}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}-$
isopentylidene $=(3$-methylbutylidene $)$ $\mathrm{Me}_{2} \mathrm{CHCH}_{2} \mathrm{CH}=$
isophthalal $=(1,3$-phenylenedimethylidyne $)$ $1,3-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=)_{2}$
isophthalaldehydoyl $=$ (3-formylbenzoyl) $3-(\mathrm{HCO}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}-$
isophthaloyl $=(1,3$-phenylenedicarbonyl $)$ $1,3-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO}-)_{2}$
isophthalylidene $=(1,3$-phenylenedimethylidyne $)$ $1,3-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=)_{2}$
isopropenyl = (1-methylethenyl) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}-$
isopropoxy $=\left(1\right.$-methylethoxy) $\mathrm{Me}_{2} \mathrm{CHO}-$
isopropyl $=(1$-methylethyl $) \mathrm{Me}_{2} \mathrm{CH}-$
isopropylidene $=(1$-methylethylidene $) \mathrm{Me}_{2} \mathrm{C}=$
(isopropylidenedioxy) $=[(1$-methylethylidene $)-$ bis(oxy)] $-\mathrm{OCMe}_{2} \mathrm{O}-$
isosemicarbazido $=[($ aminohydroxymethylene $)-$ hydrazino] $\mathrm{H}_{2} \mathrm{NC}(\mathrm{OH})=\mathrm{NNH}-$
isothiocyanato $\mathrm{SCN}-$
isothiocyano = isothiocyanato SCN-
isovaleryl = (3-methyl-1-oxobutyl) $\mathrm{Me}_{2} \mathrm{CHCH}_{2} \mathrm{CO}-$
isovalyl ${ }^{1}=(2$-amino-2-methyl-1-oxobutyl) $\operatorname{EtCMe}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
isoviolanthrenylene $=$ ( 9,18 -dihydrodinaphtho-$\left[1,2,3-c d: 1^{\prime}, 2^{\prime}, 3^{\prime}-l m\right]$ perylenediyl $)-\left(\mathrm{C}_{34} \mathrm{H}_{18}\right)-$
kauranyl (from kaurane) $\left(\mathrm{C}_{20} \mathrm{H}_{33}\right)^{-}$
kauranylene = kauranediyl (from kaurane) $-\left(\mathrm{C}_{20} \mathrm{H}_{32}\right)-$
kaurenyl (from kaurene) $\left(\mathrm{C}_{20} \mathrm{H}_{31}\right)-$
keto $^{11}=$ oxo $\mathrm{O}=$
labdan-15-yl $=[5-($ decahydro-2,5,5,8a-tetrameth-yl-1-naphthalenyl)-3-methylpentyl] $\left(\mathrm{C}_{20} \mathrm{H}_{37}\right)$ -
lactosyl $=(4-O-\beta$-galactapyranosyl- $\beta$-D-glucopyranosyl) $\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right) \mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)-$
lactoyl $=(2 \text {-hydroxypropanoyl) })^{5}$ or (2-hydroxy-1oxopropyl) $\mathrm{MeCH}(\mathrm{OH}) \mathrm{CO}-$
lanostenylene = lanostenediyl (from lanostane) $-\left(\mathrm{C}_{30} \mathrm{H}_{50}\right)^{-}$
lauroyl $=(1$-oxododecyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CO}-$
leucyl ${ }^{1}=(2$-amino-4-methyl-1-oxopentyl) $\mathrm{Me}_{2} \mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
levulinoyl $=(1,4$-dioxopentyl $) \mathrm{MeCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
linaly $($ from linalool $)=(1$-ethenyl- 1,5 -dimethyl-4hexenyl) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)-$
linolelaidoyl $=(1$-oxo- 9,12 -octadecadienyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
linolenoyl $=(1$-oxo- $9,12,15$-octadecatrienyl $)$ $\mathrm{EtCH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
$\gamma$-linolenoyl $=(1$-oxo- $6,9,12$-octadecatrienyl $)$ $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}-$ $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-$
linoleoyl = (1-oxo-9,12-octadecadienyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
lupanyl (from lupane) $\left(\mathrm{C}_{30} \mathrm{H}_{51}\right)$ -
lysyl ${ }^{1}=(2,6$-diamino-1-oxohexyl)
$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
maleoyl $=$ (1,4-dioxo-2-butene-1,4-diyl $)$ $-\mathrm{COCH}=\mathrm{CHCO}-$
malonaldehydoyl $=(1,3$-dioxopropyl $)$ $\mathrm{HCOCH}_{2} \mathrm{CO}-$
malonamoyl $=$ (3-amino-1,3-dioxopropyl) $\mathrm{H}_{2} \mathrm{NCOCH}_{2} \mathrm{CO}-$
malonaniloyl = [1,3-dioxo-3-(phenylamino)propyl] $\mathrm{PhNHCOCH}_{2} \mathrm{CO}-$
malonimido $=(2,4$-dioxo- 1 -azetidinyl $)$

malonyl $=(1,3$-dioxo- 1,3 -propanediyl $)$ $-\mathrm{COCH}_{2} \mathrm{CO}-$
maloyl $=(2$-hydroxy-1,4-dioxo-1,4-butanediyl $)$ $-\mathrm{COCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CO}-$
maltosyl $=(4-O-\alpha$-D-glucopyranosyl- $\beta$-D-glucopyranosyl) $\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right) \mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)-$
mandeloyl = (hydroxyphenylacetyl) $\mathrm{PhCH}(\mathrm{OH}) \mathrm{CO}-$
p-menth-2-yl = [2-methyl-5-(1-methylethyl)cyclohexyl] $2,5-\mathrm{Me}\left(\mathrm{Me}_{2} \mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{9^{-}}$
$p$-menth-3,5-ylene $=[5-$ methyl-2-(1-methylethyl)-1,3-cyclohexanediyl]

mercapto ${ }^{4}$ HS-
mesaconoyl $=$ (2-methyl-1,4-dioxo-2-butene-1,4diyl) $-\mathrm{COCMe}=\mathrm{CHCO}-$
mesidino $=[(2,4,6$-trimethylphenyl $)$ amino $]$ $2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NH}-$
mesityl $=(2,4,6$-trimethylphenyl) $2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}-$
$\alpha$-mesityl $=[(3,5$-dimethylphenyl)methyl $]$ $3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$
mesoxalyl $=$ (1,2,3-trioxo-1,3-propanediyl) -COCOCO-
mesyl $=($ methylsulfonyl $) \mathrm{MeSO}_{2}{ }^{-}$
metanilamido $=[[(3-$ aminophenyl $)$ sulfonyl $]$ amino] $3-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NH}-$
metanilyl $=[(3$-aminophenyl $)$ sulfonyl $]$ $3-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}-$
methacryloyl = (2-methyl-1-oxo-2-propenyl) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CMeCO}-$
methallyl $=(2$-methyl-2-propenyl $)$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CMeCH}_{2}-$
methanetetrayl $=\mathrm{C}=$
methene = methylene $\mathrm{H}_{2} \mathrm{C}=$
methenyl = methylidyne $\mathrm{HC} \equiv$
methionyl (from methionic acid) $=$ [methylene-
bis(sulfonyl)] $-\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{SO}_{2}-$
methionyl ${ }^{1}$ (from methionine) $=[2$-amino-4-(methylthio)-1-oxobutyl]
$\mathrm{MeS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
methoxalyl = (methoxyoxoacetyl) $\mathrm{MeO}_{2} \mathrm{CCO}-$
methoxy MeO-
(methoxycarbonyl) $\mathrm{MeO}_{2} \mathrm{C}-$
methyl $\mathrm{Me}\left(\mathrm{H}_{3} \mathrm{C}\right)-$
[(methyldithio)sulfonyl] $\mathrm{MeSSSO}_{2}{ }^{-}$
methylene $\mathrm{H}_{2} \mathrm{C}=$
$($ methylenedioxy $)=[$ methylenebis(oxy)]
$-\mathrm{OCH}_{2} \mathrm{O}-$
$[($ methylenedioxy $) \mathbf{p h e n y l}]=1,3$-benzodioxol-ar$\mathrm{yl}\left(\mathrm{CH}_{2} \mathrm{O}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3}-$
(methylenedisulfonyl) $=$ [methylenebis(sulfonyl)]
$-\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{SO}_{2}-$
methylidyne $\mathrm{HC} \equiv$
methyliumylidene $\mathrm{C}^{+} \mathrm{H}=$
methylol $=($ hydroxymethyl $) \mathrm{HOCH}_{2}-$
(methyloxy) = methoxy MeO-
(1-methyl-2H-pyranium-2-yl)

(1-methylpyridinium-2-yl)

$($ methylselenyl $)=($ methylseleno $)$ MeSe-
(methylthio) MeS-
(methyltelluro) MeTe-
(methyltrioxy) MeOOO-
morpholino $=4$-morpholinyl

myristoyl $=(1$-oxotetradecyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CO}-$
naphthal $=$ (naphthalenylmethylene) $\left(\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{CH}=$ naphthalimido $=(1,3$-dioxo- $1 H$-benz $[d e]$ isoquin-

$$
\text { olin-2(3H)-yl) }\left(\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{NO}_{2}\right)-
$$

naphthenyl $=$ (naphthalenylmethylidyne)
$\left(\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{C} \equiv$
naphthionyl $=[(4-$ amino- 1 -naphthalenyl $)$ sulfo-
nyl] $4,1-\mathrm{H}_{2} \mathrm{NC}_{10} \mathrm{H}_{6} \mathrm{SO}_{2}-$
naphthobenzyl = (naphthalenylmethyl)
$\left(\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{CH}_{2}-$
naphthothiophene-yl $=$ naphthothienyl $\left(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~S}\right)-$
naphthoxy $=($ naphthalenylozy $)\left(\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{O}-$
naphthoyl $=($ naphthalenylcarbonyl $)\left(\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{CO}-$
naphthyl $=$ naphthalenyl $\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)-$
naphthylene $=$ naphthalenediyl $-\left(\mathrm{C}_{10} \mathrm{H}_{6}\right)-$
$\mathbf{1}(2 \mathrm{H})$-naphthylidene $=1(2 \mathrm{H})$-naphthalenylidene

$($ naphthylnaphthyl $)=[$ binaphthalen $] \mathrm{yl}$
$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{C}_{10} \mathrm{H}_{6}-$
nazyl $=$ (naphthalenylmethyl) $\left(\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{CH}_{2}-$
neopentyl $=\left(2,2\right.$-dimethylpropyl) $\mathrm{Me}_{3} \mathrm{CCH}_{2}-$
neophyl $=(2$-methyl-2-phenylpropyl $)$ $\mathrm{PhCMe}_{2} \mathrm{CH}_{2}-$
neryl $($ from nerol $)=(3,7$-dimethyl-2,6-octadienyl)
$-\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}=\mathrm{CHCH}_{2}-$
nicotinimidoyl = (imino-3-pyridinylmethyl)
$\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{C}(=\mathrm{NH})-$
nicotinoyl $=(3$-pyridinylcarbonyl)

nipecotoyl = (3-piperidinylcarbonyl)

nitramino $=($ nitroamino $) \mathrm{O}_{2} \mathrm{NNH}-$
aci-nitramino $=($ aci-nitroamino $) \mathrm{HON}(\mathrm{O})=\mathrm{N}-$
nitrilio $\mathrm{HN}^{+} \equiv$
nitrilo $\mathrm{N} \equiv$
(nitrilophosphoranyl) $=$ phosphononitridyl $\mathrm{HP}(\equiv \mathrm{N})-$
nitro $\mathrm{O}_{2} \mathrm{~N}-$
aci-nitro $\mathrm{HON}(\mathrm{O})=$
nitrosamino $=($ nitrosoamino $)$ ONNH-
nitrosimino $=($ nitrosoimino $) \mathrm{ONN}=$
nitroso $\mathrm{ON}-$
(nitrothio) $\mathrm{O}_{2} \mathrm{NS}-$
nonanedioyl $=(1,9$-dioxo-1,9-nonanediyl) $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
nonanoyl $=(1$-oxononyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
norbornyl $=$ bicyclo[2.2.1]heptyl $\left(\mathrm{C}_{7} \mathrm{H}_{11}\right)-$
norbornylene $=$ bicyclo[2.2.1]heptanediyl $-\left(\mathrm{C}_{7} \mathrm{H}_{10}\right)-$
norcamphanyl $=\operatorname{bicyclo}[2.2 .1]$ heptyl $\left(\mathrm{C}_{7} \mathrm{H}_{11}\right)-$
norcaryl (from norcarane) $=$ bicyclo[4.1.0]heptyl $\left(\mathrm{C}_{7} \mathrm{H}_{11}\right)^{-}$
norpinyl (from norpinane) $=$ bicyclo[3.1.1]heptyl $\left(\mathrm{C}_{7} \mathrm{H}_{11}\right)-$
norleucyl ${ }^{1}=(2$-amino-1-oxohexyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
norvalyl ${ }^{1}=(2$-amino-1-oxopentyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
nosyl $=[(4-$ nitrophenyl $)$ sulfonyl $]$
$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}-$
octadecanoyl $=\left(1\right.$-oxooctadecyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CO}-$ octanedioyl $=(1,8$-dioxo-1,8-octanediyl $)$ $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CO}-$
octanoyl $=(1$-oxooctyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CO}-$
tert-octyl $=(1,1,3,3$-tetramethylbutyl) $\mathrm{Me}_{3} \mathrm{CCH}_{2} \mathrm{CMe}_{2}-$
oenanthyl $=(1$-oxoheptyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$
oleananyl (from oleanane) $\left(\mathrm{C}_{30} \mathrm{H}_{51}\right)-$
oleoyl $=(1$-oxo- 9 -octadecenyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
ornithyl ${ }^{1}=(2,5$-diamino-1-oxopentyl)
$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
oxalaldehydoyl $=$ (oxoacetyl) $\mathrm{HCOCO}-$
oxalyl $=(1,2$-dioxo-1,2-ethanediyl $)-\mathrm{COCO}-$
oxamido $=[($ aminooxoacetyl $)$ amino $]$ $\mathrm{H}_{2} \mathrm{NCOCONH}-$
oxamoyl $=($ aminooxoacetyl $) \mathrm{H}_{2} \mathrm{NCOCO}-$
oxamyl $=($ aminooxoacetyl $) \mathrm{H}_{2} \mathrm{NCOCO}-$
oxaniloyl = [oxo(phenylamino)acetyl] PhNHCOCO-
oxazolinyl $=($ dihydrooxazolyl $)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NO}\right)-$
oximido $=$ (hydroxyimino) $\mathrm{HON}=$
$\mathbf{o x o}^{5}$ (See also epoxy and oxy) $\mathrm{O}=$
(oxoarsino) $=$ arsenoso OAs-
$(\boldsymbol{\text { oxobornyl}})=($ trimethyloxobicyclo[2.2.1]heptyl $)$ $\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}\right)-$
(oxoboryl) OB-
$(\mathbf{1 - o x o e t h y l})=\operatorname{acetyl} \mathrm{Ac}(\mathrm{MeCO}-)$
$($ oxoethylene $)=(1$-oxo-1,2-ethanediyl $)-\mathrm{COCH}_{2}-$
$($ oxophenylhydrazino $)=($ nitrosophenylamino $)$ $\mathrm{PhN}(\mathrm{NO})-$
$($ oxophenylmethyl $)=$ benzoyl Bz $(\mathrm{PhCO}-)$
$($ oxophosphino $)=$ phosphoroso OP-
$($ oxopyridinylmethyl $)=($ pyridinylcarbonyl $)$ $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{CO}-$
$(\mathbf{2}$-oxotrimethylene $)=(2$-oxo- 1,3 -propanediyl $)$ $-\mathrm{CH}_{2} \mathrm{COCH}_{2}-$
(2-oxovinyl) $=($ oxoethenyl) $\mathrm{OC}=\mathrm{CH}-$
$\mathbf{o x y}^{9}$ (see also epoxy and oxo) -O-
$[$ oxybis(methylenecarbonylimino $)]=[$ oxybis $[(1-$ oxo-2,1-ethanediyl)imino]] $-\mathrm{NHCOCH}_{2} \mathrm{OCH}_{2} \mathrm{CONH}-$
palmitoyl $=(1$-oxohexadecyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CO}-$
pantothenoyl $=N$-(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)- $\beta$-alanyl ${ }^{1}$ or [3-[(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)amino]-1-oxopropyl] $\mathrm{HOCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
pelargonoyl $=\left(1\right.$-oxononyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
pelargonyl $=(1$-oxononyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
pentadecanoyl = (1-oxopentadecyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{13} \mathrm{CO}-$
pentamethylene $=1,5$-pentanediyl $-\left(\mathrm{CH}_{2}\right)_{5}{ }^{-}$
3-pentanesulfonamido $=[[(1$-ethylpropyl $)$ sulfonyl]amino] $\mathrm{Et}_{2} \mathrm{CHSO}_{2} \mathrm{NH}-$
1,3-pentazadieno $=1,3$-pentazadienyl $\mathrm{H}_{2} \mathrm{NN}=\mathrm{NN}=\mathrm{N}-$
2-pentenediylidyne $=2$-pentene-1,5-diylidyne $\equiv \mathrm{CCH}=\mathrm{CHCH}_{2} \mathrm{C} \equiv$
tert-pentyl $=\left(1,1\right.$-dimethylpropyl) $\mathrm{EtCMe}_{2}-$
pentyl $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4}-$
pentylidyne $\mathrm{BuC} \equiv$
perchloryl $\mathrm{O}_{3} \mathrm{Cl}-$
perseleno $=$ seleninoselenoyl $\mathrm{Se}=\mathrm{Se}=$
perthio = sulfinothioyl $\mathrm{S}=\mathrm{S}=$
phenacyl $=(2$-oxo-2-phenylethyl $) \mathrm{PhCOCH}_{2}-$
phenacylidene $=(2$-oxo- 2 -phenylethylidene $)$ $\mathrm{PhCOCH}=$
phenanthrothiophene-yl = phenanthrothienyl $\left(\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~S}\right)-$
phenanthryl $=$ phenanthrenyl $\left(\mathrm{C}_{14} \mathrm{H}_{9}\right)-$
phenanthrylene $=$ phenanthrenediyl $-\left(\mathrm{C}_{14} \mathrm{H}_{8}\right)-$
phenenyl = benzenetriyl $\mathrm{C}_{6} \mathrm{H}_{3} \equiv$
phenethyl = (2-phenylethyl) $\mathrm{PhCH}_{2} \mathrm{CH}_{2}-$
phenethylidene $=(2$-phenylethylidene $)$ $\mathrm{PhCH}_{2} \mathrm{CH}=$
phenetidino $=$ [(ethoxyphenyl)amino] (EtO) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}-$
phenetyl $=($ ethoxyphenyl $)(\mathrm{EtO}) \mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$
phenoxy PhO-
phenyl $\mathrm{Ph}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ -
phenylalanyl ${ }^{1}$ (from phenylalanine) $=(2-$ amino-1-oxo-3-phenylpropyl) $\mathrm{PhCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
(phenylarsinico) $=($ hydroxyphenylarsinyl $)$ $\mathrm{PhAs}(\mathrm{O})(\mathrm{OH})-$
[(phenylazo)imino $=$ (3-phenyl-2-triazenylidene $)$ $\mathrm{PhN}=\mathrm{NN}=$
$(\mathbf{p h e n y l b e n z o y l})=\left(\left[1,1^{\prime}\right.\right.$-biphenyl $]$ ylcarbonyl $)$ $\mathrm{PhC}_{6} \mathrm{H}_{4} \mathrm{CO}$
$($ phenyldiazenyl $)=($ phenylazo $) \mathrm{PhN}=\mathrm{N}-$
phenylene $-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ -
[phenylenebis(azo)] $-\mathrm{N}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{N}-$
$[$ phenylenebis $[\mathbf{a z o}($ methylimino $)]]=[$ phenylene-bis(1-methyl-2-triazene-3,1-diyl)] $-\mathrm{NMeN}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NNMe}-$
[phenylenebis(1-oxo-1-ethanyl-2-ylidene)] = [phenylenebis(2-oxo-2-ethanyl-1-ylidene)] $=\mathrm{CHCOC}_{6} \mathrm{H}_{4} \mathrm{COCH}=$
$($ phenylenedimethylene $)=[$ phenylenebis $($ methyl ene) $]-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$
(phenylenedimethylidyne) $=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{CH}=$
(phenylenedioxy) $=[$ phenylenebis $(o x y)]$ $-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}-$
$(\mathbf{p h e n y l g l y o x y l o y l})=($ oxophenylacetyl $)$ PhCOCO-
phenylidene $=$ cyclohexadienylidene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=$
$($ phenylimidocarbonyl $)=($ phenylcarbonimidoyl) ${ }^{7} \mathrm{PhN=C}=$
(phenyloxalyl) $=($ oxophenylacetyl $) \mathrm{PhCOCO}-$
(phenyloxy) $=$ phenoxy PhO-
$(\mathbf{p h e n y l p h e n o x y})=\left(\left[1,1^{\prime}\right.\right.$-biphenyl $]$ yloxy $)$ $\mathrm{PhC}_{6} \mathrm{H}_{4} \mathrm{O}-$
$($ phenylsulfenyl $)=($ phenylthio $) \mathrm{PhS}-$
(phenylsulfinyl) $\mathrm{PhS}(\mathrm{O})-$
( $S$-phenylsulfonimidoyl) $\mathrm{PhS}(\mathrm{O})(=\mathrm{NH})-$
phorbinyl (from phorbine) $\left(\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{4}\right)$ -
phosphinico ${ }^{3,4} \mathrm{HOP}(\mathrm{O})=$
phosphinidene $\mathrm{HP}=$
phosphinidenio $\mathrm{H}_{2} \mathrm{P}^{+}=$
phosphinidyne $\mathrm{P} \equiv$
phosphinimyl $\mathrm{H}_{2} \mathrm{P}(=\mathrm{NH})-$
phosphino $\mathrm{H}_{2} \mathrm{P}-$
phosphinothioyl $\mathrm{H}_{2} \mathrm{P}(\mathrm{S})-$
phosphinothioylidene $\mathrm{HP}(\mathrm{S})=$
phosphinyl $\mathrm{H}_{2} \mathrm{P}(\mathrm{O})-$
phosphinylidene $\mathrm{HP}(\mathrm{O})=$
phosphinylidyne $\mathrm{P}(\mathrm{O}) \equiv$
phospho $\mathrm{O}_{2} \mathrm{P}-$
phosphonio $\mathrm{H}_{3} \mathrm{P}^{+}-$
phosphono ${ }^{4}(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O})-$
$($ phosphonoformyl $)=($ phosphonocarbonyl $)$
$(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CO}-$
phosphononitridyl $\mathrm{HP}(\equiv \mathrm{N})-$
phosphoranyl $\mathrm{H}_{4} \mathrm{P}$ -
phosphoranylidene $\mathrm{H}_{3} \mathrm{P}=$
phosphoranylidyne $\mathrm{H}_{2} \mathrm{P} \equiv$
phosphoro $=1,2$-diphosphenediyl $-\mathrm{P}=\mathrm{P}-$
phosphoroso OP-
phthalal $=(1,2$-phenylenedimethylidyne $)$
$1,2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=)_{2}$
phthalaldehydoyl $=(2$-formylbenzoyl $)$
$2-(\mathrm{HCO}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}-$
phthalamoyl = [2-(aminocarbonyl)benzoyl] $2-\left(\mathrm{H}_{2} \mathrm{NCO}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}-$
phthalanyl = (1,3-dihydroisobenzofuranyl) $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}\right)-$
phthalidyl $=$ (1,3-dihydro-3-oxo-1-isobenzofuranyl) $\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{2}\right)-$
phthalidylidene $=(3$-oxo- $1(3 \mathrm{H})$-isobenzofuranylidene) $\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{2}\right)-$
phthalimido $=(1,3$-dihydro-1,3-dioxo- 2 H -isoin-dol-2-yl) $\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{2}\right)$ -
phthalocyaninyl ${ }^{1}$ (from phthalocyanine) $\left(\mathrm{C}_{32} \mathrm{H}_{17} \mathrm{~N}_{8}\right)-$
phthaloyl $=(1,2$-phenylenedicarbonyl) $1,2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO}-)_{2}$
phthalylidene $=(1,2$-phenylenedimethylidyne $)$ $1,2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=)_{2}$
phyllocladanyl = kauranyl (from kaurane) $\left(\mathrm{C}_{29} \mathrm{H}_{33}\right)-$
phytyl $=(3,7,11,15$-tetramethyl-2-hexadecenyl) $\mathrm{Me}\left[\mathrm{CHMe}\left(\mathrm{CH}_{2}\right)_{3}\right]_{3} \mathrm{CMe}=\mathrm{CHCH}_{2}-$
picolinoyl = (2-pyridinylcarbonyl)

picryl $=\left(2,4,6\right.$-trinitrophenyl) $2,4,6-\left(\mathrm{O}_{2} \mathrm{~N}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}-$
pimeloyl $=(1,7$-dioxo-1,7-heptanediyl $)$ $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$
4-pinanyl (from pinane) $=$ (4,6,6-trimethylbicyclo-[3.1.1]hept-2-yl) $\left(\mathrm{C}_{10} \mathrm{H}_{17}\right)^{-}$
pinanylene $=($ trimethylbicyclo[3.1.1]heptanediyl $)$ $-\left(\mathrm{C}_{10} \mathrm{H}_{16}\right)-$
pipecoloyl = (2-piperidinylcarbonyl)

piperidino $=1$-piperidinyl

piperidyl $=$ piperidinyl $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}\right)-$
piperidylidene $=$ piperidinylidene $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}\right)=$
piperonyl $=(1,3$-benzodioxol-5-ylmethyl)
$3,4-\left(\mathrm{CH}_{2} \mathrm{O}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$
piperonylidene $=(1,3$-benzodioxol- 5 -ylmethylene) $3,4-\left(\mathrm{CH}_{2} \mathrm{O}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}=$
piperonyloyl $=(1,3$-benzodioxol-5-ylcarbonyl) $3,4-\left(\mathrm{CH}_{2} \mathrm{O}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
pivaloyl $=\left(2,2\right.$-dimethyl-1-oxopropyl) $\mathrm{Me}_{3} \mathrm{CCO}-$ pivalyl $=\left(2,2\right.$-dimethyl-1-oxopropyl) $\mathrm{Me}_{3} \mathrm{CCO}-$
plumbanetetrayl $=\mathrm{Pb}=$
plumbyl $\mathrm{H}_{3} \mathrm{~Pb}-$
plumbylene $\mathrm{H}_{2} \mathrm{~Pb}=$
plumbylidyne $\mathrm{HPb}=$
podocarpan-13-yl $=$ (tetradecahydro-4b,8,8-trime-
thyl-2-phenanthrenyl) $\left(\mathrm{C}_{17} \mathrm{H}_{29}\right)-$
porphinyl (from porphine) $\left(\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{4}\right)$ -
pregna-5,16-dien-21-yl (from pregnadiene) $\left(\mathrm{C}_{21} \mathrm{H}_{31}\right)-$
prenyl $=$ (3-methyl-2-butenyl) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}_{2}-$
prolyl $^{1}=(2$-pyrrolidinylcarbonyl)


2-propanesulfonamido $=[[(1-$ methylethyl $)$ sulfonyl]amino] $\mathrm{Me}_{2} \mathrm{CHSO}_{2} \mathrm{NH}-$
propargyl $=2$-propynyl $\mathrm{HC} \equiv \mathrm{CCH}_{2}-$
propenyl = 1-propenyl $\mathrm{MeCH}=\mathrm{CH}-$
2-propenyl $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-$
propenylene $=1$-propene- 1,3 -diyl $-\mathrm{CH}=\mathrm{CHCH}_{2}-$
propenylidene $=1$-propenylidene $\mathrm{MeCH}=\mathrm{C}=$
propioloyl $=(1$-oxo-2-propynyl) $\mathrm{HC} \equiv \mathrm{CCO}-$
propiolyl $=(1$-oxo-2-propynyl) $\mathrm{HC} \equiv \mathrm{CCO}-$
propionamido $=[(1$-oxopropyl $)$ amino $]$ EtCONH-
propionyl = (1-oxopropyl) EtCO-
(propionyldioxy) $=[(1$-oxopropyl)dioxy $]$
EtC(O)OO-
propionyloxy $=$ (1-oxopropoxy) $\mathrm{EtCO}_{2}{ }^{-}$
propoxy $\mathrm{PrO}-$
propyl $\operatorname{Pr}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$
sec-propyl $=\left(1\right.$-methylethyl) $\mathrm{Me}_{2} \mathrm{CH}-$
propylene $=(1$-methyl-1,2-ethanediyl $)$
$-\mathrm{CHMeCH}_{2}-$
propylidene EtCH=
propylidyne EtC $\equiv$
(propyloxy) = propoxy PrO-
protocatechuoyl $=$ (3,4-dihydroxybenzoyl) $3,4-(\mathrm{HO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
pseudoallyl $=(1$-methylethenyl $) \mathrm{H}_{2} \mathrm{C}=\mathrm{CMe}-$
pseudocumidino $=[(2,4,5$-trimethylphenyl $)$ amino $]$ $2,4,5-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NH}-$
as-pseudocumyl $=(2,3,5$-trimethylphenyl $)$ $2,3,5-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}-$
$s$-pseudocumyl = (2,4,5-trimethylphenyl) $2,4,5-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}-$
$v$-pseudocumyl $=(2,3,6$-trimethylphenyl $)$ $2,3,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}{ }^{-}$
pseudoindolyl $=1 \mathrm{H}$-indolyl $\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}\right)$ -
pteroyl $=$ [4-[[(2-amino-1,4-dihydro-4-oxo-6-pteridinyl)methyl]amino]benzoyl] $\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{6} \mathrm{O}_{2}\right)^{-}$

## $\mathbf{2 H}$-pyranio



2H-pyran-2-ylium-2-yl

pyrazolidyl $=$ pyrazolidinyl $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{2}\right)$ pyrazolinyl $=($ dihydropyrazolyl $)\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)-$ pyridinio

pyridyl $=$ pyridinyl $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)-$
pyroglutamoyl $=(5 \text {-oxoprolyl })^{1}$ or [(5-oxo-2-pyrrolidinyl)carbonyl]

pyromucyl = (2-furanylcarbonyl)

pyrrolidyl = pyrrolidinyl $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}\right)-$
pyrrolinyl = (dihydropyrrolyl) $\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}\right)-$
pyrrol-1-yl = 1 H -pyrrol-1-yl $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}\right)$ pyrroyl $=($ pyrrolylcarbonyl $)\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}\right) \mathrm{CO}-$
pyrryl = pyrrolyl $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}\right)-$
pyruvoyl $=(1,2$-dioxopropyl $)$ MeCOCO-
$p$-quaterphenylyl $=\left[1,1^{\prime}: 4^{\prime}, 1^{\prime \prime}: 4^{\prime \prime}, 1^{\prime \prime \prime}\right.$-quaterphenyl]yl $\left(\mathrm{C}_{24} \mathrm{H}_{17}\right)-$
quinaldoyl $=$ (2-quinolinylcarbonyl)
$\left(2-\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right) \mathrm{CO}-$
quinolyl = quinolinyl $\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)$ -
quinonyl $=$ (dioxocyclohexadienyl) $\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ -
quinuclidinyl = 1-azabicyclo[2.2.2]octyl $\left(\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}\right)-$
$\alpha$-resorcyloyl = (3,5-dihydroxybenzoyl) $3,5-(\mathrm{HO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
$\beta$-resorcyloyl = (2,4-dihydroxybenzoyl) 2,4-(HO) $)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
$\gamma$-resorcyloyl $=(2,6$-dihydroxybenzoyl) $2,6-(\mathrm{HO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
rhamnosyl = (6-deoxymannopyranosyl)

ricinelaidoyl $=(12$-hydroxy-1-oxo-9-octadecenyl $)$ $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
ricinoleoyl $=$ (12-hydroxy-1-oxo-9-octadecenyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-$
rosan-6-yl $=$ (2-ethyltetradecahydro-2,4a, 8,8 -tetra-methyl-9-phenanthrenyl) $\left(\mathrm{C}_{20} \mathrm{H}_{35}\right)^{-}$
salicyl $=[(2$-hydroxyphenyl)methyl] $2-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$
salicylidene $=[(2$-hydroxyphenyl)methylene $]$ $2-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{CH}=$
salicyloyl $=\left(2\right.$-hydroxybenzoyl) $2-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{CO}-$
sarcosyl $=(N \text {-methylglycyl })^{1}$ or [(methylamino)acetyl] $\mathrm{MeNHCH}_{2} \mathrm{CO}-$
sebacoyl $=$ ( 1,10 -dioxo-1,10-decanediyl) $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CO}-$
seleneno ${ }^{4}$ HOSe-
selenino ${ }^{4} \mathrm{HOSe}(\mathrm{O})-$
seleninoselenoyl $\mathrm{Se}=\mathrm{Se}=$
seleninyl $\mathrm{OSe}=$
seleno 9 (see also episeleno and selenoxo) -Se-
selenocyanato $\mathrm{NCSe}-$
selenono ${ }^{4}(\mathrm{HO}) \mathrm{SeO}_{2}-$
selenonyl $\mathrm{O}_{2} \mathrm{Se}=$
selenophenyl = selenophene-yl $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Se}\right)-$
selenoxo ${ }^{5}$ (see also episeleno and seleno) $\mathrm{Se}=$
selenyl ${ }^{4}$ HSe-
semicarbazido $=$ [2-(aminocarbonyl)hydrazino $]$ $\mathrm{H}_{2} \mathrm{NCONHNH}-$
semicarbazono $=[($ aminocarbonyl $)$ hydrazono $]$ $\mathrm{H}_{2} \mathrm{NCONHN}=$
senecioyl = (3-methyl-1-oxo-2-butenyl) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCO}-$
seryl ${ }^{1}=$ (2-amino-3-hydroxy-1-oxopropyl) $\mathrm{HOCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
siamyl $=(1,2$-dimethylpropyl $) \mathrm{Me}_{2} \mathrm{CHCHMe}-$
silanetetrayl $=\mathrm{Si}=$
siloxy $=($ silyloxy $) \mathrm{H}_{3} \mathrm{SiO}-$
silyl $\mathrm{H}_{3} \mathrm{Si}-$
silylene $\mathrm{H}_{2} \mathrm{Si}=$
silylidyne $\mathrm{HSi}=$
sorboyl = (1-oxo-2,4-hexadienyl)
$\mathrm{MeCH}=\mathrm{CHCH}=\mathrm{CHCO}-$
spirohex-1-yl $\left(\mathrm{C}_{6} \mathrm{H}_{9}\right)-$
spirostanyl (from spirostane) $\left(\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{O}_{2}\right)$ -
stannanetetrayl $=\mathrm{Sn}=$
stannyl $\mathrm{H}_{3} \mathrm{Sn}$ -
stannylene $\mathrm{H}_{2} \mathrm{Sn}=$
stannylidyne $\mathrm{HSn} \equiv$
stearoyl $=\left(1\right.$-oxooctadecyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CO}-$
stibino $\mathrm{H}_{2} \mathrm{Sb}-$
stiboso $=($ oxostibino $) \mathrm{OSb}-$
stibyl = stibino $\mathrm{H}_{2} \mathrm{Sb}-$
stibylene $\mathrm{HSb}=$
stibylidyne $\mathrm{Sb} \equiv$
styrene $=\left(1\right.$-phenyl-1,2-ethanediyl) $-\mathrm{CHPhCH}_{2}-$
styrolene $=(1-$ phenyl-1,2-ethanediyl $)$ $-\mathrm{CHPhCH}_{2}-$
styryl $=(2$-phenylethenyl $) \mathrm{PhCH}=\mathrm{CH}-$
suberoyl $=(1,8$-dioxo- 1,8 -octanediyl $)$ $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CO}-$
succinaldehydoyl $=(1,4$-dioxobutyl $)$ $\mathrm{HCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
succinamoyl $=$ (4-amino-1,4-dioxobutyl $)$ $\mathrm{H}_{2} \mathrm{NCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
succinamyl $=(4$-amino-1,4-dioxobutyl)
$\mathrm{H}_{2} \mathrm{NCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
succinaniloyl = [1,4-dioxo-4-(phenylamino)butyl] $\mathrm{PhNHCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
succinimido $=(2,5$-dioxo-1-pyrrolidinyl $)$

succinyl $=(1,4$-dioxo-1,4-butanediyl $)$ $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$
sulfamino $=($ sulfoamino $) \mathrm{HOSO}_{2} \mathrm{NH}-$
sulfamoyl $=\left(\right.$ aminosulfonyl) $\mathrm{H}_{2} \mathrm{NSO}_{2}-$
sulfamyl $=($ aminosulfonyl $) \mathrm{H}_{2} \mathrm{NSO}_{2}-$
sulfanilamido $=[[(4-$ aminophenyl $)$ sulfonyl $]$ -
amino] $4-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NH}-$
sulfanilyl = [(4-aminophenyl)sulfonyl]
$4-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}{ }^{-}$
sulfeno ${ }^{4}$ HOS-
sulfhydryl $=$ mercapto $^{4} \mathrm{HS}$ -
sulfinimidoyl $\mathrm{HN}=\mathrm{S}=$
sulfino ${ }^{4} \mathrm{HOS}(\mathrm{O})-$
sulfinothioyl $\mathrm{S}=\mathrm{S}=$
sulfinyl OS=
sulfinylhydrazono $\mathrm{O}=\mathrm{S}=\mathrm{N}-\mathrm{N}=$
sulf0 ${ }^{4} \mathrm{HO}_{3} \mathrm{~S}-$
sulfonimidoyl $\mathrm{HN}=\mathrm{S}(\mathrm{O})=$
sulfonodiimidoyl $(\mathrm{HN}=)_{2} \mathrm{~S}=$
sulfonyl $-\mathrm{SO}_{2}{ }^{-}$
sulfurtetrayl ${ }^{12}=\mathrm{S}=$
sulfurtriyl ${ }^{12} \mathrm{HS} \equiv$
sulfuryl $=$ sulfonyl $-\mathrm{SO}_{2}{ }^{-}$
tartaroyl $=$ (2,3-dihydroxy-1,4-dioxo-1,4-butanediyl) $-\mathrm{COCH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CO}-$
tartronoyl = (2-hydroxy-1,3-dioxo-1,3-propanediyl) $-\mathrm{COCH}(\mathrm{OH}) \mathrm{CO}-$
tauryl $=$ [(2-aminoethyl)sulfonyl] $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2}-$
telluro ${ }^{6}$ (see also telluroxo) $-\mathrm{Te}-$
telluroxo ${ }^{5}$ (see also telluro) $\mathrm{Te}=$
telluryl ${ }^{4} \mathrm{HTe}-$
terephthalal $=(1,4$-phenylenedimethylidyne $)$ $1,4-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=)_{2}$
terephthalaldehydoyl $=(4$-formylbenzoyl $)$ $4-\mathrm{HCOC}_{6} \mathrm{H}_{4} \mathrm{CO}-$
terephthalamoyl = [4-(aminocarbonyl)benzoyl] $4-\left(\mathrm{H}_{2} \mathrm{NCO}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}-$
terephthalaniloyl $=[4-[($ phenylamino $)$ carbonyl $]-$ benzoyl] 4-(PhNHCO) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}-$
terephthaloyl $=(1,4$-phenylenedicarbonyl) $1,4-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO}-)_{2}$
terephthalylidene $=(1,4$-phenylenedimethylidyne) $1,4-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH}=)_{2}$
$m$-terphenylyl $=\left[1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}\right.$-terphenyl $] \mathrm{yl}$ $\left(\mathrm{C}_{18} \mathrm{H}_{13}\right)-$
terphenylylene $=[$ terphenyl $]$ diyl $-\left(\mathrm{C}_{18} \mathrm{H}_{12}\right)-$
tetradecanoyl $=(1$-oxotetradecyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CO}-$
tetramethylene $=1,4$-butanediyl $-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$
1,4-tetraphosphinediyl -(PH) $4^{-}$
tetrasiloxanylene $=1,7$-tetrasiloxanediyl $-\mathrm{SiH}_{2}\left(\mathrm{OSiH}_{2}\right)_{2} \mathrm{OSiH}_{2}-$
tetrathio ${ }^{13}$-SSSS-
tetrazanediylidene $=1,4$-tetrazanediylidene $=\mathrm{N}(\mathrm{NH})_{2} \mathrm{~N}=$
tetrazanylene $=1,4$-tetrazanediyl $-(\mathrm{NH})_{4}{ }^{-}$
1-tetrazeno $=1$-tetrazenyl $\mathrm{H}_{2} \mathrm{NNHN}=\mathrm{N}$ -
thenoyl $=($ thienylcarbonyl $)\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{CO}-$
thenyl $=($ thienylmethyl $)\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{CH}_{2}-$
thenylidene $=($ thienylmethylene $)\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{CH}=$
$($ thenyloxy $)=($ thienylmethoxy $)\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{CH}_{2} \mathrm{O}-$
thexyl $=1,1,2$-trimethylpropyl $\mathrm{Me}_{2} \mathrm{CHCMe}_{2}-$
thianaphthenyl $=$ benzo $[b]$ thienyl $\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~S}\right)-$
thiazolidyl $=$ thiazolidinyl $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}\right)-$
thiazolinyl $=$ (dihydrothiazolyl) $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NS}\right)-$
[(5-thiazolylcarbonyl)methyl] $=$ [2-oxo-2-(5-thiazolyl)ethyl]

thienyl $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)-$
(thienylthienyl) $=$ [bithiophen]yl
$\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~S}\right)-$
thio ${ }^{9}$ (see also epithio and thioxo) $-\mathrm{S}-$
(thioacetonylidene) $=(2$-thioxopropylidene $)$ MeCSCH=
thioacetyl $=(1$-thioxoethyl $)$ MeCS-
(thioarsenoso) $=($ thioxoarsino $) \mathrm{S}=\mathrm{As}-$
$($ thiobenzoyl $)=($ phenylthioxomethyl $) \mathrm{PhCS}-$
(thiocarbamoyl) $=($ aminothioxomethyl $) \mathrm{H}_{2} \mathrm{NCS}-$
thiocarbamyl $=($ aminothioxomethyl $) \mathrm{H}_{2} \mathrm{NCS}-$
$($ thiocarbonyl $)=$ carbonothioyl ${ }^{7}-\mathrm{CS}-$
(thiocarboxy) ${ }^{14}$ HOSC-
thiocyanato NCS-
thiocyano $=$ thiocysnato NCS-
(thioformyl) $=($ thioxomethyl $) \mathrm{HCS}-$
(thiohexanoyl) $=\left(1\right.$-thioxohexyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CS}-$
thiohydroperoxy $=$ sulfeno 4 HOS- or (mercaptooxy ${ }^{4} \mathrm{HSO}-$
$($ thiohydroxy $)=$ mercapto $^{4} \mathrm{HS}$ -
thiomorpholino $=4$-thiomorpholinyl

(thionitroso) SN-
thionyl = sulfinyl - SO-
(thiophenacyl) $=(2$-phenyl-2-thioxoethyl) $\mathrm{PhCSCH}_{2}-$
thiophene-yl = thienyl $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)-$
(thiophosphono) $=($ hydroxymercaptophosphinyl
( HO )( HS ) $\mathrm{P}(\mathrm{O})-$
(thioseleneno) ${ }^{4}$ HSSe-
(thiosulfeno) ${ }^{4}$ HSS-
(thiosulfo) ${ }^{14}\left(\mathrm{HO}_{2} \mathrm{~S}_{2}\right)-$
thioxo ${ }^{5}$ (see also epithio) $\mathrm{S}=$
(thioxoarsino) SAs-
(thioxomethyl) (see also carbonothioyl) $\mathrm{S}=\mathrm{CH}-$
thiuram $=($ aminothioxomethyl $) \mathrm{H}_{2} \mathrm{NCS}-$
threonyl ${ }^{1}$ (2-amino-3-hydroxy-1-oxobutyl) $\mathrm{MeCH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
4-thujyl = [2-methyl-5-(1-methylethyl)bicyclo-[3.1.0]hex-2-yl] $\left(\mathrm{C}_{10} \mathrm{H}_{17}\right)-$
thymyl $($ from thymol $)=[5-$ methyl-2-(1-methylethyl)phenyl]

thyronyl $=[O \text {-(4-hydroxyphenyl)tyrosyl }]^{1}$ or [2-amino-3-[4-(4-hydroxyphenoxy)phenyl]-1-oxopropyl] [4-(4-HOC $\left.\left.\mathrm{H}_{4} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{CH}_{2} \mathrm{CH}-$ $\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
toloxy $=($ methylphenoxy $) \mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{O}$ -
$p$-toluenesulfonamido $=[[(4-$ methylphenyl $)$ sulfonyllamino] $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NH}-$
toluidino $=[($ methylphenyl $)$ amino $] \mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}-$
toluoyl $=($ methylbenzoyl $) \mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CO}-$
toluyl $=($ methylbenzoyl $) \mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CO}-$
tolyl $=($ methylphenyl $) \mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{-}$
$\alpha$-tolyl $=$ (phenylmethyl) $\mathrm{PhCH}_{2}-$
tolylene $=($ methylphenylene $)-\left(\mathrm{MeC}_{6} \mathrm{H}_{3}\right)-$
$\alpha$-tolylene $=($ phenylmethylene $) \mathrm{PhCH}=$
tosyl = [(4-methylphenyl)sulfonyl] $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}-$
triazano $=$ triazanyl $\mathrm{H}_{2} \mathrm{NNHNH}-$
1-triazeno = 1-triazenyl $\mathrm{H}_{2} \mathrm{NN}=\mathrm{N}-$
$s$-triazin-2-yl $=1,3,5$-triazin-2-yl

trichothecanyl (from trichothecane) $\left(\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}\right)-$ tridecanoyl $=\left(1\right.$-oxotridecyl) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CO}-$
(trimethylammonio) $\mathrm{Me}_{3} \mathrm{~N}^{+}-$
(trimethylarsonio) $\mathrm{Me}_{3} \mathrm{As}^{+}-$
trimethylene $=1,3$-propanediyl $-\left(\mathrm{CH}_{2}\right)_{3}$ -
(1,3,3-trimethyl-2-norbornyl) $=(1,3,3$-trimethyl-bicyclo[2.2.1]hept-2-yl) $\left(\mathrm{C}_{10} \mathrm{H}_{17}\right)^{-}$
(trimethylphosphonio) $\mathrm{Me}_{3} \mathrm{P}^{+}-$
triseleno ${ }^{13}-\mathrm{SeSeSe}-$
trisilanylene $=1,3$-trisilanediyl $-\left(\mathrm{SiH}_{2}\right)_{3}-$
trisiloxane-1,3,5-triyl $=1,3,5$-trisiloxanetriyl $-\mathrm{SiH}\left(\mathrm{OSiH}_{2}-\right)_{2}$
trithio ${ }^{13}$-SSS-
trityl $=($ triphenylmethyl $) \mathrm{Ph}_{3} \mathrm{C}-$
tropanyl $=(8$-methyl-8-azabicyclo[3.2.1]octyl) $\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}\right)-$
tropoyl = (3-hydroxy-1-oxo-2-phenylpropyl) $\mathrm{HOCH}_{2} \mathrm{CHPhCO}-$
tryptophyl ${ }^{1}=[2$-amino- 3 -( 1 H -indol- 3 -yl)-1-oxopropyl] $\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
tyrosyl ${ }^{1}=$ [2-amino-3-(4-hydroxyphenyl)-1-oxopropyl] $4-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
undecanoyl $=(1$-oxoundecyl $) \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CO}-$
uramino $=[($ aminocarbonyl $)$ amino $] \mathrm{H}_{2} \mathrm{NCONH}-$
ureido $=[($ aminocarbonyl $)$ amino $] \mathrm{H}_{2} \mathrm{NCONH}-$ ureylene $=($ carbonyldiimino $)-\mathrm{NHCONH}-$
(ureylenediureylene) $=[$ carbonylbis(hydrazocarbonylimino)]
-NHCONHNHCONHNHCONH-
ursanyl (from ursane) $\left(\mathrm{C}_{30} \mathrm{H}_{51}\right)^{-}$
valeryl $=(1$-oxopentyl $) \mathrm{BuCO}-$
valyl ${ }^{1}=(2-$ amino- 3 -methyl-1-oxobutyl $)$ $\mathrm{Me}_{2} \mathrm{CHCH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}-$
vanillal $=[(4-$ hydroxy-3-methoxyphenyl)methylene] $4,3-\mathrm{HO}(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}=$
vanilloyl $=$ (4-hydroxy-3-methoxybenzoyl) 4,3- $\mathrm{HO}(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
vanillyl $=[(4-$ hydroxy-3-methoxyphenyl $)$ methyl $]$ $4,3-\mathrm{HO}(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$
vanillylidene $=[(4$-hydroxy-3-methoxyphenyl)methylene] $4,3-\mathrm{HO}(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}=$
vanilmandeloyl = [hydroxy(4-hydroxy-3-methoxyphenyl)acetyl] $4,3-\mathrm{HO}(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}-$
veratral $=[(3,4$-dimethoxyphenyl)methylene $]$ $3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}=$
veratroyl $=(3,4$-dimethoxybenzoyl) $3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
$o$-veratroyl $=(2,3$-dimethoxybenzoyl $)$ 2,3-(MeO) ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
veratryl $=[(3,4$-dimethoxyphenyl $)$ methyl $]$ $3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$
$o$-veratryl $=[(2,3$-dimethoxyphenyl)methyl $]$ 2,3-(MeO) ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$
veratrylidene $=[(3,4$-dimethoxyphenyl $)$ methylene] $3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}=$
vinyl = ethenyl $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-$
vinylene $=1,2$-ethenediyl $-\mathrm{CH}=\mathrm{CH}-$
vinylidene $=$ ethenylidene $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=$
xanthen-9-yl $=9 \mathrm{H}$-xanthen-9-yl $\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}\right)$ -
xanth-9-yl $=9 \mathrm{H}$-xanthen- 9 -yl $\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}\right)-$
xenyl $=\left[1,1^{\prime}\right.$-biphenyl $]-4-\mathrm{yl} 4-\mathrm{PhC}_{6} \mathrm{H}_{4}{ }^{-}$
xylidino $=[($ dimethylphenyl $)$ amino $]$ $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}-$
xyloyl $=($ dimethylbenzoyl $) \mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}-$
xylyl = (dimethylphenyl) $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}{ }^{-}$
xylylene $=$ [phenylenebis(methylene)] $-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$

NOTE: In addition to the following comments it must be understood that stereochemical information is not provided for systematically named natural-product radicals in the list above. For example, the phytyl radical is named as 3,7,11,15-tetramethyl-2-hexadecenyl. Because the total stereochemistry of a phytyl compound may be influenced by the presence of other chiral centers, it would be misleading to supply it with the radical name. However, the cross-reference at Phytol in the Index Guide includes stereochemistry.

[^15]${ }^{6}$ This prefix is used when the free valencies are attached to different atoms which are usually not otherwise connected.
${ }^{7}$ This prefix is used as a multiplying radical or when both free valencies are attached to the same atom.
8 The prefix "cumyl" has been used in the recent literature to mean $\alpha$-cumyl.
${ }^{9}$ This prefix is used when the free valencies are attached to different atoms which are not otherwise connected.
${ }^{10}$ This prefix is used when the free valencies are attached to different atoms which are otherwise connected.
${ }_{11}$ This prefix may be used in a generic sense, e.g., ketoxime.
12 This prefix is used only in structural repeating units of polymers.
13 This prefix is used to denote a series of chalcogen atoms in a chain or an indefinite structure.
${ }^{14}$ This prefix is not used when the hydrogen atom has been substituted by another atom or group if a definite structure can be determined.

Introduction	II 295
IUPAC, IUB, and IUBMB Nomenclature Rules and	
$\quad$ Recommendations	296
Organic chemistry	297
Biochemistry	298
Inorganic chemistry	299
Macromolecular chemistry	300
Miscellaneous	
American Chemical Society Nomenclature	301

295. Introduction. The development of systematic chemical nomenclature is shared by a number of organizations. In the United States the American Chemical Society (ACS) established a Committee on Nomenclature and Notation as early as 1886, followed in 1911 by the ACS Committee on Nomenclature, Spelling, and Pronunciation, now known as the ACS Committee on Nomenclature, Terminology and Symbols. In addition, subject nomenclature committees and subcommittees exist in several ACS divisions.

Internationally, nomenclature commissions of the International Union of Pure and Applied Chemistry (IUPAC) and the International Union of Biochemistry and Molecular Biology (IUBMB) ${ }^{1}$ approve and publish detailed recommendations. ${ }^{2,3}$

Before becoming officially recommended nomenclature policy, a typical path for a proposal originating in the United States has been as follows: an idea (suggested by an author, editor, committee member, etc.) is submitted to a subcommittee of subject specialists, then to an ACS divisional committee, the ACS Committee on Nomenclature, and finally to the appropriate nomenclature commission of the International Union of Pure and Applied Chemistry.

References to current nomenclature rules of IUPAC, IUB, IUBMB, and ACS are listed below. A selection of references to older, superseded rules and to significant proposals of individual authors is also included because of the occasional use of such nomenclature in current chemical literature, and the need in retrospective searching. These older references also provide a historical perspective illustrating the precedents on which modern chemical nomenclature are based.

Additional nomenclature information may be obtained from Chemical Abstracts Service.

## IUPAC, IUB, and IUBMB Nomenclature Rules and Recommendations

## 296. Organic chemistry

1. International Union of Pure and Applied Chemistry. Organic Chemistry Division. Commission on Nomenclature of Organic Chemistry, A Guide to IUPAC Nomenclature of Organic Compounds, Recommendations 1993, R. Panico, W. H. Powell, Jean-Claude Richer, eds., Blackwell Scientific Publications, Oxford, UK, 1993, 190 pp . (Includes revisions, both published and hitherto unpublished, to the 1979 edition of Nomenclature of Organic Chemistry (see item 2, below). "Corrections to A Guide to IUPAC Nomenclature of Organic Compounds (IUPAC Recommendations 1993)", Pure Appl. Chem. 1999, 71, 1327-1330.
2.     - , Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H, 1979 edition, J. Rigaudy and S. P. Klesney, eds., Pergamon Press, Oxford, UK, 1979, 559 pp. (Section A, Hydrocarbons; Section B, Fundamental Heterocyclic Systems; Section C, Characteristic Groups Containing C, H, O, N, Halogen, S, Se, and/or Te; Section D, Organic Compounds Containing Elements Which Are Not Exclusively C, H, O, N, Halogen, S, Se, and Te (Provisional Recommendations 1978); Section E, Stereochemistry (Recommendations 1974); Section F, General Principles for the Naming of Natural Products and Related Compounds (Provisional Recommendations 1975); Section H, Isotopically Modified Compounds (Approved Recommendations 1978). This edition contains changes from previous editions of various sections. The first edition of Sections A and B, known as the 1957 IUPAC Rules, was published in "Nomenclature of Organic Chemistry, 1957", Butterworths Scientific Pub-
[^16]| American Chemical Society Committee | II 302 |
| :--- | ---: |
| History and Development of Chemical Nomenclature |  |
| General | 303 |
| Organic chemistry | 304 |
| Biochemistry | 305 |
| Inorganic chemistry | 306 |
| Macromolecular chemistry | 307 |
| Stereochemistry | 308 |

lications, London, 1958, pp 3-70; this edition also appeared with comments in J. Am. Chem. Soc. 1960, 82, 5545-5574. (These sections first appeared as "Tentative Rules for Organic Nomenclature", C. R. de la Conf. Union Int. Chim., Zurich, July 20-28, 1955, pp. 160-184.) A second edition of Sections A and B appeared in "Nomenclature of Organic Chemistry", Butterworths, London, 1966, pp. 3-70. The first edition of Section C was published as "Nomenclature of Organic Chemistry, Section C", Butterworths, London, 1965, 260 pp . and also appeared in Pure Appl. Chem. 1965, 11, 1-260. (Section C first appeared as a paperback edition only as "Tentative Rules for Nomenclature of Organic Chemistry, Section C", Butterworths, London, 1962, 238 pp.). A third edition of Sections A and B and a second edition of Section C were published together as "Nomenclature of Organic Chemistry, Sections A, B, and C", Butterworths, London, 1971, 337 pp . A summary of the changes that were made in Sections A, B, and C for the combined 1971 edition of these sections appears in J. Chem. Doc. 1972, 12, 132-138. An early version of Section D was published in IUPAC Inf. Bull. Append. No. 31, August, 1973. The contents of the first edition of Section E appeared in Pure Appl. Chem. 1976, 45, 11-30, previously published as tentative rules in IUPAC Inf. Bull. No. 35, June, 1969, pp. 36-80, and in J. Org. Chem. 1970, 35, 2849-2867. Section F appeared earlier in IUPAC Inf. Bull. Append. No. 53, December, 1976 and in Eur. J. Biochem. 1978, 86, 1-8. The contents of the first edition of Section H appeared in Pure Appl. Chem. 1979, 51, 353-380, published previously as provisional recommendations in IUPAC Inf. Bull. Append. No. 62, July, 1977, and in Eur. J. Biochem. 1978, 86, 9-25.
3. -_, "Revision of the Extended Hantzsch-Widman System of Nomenclature for Heteromonocycles (Recommendations 1982)", Pure Appl. Chem. 1983, 55, 409-416. Published previously as provisional recommendations in Pure Appl. Chem. 1979, 51, 1995-2003. For WWW version by G. P. Moss see http://www.chem.qmw.ac.uk/iupac/iupac.html
4. - , "Treatment of Variable Valence in Organic Nomenclature (Lambda Convention) (Recommendations 1983)", Pure Appl. Chem. 1984, 56, 769-778. Published previously as provisional recommendations entitled "The Designation of Non-Standard Classical Valence Bonding in Organic Nomenclature" in Pure Appl. Chem. 1982, 54, 217-227. For WWW version by G. P. Moss see http://www.chem.qmw.ac.uk/iupac/iupac.html
5. - " "Extension of Rules A-1.1 and A-2.5 Concerning Numerical Terms Used in Organic Chemical Nomenclature (Recommendations 1986)", Pure Appl. Chem. 1986, 58, 1693-1696. Published previously as provisional recommendations in Pure Appl. Chem. 1983, 55, 1463-1466.
6. -_, "Nomenclature for Cyclic Organic Compounds with Contiguous Formal Double Bonds (The $\delta$-Convention) (Recommendations 1988)", Pure Appl. Chem. 1988, 60, 1395-1401. For WWW version by G. P. Moss see http:/ /www.chem.qmw.ac.uk/iupac/iupac.html
7. -_, "Revised Nomenclature for Radicals, Ions, Radical Ions, and Related Species (Recommendations 1993)", Pure Appl. Chem. 1993, 65, 13571455. A revision of Subsection C-0.8 of the 1979 edition of Nomenclature of Organic Chemistry (See item 2, above).
8. International Union of Pure and Applied Chemistry. Organic Chemistry Division. Commission on Nomenclature of Organic Chemistry. International Union of Pure and Applied Chemistry and International Union of Biochemistry. Commission on Biochemical Nomenclature, "Nomenclature of Carotenoids (Rules Approved 1974)", Pure Appl. Chem. 1975, 41, 405-431 (amendments: Biochemistry 1975, 14, 1803-1804). Published previously as tentative rules in Biochemistry 1971, 10, 4827-4837. (These publications supersede rules in J. Am. Chem. Soc. 1960, 82, 5583-5584.)
9. - , "Rules for Cyclitol Nomenclature (Recommendations 1973)", Biochem. J. 1976, 153, 25-31. Published previously as tentative rules in J. Biol. Chem. 1968, 243, 5809-5819.
10. International Union of Pure and Applied Chemistry. Organic Chemistry Division. Commission on Nomenclature of Organic Chemistry. Commission on Physical Organic Chemistry, "Glossary of Class Names of Organic Compounds and Reactive Intermediates Based on Structure (Recommendations 1995)", Pure Appl. Chem. 1995, 67, 1307-1375. For WWW version by G. P. Moss see http:/ /www.chem.qmw.ac.uk/iupac/iupac.html
11. -_, "Basic Terminology of Stereochemistry (Recommendations 1996)", Pure Appl. Chem. 1996, 68, 2193-2222. For WWW version by G. P. Moss see http://www.chem.qmw.ac.uk/iupac/iupac.html
12. International Union of Pure and Applied Chemistry. Organic Chemistry Division. Commission on Physical Organic Chemistry, "Glossary of Terms Used in Physical Organic Chemistry (Recommendations 1994)", Pure Appl. Chem. 1994, 66, 1077-1184. Published previously as Recommendations 1982 in Pure Appl. Chem. 1983, 55, 1281-1371 and as provisional recommendations in Pure Appl. Chem. 1979, 51, 1725-1801. For WWW version by G. P. Moss see http://www.chem.qmw.ac.uk/iupac/iupac.html
13. -_, "Names for Hydrogen Atoms, Ions, and Groups, and for Reactions Involving Them (Recommendations 1988)", Pure Appl. Chem. 1988, 60 , 1115-1116.
14. -_, "Nomenclature for Organic Chemical Transformations (Recommendations 1988)", Pure Appl. Chem. 1989, 61, 725-768 (includes provisional recommendations previously published as "Nomenclature for Straightfor-ward Transformations" in Pure Appl. Chem. 1981, 53, 305-321).
15. International Union of Pure and Applied Chemistry. "Nomenclature and Terminology of Fullerenes: A Preliminary Survey", Pure Appl. Chem. 1997, 69, 1411-1434.
16. International Union of Pure and Applied Chemistry. Organic Chemistry Division. Commission on Nomenclature of Organic Chemistry, "Nomenclature of Fused and Bridged Fused Ring Systems (IUPAC Recommendations 1998)", Pure Appl. Chem. 1998, 70, 143-216.
17. -_, "Phane Nomenclature. Part I: Parent Phane Names (IUPAC Recommendations 1998)", Pure Appl. Chem. 1998, 70, 1513-1545.
18. -_, "Extension and Revision of the von Baeyer System for Naming Polycyclic Compounds (Including Bicyclic Compounds) (IUPAC Recommendations 1999)", Pure Appl. Chem. 1999, 71, 513-529.
19. -, "Extension and Revision of the Nomenclature for Spiro Compounds (IUPAC Recommendations 1999)", Pure Appl. Chem. 1999, 71, 531-558.
20. ——, "Revised Section F: Natural Products and Related Compounds (IUPAC Recommendations 1999)", Pure Appl. Chem. 1999, 71, 587-643. Superseded Section F published first in 1976, and then in 1978 (see item 2, above).
21. International Union of Pure and Applied Chemistry. Organic Chemistry Division. Commission on Physical Organic Chemistry, "Glossary of Terms Used in Theoretical Organic Chemistry (IUPAC Recommendations 1999)", Pure Appl. Chem. 1999, 71, 1919-1981.
22. International Union of Pure and Applied Chemistry. Organic and Biomolecular Chemistry Division. Commission on Nomenclature of Organic Chemistry, "Nomenclature for the $\mathrm{C}_{60}-I_{\mathrm{h}}$ and $\mathrm{C}_{70}-D_{5 \mathrm{~h}(6)}$ Fullerenes (IUPAC Recommendations 2002)", Pure Appl. Chem. 2002, 74, 629-695.
23. -_, "Phane Nomenclature. Part II: Modification of the Degree of Hydrogenation and Substitution Derivatives of Phane Parent Hydrides (IUPAC Recommendations 2002)", Pure Appl. Chem. 2002, 74, 809-834.

## 297. Biochemistry

1. International Union of Biochemistry and Molecular Biology, Biochemical Nomenclature and Related Documents 1992, 2nd. ed., Portland Press, Ltd., London, 1993. A compendium of recommendations of IUPAC and IUB produced by the Commission on Biochemical Nomenclature (CBN), the Nomenclature Committee of IUB (NC-IUB), and the IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), prepared by C. Liebecq for the Committee of Editors of Biochemical Journals (CEBJ). The compendium includes Sections E and F of the IUPAC Organic Rules (see If 296, item 2); nomenclature recommendations given in items 8-9, gI 296 and items listed below, except for items 20, 22, 23, 24, 29, 38, 39 and 40 . It includes only the tentative rules of item 5. Section H of the IUPAC Organic Rules and item 29 appear in the 1979 edition of the compendium published in 1978 by The Biochemical Society, London. Also included in the 1992 compendium are "Isotopically Labeled Compounds: Common Biochemical Practice"; "Isotopically Substituted Compounds"; "Names for Hydrogen Species" (see II 296, item 13); and "Excerpts from Newsletters of the Nomenclature Committees of IUB".
2. International Union of Pure and Applied Chemistry and International Union of Biochemistry. Commission on Biochemical Nomenclature, "Nomenclature of Phosphorus-Containing Compounds of Biochemical Importance (Recommendations 1976)", Eur. J. Biochem. 1977, 79, 1-9.
3. International Union of Pure and Applied Chemistry and International "Nion of Biochemistry. Joint Commission on Biochemical Nomenclature, "Nomenclature of Tetrapyrroles (Recommendations 1986)", Pure Appl. Chem. 1987, 59, 779-832. Replaces "Recommendations 1978", Pure Appl. Chem. 1979, 51, 2251-2304 of which an amended version appears in Eur. J. Biochem. 1980, 108, 1-30 and an abbreviated version by P. Karlson in Hoppe-Seyler's Z. Physiol. Chem. 1981, 362, vii-xii.
4. -_, "Nomenclature of Steroids (Recommendations 1989)", Pure Appl. Chem. 1989, 61, 1783-1822. (corrections: Eur. J. Biochem. 1993, 213, 2). For WWW version by G. P. Moss see http://www.chem.qmw.ac.uk/iupac/iupac.html. [Supersedes "Definitive Rules for Nomenclature of Steroids", Pure Appl. Chem. 1972, 31, 283-322 (book form: Butterworths, London, 1972), previously published as tentative rules in Biochemistry 1969, 8, 2227-2242 (amendments. ibid. 1971, 10, 4994), both of which superceded the definitive rules in "Nomenclature of Organic Chemistry, 1957" Butterworths Scientific Publications, London, 1958, pp. 71-82 and J. Am. Chem. Soc. 1960, 82, 55775581, and in "Nomenclature of Organic Chemistry" Butterworths, London, 1966, pp. 71-81 (tentative rules for which appeared in C. R. de la Conf. Union Int. Chim., Zurich, July 20-8, 1955, pp. 190-207)].
5.     - ,"Nomenclature of Lignans and Neolignans (IUPAC Recommendations 2000)", Pure Appl. Chem. 2000, 72, 1493-1523.

## Carbohydrates

6. International Union of Pure and Applied Chemistry and International Union of Biochemistry and Molecular Biology. Joint Commission on Biochemical Nomenclature. "Nomenclature of Carbohydrates (Recommendations 1996)", Pure Appl. Chem. 1996, 68(10), 1919-2008. For WWW version by G. P. Moss see http://www.chem.qmw.ac.uk/iupac/iupac.html [Supercedes "Tentative Rules for Carbohydrate Nomenclature, Pt. 1", Biochemistry 1971, 10, 3983-4004 (errarta: ibid. 1971, 10, 4995)] (see also II 302, item 14).
7. International Union of Pure and Applied Chemistry and International Union of Biochemistry. Joint Commission on Biochemical Nomenclature, "Conformational Nomenclature for Five and Six-Membered Ring Forms of Monosaccharides and their Derivatives (Provisional Recommendations)", Pure Appl. Chem. 1981, 53, 1901-1906. Published as "Recommendations 1980" in Eur. J. Biochem. 1980, 111, 295-298 (A preliminary version was published in J. Chem. Soc., Chem.Commun.1973, 505-508. See II 302, item 18).
8.     - , "Nomenclature of Branched-Chain Monosaccharides (Provisional Recommendations)", Pure Appl. Chem. 1982, 54, 211-215. Published as "Recommendations 1980" in Eur. J. Biochem. 1981, 119, 5-8 (corrections: ibid. 1982, 125, 1).
9. -_, "Nomenclature of Unsaturated Monosaccharides (Provisional Recommendations)", Pure Appl. Chem. 1982, 54, 207-210. Published as "Recommendations 1980" in Eur. J. Biochem. 1981, 119, 1-3 (corrections: ibid. 1982, 125, 1).
10. ——"Abbreviated Terminology of Oligosaccharide Chains, Provisional", Pure Appl. Chem. 1982, 54, 1517-1522. Published as "Recommendations 1980" in J. Biol. Chem. 1982, 257, 3347-3351.
11. -, "Polysaccharide Nomenclature (Provisional)", Pure Appl. Chem. 1982, 54, 1523-1526. Published as "Recommendations 1980" in J. Biol. Chem. 1982, 257, 3352-3354.
12. , "Symbols for Specifying the Conformation of Polysaccharide Chains (Provisional)", Pure Appl. Chem. 1983, 55, 1269-1272 and as "Recommendations 1981," in Eur. J. Biochem. 1983, 131, 5-7.
13. International Union of Biochemistry. Nomenclature Committee, "Numbering of Atoms in myo-Inositol (Recommendations 1988)", Biochem. J. 1989, 258, 1-2.

## Amino Acids, Peptides, Proteins, and Nucleic Acids

14. International Union of Pure and Applied Chemistry and International Union of Biochemistry. Commission on Biochemical Nomenclature, "Abbreviated Nomenclature of Synthetic Polypeptides (Polymerized Amino Acids) (Revised Rules)", Pure Appl. Chem. 1973, 33, 437-444. Published previously as revised recommendations in Biochemistry 1972, 11, 942-944.
15. ——,"Abbreviations and Symbols for Nucleic Acids, Polynucleotides and their Constituents (Rules Approved 1974)", Pure Appl. Chem. 1974, 40, 277-290. Published previously as revised rules in Biochemistry 1970, 9, 40224027.
16. -_, "Abbreviations and Symbols for Description of Conformation of Polypeptide Chains (Rules Approved 1974)", Pure Appl. Chem. 1974, 40, 291308. Published previously as tentative rules in IUPAC Inf. Bull. Append. No. 10, February, 1971 and as "Tentative Rules (1969)" in Eur. J. Biochem. 1970, 17, 193-201.
17. -, "Nomenclature of Peptide Hormones (Recommendations 1974)", Biochemistry 1975, 14, 2559-2560.
18. International Union of Pure and Applied Chemistry and International Union of Biochemistry. Joint Commission on Biochemical Nomenclature. "Nomenclature and Symbolism for Amino Acids and Peptides (Recommendations 1983)," Pure Appl. Chem. 1984, 56, 595-624 (corrections: Eur. J. Biochem. 1993, 213, 2). A combination and revision of four previously published recommendations: (a) "Nomenclature of $\alpha$-Amino Acids (Recommendations 1974)", Biochemistry 1975, 14, 449-462; published previously as provisional recommendations in IUPAC Inf. Bull. Append. No. 46, September 1975 (these publications supersede rules published in J. Am. Chem. Soc. 1960, 82, 5575-5577); (b) "Symbols for Amino Acid Derivatives and Peptides (Rules Approved 1974)", Pure Appl. Chem. 1974, 40, 315-331; published previously as recommendations in Biochemistry 1972, 11, 1726-1732; (c) "Naming Synthetic Modifications of Natural Peptides (Definitive Rules)", Pure Appl. Chem. 1972, 31, 647-653; published previously as tentative rules in Biochemistry 1967, 6, 362-364; (d) "A One-Letter Notation for Amino Acid Sequences (Definitive Rules)", Pure Appl. Chem. 1972, 31, 639-645; published previously as tentative rules in Biochemistry 1968, 7, 2703-2715. For WWW version by G. P. Moss see http://www.chem.qmw.ac.uk/iupac/iupac.html
19.     - "Abbreviations and Symbols for the Description of Conformations of Polynucleotide Chains (Provisional)", Pure Appl. Chem. 1983, 55, 1273-1280; appeared also as "Recommendations 1982" in Eur. J. Biochem. 1983, 131, 9-15.
20. -_, "Nomenclature of Glycoproteins, Glycopeptides, and Peptidoglycans (Recommendations 1985)", Pure Appl. Chem. 1988, 60, 1389-1394 (corrections: Eur. J. Biochem. 1989, 185, 485).
21. International Union of Biochemistry. Nomenclature Committee, "Nomenclature of Iron-Sulfur Proteins (Recommendations 1978)", Eur. J. Biochem. 1979, 93, 427-430 (corrections: ibid. 1979, 95, 369 and 1979, 102, 315). Published previously as recommendations in Biochemistry 1973, 12, 3582-3583.
22. --, "Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences (Recommendations 1984)", Eur. J. Biochem. 1985, 150, 1-5 (corrections: ibid. 1986, 157, 1).
23. ___ "Nomenclature of Electron-Transfer Proteins (Recommendations 1989)", Eur. J. Biochem. 1991, 200, 599-611 (corrections: Eur. J. Biochem. 1993, 213, 2-3).
24. -, "A Nomenclature of Junctions and Branchpoints in Nucleic Acids", Eur. J. Biochem. 1995, 230, 1-2.
25. International Union of Pure and Applied Chemistry. IUPAC-IUBMBIUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures by NMR Spectroscopy, "Recommendations for the Presentation of NMR Structures of Proteins and Nucleic Acids (IUPAC Recommendations 1998)", Pure Appl. Chem. 1998, 70, 117-142.

## Enzymes

26. International Union of Biochemistry and Molecular Biology Nomenclature Committee, Enzyme Nomenclature, 1992, Academic Press, Orlando, Florida, 1992, 862 pp; Supplements 1, 2, 3, 4, and 5. Corrections and Additions, Eur. J. Biochem. 1994, 223, 1-5; 1995, 232, 1-6; 1996, 237, 1-5; 1997, 250, 1-6; 1999, 264, 610-650. (This edition includes corrections and additions to "Enzyme Nomenclature, 1984", published as three supplements in Eur. J. Biochem. 1986, 157, 1-26; 1989, 179, 489-533; 1990, 187, 263-281; the 1984 edition updated the 1978 edition by including corrections and additions published as four supplements in Eur. J. Biochem. 1980, 104, 1-4; 1981, 116, 423435; 1982, 125, 1-13; 1983, 131, 461-472.)
27. International Union of Pure and Applied Chemistry and International Union of Biochemistry. Commission on Biochemical Nomenclature, "The Nomenclature of Multiple Forms of Enzymes (Recommendations 1976)", Eur. J. Biochem. 1978, 82, 1-3. Published previously as "Rules Approved 1974" in Pure Appl. Chem. 1974, 40, 309-314.
28. International Union of Biochemistry. Nomenclature Committee, "Symbolism and Terminology in Enzyme Kinetics (Recommendations 1981)", Eur. J. Biochem. 1982, 128, 281-291 (corrections: Eur. J. Biochem. 1993, 213, 1).
29. -_, "Nomenclature for Multienzymes (Recommendations 1989)", Eur. J. Biochem. 1989, 185, 485-486 (supercedes "Multienzyme Proteins" in Trends. Biochem. Sci. 1979, 4, N275).

## Lipids, Vitamins, Coenzymes, and Related Compounds

30. International Union of Pure and Applied Chemistry and International Union of Biochemistry. Commission on Biochemical Nomenclature, "The Nomenclature of Lipids (Recommendations 1976)", Eur. J. Biochem. 1977, 79, 11-21. Previously published as recommendations in J. Biol. Chem. 1967, 242, 4845-4849 (amendments: ibid. 1970, 245, 1511).
31. -_, "Trivial Names of Miscellaneous Compounds of Importance in Biochemistry (Tentative Rules)", J. Biol. Chem. 1966, 241, 2987-2988. (Supersedes "Definitive Rules for the Nomenclature of the Vitamins", J. Am. Chem. Soc. 1960, 82, 5581-5583.)
32. -_, "Nomenclature of Quinones with Isoprenoid Side Chains (Recommendations 1973)", Eur. J. Biochem. 1975, 53, 15-18. Published previously as tentative rules in J. Biol. Chem. 1966, 241, 2989-2991. (Supersedes Rule V4 in J. Am. Chem. Soc. 1960, 82, 5581-5583.)
33. -_, "Nomenclature and Symbols for Folic Acid and Related Compounds (Recommendations 1986)", Pure Appl. Chem. 1987, 59, 833-836. Published as "Tentative Rules" in J. Biol. Chem. 1966, 241, 2991-2992 which superseded Rule V-13 in J. Am. Chem. Soc. 1960, 82, 5581-5583.
34. -_, "Nomenclature of Corrinoids (Rules Approved 1975)", Pure Appl. Chem. 1976, 48, 495-502. Published previously as recommendations in Biochemistry 1974, 13, 1555-1560 and as tentative rules in J. Biol. Chem. 1966, 241, 2992-2994. (Supersedes Rule V-15 in J. Am. Chem. Soc. 1960, 82, 55815583; tentative rules for which appeared in "Nomenclature of Organic Chemistry, 1957", Butterworths Scientific Publications, London, 1958, pp. 83-87.)
35. -_, "Nomenclature for Vitamins $B_{6}$ and Related Compounds (Recommendations 1973)", Biochemistry 1974, 13, 1056-1058. Published previously as tentative rules in Biochemistry 1970, 9, 4019-4021. (Supersedes Section M-7 in J. Biol. Chem. 1966, 241, 2987-2988; see item 29 above.)
36. International Union of Pure and Applied Chemistry and International Union of Biochemistry. Joint Commission on Biochemical Nomenclature, "Nomenclature of Tocopherols and Related Compounds (Recommendations 1981)", Pure Appl. Chem. 1982, 54, 1507-1510 and in Eur. J. Biochem. 1982, 123, 473-475. Published previously as "Recommendations 1973" in Eur. J. Biochem. 1974, 46, 217-219 and as provisional recommendations in IUPAC Inf. Bull. Append. No. 47, September, 1975. (Supersedes Section M-3 in J. Biol. Chem. 1966, 241, 2987-2988; see item 29 above.)
37. -_, "Nomenclature of Vitamin D (Provisional)", Pure Appl. Chem. 1982, 54, 1511-1516. Published as "Recommendations 1981" in Eur. J. Biochem. 1982, 124, 223-227.
38.     - , "Nomenclature of Retinoids (Provisional)", Pure Appl. Chem. 1983, 55, 721-726. Published as "Recommendations 1981 " in Eur. J. Biochem. 1982, 129, 1-5.
39. -, "Nomenclature of Prenols (Recommendations 1986)", Pure Appl. Chem. 1987, 59, 683-689.
40.     - -, "Nomenclature of Glycolipids (IUPAC Recommendations 1997)", Pure Appl. Chem. 1997, 69, 2475-2487; Carbohydr. Res. 1998, 312, 167-175; Eur. J. Biochem. 1998, 257, 293-298; Glycoconjugate J. 1999, 16, 16; J. Mol. Biol. 1999 286, 963-970; Adv. Carbohydr. Chem. Biochem. 2000, 55, 311-326. Superseded the glycolipid section in the 1976 Recommendations on lipid nomenclature (see item 30, above).

## Miscellaneous

41. International Union of Pure and Applied Chemistry and International Union of Biochemistry. Commission on Biochemical Nomenclature, "Abbreviations and Symbols for Chemical Names of Special Interest in Biological Chemistry (Revised Tentative Rules 1965)", Biochemistry 1966, 5, 1445-1453.
42. -_, "Abbreviations and Symbols", Eur. J. Biochem. 1977, 74, 1-5.
43. International Union of Nutritional Sciences. Committee 1/I. Nomenclature, "Generic Descriptors and Trivial Names for Vitamins and Related Compounds (Recommendations 1976)", Nutrition Absts. and Revs., Series A: Human and Experimental 1978, 48, 831-835.

## 298. Inorganic chemistry

1. International Union of Pure and Applied Chemistry. Inorganic Chemistry Division. Commission on the Nomenclature of Inorganic Chemistry, Nomenclature of Inorganic Chemistry Recommendations 1990, G. J. Leigh, ed., Blackwell Scientific Publications, Oxford, UK, 1990, 289 pp. These recommendations revise and extend the 2nd ed., "Nomenclature of Inorganic Chemistry, 1970", Butterworths, London, 1971, 110 pp., which also appeared in Pure Appl. Chem. 1971, 28, 1-110, and the 1st ed., "Nomenclature of Inorganic Chemistry" (1957 Report of the Commission on the Nomenclature of Inorganic Chemistry), Butterworths Scientific Publications, London, 1958, 93 pp. (in French and English); the latter also appeared with comments in J. Am. Chem. Soc. 1960, 82, 5523-5544. The 1970 edition incorporated "Tentative Proposals for Nomenclature of Absolute Configurations Concerned with Six-Coordinated Complexes Based on the Octahedron", Inorg. Chem. 1970, 9, 1-5; $\pi$-Complexes (Tentative), IUPAC Inf. Bull. No. 35, June, 1969, pp. 31-35; and Isoand Heteropolyanions (Rules 5.1 and 5.2, Tentative), IUPAC Inf. Bull. No. 35, June, 1969, pp. 22-27.
2. -_, "Nomenclature of Inorganic Boron Compounds", Pure Appl. Chem. 1972, 30, 681-710 (see also II 302, item 16).
3. -, How to Name an Inorganic Substance. A Guide to the Use of Nomenclature of Inorganic Chemistry: Definitive Rules, 1970, Pergamon Press, New York, 1977, 36 pp.
4. -, "Nomenclature of Inorganic Chemistry: II.2. The Nomenclature of Hydrides of Nitrogen and Derived Cations, Anions, and Ligands (Recommendations 1981)", Pure Appl. Chem. 1982, 54, 2545-2552. Published previously as provisional recommendations in IUPAC Inf. Bull. 1978, (2), 151-160.
5. -_, "Recommendations for the Naming of Elements of Atomic Numbers Greater than 100 (Definitive)", Pure Appl. Chem. 1979, 51, 381-384. Previously published as "Recommendations for the Naming of Elements of Atomic Numbers Greater Than 105 (Provisional)" in IUPAC Inf. Bull. Append. No. 55, December, 1976.
6.     - , "Nomenclature of Inorganic Chemistry: II.1. Isotopically Modified Compounds (Recommendations 1981)", Pure Appl. Chem. 1981, 53, 1887-1900. Previously published as provisional recommendations in Pure Appl. Chem. 1979, 51, 1981-1994.
7. -_, "Nomenclature of Polyanions, Recommendations 1987", Pure Appl. Chem. 1987, 59, 1529-1548.
8. -_, "Names and Symbols of Transfermium Elements (IUPAC Recommendations 1997)", Pure Appl. Chem. 1997, 69, 2471-2473. Superseded "Names and Symbols of Transfermium Elements (Recommendations 1994)", Pure Appl. Chem. 1994, 66, 2419-2421 (subsequently reclassified by the IUPAC Bureau as provisional in August, 1995). See K. I. Zamaraev, "IUPAC Recommendations on Names and Symbols of Transfermium Elements", Chem. Int. 1996, 18(1), 34.
9. International Union of Pure and Applied Chemistry. Inorganic Chemistry Division, "New Notations in the Periodic Table", Pure Appl. Chem. 1988, 60, 431-436.
10. International Union of Pure and Applied Chemistry. Inorganic Chemistry Division, Commission on High Temperature and Solid State Chemistry, "Nomenclature and Terminology of Graphite Intercalation Compounds (Recommendations 1994)", Pure Appl. Chem. 1994, 66, 1893-1901.
11. International Union of Pure and Applied Chemistry. Inorganic Chemistry Division. Working Party on IUPAC Glossary of Terms Used in Bioinorganic Chemistry, "Glossary of Terms Used in Bioinorganic Chemistry (IUPAC Recommendations 1997)", Pure Appl. Chem. 1997, 60, 1251-1303.
12. International Union of Pure and Applied Chemistry. Inorganic Chemistry Division. Commission on Nomenclature of Inorganic Chemistry, "Nomenclature of Inorganic Chains and Ring Compounds (IUPAC Recommendations 1997)", Pure Appl. Chem. 1997, 69, 1659-1692.
13. -_, "Nomenclature of Organometallic Compounds of the Transition Elements (IUPAC Recommendations 1999)", Pure Appl. Chem. 1999, 71, 1557-1585.
14. International Union of Pure and Applied Chemistry. Inorganic Chemistry Division, Commission on High Temperature Materials and Solid State Chemistry, "Terminology for Compounds in the Si-Al-O-N System (IUPAC Recommendations 1999)", Pure Appl. Chem. 1999, 71, 1765-1769.
15. International Union of Pure and Applied Chemistry. Inorganic Chemistry Division. Commission on Nomenclature of Inorganic Chemistry, "Names for Inorganic Radicals (IUPAC Recommendations 1999)", Pure Appl. Chem. 2000, 72, 437-446.
16. -, "Names for Muonium and Hydrogen Atoms and Their Ions (IUPAC Recommendations 2001)", Pure Appl. Chem. 2001, 73, 377-380.
17. _—, Nomenclature of Inorganic Chemistry II: Recommendations 2000, J. A. McCleverty and N. G. Connelly, eds., Royal Society of Chemistry, Oxford, UK, 2001, 130 pp .
18. -_, "Naming of New Elements (IUPAC Recommendations 2002)", Pure Appl. Chem. 2002, 74, 787-791.
19. International Union of Pure and Applied Chemistry. Chemistry and Human Health Division. Clinical Chemistry Section. Commission on Toxicology, "'Heavy Metals' - A Meaningless Term? (IUPAC Technical Report)", Pure Appl. Chem. 2002, 74, 793-807.

## 299. Macromolecular chemistry

1. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Macromolecules. Subcommission on Nomenclature, "Report on Nomenclature in the Field of Macromolecules (1951)", J. Polym. Sci. 1952, 8, 257-277 [modifications and additions (tentative): J. Polym. Sci., Part B: Polym. Lett., 1968, 6, 257-260].
2. -, "Report on Nomenclature Dealing with Steric Regularity in High Polymers", Pure Appl. Chem. 1966, 12, 645-656 (Authors often cited as M. L. Huggins, G. Natta, V. Desreux, and H. Mark); published previously as a preliminary version in J. Polym. Sci. 1962, 56, 153-161.
3. International Union of Pure and Applied Chemistry. Division of Applied Chemistry. Plastics and High Polymers Section, "Recommendations for Abbreviations of Terms Relating to Plastics and Elastomers", Pure Appl. Chem. 1969, 18, 583-589.
4. International Union of Pure and Applied Chemistry. Macromolecular Division. Commission on Macromolecular Nomenclature, Compendium of Macromolecular Nomenclature, Blackwell Scientific Publications, Oxford, UK, 1991, 171 pp . (a collection of the recommendations given as items 5-12 and 18 below). For a bibliography of translations of this compendium prepared by W. V. Metanomski see http://www.chem.qmw.ac.uk/iupac2/bibliog/ purp.html
5. --, "Nomenclature of Regular Single-Strand Organic Polymers (Rules Approved 1975)", Pure Appl. Chem. 1976, 48, 373-385. Published previously as provisional recommendations in Macromolecules 1973, 6, 149-158 and in IUPAC Inf. Bull. Append. No. 29, November, 1972 (see also I[ 302, item 15).
6. -_, "Glossary of Basic Terms in Polymer Science (Recommendations 1996)", Pure Appl. Chem. 1996, 68, 2287-2311. Supercedes "Basic Definitions of Terms Relating to Polymers (1974)", Pure Appl. Chem. 1974, 40, 477-491, and "Basic Definitions Relating to Polymers", IUPAC Inf. Bul. Append. No. 13, February 1971.
7. -_, "Stereochemical Definitions and Notations Relating to Polymers (Recommendations 1980)", Pure Appl. Chem. 1981, 53, 733-752. Published previously as provisional recommendations in Pure Appl. Chem. 1979, 51, 1101-1121.
8.     - , "Source-Based Nomenclature for Copolymers (Recommendations 1985)", Pure Appl. Chem. 1985, 57, 1427-1440.
9.-_, "Use of Abbreviations for Names of Polymeric Substances (Recommendations, 1986)", Pure Appl. Chem. 1987, 59, 691-693. (Supersedes "List of Standard Abbreviations (Symbols) for Synthetic Polymers and Polymer Materials 1974" Pure Appl. Chem. 1974, 40, 473-476 and "List of Abbreviations for Synthetic Polymers and Polymer Materials", IUPAC Inf. Bull. Append. No. 12, February, 1971).
9. -_, "A Classification of Linear Single-Strand Polymers (Recommendations 1988)", Pure Appl. Chem. 1989, 61, 243-254.
10.     - , "Definitions of Terms Relating to Individual Macromolecules, Their Assemblies, and Dilute Polymer Solutions (Recommendations 1988)", Pure Appl. Chem. 1989, 61, 211-241.
11. -_, "Definition of Terms Relating to Crystalline Polymers (Recommendations 1988)", Pure Appl. Chem. 1989, 61, 769-785.
12. -_, "Nomenclature of Regular Double-Strand (Ladder or Spiro) Organic Polymers (Recommendations 1993)", Pure Appl. Chem. 1993, 65, 1561-1580.
13. -_, "Graphic Representations (Chemical Formulae) of Macromolecules (Recommendations 1994)", Pure Appl. Chem. 1994, 66, 2469-2482.
14. -, "Structure-Based Nomenclature for Irregular Single-Strand Organic Polymers (Recommendations 1994)", Pure Appl. Chem. 1994, 66, 873-889 (Erratum: Pure Appl. Chem. 1994, 66 (9), insert).
15. -_, "Source-Based Nomenclature for Non-Linear Macromolecules and Macromolecular Assemblies (IUPAC Recommendations 1997)", Pure Appl. Chem. 1997, 69, 2511-2521; in Polymer Networks, R. F. T. Stepto, ed., Blackie Academic, London, 1998, pp. 316-328.
16. -_, "Generic Source-Based Nomenclature for Polymers ((IUPAC Recommendations 2001)". Pure Appl. Chem. 2001, 73, 1511-1519.
17. International Union of Pure and Applied Chemistry. Macromolecular Division. Commission on Macromolecular Nomenclature and Inorganic Chemistry Division. Commission on Nomenclature of Inorganic Chemistry, "Nomenclature for Regular Single-Strand and Quasi-Single-Strand Inorganic and Coordination Polymers (Recommendations 1984)", Pure Appl. Chem. 1985, 57, 149-168. Published previously as provisional recommendations in Pure Appl. Chem. 1981, 53, 2283-2302.

## 300. Miscellaneous

1. International Union of Pure and Applied Chemistry. Interdivisional Committee on Nomenclature and Symbols, "Use of Abbreviations in the Chemical Literature (Recommendations 1979)", Pure Appl. Chem. 1980, 52,

2229-2232. Previously published as provisional recommendations jointly with the Physical Chemistry Division Commission on Molecular Structure and Spectroscopy in IUPAC Inf. Bull. Append. No. 58, July, 1977
2. International Union of Pure and Applied Chemistry. Analytical Chemistry Division, Compendium of Analytical Nomenclature, Definitive Rules 1997, 3rd ed., Blackwell Science, Oxford, UK, 1998, 840 pp. Superseded Compendium of Analytical Nomenclature, Definitive Rules 1987, 2nd ed., Blackwell Scientific Publications, Oxford, UK, 1978, 279 pp. The 1977 Definitive Rules were published by Pergamon Press, Oxford, UK 1978, 223 pp.
3. International Union of Pure and Applied Chemistry. Analytical Chemistry Division. Commission on Analytical Nomenclature, "Guide to Trivial Names, Trade Names, and Synonyms for Substances Used in Analytical Nomenclature", Pure Appl. Chem. 1978, 50, 339-370. Previously published as provisional recommendations under the title "List of Trivial Names and Synonyms (for Substances Used in Analytical Chemistry)" in IUPAC Inf. Bull. Append. No. 45, September, 1975.
4. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Symbols, Terminology and Units, Quantities, Units, and Symbols in Physical Chemistry, 2nd. ed., Blackwell Scientific Publications, Oxford, UK, $1993,166 \mathrm{pp}$. [An abbreviated list, 4 pp . A4 laminated card, is published by Blackwell Scientific Publications, Oxford, 1993]. This replaces the 1988 edition which in turn replaced "Manual of Symbols and Terminology for Physicochemical Quantities and Units", Pure Appl. Chem. 1979, 51, 1-41. A 1973 edition was published by Butterworths, London, 1975 and a 1969 edition appeared in Pure Appl. Chem. 1970, 21, 1-44. (Supersedes rules in J. Am. Chem. Soc. 1960, 82, 5517-5522.)
5. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Colloid and Surface Chemistry, "Chemical Nomenclature and Formulation of Compositions of Synthetic and Natural Zeolites (Definitive)", Pure Appl. Chem. 1979, 51, 1091-1100. Previously published as provisional recommendations jointly with the Inorganic Chemistry Division Commission on Nomenclature of Inorganic Chemistry in IUPAC Inf. Bull. Append. No. 41, January, 1975.
6. International Union of Pure and Applied Chemistry; Compendium of Chemical Terminology (IUPAC Recommendations), 2nd ed., A. D. McNaught and A. Wilkinson, compliers, Blackwell Science, Oxford, UK, 1997, 336 pp. Superseded Compendium of Chemical Technology (IUPAC Recommendations), V. Gold, K. L. Loening, A. D. McNaught, and P. Sehmi, compilers, Blackwell Scientific Publications, Oxford, UK, 1987, 456 pp.
7. International Union of Pure and Applied Chemistry and International Union of Pure and Applied Physics. Transfermium Working Group, "Discovery of the Transfermium Elements (criteria that must be satisfied for the discovery of a new chemical element to be recognized)", Part I, Pure Appl. Chem. 1991, 63, 879-886; Part II: Introduction to Discovery Profiles; Part III: Discovery Profiles of the Transfermium Elements, Pure Appl. Chem. 1993, 65, 17571814. [All three parts have been published together in Prog. Part. Nucl. Phys. 1992, 29, 453-530.] "Responses on the Report 'Discovery of the Transfermium Elements' Invited by the Transfermium Working Groups from Lawrence Berkeley Laboratory, California, the Joint Institute for Nuclear Research, Dubna, and Gesellshaft für Schwerionenforschung, Darmstadt, and the Reply to the Responses by the Transfermium Working Group", Pure Appl. Chem. 1993, 65, 1815-1824.
8. International Union of Pure and Applied Chemistry. Inorganic Chemistry Division. Commission on Atomic Weights and Isotopic Abundances, "Atomic Weights of the Elements 1999", Pure Appl. Chem. 2001, 73, 667-683. Superseded "Atomic Weights of the Elements 1997" Pure Appl. Chem. 1999, 71, 1593-1607; "Atomic Weights of the Elements 1995", Pure Appl. Chem. 1996, 68, 2339-2359; and "Atomic Weights of the Elements 1993", Pure Appl. Chem. 1994, 66, 2423-2444.
9. International Union of Pure and Applied Chemistry; Clinical Chemistry Division and the International Federation of Clinical Chemistry (IFCC), Compendium of Terminology and Nomenclature of Properties in Clinical Laboratory Sciences (Recommendations 1995), Blackwell Science, Oxford, UK, 1995, 304 pp .
10. International Union of Pure and Applied Chemistry. Inorganic Chemistry Division. Commission on Atomic Weights and Isotopic Abundances, "History of the Recommended Atomic-Weight Values from 1882 to 1997: A Comparison of Differences from Current Values to the Estimated Uncertainties of Earlier Values", Pure Appl. Chem. 1998, 70, 237-257.
11. International Union of Pure and Applied Chemistry, Principles of Chemical Nomenclature. A Guide to IUPAC Recommendations, G. J. Leigh, H. A. Favre, and W. V. Metanomski, G. J. Leigh, ed., Blackwell Science, Oxford, UK, 1998, 133 pp.

## American Chemical Society Nomenclature

## 301. Chemical Abstracts Service Index Nomenclature

## Introductions to Subject Indexes and Name Selection Manuals

1. American Chemical Society. Chemical Abstracts Service, "The Naming and Indexing of Chemical Compounds from Chemical Abstracts" [a reprint of the Introduction to the Subject Index to Volume 56 (January-June, 1962)], Chemical Abstracts Service, Columbus, Ohio, 1962. A previous edition was reprinted from the Introduction to the 1945 Subject Index (Chemical Abstracts 1945, 39, 5867-5975) which was combined with revisions introduced in 1957 (Subject Index 1957, 51, 1R-28R).
2. ——, "Combined Introductions: Subject, Formula, Ring System, and HAIC Indexes to Volume 66, January-June, 1967", Chemical Abstracts Service, Columbus, Ohio, 1968.
3. -_, Naming and Indexing of Chemical Compounds, 1969 edition, Chemical Abstracts Service, Columbus, Ohio, 1969.
4. -_, "Naming and Indexing of Chemical Substances for Chemical Abstracts during the Ninth Collective Period (1972-1976)" [a reprint of Section IV (Selection of Index Names for Chemical Substances) from the Volume 76 Index Guide], Chemical Abstracts Service, Columbus, Ohio, 1973.
5.     - Chemical Substance Name Selection Manual for the Ninth Collective Period (1972-1976), Chemical Abstracts Service, Columbus, Ohio, 1973.
6. -, "Selection of Index Names for Chemical Substances" in the Volume 76-85 Cumulative Index Guide (1972-1976), Chemical Abstracts Service, Columbus, Ohio, 1977, Appendix IV.
7. -_, "Naming and Indexing of Chemical Substances for Chemical Abstracts" [a reprint of Appendix IV (Selection of Index Names for Chemical Substances) from the 1977 Index Guide], Chemical Abstracts Service, Columbus, Ohio, 1978.
8. -_, Chemical Substance Name Selection Manual, 1978 edition, Chemical Abstracts Service, Columbus, Ohio, 1978.
9.     - , "Selection of Index Names for Chemical Substances" in the 1977-1981 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 1982, Appendix IV.
10.     - ", "Naming and Indexing of Chemical Substances for Chemical Abstracts" [a reprint of Appendix IV (Chemical Substance Index Names) from the 1982 Index Guide], Chemical Abstracts Service, Columbus, Ohio, 1982.
11. -, Chemical Substance Name Selection Manual, 1982 edition, Chemical Abstracts Service, Columbus, Ohio, 1982.
12. -_, "Chemical Substance Index Names" in the 1984 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 1984, Appendix IV.
13.     - "Naming and Indexing of Chemical Substances for Chemical Abstracts" [a reprint of Appendix IV (Chemical Substance Index Names) from the 1985 Index Guide], Chemical Abstracts Service, Columbus, Ohio, 1985.
14. -, "Chemical Substance Index Names", in the 1982-1986 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 1987, Appendix IV.
15. -, "Naming and Indexing of Chemical Substances for Chemical Abstracts" [a reprint of Appendix IV (Chemical Substance Index Names) from the 1987 Index Guide], Chemical Abstracts Service, Columbus, Ohio 1987.
16. -_, "Chemical Substance Index Names", Appendix IV in the 1989 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 1989.
17. -, "Chemical Substance Index Names", Appendix IV in the 1990 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 1990.
18. -_, "Chemical Substance Index Names", in the 1987-1991 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 1992, Appendix IV (also appears in the "12th Collective Index on CD-ROM, Index Guide Appendixes I-IV [a reprint of Appendixes I-IV from the Index Guide to the 12th Collective Index], Chemical Abstracts Service, Columbus, Ohio, 1993).
19. -, "Naming and Indexing of Chemical Substances for Chemical Abstracts" [a reprint of Appendix IV (Chemical Substance Index Names) from the 1992 Index Guide], Chemical Abstracts Service, Columbus, Ohio, 1992.
20. -, Chemical Substance Name Selection Manual, 1982 edition (Revised, 1989) Chemical Abstracts Service, Columbus, Ohio.
21. -, "Chemical Substance Index Names", Appendix IV in the 1994 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 1994.
22. -, "Chemical Substance Index Names" in the 1992-1996 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 1997, Appendix IV.
23.     - , "Chemical Substance Index Names" in the 1997 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 1997, Appendix IV.
24. -_, "Naming and Indexing of Chemical Substances for CHEMICAL ABSTRACTS" [A reprint of Appendix IV (Chemical Substance Index Names) from the CHEMICAL ABSTRACTS 1997 Index Guide], Chemical Abstracts Service, Columbus, Ohio, 1997.
25. ——, "Chemical Substance Index Names" in the 1999 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 1999, Appendix IV.
26. -_, "Chemical Substance Index Names" in the 1997-2001 Index Guide, Chemical Abstracts Service, Columbus, Ohio, 2002, Appendix IV.

## Ring Nomenclature Handbooks

1. A. M. Patterson and L. T. Capell, The Ring Index, Rheinhold, New York, 1940, 661 pp.
2. A. M. Patterson, L. T. Capell, and D. F. Walker, The Ring Index, 2nd ed., American Chemical Society, Washington, D. C., 1960, 1425 pp.; Supplement 1, 1963, 371 pp.; Supplement 2, 1964, 515 pp.; Supplement 3, 1965, 581 pp.; "New Ring Systems from Chemical Abstracts Volumes 60-63", Chemical Abstracts Service, Columbus, Ohio, 1967, 285 pp.
3. Parent Compound Handbook, American Chemical Society, Washington, D. C., 1977 (Annual supplements appeared through 1983).
4. Ring Systems Handbook, 1984 edition, Chemical Abstracts Service, Columbus, Ohio, 1984 (Six cumulative supplements were published, the last in November 1987).
5. Ring Systems Handbook, 1988 edition, Chemical Abstracts Service, Columbus, Ohio, 1988 (Eight cumulative supplements were published, the last in November, 1992).
6. Ring Systems Handbook, 1993 edition, Chemical Abstracts Service, Columbus, Ohio, 1993. (Eight cumulative supplements were published, the last in November 1997).
7. Ring Systems Handbook, 1998 edition, Chemical Abstracts Service, Columbus, Ohio, 1998. (Seven cumulative supplements were published, the last in May 2002).

## Nomenclature Publications

1. A. M. Patterson, L. T. Capell, and D. F. Walker, The Ring Index, 2nd ed., American Chemical Society, Washington, D.C., 1960. Introduction. pp. ixxxvi; Suppl. 1, 1963, Introduction, pp. x-xiii.
2. J. E. Blackwood, C. L. Gladys, K. L. Loening, A. E. Petrarca, and J. E. Rush, "Unambiguous Specification of Stereoisomerism about a Double Bond", J. Am. Chem. Soc. 1968, 90, 509-510.
3. J. E. Blackwood, C. L. Gladys, A. E. Petrarca, W. H. Powell, and J. E. Rush, "Unique and Unambiguous Specification of Stereoisomerism about a Double Bond in Nomenclature and Other Notation Systems", J. Chem. Doc. 1968, 8, 30-32.
4. K. L. Loening, W. Metanomski, and W. H. Powell, "Indexing of Polymers in Chemical Abstracts", J. Chem. Doc. 1969, 9, 248-251.
5. N. Donaldson, W. H. Powell, R. J. Rowlett, Jr., R. W. White, and K. Yorka, "Chemical Abstracts Index Names for Chemical Substances in the Ninth Collective Period (1972-76)", J. Chem. Doc. 1974, 14, 3-15.
6. R. J. Rowlett, Jr. and F. A. Tate, "A Computer-Based System for Handling Chemical Nomenclature and Structural Representations", J. Chem. Doc. 1972, 12, 125-128.
7. R. J. Rowlett, Jr. and D. W. Weisgerber, "Handling Commercial Product Names at Chemical Abstracts Service", J. Chem. Doc. 1974, 14, 92-95.
8. J. E. Blackwood and P. M. Giles, Jr., "Chemical Abstracts Stereochemical Nomenclature of Organic Substances in the Ninth Collective Period (19721976)", J. Chem. Inf. Comput. Sci. 1975, 15, 67-72.
9. M. F. Brown, B. R. Cook, and T. E. Sloan, "Stereochemical Notation in Coordination Chemistry. Mononuclear Complexes", Inorg. Chem. 1975, 14, 1273-1278.
10. M. F. Brown, B. R. Cook, and T. E. Sloan, "Stereochemical Notation in Coordination Chemistry. Mononuclear Complexes of Coordination Numbers Seven, Eight, and Nine", Inorg. Chem. 1978, 17, 1563-1568.
11. A. C. Isenberg, J. T. LeMasters, A. F. Maxwell, and G. G. Vander Stouw, "Procedures for Sorting Chemical Names for Chemical Abstracts' Indexes", J. Chem. Inf. Comput. Sci. 1985, 25(4), 410-412.
12. J. E. Blackwood, P. E. Blower, Jr., S. W. Layten, D. H. Lillie, A. H. Lipkus, J. P. Peer, C. Qian, L. M. Staggenborg, and C. E. Watson. "Chemical Abstracts Service Chemical Registry System. 13. Enhanced Handling of Stereochemistry", J. Chem. Inf. Comput. Sci. 1991, 31, 204-212.
13. C. L. Gladys and A. L. Goodson, "Numbering of Interior Atoms in Fused Ring Systems", J. Chem. Inf. Comput. Sci. 1991, 31, 523-526.
14. P. M. Giles, Jr. and W. V. Metanomski, "The History of Chemical Substance Nomenclature at Chemical Abstracts Service (CAS)", in Organic Chemistry: Its Language and its State of the Art, M. Volkan Kisakürek, ed., Verlag Helvetica Chemica Acta, Basel, 1993, pp. 173-196.
15. L. M. Staggenborg, "Stereochemistry in the CAS Registry File", Spec. Publ. - R. Soc. Chem. 1993, 120, 89-112. (Recent Advances in Chemical Information II).
16. A. L. Goodson, C. L. Gladys, and D. E. Worst, "Numbering and Naming of Fullerenes by Chemical Abstracts Service", J. Chem. Inf. Comput. Sci. 1995, 35, 969-978.
17. D. W. Weisgerber, "Chemical Abstracts Service Chemical Substance Index Nomenclature" in Chemical Nomenclature, K. J. Thurlow, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 66-102.
18. C. E. Carraher, Jr., "Chemical Abstracts Based Polymer Nomenclature", J. Polym. Mater. 2000, 18, 1-6.
19. S. J. Teague, "Siloxanes and Silicones in the CAS Databases", Polym. Prepr. 2001, 42(1), xviii-xxii.

## 302. American Chemical Society Committee

1. American Chemical Society, "Recommendations of the Nomenclature Committee of the Organic Division of the ACS to the Nomenclature Committee of the National Society", J. Am. Chem. Soc. Proc. 1931, 40-41.
2. -_, "The Pronunciation of Chemical Words", Ind. Eng. Chem., News Ed. 1934, 12, 202-205.
3.,", "Nomenclature of the Hydrogen Isotopes and Their Compounds", Ind. Eng. Chem., News Ed. 1935, 13, 200-201.
3. -_, "Report of the Committee for the Revision of the Nomenclature of Pectic Substances", Chem. Eng. News 1944, 22, 105-106.
4.     - "Nomenclature of Carotenoid Pigments", Chem. Eng. News 1946, 24, 1235-1236.
5. -, "The Naming of cis and trans Isomers of Hydrocarbons Containing Olefin Double Bonds", Chem. Eng. News 1949, 27, 1303.
6. -_, "The Designation of 'Extra' Hydrogen in Naming Cyclic Compounds", Chem. Eng. News 1949, 27, 1303.
8., ,"The Naming of Geometric Isomers of Polyalkyl Monocycloalkanes", Chem. Eng. News 1950, 28, 1842-1843.
7.     - , "The Report of the ACS Nomenclature, Spelling, and Pronunciation Committee for the First Half of 1952", Chem. Eng. News 1952, 30, 4513-4526.
A. "Arene and Arylene", p. 4513.
B. "Halogenated Derivatives of Hydrocarbons", pp. 4513-4514.
C. "The Use of 'Per' in Naming Halogenated Organic Compounds", pp. 4514-4515.
D. "The Use of 'H' to Designate the Positions of Hydrogens in Almost Completely Fluorinated Organic Compounds", p. 4515.
E. "Organic Compounds Containing Phosphorus", pp. 4515-4522.
F. "Organosilicon Compounds", pp. 4517-4522. (These rules supersede the ACS 1946 rules which appeared in Chem. Eng. News 1946, 24, 1233-1234.)
G. "Nomenclature of Natural Amino Acids and Related Substances", pp. 4522-4526. (These rules were reprinted in J. Am. Chem. Soc. 1960, 82, 5575-5577. They replaced the 1947 ACS rules which appeared in Chem. Eng. News 1947, 25, 1364-1367. See also $\llbracket 297$, item 16.)
8. --, "A New General System for the Naming of Stereoisomers", G. E. McCasland, included with the "Report of the Advisory Committee on Configurational Nomenclature", July 14, 1953, H. B. Vickery, Chairman, to the Nomenclature Committee, Division of Organic Chemistry, American Chemical Society, Washington, D.C.
9. _ , "Addendum to Definitive Rules for the Nomenclature of Natural Amino Acids and Related Substances", J. Org. Chem. 1963, 28, 291-293. (See also $\mathbb{I}$ 297, item 16 and item 9G above).
10. -_, "A Proposed System of Nomenclature for Terpene Hydrocarbons", Chem. Eng. News 1954, 32, 1795-1797.
11. __, "Nomenclature for Terpene Hydrocarbons", a report of the Nomenclature Committee of the Division of Organic Chemistry of the American Chemical Society, American Chemical Society, Washington, D.C., 1955, 98 pp. (Advances in Chemistry Series No. 14.)
12. -_, "Rules of Carbohydrate Nomenclature", J. Org. Chem. 1963, 28, 281-291. (This report was the result of a cooperative effort by the Nomenclature Committee of the Division of Carbohydrate Chemistry of the American Chemical Society and a British Committee on Carbohydrate Nomenclature [a Subcommittee of the Publications Committee of the Chemical Society, London]. They are sometimes referred to as the "Anglo-American Rules" and were accepted by the Council of the American Chemical Society in 1962. They replaced the ACS 1953 rules which appeared in Chem. Eng. News 1953, 31, 1776-1782, which in turn replaced the ACS 1948 Carbohydrate Nomenclature Rules published in Chem. Eng. News 1948, 26, 1623-1629. These rules precede the tentative IUPAC carbohydrate rules, see $\mathbb{I}[297$, item 5.)
13. -_, "A Structure-Based Nomenclature for Linear Polymers", Macromolecules $1968,1,193-198$. These rules precede the IUPAC rules; see $\mathbb{T}[299$, item 5.
14. -_, "The Nomenclature of Boron Compounds", Inorg. Chem. 1968, 7, 1945-1964. These rules precede the IUPAC rules; see $\mathbb{T} 298$, item 2.
15. -, "ACS Committee on Nomenclature Recommendations", J. Chem. Doc. 1973, 13, 45 (News and Notes) (On the use of the diagonal, the hyphen, and the dash in chemical names).
16. American Chemical Society. Division of Carbohydrate Chemistry. Nomenclature Committee and the British Carbohydrate Nomenclature Committee, "Rules for Conformational Nomenclature for Five- and Six-Membered Rings in Monosaccharides and Their Derivatives", J. Chem. Soc., Chem. Commun. 1973, 505-508. These rules precede the IUPAC recommendations; see $\mathbb{I I} 297$, item 6 .
17. American Chemical Society. Division of Polymer Chemistry. Nomenclature Committee, "Abbreviations for Thermoplastics, Thermosets, Fiber, Elastomers, and Additives", Polym. News 1983, 9, 101-110; 1985, 10, 169172.
18. J. A. Young, "Revised Nomenclature for Highly Fluorinated Organic Compounds", J. Chem. Doc. 1974, 14, 98-100.
19. W. C. Fernelius and W. H. Powell, "Confusion in the Periodic Table of the Elements", J. Chem. Educ. 1982, 59, 504-508.
20. K. L. Loening, "Recommended Format for the Periodic Table of the Elements", J. Chem. Educ. 1984, 61, 136.
21. K. L. Loening, "Activities in the United States Relating to Chemical Terminology and Nomenclature", TermNet News 1987, (18), 3-6.
22. B. P. Block, W. C. Fernelius, and W. H. Powell, Inorganic Chemical Nomenclature: Principles and Practice, American Chemical Society, Washington, D.C., 1990, 210 pp .

## History and Development of Chemical Nomenclature

## 303. General

1. E. J. Crane, "The Standardization of Chemical Nomenclature", J. Chem. Educ. 1931, 8, 1335-1340. (Contains references.)
2. A. D. Mitchell, British Chemical Nomenclature, Edward Arnold \& Co., London, 1948, 156 pp.
3. E. J. Crane, "Chemical Nomenclature in the United States" in Chemical Nomenclature, American Chemical Society, Washington, D.C., 1953, pp. 5564. (Advances in Chemistry Series No. 8.)
4. R. S. Cahn and A. D. Mitchell, "Chemical Nomenclature in Britain Today" in Chemical Nomenclature, American Chemical Society, Washington, D.C., 1953, pp. 49-54. (Advances in Chemistry Series No. 8.)
5. K. A. Jensen, "Problems of an International Chemical Nomenclature" in Chemical Nomenclature, American Chemical Society, Washington, D.C., 1953, pp. 38-48. (Advances in Chemistry Series No. 8.)
6. H. S. Nutting, "Nomenclature in Industry" in Chemical Nomenclature, American Chemical Society, Washington, D.C., 1953, pp. 95-98. (Advances in Chemistry Series No. 8.)
7. G. M. Dyson, "Development of Chemical Symbols and their Relation to Nomenclature" in Chemical Nomenclature, American Chemical Society, Washington, D.C., pp. 99-105. (Advances in Chemistry Series No. 8.)
8. J. W. Perry, "The Role of Terminology in Indexing, Classifying, and Coding" in Chemical Nomenclature, American Chemical Society, Washington, D.C., 1953, pp. 106-112. (Advances in Chemistry Series No. 8.)
9. A. M. Patterson, Words About Words, American Chemical Society, Washington, D.C., 1957, 86 pp. (A compilation of the column by A. M. Patterson which appeared in Chem. Eng. News 1951-1956.)
10. L. T. Capell, "Effect of Changes in Nomenclature on the Use of Indexes" in Searching the Chemical Literature, American Chemical Society, Washington, D.C., 1961, pp. 58-66. (Advances in Chemistry Series No. 30.)
11. J. D. Scott and K. L. Loening, "Inorganic-Organic Nomenclature", J. Chem. Doc. 1964, 4, 66-69.
12. O. C. Dermer, G. Gorin, and K. L. Loening, "The Standardization of Chemical Language", Int. J. Sociol. Lang. 1976, 11, 61-83.
13. R. S. Cahn and O. C. Dermer, Introduction to Chemical Nomenclature, 5th, ed., Butterworths, London, 1979, 200 pp.
14. K. L. Loening, "Nomenclature" in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., John Wiley \& Sons, New York, Vol. 16, 1981, pp. 28-46; 2nd ed., Vol. 14, 1967, pp. 1-15.
15. R. Lees and A. F. Smith eds., Chemical Nomenclature Usage, Ellis Horwood, Ltd., Chichester, UK, 1983, 172 pp.
16. R. Fennell, History of IUPAC, 1919-1987, Blackwell Science, Oxford, UK, 1994354 pp.
17. Council of Biology Editors. Style Manual Committee, Scientific Style and Format; CBE Manual for Authors, Editors, and Publishers. E. Huth, ed., 6th ed., Cambridge University Press, Cambridge, UK, 1995. 825 pp .
18. P. A. S. Smith, "Nomenclature", in Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., John Wiley \& Sons, New York, Vol. 17, 1996, pp. 238-259.
19. K. J. Thurlow, ed., Chemical Nomenclature, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, 247 pp.
20. E. D. Godly, "The Need for Good Nomenclature" in Chemical Nomenclature, K. J. Thurlow, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 1-26.
21. S. S. Brown, History of IUPAC 1988-1999. Supplement to History of IUPAC 1919-1987, IUPAC, 2001, pp. 355-442 (Update of item 16, above).

## 304. Organic chemistry

## Geneva Rules

1. A. Pictet, "Le Congres International de Geneve pour la Reforme de la Nomenclature Chimique", Arch. Sci. Phys. Nat. 1892, [3] 27, 485-520.
2. M. Hanriot, "Congres de Nomenclature Chimique, Geneve 1892", Bull. Soc. Chim. Paris Suppl. 1892, s. 3, 7, XIV-XXIV.
3. H. E. Armstrong, "The International Conference on Chemical Nomenclature", Nature, 1892, 46, 56-58.
4. F. Tiemann, "Ueber die Beschluesse des Internationalen, in Genf von 19 bis 22 April 1892, versammelten Congresses zur Regelung der chemischen Nomenklatur", Ber. Dtsch. Chem. Ges. 1893, 26, 1595-1631.

## Liege Rules

1. International Union of Chemistry. Commission on the Reform of the Nomenclature of Organic Chemistry, "Definitive Report, Liege Meeting, 1930". (Translation with comments by A. M. Patterson, J. Am. Chem. Soc. 1933, 55, 3905-3925. Appeared also in English, J. Chem. Soc. 1931, 16071616.)
2. International Union of Chemistry. Commission on the Reform of the Nomenclature of Organic Chemistry, "Full Text of the New Organic Nomenclature Rules". Reported by A. M. Patterson, Science 1938, 87, 215-216 (Rules 34 and 49 of the Liege Report are given in full).

## Amsterdam Rules

1. International Union of Pure and Applied Chemistry. Organic Chemistry Division. Commission on the Nomenclature of Organic Chemistry, "Nomenclature of Organosilicon Compounds", C. R. de la Quinzieme Conference, Amsterdam, 1949, 127-132.
2. -, "Changes and Additions to the Definitive Report [of the Liege Meeting]", C. R. de la Quinzieme Conference, Amsterdam, 1949, 132-185.

## Proposals and Reviews

1. A. Hantzsch and J. H. Weber, Ber. Dtsch. Chem. Ges. 1887, 20, 31183132.
2. O. Widman, J. Prakt. Chem. 1888, 38, 185-201.
3. A. Baeyer, "Systematik und Nomenklatur Bicyclischer Kohlenwasserstoffe", Ber. Dtsch. Chem. Ges. 1900, 33, 3771-3775.
4. E. Buchner und W. Weigand, "Bornylen und Diazoessigester [Nebst einer Nomenklatur Tricyclischer Kohlenstoff-Ringsysteme nach Adolf von Baeyer]", Ber. Dtsch. Chem. Ges. 1913, 46, 2108-2117.
5. A. M. Patterson and C. E. Curran, "A System of Organic Nomenclature", J. Am. Chem. Soc. 1917, 39, 1623-1638.
6. A. M. Patterson, "Proposed International Rules for Numbering Organic Ring Systems", J. Am. Chem. Soc. 1925, 47, 543-561.
7. ——,"The Nomenclature of Parent Ring Systems", J. Am. Chem. Soc. 1928, 50, 3074-3087.
8. -_, "The Nomenclature of Organic Compounds of Complex Function", Rec. Trav. Chim. 1929, 48, 1012-1017.
9. P. E. Verkade, "La revision recente de la nomenclature des combinaisons organiques", Rec. Trav. Chim. 1932, 51, 185-217.
10. A. M. Patterson and L. T. Capell, "The Ring Index", Reinhold, New York, 1940, pp. 20-27.
11. F. Richter, "Basic Features of Nomenclature in Organic Chemistry" in Chemical Nomenclature, American Chemical Society, Washington, D.C., 1953, pp. 65-74. (Advances in Chemistry Series No. 8.)
12. P. E. Verkade, "Organic Chemical Nomenclature, Past, Present, and Future" in Chemical Nomenclature, American Chemical Society, Washington, D.C., 1953, pp. 75-82. (Advances in Chemistry Series No. 8.)
13. L. T. Capell and K. L. Loening, "Principles of Organic Nomenclature" in Treat. Anal. Chem., I. M. Kolthoff and P. J. Elving, eds., Interscience, New York, Vol. 11, 1965, Part II, Section B, pp. 1-44.
14. D. R. Eckroth, "Method for Manual Generation of Correct von Baeyer Names of Polycyclic Hydrocarbons", J. Org. Chem. 1967, 32, 3362-3365.
15. A. D. McNaught, "The Nomenclature of Heterocycles" in Advances in Heterocyclic Chemistry, A. R. Katritzky and A. J. Boulton, eds., Academic Press, New York, 1976, Vol. 20, pp. 175-247.
16. N. Lozac'h, A. L. Goodson, and W. H. Powell, "Nodal Nomenclature - General Principles", Angew. Chem. 1979, 91, 951-964; Angew. Chem., Int. Ed. Engl. 1979, 18, 887-899.
17. A. L. Goodson, "Graph Based Chemical Nomenclature. 1. Historical Background and Discussion", J. Chem. Inf. Comput. Sci. 1980, 20, 167-172; "2. Incorporation of Graph-Theoretical Principles into Taylor's Nomenclature Proposal", ibid. 1980, 20, 172-176.
18. K. L. Loening, "Hydrocarbons: Nomenclature" in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., John Wiley and Sons, New York, Vol. 12, 1980, pp. 892-900; 2nd ed., Vol. 11, 1966, pp. 288-293.
19. D. Eckroth, "Nitrogen's Hydrido Oxo Acids", J. Chem. Inf. Comput. Sci. 1983, 23, 157-159.
20. A. L. Goodson, "Application of Graph-Based Chemical Nomenclature to Theoretical and Preparative Chemistry," Croat. Chem. Acta 1983, 56, 315-324.
21. N. Lozac'h and A. L. Goodson, "Nodal Nomenclature II - Specific Nomenclature for Parent Hydrides, Free Radicals, Ions, and Substituents", Angew. Chem. 1984, 96, 1-15; Angew. Chem., Int. Ed. Engl. 1984, 23, 33-46.
22. A. D. McNaught and P. A. S. Smith, "Nomenclature of Heterocyclic Compounds" in Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees, eds., Pergamon Press, Oxford, UK, 1984, pp. 7-45.
23. A. L. Goodson and N. Lozac'h, "Advantages of Nodal Nomenclature for Uniquely Identifying Atoms in Chemical Nomenclature", Croat. Chem. Acta 1986, 59, 547-563.
24. W. V. Metanomski, "Unusual Names Assigned to Chemical Substances", Chem. Int. 1987, 9, 211-215; Irish Chem. News 1988 (Spring), 31-34; Biochim. Clin. 1990, 14, 58-62.
25. A. L. Goodson, "Nomenclature of Chemical Compounds", in Chemical Graph Theory, Introduction and Fundamentals, D. Bonchev and D. H. Rouvray, eds., Gordon and Breach Science Publishers, New York, 1991, Chapter 3, pp. 97-132.
26. H. A. Smith, Jr., "The Centennial of Systematic Organic Nomenclature", J. Chem. Educ. 1992, 69, 863-865.
27. P. A. S. Smith, "Trivial Names for Chemical Substances: Will They Be Taught or Forgotten in the Twenty-First Century", J. Chem. Educ. 1992, 69 , 877-878.
28. J. G. Traynham, "Organic Nomenclature: The Geneva Conference and the Following Fifty Years" in Organic Chemistry: Its Language and its State of the Art, M. Volkan Kisakürek, ed., Verlag Helvetica Chemica Acta, Basel, 1993, pp. 1-8.
29. K. L. Loening, "Organic Nomenclature: The Geneva Conference and the Second Fifty Years: Some Personal Observations" in Organic Chemistry: Its Language and its State of the Art, M. Volkan Kisakürek, ed., Verlag Helvetica Chemica Acta, Basel, 1993, pp. 35-45.
30. E. W. Godly, "Chemical Nomenclature in the Government Laboratory", in Organic Chemistry: Its Language and Its State of the Art. Verlag Helvetica Chimica Acta, Basel, 1993. pp. 117-132.
31. J. H. Stocker, "Tomorrow's Organic Nomenclature" in Organic Chemistry: Its Language and its State of the Art, M. Volkan Kisakürek, ed., Verlag Helvetica Chemica Acta, Basel, 1993, pp. 161-171.
32. B. C. L. Weedon and G. P. Moss, "Carotenoids, Structure and Nomenclature", in Carotenoids: Isolation and Analysis, Vol. 1A, G. Britton, S. Liaaen-Jensen, and H. Pfander, eds., Birkhäuser Verlag, Basel, 1995. Chapter 3, pp. 27-70.
33. R. Guitart, P. Puig, and J. Gómez-Catalán, "Requirement for a Standardized Nomenclature Criterium for PCBs; Computer-Assisted Assignment of Correct Congener Denominations and Numbering", Chemosphere 1993, 27, 1451-1459.
34. J. Kahovec, "Segment Nomenclature of Organic Compounds", J. Chem. Inf. Comput. Sci. 1996, 36, 1-6.
35. W. H. Koppenol and J. G. Traynham, "Say NO to Nitric Oxide: Nomenclature for Nitrogen- and Oxygen-Containing Compounds", Methods Enzymol. 1996, 268(Nitric Oxide, Part A), 3-7. Related commentary, ibid p. 291.
36. S. Kopp-Kubel, "Drug Nomenclature" in The Practice of Medicinal Chemistry. Camille G. Wermuth, editor. Academic Press, London, 1996, pp. 863-877.
37. A. Srikrishna, "A Rapid Way of Computing the Number of Rings Present in a Polycyclic Organic Compound", J. Chem. Educ. 1996, 73, 428.
38. K. Mislow and C. Liang, "Knotted Structures in Chemistry, Biochemistry, and Molecular Biology", Croat. Chem. Acta 1996, 69, 1385-1403.
39. D. Boring, "The Development and Adoption of Nonproprietary, Established, and Proprietary Names for Pharmaceuticals", Drug Inf. J. 1997, 31, 621-634.
40. U. K. Deiters, "Some Remarks on the Nomenclature of Refrigerants", Fluid Phase Equilib. 1997, 132, 265-270.
41. S. B. Elk, "Fundamental Difference That Exists between Synthetic versus Analytic Chemical Literature", J. Chem. Inf. Comput. Sci. 1997, 37, 162-164.
42. S. B. Elk, "Uniparametricity - Why a Canonical Ordering (and a Consistent Nomenclature) for Organic Compounds Continues to Evade Us", J. Chem. Inf. Comput. Sci. 1997, 37, 696-700.
43. P. G. Wester, H.-J. de Geus, J. de Boer, and U. A. Th. Brinkman, "Simple Nomenclature for Chlorinated Bornanes, Bornenes and Bornadienes from Which Structural Information Can Be Directly Deduced", Chemosphere 1997, 35, 1187-1194; Organohalogen Compd. 1997, 33, 47-52.
44. P. G. Wester, H.-J. de Geus, J. de Boer, and U. A. Th. Brinkman, "Simple Nomenclature for Chlorinated Camphenes and Dihydrocamphenes From Which Structural Information Can Be Directly Deduced", Chemosphere 1997, 35, 2857-2880.
45. J. E. Merritt and B. J. Bossenbroek, "Basic Resources for Assigning Chemical Names within the Field of Chemical Nomenclature" in Handbook of Terminology Management, Vol. 1, Basic Aspects of Terminology Management, S. E. Wright and G. Budin, compilers, John Benjamins, Amsterdam, 1997, Section 2.2.5, pp. 218-242.
46. T. Yu. Astakhova and G. A. Vinogradov, "Fullerene Notation and Isomerization Operations", Fullerene Sci. Technol. 1997, 5, 1545-1562.
47. R. G. Harvey, "Polycyclic Aromatic Hydrocarbons: Nomenclature" in Polycyclic Aromatic Hydrocarbons, Wiley-VCH Verlag, New York, 1997, pp. 12-20.
48. P. F. Rusch, "Nomenclature Searching" in Encyclopedia of Computational Chemistry, P. von Rague Schleyer, ed., John Wiley \& Sons, New York, 1998, Vol. 3, pp. 1876-1881.
49. K. J. Thurlow, "IUPAC Nomenclature Part 1, Organic" in Chemical Nomenclature, K. J. Thurlow, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 103-126.
50. K. J. Thurlow, "IUPAC Nomenclature Part 2, Organic, Inorganic and Others" in Chemical Nomenclature, K. J. Thurlow, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 127-145.
51. R. B. Triggs, "Trivial Nomenclature: the INN and ISO Systems" in Chemical Nomenclature, K. J. Thurlow, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 208-234.
52. S. B. Elk, "A Modern Topological Perspective of Ring Compound Taxonomy Created by Re-examining Taylor's Nomenclature System", THEOCHEM 1998, 453, 29-42.
53. -_, "Graph Theoretical Logic of Organic Chemistry Nomenclature: Why Eulerian Paths Are Better Suited for Aliphatic Compounds Versus Hamiltonian Paths for Benzenoids", THEOCHEM, 1999, 489, 189-194.
54. P. Stolz, N. Weis, and J. Krooss, "Nomenclature and Occurrence of Glycols and Their Derivatives in Indoor Air" in Organic Indoor Air Pollutants, T. Salthammer, ed., Wiley-VCH Verlag, Weinheim, Germany, 1999, pp. 117-125.
55. O. Safarowsky, B. Windisch, A. Mohry, and F. Vogtle, "Nomenclature for Catenanes, Rotaxanes, Molecular Knots, and Assemblies Derived from These Structural Elements", J. Prakt. Chem. 2000, 342, 437-444.
56. S. H. Leung, "Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names", J. Chem. Educ. 2000, 77, 48-49.
57. J. Chimeno, "How to Make Learning Chemical Nomenclature Fun, Exciting, and Palatable", J. Chem. Educ. 2000, 77, 144-145.
58. T. D. Crute, "Classroom Nomenclature Games - BINGO", J. Chem. Educ. 2000, 77, 481-482.
59. R. A. Gossage (letter); S. D. Kinrade, A.-M. E. Gillson, and C. T. G. Knight (reply), "Organosilicon Compounds - A Comment on Nomenclature Usage. Letter and Reply", J. Chem. Doc., Dalton Trans. 2002, (10), 2256-2257.

## Books

1. R. Stelzner and H. Kuh, Nomenklatur-Fragen in der Organischen Chemie, G.m.b.H., Leipzig-Berlin, 1921.
2. A. P. Terent'ev, A. N. Kost, A. M. Tsukerman, and V. M. Potapov, Nomenklatura Organicheskikh Soedinenii, Obzor, Kritika, Predlozheniya (Nomenclature of Organic Compounds, Review, Comments, Proposals), Izdatel'stvo Akademii Nauk SSSR, Moscow, 1955, 302 pp.
3. N. Lozac'h, La Nomenclature en Chimie Organique, Masson et Cie Editeurs, Paris, 1967, 294 pp. (Monographs de Chimie Organique, Vol. VI; Complements au Traite de Chimie Organique).
4. R. B. Fox and W. H. Powell, Nomenclature of Organic Compounds. Principles and Practice, 2nd ed., American Chemical Society/Oxford University Press, New York, 2001, 437 pp. Superseded J. H. Fletcher, O. C. Dermer, and R. B. Fox, Nomenclature of Organic Compounds, Principles and Practice, American Chemical Society, Washington, D.C., 1974, 337 pp. (Advances in Chemistry Series No. 126).
5. D. Hellwinkel, Die systematische Nomenklatur der organischen Chemie (Systematic Nomenclature of Organic Chemistry), 4th ed., SpringerVerlag, Berlin, 1998, 227 pp. Superseded 3rd ed. of 1982.
6. P. E. Verkade, A History of the Nomenclature of Organic Chemistry, F. C. Alderweireldt, et. al., eds., D. Reidel Publishing Co., Dordrecht, Netherlands, 1985, 528 pp . A collection of translated articles which appeared as follows in Bull. Soc. Chim. Fr.: I. "La naissance de la nomenclature de Geneve (1892) et des propositions de nomenclature de Saint-Etienne (1897) et la litterature afferente", Bull. Soc. Chim. Fr. 1966, 1807-1812; II. "Le developpement de la nomenclature de chimie organique pendant la periode de 1889-1897", ibid., 1967, 4009-4020; III. "Faits et evenements relatifs a la nomenclature de la chimie organique pendant la periode 1897-1911", ibid., 1968, 1358-1367; IV. "L'activite de l'Association Internationale de Societes Chimiques dans le domaine de la nomenclature de la chimie organique, 1911-1914", ibid., 1969, 3877-3881; V. "Activites individuelles dans le domaine de la nomenclature de la chimie organique pendant la periode de 1914 a 1930", ibid., 1969, 42974308; VI. "La creation de la nomenclature de Liege", ibid., 1970, 2739-2746; VII. "Le contenu de la nomenclature de Liege compare a celui de la nomenclature de Geneve", ibid., 1971, 1634-1647; VIII. "Faits et evenements relatifs a la nomenclature de la chimie organique pendant la periode de 1930 a 1946", ibid., 1971, 4299-4307; IX. "Sur l'activite de la Commission Internationale pendant la periode de 1946 a 1957", ibid., 1973, 1961-1971; X. "Sur la contenu des Sections A et B de l'IUPAC Nomenclature of Organic Chemistry", ibid., 1975, 555-570; XI. "Sur le procede de Combes (1892) pour la nomenclature des composes acycliques a fonction complexe", ibid., 1975, 1119-1126; XII. "Sur l'histoire de la creation de la Section C de l'IUPAC Nomenclature of Organic Chemistry", ibid., 1975, 2029-2036; XIII. "Un Livre Roumain tres remarquable sur la nomenclature de la chimie organique, publie en 1913 par C. I. Istrati", ibid. 1976, 1445-1464; XIV. "Sur le contenu de la Section C de l'IUPAC Nomenclature of Organic Chemistry", ibid., 1977, 457-478; XV. "L'oeuvre de Siboni, sur la nomenclature de la chimie", ibid., 1978, II, 13-31; XVI. "Historique de la Section D de l'IUPAC Nomenclature of Organic Chemistry", ibid., 1979, 215-229.
7. Handbuch zur Anwendung der Nomenclatur Organisch-Chemischer Verbindungen, Wolfgang Liebscher, ed., Akademie-Verlag, Berlin, 1979.
8. "Guiding Principles for Coining U.S. Adopted Names for Drugs" in USAN and the USP Dictionary of Drug Names", C. A. Fleeger, ed., United States Pharmacopeial Convention, Inc., Rockville, Maryland, 1993, I, pp. 781790. (USAN 1994; 1961-1993 cumulative list.)
9. K. Hirayama, The HIRN System: Nomenclature of Organic Chemistry, Springer-Verlag, Berlin, 1984, 149 pp .
10. J. Heger, Ako Tvorit Nazvy Organickych Zlucenin (How to Name Organic Compounds), Slovenske Pedagogicke Nakladatel'stvo, Bratislava, 1985, 163 pp.
11. A. Nickon and E. F. Silversmith, Organic Chemistry: The Name Game, Modern Coined Terms and their Origins, Pergamon Press, New York, 1987, 347 pp.
12. P. Fresenius, Organisch-chemische Nomenklatur: Grundlagen, Regels, Beispiele (Organic Chemical Nomenclature: Principles, Rules, Examples), 4th ed., Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany, 1998, 343 pp. Superseded 3rd ed. of 1991 and 2nd ed. of 1991. Organic Chemical Nomenclature: Introduction to the Basic Principles, trans. by A. J. Dundson, Ellis Harwood Ltd., Chichester, UK, 1989, 294 pp.
13. E. W. Godly, Naming Organic Compounds: A Systematic Instruction Manual, Ellis Horwood Ltd., Chichester, UK, 1989, 267 pp.
14. K. Loening, J. Merritt, D. Later, and W. Wright, Polynuclear Aromatic Hydrocarbons Nomenclature Guide, 1st ed., Battelle Press, Columbus, Ohio, 1990, 87 pp.
15. F. G. Alcaraz, Nomenclatura de Quimica Organica (Nomenclature of Organic Chemistry), Universidad de Murcia, Murcia, Spain, 1991, 686 pp.
16. H. Favre, La Nomenclature pour la Chimie Organique; Les Noms Substitutifs et Les Noms de Classes Fonctionnelles (Nomenclature for Organic Chemistry: Substitutive Names and Names of Functional Classes), Order des Chimistes du Québec, Montréal, 1992, 138 pp.
17. M. V. Kisakürek, ed., Organic Chemistry: Its Language and Its State of the Art. Verlag Helvetica Chimica Acta, Basel, 1993. 196 pp. (Proceedings: Centenary of the 'Geneva Conference' of 1892. Geneva, Switzerland, 23 April 1992.)
18. D. J. Polton, Chemical Nomenclatures and the Computer, Research Studies Press, Taunton, UK, John Wiley \& Sons, New York, 1993. 264 pp. (Computers and Chemical Structure Information Series No. 4).
19. G. Kruse, Nomenklatur der organischen Chemie (Nomenclature of Organic Chemistry), Wiley-VCH Verlag, Weinheim, Germany, 1997, 260 pp.
20. K.-H. Hellwich, Chemische Nomenklatur. Die systematische Benennung organisch-chemischer Verbindungen (Chemical Nomenclature. The Systematic Naming of Organic Chemical Compounds), Govi-VerlagPharmazeutischer Verlag, Eschborn, Germany, 1998. 144 pp.
21. H. Bartsch, Die systematische Nomenklatur organischer Arzneistoffe (Systematic Nomenclature of Organic Pharmaceuticals), Springer-Verlag, Wien, 1998, 112 pp .
22. H. Reimlinger, Nomenklatur organisch-chemischer Verbindungen (Nomenclature of Organic Chemical Compounds), De Gruyter, Berlin, Germany, 1998, 606 pp.
23. D. Hellwinkel, Systematic Nomenclature of Organic Chemistry: A Directory to Comprehension and Application of Its Basic Principles, SpringerVerlag, Berlin, Germany, 2001, 228 pp.
24. U. Bünzli-Trepp, Handbuch für die systematische Nomenklatur der organischen Chemie, Logos Verlag, Berlin, Germany, 2001, 559 pp.

## Algorithmic Generation of Chemical Names

1. K. Conrow, "Computer Generation of Baeyer Systems Names of Saturated Bridged Bicyclic, Tricyclic, and Tetracyclic Hydrocarbons", J. Chem. Doc. 1966, 6, 206-212.
2. D. van Binnendyk and A. C. MacKay, "Computer-assisted Generation of IUPAC Names of Polycyclic Bridged Ring Systems", Can. J. Chem. 1973, 51, 718-723.
3. J. Mockus, A. C. Isenberg, and G. G. Vander Stouw, "Algorithmic Generation of Chemical Abstracts Index Names. 1. General Design", J. Chem. Inf. Comput. Sci. 1981, 21, 183-195.
4. D. E. Meyer and S. R. Gould, "Microcomputer Generation of Chemical Nomenclature from Graphic Structure Input", Am. Lab. 1988, 20, 92-96.
5. S. Davidson. "An Improved IUPAC-based Method for Identifying Alkanes", J. Chem. Inf. Comput. Sci. 1989, 29, 151-155.
6. A. M. Marconi, N. Proietti, and E. Zeuli, "Computer Aided Nomenclature: The MARK Algorithm for Organic Chemistry", Tetrahedron Comput. Methodol. 1990, 3, 297-303.
7. G. Rücker and C. Rücker, "Nomenclature of Organic Polycycles out of the Computer - How to Escape the Jungle of Secondary Rings", Chimia 1990, 44, 116-120.
8. J. L. Wisniewski, "AUTONOM: System for Computer Translation of Structural Diagrams into IUPAC-compatible Names. 1. General Design", J. Chem. Inf. Comput. Sci. 1990, 30, 324-332.
9. L. Goebels, A. J. Lawson, and J. L. Wisniewski, "AUTONOM: System for Computer Translation of Structural Diagrams into IUPAC-compatible Names. 2. Nomenclature of Chains and Rings", J. Chem. Inf. Comput. Sci. 1991, 31, 216-225.
10. K. W. Raymond, "A LISP Program for the Generation of IUPAC Names from Chemical Structures", J. Chem. Inf. Comput. Sci. 1991, 31, 270-274.
11. J. Navech and C. Despax, "Computer Processing and Nomenclature Construction of the IUPAC Name Using the SCN Code Number", New J. Chem. 1992, 16, 1071-1076.
12. J. L. Wisniewski, "AUTONOM - A Chemist's Dream: System for (Micro) computer Genereation of IUPAC-Compatible Names from Structural Input", in Chemical Structures 2, (proceedings: 2nd International Conference on Chemical Structures. Noordwijkerhout, Netherlands, June, 1990), W. A. Warr, ed. Springer-Verlag, Berlin, 1993, pp. 55-63.
13. J. Wisniewski, "AUTONOM: A Computer Program for the Generation of IUPAC Systematic Nomenclature Directly From the Graphic Structure Input", Spec. Publ. - R. Soc. Chem. 1993, 120, 77-87. (Recent Advances in Chemical Information II).
14. Y. Yoneda, "CHEMO Notation. A Line Notation for Organic Compounds Following IUPAC Nomenclature", J. Chem. Inf. Comput. Sci. 1996, 36, 299-309.
15. S. Yuan, C. Zheng, and J. Yao, "Chemical Abstracts Index Names: Automatic Generation", Ind. Inf. Des. Issues 1996, 279-284.
16. J. L. Wisniewski, "Nomenclature: Automatic Generation and Conversion" in Encyclopedia of Computational Chemistry, P. von Rague Schleyer, ed., John Wiley \& Sons, New York, 1998, Vol. 3, pp. 1881-1894.
17. S. B. Walker, "Computer-Generated Chemical Nomenclature" in Chemical Nomenclature, K. J. Thurlow, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 235-242.
18. J. Brecher, "Name=Struct: A Practical Approach to the Sorry State of Real-Life Chemical Nomenclature", J. Chem. Inf. Comput. Sci. 1999, 39, 943-950.
19. "Online Naming Services" are available through a working relationship between IUPAC and two companies:

Advanced Chemistry Development (ACD) http://www.acdlabs.com/
Beilstein Information - AutoNom http://www.beilstein.com/

## 305. Biochemistry

1. Reports of the International Union of Chemistry. Commission on the Reform of the Nomenclature of Biological Chemistry:
(1) C. Belgium, "La nomenclature de chimie biologique: une reforme heureuse", Schweiz. Apoth. Z. 1928, 66, 193-197.
(2) G. Bertrand, "Project de reforme de la nomenclature de chimie biologique (rapport presente a la Commission Internationale en 1922)", Bull. Soc. Chim. Biol. 1923, 5, 96-109.
(3) G. Bertrand, "Propositions relatives a la nomenclature des glucides", Bull. Soc. Chim. Biol. 1927, 9, 854-856.
(4) M. Bridel, "La reforme de la nomenclature de chimie biologique. Etat de la question a la fin de 1926", Bull. Soc. Chim. Biol. 1926, 8, 1211-1216.
2. J. E. Courtois, "Work of Commission on Nomenclature of Biological Chemistry" in Chemical Nomenclature, American Chemical Society, Washington, D.C., 1953, pp. 83-94. (Advances in Chemistry Series No. 8.)
3. W. E. Chon "Representation of Macromolecules and Polymers of Biological Importance", J. Chem. Doc. 1969, 9, 235-241.
4. N. A. Nelson, "Prostaglandin Nomenclature," J. Med. Chem. 1974, 17, 911-918.
5. B. M. Benjamin, "Nomenclature in Genetic Engineering", CBE Views 1986, 9, 48-50.
6. The Terminology of Biotechnology: A Multidisciplinary Problem (Proceedings of the 1989 International Chemical Congress of Pacific Basin Societies, PACIFICHEM '89), K. L. Loening, ed., Springer-Verlag, Berlin, 1990, 216 pp . This publication includes:
(1) K. L. Loening, "Activities of the IUPAC/IUB Joint Commission on Biochemical Nomenclature (JCBN) and the Nomenclature Committee of IUB (NC-IUB)", pp. 1-8.
(2) A. Tsugita, "Nomenclature and Protein Databases", pp. 9-16.
(3) J. A. Secrist III, "Nomenclature of Altered Proteins", pp. 17-24.
(4) J. E. Merritt, B. M. Benjamin, and W. F. Hackett, "Nomenclature and Representation of Biopolymer Sequences by Chemical Abstracts Service", pp. 25-40.
(5) D. Horton, "Development of Carbohydrate Nomenclature", pp. 41-50.
(6) E. C. Webb, "Enzyme Nomenclature", pp. 51-60.
(7) M. I. Johnston, R. J. Black, and M. W. Myers, "Interferron Nomenclature", pp. 61-70.
(8) L. Blaine, "The Nomenclature of Monoclonal Antibodies", pp. 71-84.
(9) A. L. Willis, W. L. Smith, D. L. Smith, and R. Eglen, "Nomenclature in the Field of Eicosanoids", pp. 93-108.
(10) D. O. Schiffman, "United States Adopted Names for Drugs", pp. 109-114.
(11) C. H. Barnstein and W. M. Heller, "Nomenclature of Pharmaceuticals", pp. 207-214.
7. J. Ferré, K. B. Jacobsen, and W. Pfleiderer, "Proposal Towards a Normalization of Pteridine Nomenclature", Pteridines 1991, 2, 129-132.
8. J. E. Merritt and K. L. Loening, "Enzyme Nomenclature" in Polynuclear Aromatic Hydrocarbons: Measurements, Means, and Metabolism (11th International Symposium on Polynuclear Aromatic Hydrocarbons, Gaithersburg, Maryland, Sept. 24, 1987), M. Cook, K. Loening, and J. E. Merritt, eds., Battelle Press, Columbus, Ohio, 1991, pp. 583-599.
9. A. F. Hoffman, J. Sjövall, G. Kurz, A. Radominska, C. D. Schteingart, G. S. Tint, Z. R. Vlahcevic, and K. D. R. Setchell, "A Proposed Nomenclature for Bile Acids", J. Lipid Research, 1992, 33, 599-604.
10. K. F. Tipton, "The Naming of Parts", Trends Biochem. Sci. 1993, 18, 113-115.
11. E. C. Webb, "Enzyme Nomenclature: A Personal Retrospective", FASEB J. 1993, 7, 1192-1194.
12. E. Beutler, V. A. McKusick, A. G. Motulsky, C. R. Scriver, and F. Hutchinson, "Mutation Nomenclature: Nicknames, Systematic Names, and Unique Identifiers", Hum. Mutat. 1996, 8(3), 203-206.
13. R. G. H. Cotton and H. H. Kazazian, Jr., "Mutation Nomenclature", Hum. Mutat. 1996, 8(3), iv.
14. R. G. H. Cotton, Ad Hoc Committee on Mutation Nomenclature, "Update on Nomenclature for Human Gene Mutations", Hum. Mut. 1996, 8(3), 197-202; Hum. Mutat. 1996, 8(3), iv (editorial). For related website see http:// ariel.ucs.unimelb.edu.au:80/~cotton/proposals.htm
15. L. T. McGlade, B. A. Milot, and J. Scales, "Lipid Terminology", Am. J. Clin. Nutr. 1996, 64, 668.
16. International Union of Pharmacology. Subcommittee on Opioid Receptors, "XII. Classification of Opioid Receptors", Pharmacol. Rev. 1996, 48, 567-592.
17. International Union of Pharmacology. Committee on Receptor Nomenclature and Drug Classification, "XIV. Nomenclature in Nitric Oxide Research", Pharmacol. Rev. 1997, 49, 137-142.
18. Hartig, P. R., "A Genome-Based Receptor Nomenclature", Ann. N.Y. Acad. Sci. 1997, 812, 85-91.
19. J. M. Jez, T. G. Flynn, and T. M. Penning, "A Nomenclature System for the Aldo-Keto Reductase Superfamily", Adv. Exp. Med. Biol. 1997, 414, 579-589.
20. D. F. Taber, J. D. Morrow, and L. J. Roberts, II, "A Nomenclature System for the Isoprostanes", Prostaglandins 1997, 53, 63-67.
21. International Society for Interferon and Cytokine Research. Nomenclature Committee, "Nomenclature of Interferon Receptors and Interferon- $\sigma$.", J. Interferon Cytokine Res. 1997, 17, 315-316.
22. C. A. Allen, "A Brief History of the Discovery of the Immunoglobulins and the Origin of the Modern Immunoglobulin Nomenclature", Immunol. Cell Biol. 1997, 75, 65-68.
23. J. W. Bodnar, J. Killian, M. Nagle, and S. Ramchandani, "Deciphering the Language of the Genome", J. Theor. Biol. 1997, 189, 183-193.
24. J. M. Jez, T. G. Flynn, and T. M. Trevor, "A New Nomenclature for the Aldo-Keto Reductase Superfamily", Biochem. Pharmacol. 1997, 54, 639-647.
25. J. Rokach, S. P. Khanapure, S.-W. Hwang, M. Adiyaman, J. A. Lawson, and G. A. FitzGerald, "Nomenclature of Isoprostanes: A Proposal", Prostaglandins 1997, 54, 853-873.
26. A. C. de Groot and J. W. Weijland, "Conversion of Common Names of Cosmetic Allergens to the INCI Nomenclature", Contact Dermatitis 1997, 37, 145-150.
27. "Common Names of Pesticides Recently Approved by the BSI [British Standards Institution]", Pestic. Sci. 1997, 49, 402-405.
28. S. E. Antonarakis, "Recommendations for Human Gene Mutations", Hum. Mutat. 1998, 11, 1-3.
29. J. Buckingham, "Natural Products" in Chemical Nomenclature, K. J. Thurlow, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 162-207.
30. D. R. Flower, "A Topological Nomenclature for Protein Structure", Protein Eng. 1998, 11, 723-727.
31. P. J. Moynihan, "Update on the Nomenclature of Carbohydrates and Their Dental Effects", J. Dent. 1998, 26, 209-218.
32. M. Saffran, "Amino Acid Names and Parlor Games: From Trivial Names to a One-Letter Code, Amino Acid Names Have Strained Students' Memories. Is a More Rational Nomenclature Possible?", Biochem. Educ. 1998, 26, 116-118.
33. B. R. Larsen, M. Lahaniati, A. Calogirou, and D. Kotzias, "Atmospheric Oxidation Products of Terpenes: A New Nomenclature", Chemosphere 1998, 37, 1207-1220.
34. S. F. O'Keefe, "Nomenclature and Classification of Lipids", Food Sci. Technol. (N.Y.) 1998, 88, 1-36.
35. A. J. Kenny, "Introduction: Nomenclature and Classes of Peptidases" in Proteolytic Enzymes, E. E. Sterchi and W. Stoecker, eds., Springer-Verlag, Berlin, Germany, 1999, pp. 1-8.
36. A. E. Manzi and H. van Halbeek, "Saccharide Structure and Nomenclature" in Essentials of Glycobiology, A. Varki, ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1999, pp. 17-29.
37. International Union of Pharmacology. Committee on Receptor Nomenclature and Drug Classification, "XX. Current Status of the Nomenclature for Nicotinic Acetylcholine Receptors and Their Subunits", Pharmacol. Rev. 1999, 51, 397-401.
38. Weed Science Society of America. Terminology Committee, "Common and Chemical Names of Herbicides Approved by the Weed Science Society of America", Weed Sci. 2002, 50, 130-136. Superseded ibid 2000, 48, 786-792; 1999, 47, 764-769; 1998, 46, 729-734.
39. H. Luders, "Structure and Nomenclature of Surface-Active Alkyl Glucosides", Surfactant Sci. Ser. 2000, 91, 7-18.
40. P. Gegenheimer, "Enzyme Nomenclature: Functional or Structural", RNA 2000, 6, 1695-1697.
41. International Union of Pharmacology. Nomenclature Committee, "XXII. Nomenclature of Chemokine Receptors", Pharmacol. Rev. 2000, 52, 145-176.
42. A. Zlotnik and O. Yoshie, "Chemokines: A New Classification System and Their Role in Immunity", Immunity 2000, 12, 121-127.
43. K. Lobb and C. K. Chow, "Fatty Acid Classification and Nomenclature", Food Sci. Technol. (N.Y.) 2000, 96, 1-15.
44. K. Tipton and S. Boyce, "History of the Enzyme Nomenclature System", Bioinformatics 2000, 16, 34-40.
45. I. H. Mather, "A Review and Proposed Nomenclature for Major Proteins of the Milk-Fat Globule Membranes", J. Dairy Sci. 2000, 83, 203-247.
46. S. B. Walker, "Common Names of Pesticides Recently Approved by the BSI [British Standards Institution]", Pest Manage. Sci. 2001, 57, 653-654.
47. International Union of Immunological Societies. World Health Organization Subcommittee on Chemokine Nomenclature, "Chemokine/Chemokine Receptor Nomenclature", J. Leukocyte Biol. 2001, 70, 465-466; J. Immunolog. Methods 2002, 262, 1-3.
48. International Union of Pharmacology. Nomenclature Committee, "XXV. Nomenclature and Classification of Adenosine Receptors", Pharmacol. Rev. 2001, 53, 527-552.
49. S. Fields and M. Johnston, "A Crisis in Postgenomic Nomenclature", Science 2002, 296, 671-672.
50. H. M. Wain, M. Lush, F. Ducluzeau, and S. Povey, "Genew: the Human Gene Nomenclature Database", Nucleic Acids Res. 2002, 30, 169-171.
51. H. M. Wain, E. A. Bruford, R. C. Lovering, M. L. Lush, M. W. Wright, and S. Povey, "Guidelines for Human Gene Nomenclature", Genomics 2002, 79, 464-470.
52. L. J. Maltais, J. A. Blake, T. Chu, C. M. Lutz, J. T. Eppig, and I. Jackson, "Rules and Guidelines for Mouse Gene, Allele, and Mutation Nomenclature: A Condensed Version", Genomics 2002, 79, 471-474.
53. R. Aasland et al., "Normalization of Nomenclature for Peptide Motifs as Ligands of Modular Protein Domains", FEBS Letters 2002, 513, 141-144.
54. Lynch, K. R., "Review - Lysophospholipid Receptor Nomenclature", Biochem. Biophys. Acta 2002, 1582, 70-71.

## 306. Inorganic chemistry

1. A. Werner, New Ideas on Inorganic Chemistry, translated by E. P. Headley from 2nd German ed., Longmans, Green, and Co., London, 1911. (See also A. Werner, Z. Anorg. Chem. 1897, 14, 23, and A. Werner and A. Klein, Z. Anorg. Chem. 1897, 14, 28.)
2. A. Stock, "Einige Nomenklaturfragen der Anorganischen Chemie", Z. Angew. Chem. 1919, 32(I), 373-376.
3. R. J. Meyer and A. Rosenheim, "Die Vorschlaege der Deutschen Nomenklaturkommission fuer Anorganische Chemie", Z. Angew. Chem. 1925, 38, 713-715. (See also Chem. Weekbl. 1926, 23, 93-96.)
4. M. Delepine, "Revision of Inorganic Chemical Nomenclature, Report of the IUPAC Committee for the Reform of the Nomenclature of Inorganic Chemistry", Chem. Weekblad. 1926, 23, 86-93. (Minutes of the meeting of the Commission for the Reform of Inorganic Chemical Nomenclature, October 67, 1925, appear in Chem. Weekbl. 1926, 23, 96-99.)
5. E. J. Crane, "Report of the Committee on Nomenclature in Inorganic Chemistry, Washington, D.C., September, 1926", Chem. Weekbl. 1926, 23, 486-487.
6. W. P. Jorissen, H. Bassett, A. Damiens, F. Fichter, and H. Remy, "Rules for Naming Inorganic Compounds. Report of the Committee of the International Union of Chemistry for the Reform of Inorganic Chemical Nomenclature, 1940", J. Am. Chem. Soc. 1941, 63, 889-897. Also published in J. Chem. Soc. 1940, 1404-1415. (See also R. J. Meyer, "Report on the Nomenclature of Inorganic Compounds", Chem. Weekbl. 1936, 33, 722-729.)
7. J. D. Scott, "The Need for Reform in Inorganic Chemical Nomenclature", Chem. Rev. 1943, 32, 73-97.
8. R. V. G. Ewens and H. Bassett, "Inorganic Chemical Nomenclature", Chem. Ind. 1949, 27, 131-139.
9. H. Bassett, "Some General Principles of Inorganic Chemical Nomenclature" in Chemical Nomenclature, American Chemical Society, Washington, D.C., 1953, pp. 5-8. (Advances in Chemistry Series No. 8.)
10. W. C. Fernelius, "Nomenclature of Coordination Compounds and Its Relation to General Inorganic Nomenclature" in Chemical Nomenclature, American Chemical Society, Washington, D.C., 1953, pp. 9-37. (Advances in Chemistry Series No. 8.)
11. W. C. Fernelius, "Principles of Inorganic Nomenclature", in Treatise on Analytical Nomenclature, I. M. Kolthoff and P. J. Elving, eds., Interscience, New York, 1961, Vol. 1, Pt. 2, Section A, pp. 1-33.
12. W. C. Fernelius, "Nomenclature of Coordination Compounds: Present Status", J. Chem. Doc. 1964, 4, 70-83; 1965, 5, 200-205.
13. P. M. McDonnell and R. F. Pasternak, "Line-Formula Notation System for Coordination Compounds", J. Chem. Doc. 1965, 5, 56-60.
14. W. C. Fernelius, "The Nomenclature of Coordination Compounds from Pre-Werner Times to the 1966 IUPAC Report" in Werner Centennial, American Chemical Society, Washington, D.C., 1967, pp. 147-160. (Advances in Chemistry Series No. 62.)
15. R. M. Adams, "Inorganic Nomenclature in 1966, Problems and Progress", J. Chem. Doc. 1967, 7, 67-71.
16. F. A. Cotton, "Proposed Nomenclature for Olefin-Metal and Other Organometallic Complexes", J. Am. Chem. Soc. 1968, 90, 6230-6232.
17. J. E. Huheey, "The Rules of Inorganic Nomenclature", in Inorganic Chemistry; Principles of Structure and Reactivity by J. E. Heheey. Harper \& Row, New York, 1972. Appendix E. pp. 674-690.
18. W. C. Fernelius, "Present Status of Inorganic Chemical Nomenclature", J. Chem. Inf. Comput. Sci. 1981, 21, 213-218.
19. J. B. Casey, W. J. Evans, and W. H. Powell, "A Descriptor System and Principles for Numbering Closed Boron Polyhedra with at Least One Rotational Symmetry Axis and One Symmetry Plane", Inorg. Chem. 1981, 20, 13331341; "A Descriptor System and Suggested Numbering Procedures for Closed Boron Polyhedra Belonging to $\mathrm{D}_{n}, \mathrm{~T}$, and $\mathrm{C}_{s}$ Symmetry Point Groups", ibid. 3556-3561.
20. J. B. Casey, W. J. Evans, and W. H. Powell, "Structural Nomenclature for Polyboron Hydrides and Related Compounds. 1. Closed and Capped Polyhedral Structures", Inorg. Chem. 1983, 22, 2228-2235; "2. Nonclosed Structures", ibid. 2236-2245; "3. Linear conjuncto-Structures", ibid. 1984, 23, 41324143.
21. W. C. Fernelius, "Some Reflections on the Periodic Table and Its Use", J. Chem. Educ. 1986, 63, 263-266.
22. D. H. Busch, "Labelling Columns of the Long Form Periodic Table", Chem. Int. 1987, 9(2), 49-50; "Column Labelling for the Long Form of the Periodic Table", Chem. Int. 1989, 11(2), 57-60.
23. E. K. Hyde, D. C. Hoffman, and O. L. Keller, Jr., "A History and Analysis of the Discovery of Elements 104 and 105", Radiochim. Acta 1987, 42, 57-102.
24. W. C. Fernelius, "Correct Methods for Naming Inorganic Compounds", J. Chem. Educ. 1987, 64, 901-903.
25. W. H. Powell and T. E. Sloan, "Inorganic Ring Nomenclature: Past, Present, and Future", Phosphorus, Sulfur Silicon, Relat. Elem. 1989, 41, 183-191.
26. International Union of Crystallography. Commission on Crystallographic Nomenclature. Subcommittee on the Nomenclature of Inorganic Structure Types, "Nomenclature of Inorganic Structure Types", Acta Cryst. 1990, A46, 1-11
27. Particle Data Group "The Naming Scheme for Hadrons", Section III of the Introduction of Review of Particle Properties, Phys. Lett. B, 1990, 239, I.6I. 11 (an update of the scheme originally published as "A New Naming Scheme for Hadrons", ibid., 1986.)
28. B. E. Douglas, "Nomenclature of Inorganic Chemistry", in Concepts and Models of Inorganic Chemistry by B. E. Douglas, D. H. McDaniel, J. J. Alexander. 3rd ed., John Wiley \& Sons, New York, 1994. Appendix B. pp. B1 -B17.
29. G. T. Seaborg, "Terminology of the Transuranium Elements", Terminology 1994, 1, 229-252.
30. G. T. Seaborg, "Transuranium Elements: Past. Present, and Future", Acc. Chem. Res. 1995, 28, 257-264.
31. N. N. Greenwood, "Recent Developments Concerning the Discovery of Elements 110-111", Pure Appl. Chem. 1997, 69, 179-184.
32. H. Strunz, "Chemical-Structural Mineral Classification Principles and Summary of System", Neues Jahrb. Mineral. Monatsch. 1997, (10), 435-445.
33. International Mineralogical Association. Commission on New Minerals and Mineral Names, "Recommended Nomenclature for Zeolite Minerals", Can. Mineral. 1997, 35, 1571-1606; Mineral. Mag. 1998, 62, 533-571; Eur. J. Mineralog. 1998, 10, 1037-1081.
34. Y. P. Jeannin, "The Nomenclature of Polyoxometalates: How To Connect a Name and a Structure", Chem. Rev. (Washington, D.C.) 1998, 98, 51-76.
35. R. Metselaar, "Terminology for Compounds in the Si-Al-O-N System", J. Eur. Ceramic Soc. 1998, 18, 183-184.
36. P. E. Childs, "From Hydrogen to Meitnerium: Naming the Chemical Elements" in Chemical Nomenclature, K. J. Thurlow, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 27-66.
37. K. J. Thurlow, "IUPAC Nomenclature Part 2, Organic, Inorganic and Others", in Chemical Nomenclature, K. J. Thurlow, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 127-145.
38. W. Liebscher and E. Fluck, Die systematische Nomenklatur der anorganischen Chemie (Systematic Nomenclature of Inorganic Chemistry), WileyVCH Verlag, Weinheim, Germany, 1998, 388 pp.
39. E. H. Nickel and J. D. Grice, "The IMA Commission on New Minerals and Mineral Names: Procedures and Guidelines on Mineral Nomenclature, 1998", Can. Mineral. 1998, 36, 913-926; Mineral. Petrol. 1998, 64, 237-263; Mineral. Rec. 1999, 30, 163-176.
40. J. L. Jambor, "Nomenclature of the Alunite Supergroup", Can. Mineral. 1999, 37, 1323-1341; K. L. Scott, "Nomenclature of the Alunite Supergroup: Discussion", Can. Mineral. 2000, 38, 1295-1297; J. L. Jambor, "Nomenclature of the Alunite Supergroup: Reply", Can. Mineral. 2000, 38, 1298-1303.
41. M. Rieder, "Mineral Nomenclature in the Mica Group: the Promise and the Reality", Eur. J. Mineral. 2001, 13, 1009-1012.
42. D. L. Bish and J. M. Boak, "Clinoptilolite-Heulandite Nomenclature", Rev. Mineral. Geochem. 2001. 45, 207-216.
43. T. Armbruster, "Revised Nomenclature of Högbomite, Nigerite, and Taaffeite Minerals", Eur. J. Mineral. 2002, 14, 389-395.
44. R. Oberti, G. Della Ventura, L. Ottolini, F. C. Hawthorne, and P. Bonazzi, "Re-definition, Nomenclature and Crystal-Chemistry of the Hellandite Group", Am. Mineral. 2002, 87, 745-752.
45. N. V. Chukanov, I. V. Pekov, and A. P. Khomyakov, "Recommended Nomenclature for Labuntsovite-Group Minerals", Eur. J. Mineral. 2002, 14, 165-173.
46. W. H. Koppenol, "NO Nomenclature", Nitric Oxide 2002, 6, 96-98.

## 307. Macromolecular chemistry

1. M. L. Huggins, "Macromolecular Nomenclature: General Background and Perspective", J. Chem. Doc. 1969, 9, 230-231.
2. H. K. Livingston and R. B. Fox, "Nomenclature of Organic Polymers", J. Chem. Doc. 1969, 9, 232-234.
3. N. M. Bikales, "Polymer Nomenclature in Industry", J. Chem. Doc. 1969, 9, 245-247.
4. R. B. Fox, "Nomenclature of Macrocyclic Compounds by Sequential Citation", J. Chem. Inf. Comput. Sci. 1984, 24, 266-271.
5. N. M. Bikales, "Nomenclature" in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. I. Kroschwitz, ed., John Wiley \& Sons, New York, Vol. 10, 1987, pp. 191-204.
6. K. L. Loening and A. D. Jenkins, "Nomenclature for Polymers", in Comprehensive Polymer Science, C. Booth and C. Price, eds., Pergamon Press, Oxford, UK, 1988, Vol. 1: Polymer Characterization, Chapter 2, pp. 13-54.
7. N. M. Bikales, "Nomenclature" in Concise Encyclopedia of Polymer Science and Engineering, J. I. Kroschwitz, ed., John Wiley \& Sons, New York, 1990, pp. 653-654.
8. R. B. Fox, "Naming Organic Polymers" in Handbook of Chemistry and Physics, 77th ed., D. R. Lide, ed., CRC Press, Boca Raton, Florida, 1996, Section 13, pp. 1-2.
9. W. V. Metanomski, "Structure-Based Polymer Nomenclature", J. Polym. Sci., Part C: Polym. Lett. 1990, 28(5), 173-174.
10. W. V. Metanomski, J. E. Merritt, and K. L. Loening, "Macromolecules: Structure Representation and Nomenclature", in Chemical Structures 2 (Proceedings: 2nd International Conference on Chemical Structures, Noordwijkerhout, The Netherlands, June, 1990), W. Warr, ed., Springer-Verlag, Berlin, 1993, pp. 65-85.
11. G. R. Newkome, G. R. Baker, J. K. Young, and J. G. Traynham, "A Systematic Nomenclature for Cascade Polymers", J. Polym. Sci., Part A, 1993, 31, 641-651.
12. L. H. Sperling and W. V. Metanomski, "Nomenclature in Polymer Science and Engineering", Polym. Mater. Sci. Eng. 1993, 68, 341.
13. L. H. Sperling and W. V. Metanomski, "Polymer Nomenclature II: Engineering and Novel Multicomponent Polymer Structures". Polym. Mater. Sci. Eng. 1993, 69, 575.
14. G. R. Baker, R. Gregory, and J. K. Young, "A Systematic Nomenclature for Cascade (Dendritic) Polymers", in Advances in Dendritic Macromolecules, Vol. 1, George R. Newkome, editor. JAI Press, Greenwich, Connecticut, 1994. pp. 169-186.
15. Fox, R. B., "Nomenclature of Polymeric Materials", Rubber Chem. Technol. 1995, 68, 547-550.
16. A. D. Jenkins, "Problems in Composing Definitions of Terms for Polymer Chemistry", Terminology 1995, 2, 351-364.
17. J. A. Patterson, J. L. Schultz, and E. S. Wilks, "Enhanced Polymer Structure, Searching, and Retrieval in an Interactive Database". J. Chem. Inf. Comput. Sci. 1995, 35, 8-20.
18. J. L. Schultz and E. S. Wilks, "Orientation and Nomenclature of Multiple Radicals in Comb, Star, and Other Polymers with Multichain End Groups". J. Chem. Inf. Comput. Sci. 1996, 36, 510-515.
19. -, "A Nomenclature and Structural Representation System for Ladder and Spiro Polymers". J. Chem. Inf. Comput. Sci. 1996, 36, 786-793.
20. __, "Nomenclature and Structural Representation for Linear, SingleStrand Polymers Aftertreated to Hyperconnected Networks". J. Chem. Inf. Comput. Sci. 1996, 36, 955-966.
21. —, "Symmetrical 'I'-Shaped Hyperbranched Structural-RepeatingUnit (SRU) Polymers: Converting Unregistrable SRUs to SRUs Registrable by Chemical Abstracts Service's Registry System". J. Chem. Inf. Comput. Sci. 1996, 36, 967-972.
22. __, "A Nomenclature and Structural Representation System for Asymmetrical 'I'-Shaped Hyperbranched Polymers". J. Chem. Inf. Comput. Sci. 1996, 36, 1109-1117.
23. L. H. Sperling, "Nomenclature and Notational Problems in the Phase Separation Characteristics of Block Copolymers". Polym. Mat. Sci. Eng. 1996, 74(Spring), 445.
24. E. S. Wilks, "Polymer Nomenclature and Structure: A Comparison of Systems Used by CAS, IUPAC, MDL, and duPont. 1. Regular Single-Strand Organic Polymers", J. Chem. Inf. Comput. Sci. 1997, 37, 171-192.
25. $\quad$, " 2 . Aftertreated (Post-treated), Alternating/Periodic, and Block Polymers", J. Chem. Inf. Sci. 1997, 37, 193-208.
26. -, "3. Comb/Graft, Cross-Linked, and Dendritic/Hyperconnected/ Star Polymers", J. Chem. Inf. Comput. Sci. 1997, 37, 209-223.
27. -_, "4. Stereochemistry, Inorganic, Coordination, Double-Strand, Polysiloxanes, Oligomers, Telomers". J. Chem. Inf. Comput. Sci. 1997, 37, 224-235.
28. J. L. Schultz and E. S. Wilks, "Hierarchical Polymer Registration and Source-Based/Structure-Based Correlative Search Capability via a 'Hub Concept'", J. Chem. Inf. Comput. Sci. 1997, 37, 425-435.
29. ——, "Improved Indexing of Chemical Abstracts Service PostTreated Polymers", J. Chem. Inf. Comput. Sci. 1997, 37, 436-442.
30. -_, "Polymers: Structural Representation" in Encyclopedia of Computational Chemistry, P. von Rague Schleyer, ed., John Wiley \& Sons, New York, 1998, Vol. 3, pp. 2135-2150.
31.     - "Dendritic and Star Polymers: Classification, Nomenclature, Structure Representation, and Registration in the DuPont SCION Database, J. Chem. Inf. Comput. Sci. 1998, 38, 85-89.
32. E. S. Wilks, "Nomenclature and Structure Representation for Dendritic Polymers", Polym. Prepr. 1998, 39(2), 6-11.
33. A. D. Jenkins, "Nomenclature for Polymer Chemistry" in Chemical Nomenclature, K. J. Thurlow, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 146-161.
34. E. S. Wilks, "Whither Nomenclature?", Polym. Prepr. 1999, 40(2), 6-11.
35. L. H. Sperling and W. V. Metanomski, "Modern Nomenclature and Terminology for Polymer Science and Technology", Polym. Prepr, 1999, 40(1), 6-11; Polym. Mater. Sci. Eng. 1999, 80(Spring), 640-641.
36. W. V. Metanomski, "Nomenclature" in Polymer Handbook, 4th ed., J. Brandrup, E. H. Immergut, and A. E. Grulke, eds., John Wiley \& Sons, New York, 1999, pp. I/1-I/12.
37. L. H. Sperling, W. V. Metanomski, and C. E. Carraher, Jr., "Polymer Nomenclature" in Applied Polymer Science 21st Century, C. D. Craver and C. E. Carraher, Jr., eds., Elsevier Science Ltd., Amsterdam, 2000, pp. 49-54.
38. E. S. Wilks, "Polymer Nomenclature: the Controversy between Source-Based and Structure-Based Representations (A Personal Perspective)", Prog. Polym. Sci. 2000, 25, 1-100.
39. -_, "Polymer Nomenclature" in Industrial Polymers Handbook E. S. Wilks, ed., Wiley-VCH Verlag, Weinheim, Germany, 2001, Vol. 1, pp. 205-243.
40. K. Hatada, R. G. Jones, I. Mita, and E. S. Wilks, "Proposed Shorthand Notation for Nomenclature and Graphic Representation of Modified Polymers", Polym. Prepr. 2001, 42(2), xxvi-xxxii.
41. R. B. Fox and E. S. Wilks, "Nomenclature for Organic Polymers" in CRC Handbook of Chemistry and Physics 2001-2002, 82nd ed., D. R. Lide, ed., CRC Press, Boca Raton, Florida, 2001, Section 13, pp. 1-5 (superseded item 8 , above).

## 308. Stereochemistry

## Organic Compounds

1. R. S. Cahn, C. K. Ingold, and V. Prelog, "Specification of Molecular Chirality", Angew. Chem., Int. Ed. Engl. 1966, 5, 385-414 (errata: 1966, 5, 511); Angew. Chem. 1966, 78, 413-447.
2. R. S. Cahn, "An Introduction to the Sequence Rule", J. Chem. Educ. 1964, 41, 116-125 (errata: 1964, 41, 508).
3. R. S. Cahn, C. K. Ingold, and V. Prelog, "The Specification of Asymmetric Configuration in Organic Chemistry", Experientia 1956, 12, 81-94.
4. R. S. Cahn and C. K. Ingold, "Specification of Configuration about Quadricovalent Asymmetric Atoms", J. Chem. Soc. 1951, 612-622.
5. E. L. Eliel, "Recent Advances in Stereochemical Nomenclature", J. Chem. Educ. 1971, 48, 163-167.
6. Beilstein Institut, "Stereochemical Conventions in the Beilstein Handbook of Organic Chemistry", Beilsteins Handbuch der Organischen Chemie, Vierte Auflage, Drittes and Viertes Ergänzungswerk, Einundzwanzigster Band, Dritter Teil, Springer-Verlag, Berlin, 1978, pp. xx-xxviii.
7. V. Prelog and G. Helmchen, "Basic Principles of the CIP-System and Proposals for a Revision", Angew. Chem. 1982, 94, 614-631; Angew. Chem., Int. Ed. Engl. 1982, 21, 567-583.
8. K. Mislow and J. Siegel, "Stereoisomerism and Local Chirality", J. Am. Chem. Soc. 1984, 106, 3319-3328.
9. J. H. Brewster, "On the Distinction of Diastereoisomers in the Cahn-Ingold-Prelog (RS) Notation", J. Org. Chem. 1986, 51, 4751-4753.
10. P. Mata, A. M. Lobo, C. Marshall, and A. P. Johnson "The CIP Sequence Rules: Analysis and Proposal for a Revision", Tetrahedron: Asymmetry, 1993, 4, 657-668.
11. E. L. Eliel, S. H. Samuel, and L. N. Lewis, Stereochemistry of Organic Compounds, John Wiley \& Sons, New York, 1994. (Chapter 5. Configuration, pp. 101-113. Glossary. pp. 1191-1210).
12. G. Helmchen, "Glossary of Problematic Terms in Organic Stereochemistry", Enantiomer 1996, 1(1), 84A-84D; ibid. 1997, 2, 315-318.
13. S. Reichelt, A. Reichelt, N. Muller, and I. Ugi, "Topology and Group Theory-Tools for Determining the Stereochemistry of Molecules", Croat. Chem. Acta 1996, 69, 813-825.
14. C. Thilgen, A. Herrmann, and F. Diederich, "Configurational Description of Chiral Fullerenes and Fullerene Derivatives with a Chiral Functionalization Pattern", Helv. Chim. Acta 1997, 80, 183-189.
15. E. L. Eliel, "Infelicitous Stereochemical Nomenclature", Chirality 1997, 9, 428-430.
16. E. L. Eliel and M. B. Ramirez, "(-)-Quinic Acid: Configurational (Stereochemical) Descriptors", Tetrahedron: Asymmetry 1997, 8, 3551-3554.
17. S. B. Elk, "Redefining the Terminology of Stereoisomerism To Produce a Mathematics-Based Taxonomy Paradigm", THEOCHEM 1998, 431, 237-247.
18. J. Gal, "Problems of Stereochemical Nomenclature and Terminology. 1. The Homochiral Controversy. Its Nature and Origins, and a Proposed Solution", Enantiomer 1998, 3, 263-273.
19. J. Michl and R. West, "Conformations of Linear Chains. Systematics and Suggestions for Nomenclature", Acc. Chem. Res. 2000, 33, 821-823.
20. A. Berces, D. M. Whitfield, and T. Nukada, "Quantitative Description of Six-Membered Ring Conformations Following the IUPAC Conformational Nomenclature", Tetrahedron 2001, 57, 477-491.
21. J. Caldwell and I. W. Wainer, "Stereochemistry: Definitions and a Note on Nomenclature", Hum. Psychopharmacol. Clin. Exp. 2001, 16, S105-S107.
22. K. C. Nicolau, C. N. C. Boddy, and J. S. Siegel, "Does CIP Nomenclature Adequately Handle Molecules with Multiple Stereoelements? A Case Study of Vancomycin and Cognates", Angew. Chem., Int. Ed. 2001, 40, 701-704.

## Inorganic Compounds

1. W. Thewalt, K. A. Jensen, and C. E. Schaeffer, "A Nomenclature Symbolism for Chiral and Achiral Isomers of Bridged Inorganic Complexes", Inorg. Chem. 1972, 11, 2129-2136.
2. T. E. Sloan and D. H. Busch, "Stereochemical Description and Notation for Coordination Systems" in Stereochemistry of Optically Active Transition Metal Compounds, B. E. Douglas and Y. Saito, eds., American Chemical Society, Washington, D.C., 1980, pp. 397-419. (ACS Symposium Series No. 119.)
3. T. E. Sloan, "Stereochemical Nomenclature and Notation in Inorganic Chemistry" in Topics in Inorganic and Organometallic Stereochemistry", G. Geoffroy, ed., John Wiley \& Sons, New York, 1981, pp. 1-36.
4. T. Damhus and C. E. Schaeffer, "Three Reference Systems for Chirality Specification, Application, Geometric Properties, and Mutual Relationships", Inorg. Chem. 1983, 22, 2406-2412.
5. M. Brorson, T. Damhus, and C. E. Schaeffer, "Exhaustive Examination of Chiral Configurations of Edges on a Regular Octahedron: Analysis of the Possibilities of Assigning Chirality Descriptors within a Generalized $\Delta / \Lambda$ System", Inorg. Chem. 1983, 22, 1569-1573.
6. T. E. Sloan, "Nomenclature of Coordination Compounds", in Comprehensive Coordination Chemistry, G. Wilkinson, R. D. Gillard, and J. A. McCleverty, eds., Pergamon Press, London, 1987, Part 1, Vol. 1, Chapter 3, pp. 109-134.

## K. CHEMICAL PREFIXES

309. Miscellaneous chemical prefixes. The following list of prefixes most often encountered in the chemical literature (though not necessarily employed in CA index names) is intended to supplement Section H (Illustrative List of Substituent Prefixes); items in Section H are therefore not repeated here. Also excluded are prefixes derived from individual element or compound names, e.g., phospho-, ferri-, aceto-, oxa-, thiazolo-. Prefixes usually italicized are so shown.

The lower-case Greek alphabet is supplied in a separate list below (II 310). Greek and Latin multiplicative prefixes are also listed separately (II 311).
ac- abbreviation of alicyclic; as, ac-amino derivatives of Tetralin. Cf. ar-ace- from acetylene; as, acenaphthene.
aci- the acid form: as aci-acetoacetic ester, $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH}): \mathrm{CHCOOC}_{2} \mathrm{H}_{5}$; acinitro group $\mathrm{HON}(\mathrm{O})$ :.
aldo-, ald- from aldehyde; as, aldohexose, aldoxime.
allo- (Greek allos, other) indicating close relation; as, allo-telluric acid, alloocimene (a structural isomer of ocimene). Specifically, designating the more stable of two geometrical isomers; as, allomaleic acid (fumaric acid).
amphi- (Greek, both, around) relating to both sides or both kinds; as, amphinaphthoquinone (2,6-naphthalenedione), amphiphile.
andro-, andr- (Greek) relating to man, male; as androgen, androsterone.
ang- having an angular alignment of rings; as, ang- $2^{\prime}, 3^{\prime}$-naphth-1,2-anthracene (pentaphene). Cf. lin-.
anhydro- (Greek anhydros, without water) denoting abstraction of water, anhydride of; as, anhydroglucose. Cf. dehydro-.
antho-, anth- (Greek) of flowers; as, anthocyanin, anthoxanthin.
anthra-, anthr- (Greek, anthrax, coal) of coal or anthracene; as, anthracite, anthraquinone, anthrapyrrole.
anti- (Greek, against) opposite, opposed to; as, antioxidant; specifically, equivalent to trans- (which see) as, anti-benzaldoxime.
apo- (Greek, from) denoting formation from, or relationship to, another compound; as, apomorphine, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ (morphine is $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$ ).
ar- abbreviation of aromatic; as, ar-derivatives of Tetralin.
as- abbreviation of asymmetric; as, as-trichlorobenzene ( $1,2,4-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ ).
benzo-, benz- of benzene; as, benzoic; specifically, denoting fusion of a benzene ring; as, benzoquinoline.
bi- (Latin) twice, two, double; specifically: (a) in double proportion; as, bicarbonate (no longer considered good usage); (b) denoting the doubling of an organic radical or molecule; as, biphenyl, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{5}$; bipyridine, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} . \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$.
bicyclo- of two rings; specifically, designating certain bicyclic bridged compounds, as; bicyclo[2.2.1]heptane.
bili- (Latin) of bilirubin, as, biliverdin.
bisnor-, dinor- indicating removal of two $\mathrm{CH}_{2}$ groups; as, bisnorcholanic acid or dinor cholanic acid $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{2}$ (cholanic acid is $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{2}$ ).
bufo-, buf- (Latin bufo, toad) derived from the toad; as, bufotalin.
chole-, cholo, chol- (Greek) of bile; as, cholesterol, choline.
chromo- (Greek chroma, color) color, colored; as, chromophore, chromoprotein, chromoisomer (a colored isomer of a colorless compound).
chryso-, chrys- (Greek) gold, golden yellow, yellow; as chrysophanic acid, chrysazin.
cincho-, cinch- of cinchoma or cinchonine; as cinchomeronic acid, cinchonan.
cis- (Latin, on this side) an isomer in which certain atoms or groups are on the same side of a plane; as, cis-1,4-cyclohexanediol.
copro- (Greek) of dung or excrement; as, coprosterol.
cyclo- (Greek kyklos, circle) of ring structure, cyclic; as, cyclohexane.
D- denoting configurational relationship to D-glyceraldehyde; as, D-fructose.
$d$ - (a) abbreviation of dextro or dextrotatory; as, $d$-strychnine; (b) less properly $=\mathrm{D}$.
de-, des- (Latin) indicating removal of something from the molecule; as, deoxybenzoin, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COC}_{6} \mathrm{H}_{5}$ (benzoin with one oxygen atom removed).
dehydro- denoting (a) removal of hydrogen; as, dehydrocholic acid; (b) sometimes, removal of water; as, dehydromucic acid.
dextro- (Latin dexter, right) rotating the plane of polarization to the right; as, dextropinene. Abbreviation, $d$; as, $d$-valine.
$d l-; d, l$ - denoting a racemic form. Cf. dextro-, levo-
dvi- (Sanskrit, two, twice) designating provisionally an element of the same family, in the second place beyond; as dvi-manganese (rhenium).
eka- (Sanskrit, one) designating provisionally an element of the same family, in the first place beyond; as, eka-manganese (technetium).
endo- (Greek, within) indicating an inner position, specifically: (a) in the ring and not in a side chain; (b) attached as a bridge within a ring; as, 1,4-endomethylenecyclohexane (bicyclo[2.2.1]heptane).
epi- (Greek, upon, on, to) denoting (a) the 1,6-positions in naphthalene; as, epidichloronaphthalene; (b) in aldoses and related compounds identity of structure except arrangement about the $\alpha$-carbon atom; as, epirhamnose (epimer of rhamnose); (c) a bridge connection; as, 9,10-epidioxyanthracene (anthracene 9,10-peroxide).
ergo-, ergot- relating to ergot; as, ergosterol, ergotamine.
erythro-, erythr- (Greek) red; as erythromycin, erythrosine.
eso- (Greek, within) denoting immediate attachment to a ring atom. Cf. exo-.
etio-, aetio- (Greek aitia, cause) denoting a degradation product; as, etiocholanic acid, etiocobalamin.
exo- (Greek) outside, out of; as, exotoxin (an excreted toxin); specifically, denoting attachment in a side chain. Cf. endo, eso-.
flavo-, flav- (Latin flavus, yellow) yellow; as, flavoprotein, flavone; specifically, designating certain series of coordination compounds.
fuco-, fuc- of fucus (a seaweed); as, fucoxanthin, fucose.
gala-, galacto-, galact- (Greek, milk, milky) relating to: (a) milk; as, galactase, galactose; (b) galactose; as, galactocerebroside, galactolipin.
gallo-, gall- relating to gallnuts or gallic acid; as, gallotannic acid, gallocatechin.
gem- abbreviation of geminate (said of two groups attached to the same atom); as, a gem-diol (e.g., 1,1-ethanediol), the gem-dimethyl grouping in camphor.
gluco-, gluc- (a) of glucose; as, glucopyranose, glucuronic acid; (b) less properly $=$ glyco-, glyc-.
glyco-, glyc- (Greek) sweet, or relating to sugars or glycine; as, glycogen, glycoside, glycocholic acid.
hemato-, hemat-, hemo-, hem- (also haemato-, etc.) (Greek) of blood or its color, as, hematoporphyrin, hematein, hemoglobin, hemin.
hetero-, heter- (Greek heteros, other) other, different; as, heteropoly acids, heterocyclic.
holo- (Greek) whole, complete; as, holocellulose; holophosphoric acid, $\mathrm{H}_{5} \mathrm{PO}_{5}$.
homo- (Greek) same, similar; as, homocyclic, homologous (differing by an increase of $\mathrm{CH}_{2}$; as, homophthalic acid).
hydro-, hydr- (Greek) (a) denoting presence or addition of hydrogen; as, hydrochloric, hydracrylic; (b) sometimes, relating to water; as hydrate.
hyo- (Greek) of swine; as, hyodeoxycholic acid (from hog bile), hyoscyamine (from Hyoscyamus (hog bean)).
hypo- (Greek, under, beneath) indicating a lower (or the lowest) state of oxidation; as, hypochlorous acid, hypoxanthine.
$i$ - abbreviation of (a) inactive; as, $i$-tartaric acid; (b) iso-; as, $i$-pentane.
iso- (Greek) equal, alike; as, isomer; usually, denoting an isomer of a compound; as, isocyanic acid; specifically, denoting an isomer having a single, simple branching at the end of a straight chain; as, isopentane, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$.
keto-, ket- from ketone; as, ketohexose, ketoxime.
L- configurationally related to L-glyceraldehyde; as, L-fructose.
$l$ - (a) abbreviation of levo or levorotatory; as, $l$-strychnine; (b) less properly $=$ L-.
lano- (Latin) of wool; as, lanosterol (from wool fat).
leuco-, leuc- (Greek) colorless, white; as, leucine; specifically, a colorless reduced derivative of a triphenylmethane dye; as, leucomethylene blue.
levo-, laevo- (Latin laevus, left) rotating the plane of polarization to the left; as, levovaline. Abbreviation, $l-$; as, $l$-valine.
lin- denoting a straight, linear alignment of rings; as lin-naphthanthracene (pentacene). Cf. ang-.
litho-, lith- (Greek lithos, stone) related to stone or calculus; as, litharge, lithocholic acid (from gallstones).
luteo- (Latin luteus) orange-yellow, brownish yellow; as luteolin; specifically, the coordination compounds $\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$.
$m$ - abbreviation of meta (sense c).
meso-, mes- (Greek) middle, intermediate; specifically; (a) an intermediate hydrated form of an inorganic acid; as, mesoperiodic acid, $\mathrm{H}_{3} \mathrm{IO}_{6}$; (b) optically inactive owing to internal compensation; as, mesotartaric acid; (c) (abbreviated $\mu$-) centrally substituted; as, meso-chloroanthracene ( 9 -chloroanthracene), meso-phenylimidazole (2-phenylimidazole); (d) (abbreviated $m s-$ ) centrally fused; as, mesonaphthodianthrene (phenanthro[1,10,9,8opqra] perylene).
meta-, met- (Greek) indicating changed relation; specifically, designating (a) a low hydrated form of an acid (usually that derived from the "ortho" form by loss of one molecule of water); as, metaphosphoric acid, $\mathrm{HPO}_{3}$; (b) a closely related compound (sometimes, a polymer); as, metaldehyde (trimer of ordinary (acet)aldehyde); (c) (abbreviated $m$-) the 1,3-positions in benzene; as, $m$-xylene.
$n$ - abbreviation of normal (unbranched); as, $n$-butane, $n$-butyl.
naphtho-, naphth- (Greek naphtha) relating to naphthalene; as, naphthoquinone.
neo- (Greek) new; designating new or recent; as, neoarsphenamine; (of a hydrocarbon) having one carbon atom connected directly to four others; as, neopentane, $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}$.
nor- from normal; (a) a lower homologue; as, norcamphane (of which camphane is a trimethyl derivative); (b) a normal (straight-chain) isomer; as, norleucine.
$o$ - abbreviation of ortho (sense d).
oligo-, olig- (Greek oligos, small) meaning few; as, oligosaccharide.
ortho- (Greek, straight, right, true) (a) the fully hydrated form of an acid; as, orthonitric acid, $\mathrm{H}_{5} \mathrm{NO}_{5}$; (b) the highest-hydrated stable form; as, orthophosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$; (c) the common or symmetrical molecular form of an element; as, orthohydrogen; (d) (abbreviated $o$-) the 1,2-positions in benzene; as, $o$-xylene.
$p$ - abbreviation of para (sense c).
para-, par- (Greek, beside, alongside of, beyond) indicating a relationship; as paraxanthine (1,7-dimethylxanthine). Specifically, (a) a higher hydrated form of an acid; as, paraperiodic acid, $\mathrm{H}_{3} \mathrm{IO}_{5}$ (preferably called orthoperiodic); (b) a polymer; as, paraldehyde; (c) (abbreviated $p$-) the 1,4-positions in benzene; as, $p$-xylene.
per- (Latin) complete, thorough, extreme; (a) the highest (or a high) state of oxidation; as, perchloric acid, manganese peroxide (better, dioxide); (b) pres-
ence of the peroxide group $\left(\mathrm{O}_{2}\right)$; as, barium peroxide, perbenzoic acid, per acid (better, peroxy acid); (c) exhaustive substitution or addition; as, perchloroethylene, $\mathrm{C}_{2} \mathrm{Cl}_{4}$; perhydronaphthalene, $\mathrm{C}_{10} \mathrm{H}_{18}$.
peri- (Greek, around, about) (a) the 1,8 -positions in naphthalene; as peri-dinitronaphthalene (b) in polycyclic ring systems, fusion of a ring to two or more adjoining rings: as, perinaphthindene (phenalene).
peroxy- containing the peroxide group $\left(\mathrm{O}_{2}\right)$; as, peroxymonosulfuric acid, $\mathrm{HOSO}_{2} \mathrm{OOH}$.
pheno-, phen- (from phene, benzene) related to phenyl or benzene; as, phenacyl; specifically, an anthracene analogue having two hetero atoms in the central positions; as, phenazine, phenothiazine.
phloro-, phlor- relating to phlorizin; as, phloroglucinol, phloretin.
phthalo-, phthal- relating to phthalic acid; as, phthalocyanine, phthalide.
phyllo-, phyll- (Greek phyllos) of leaves; as, phylloporphyrin.
phyto-, phyt- (Greek) relating to plants; as, phytosterol, phytohormones.
picro-, picr- (Greek) bitter; as, picrotoxin, picric acid.
pino-, pin- (Latin pinus, pine) relating to pine or pinene; as, pinic acid, pinocarvone.
poly- (Greek) many; as, polymer, polysulfide, polysaccharide.
pro- (Greek, before) a precursor; as proenzyme, provitamin.
proto-, prot- (Greek) first; specifically, designating: (a) first in an inorganic series; as, protoxide (lowest in oxygen content); (b) parent or immediate antecedent; as, protactinium, protochlorophyll.
pseudo-, pseud- abbreviated $\psi$ or $p s$ (Greek, false) indicating resemblance to, or relation (especially isomerism) with; as, $\psi$-cumene, pseudaconitine, pseudobase. Abbreviation: as, $\Psi$-cumene.
purpuro- (Latin purpura, purple) indicating purple or red color; as, purpurogallin.
pyo- py- (Greek) relating to pus; as, pyocyanine.
pyro-, pyr- (Greek pyr, fire) indicating formation by heat; as, pyrocinchonic acid, pyrene; specifically, designating an acid derived from two molecules of an "ortho" acid by loss of $1 \mathrm{H}_{2} \mathrm{O}$; as, pyrophosphoric acid, $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ $\left(2 \mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{H}_{2} \mathrm{O}\right)$.
pyrrolo-, pyrro-, pyrr- containing the pyrrole ring; as, pyrrolopyridine, pyrrocoline.
reso-, res- relating to resorcinol; as, resorufin, resazurin.
rhodo-, rhod- (Greek rhodon, rose) rose-red; as, rhodoporphyrin, rhodamine.
$s$ - abbreviation of (a) symmetric (al); (b) secondary.
sapo- (Latin, soap) relating to soap or soap bark; as saponin, sapogenin.
sec- abbreviation of secondary; as, sec-butyl.
seco- (Latin secare, to cut) denoting ring cleavage; as, 16,17-secoandrostane.
sub- (Latin, under, below) denoting (a) a low proportion (or deficiency, as in a basic salt); as, subiodide, suboxide, aluminum subacetate.
super- (Latin, above, over) denoting a high proportion (or superfluity, as in an acid salt); as, superoxide (peroxide), superphosphate.
sym- abbreviation of symmetric(al); as sym-dichloroethylene (1,2-dichloroethene).
syn- (Greek, with, together) equivalent to cis (which see); as, syn-benzaldoxime.
$t$ - abbreviation of tertiary; as, $t$-butyl.
tauro- (Latin taurus, bull) relating to bulls or to taurine; as, taurocholic acid, taurocyamine.
tere- (Latin terebinthus, terebinth) relating to terebene or terpenes; as, terephthalic, teresantalic.
tert- abbreviation of tertiary; as, tert-butyl.
thymo-, thym- relating to (a) thyme; as, thymoquinone, thymol; (b) the thymus; as, thymonucleic.
trans- (Latin, across) an isomer in which certain atoms or groups are on opposite sides of a plane; as, trans-cinnamic acid.
uns-, unsym- abbreviations of unsymmetrical; as, uns-dichloroethane, $\mathrm{CH}_{3} \mathrm{CHCl}_{2}$.
uro-, ur- (Greek ouro-, our-) relating to urine or urea; as, urobilin, urethane, uric acid.
urso-, urs- (Latin ursus, bear) relating to bears or the bearberry; as, ursolic acid.
$v$ - abbreviation of vicinal; as, $v$-triazine.
verdo- (French, verd, vert, green) indicating green color; as, verdohemin.
vic- abbreviation of vicinal; as, vic-triazole.
xantho-, xanth- (Greek) yellow; as, xanthotoxin, xanthic acids, xanthine.
xylo-, xyl- (Greek xylon, wood) relating to wood, xylene, or xylose; as, xylan, xylidine, xyloquinone, xylocaine.
zymo-, zym- (Greek zyme, leaven) relating to a ferment or fermentation; as, zymosterol, zymase.
310. Greek alphabet. Lower-case Greek letters are employed in the chemical literature to number carbon chains and to indicate the size of lactone rings (a $\gamma$-lactone generally contains a furan ring, a $\delta$-lactone a pyran ring, and so on). In $C A$ names, Greek letters are reserved for the acyclic portion of conjunctive index parents (see I[ 124), while cyclic portions are numbered with arabic numbers. Of Greek capital letters, $\Delta$ (delta) is sometimes encountered in the literature to denote a double bond); T (tau) indicates a triple bond. Some lowercase letters have additional meanings; $\varphi$ (phi) is a shorthand version of "phenyl" or "Ph"; see also "meso" and "pseudo" in If 309.

$\alpha-$	alpha
$\beta-$	beta
$\gamma-$	gamma
$\delta-$	delta
$\varepsilon-$	epsilon
$\zeta$	zeta
$\eta-$	eta
$\theta-$	theta
$1-$	iota
$\kappa-$	kappa
$\lambda-$	lambda
$\mu-$	mu

311. Multiplicative prefixes. In $C A$ index names, Greek prefixes are preferred, except for nona- (for nine), and undeca- (for eleven). The terms hemi(Greek) and sesqui- (Latin) were employed by $C A$ in hydrate and ammoniate names prior to the Twelfth Collective period (1987-1991) (see IIII 192, 265A). For use of the special terms bis-, tris-, tetrakis-, etc., with complex terms and to avoid ambiguity, see IIII 110 and 266.

	Greek	Latin
1/2	hemi-	semi-
1	mono-, mon-	uni-
$11 / 2$		sesqui-
2	di-	bi-
3	tri-	tri-, ter-
4	tetra-, tetr-	quadri-, quadr-, quater-
5	penta-, pent-	quinque-, quinqu-
6	hexa-, hex-	sexi-, sex-
7	hepta-, hept-	septi-, sept-
8	octa-, oct-, octo-, octi-	
9	ennea-, enne-	nona-, non-, novi-
10	deca-, dec-, deci-	
11	hendeca-, hendec-	undeca-, undec-
12	dodeca-, dodec-	
13	trideca-, tridec-	
14	tetradeca-, tetradec-	
15	pentadeca-, pentadec-	
16	hexadeca- hexadec-	
17	heptadeca-, heptadec-	
18	octadeca-, octadec-	
19	nonadeca-, nonadec-	
20	eicosa-, eicos-	
21	heneicosa-, heneicos-	
22	docosa-, docos-	
23	tricosa-, tricos-	
24	tetracosa-, tetracos-	
25	pentacosa-, pentacos-	
26	hexacosa-, hexacos-	
27	heptacosa-, heptacos-	
28	octacosa-, octacos-	
29	nonacosa-, nonacos-	
30	triaconta- triacont-	
31	hentriaconta-, hentriacont-	
32	dotriaconta-, dotriacont-	
33	tritriaconta-, tritriacont-	
40	tetraconta-, tetracont-	
50	pentaconta-, pentacont-	
60	hexaconta-, hexacont-	
70	heptaconta-, heptacont-	
80	octaconta-, octacont-	
90	nonaconta-, nonacont-	
100	hecta-, hect-	
101	henhecta-, henhect-	
102	dohecta-, dohect-	
110	decahecta-, decahect-	
120	eicosahecta-, eicosahect-	
132	dotriacontahecta-, dotriacontahecta-	
200	dicta-, dict-	
300	tricta ${ }^{1}$	
400	tetracta ${ }^{1}$	
1000	kilia ${ }^{1}$	

[^17]
## L. CHEMICAL STRUCTURAL DIAGRAMS FROM CA INDEX NAMES

Introduction	$\mathbb{I} 312$
Form of $C A$ index names	313
Deriving a chemical structural diagram	314
Index heading parents	315

312. Introduction. The foregoing sections of Appendix IV are concerned with selection of index names for chemical substances, but the user of $C A$ printed indexes and computer-readable files often needs to proceed from a $C A$ index name to the structure diagram of a chemical substance. The aim of this section is therefore to describe succinctly the form of $C A$ index names, to illustrate the procedure for deriving a chemical structural diagram from a $C A$ index name, and to show where in CAS publications structural data can be found. The structural diagrams accurately represent the positions of atoms relative to each other in a molecule but because of molecular flexibility, crowding, and/or the need to draw a three-dimensional structure in two dimensions, some structural diagrams are, of necessity, distorted. For example, some bond lengths and angles may differ from those in the molecule represented. ${ }^{1}$

Sources of structural data include the Ring Systems Handbook, the Index Guide, and (when information concerning a substance has been published) the Volume and Collective issues of the Chemical Substance Index. The reader is also referred to other paragraphs of Appendix IV, when appropriate, for more detailed discussion of complex subjects. It is not the purpose of this section to cover every subject. Discussion of subjects not covered in this section can be found by reference to the Index at the end of Appendix IV.
313. Form of $\boldsymbol{C A}$ index names. The complexity of chemical substances generally dictates the complexity of $C A$ index names. The $C A$ index name consists of up to five fragments, namely, the index heading parent alone or followed successively by the substituent, modification, and stereochemistry fragments (compare $\mathbb{I} 104$ ), as necessary. Some index heading parents are followed by synonym line formulas (compare TI[I219, 315.II). Every name contains an index heading parent and it is by citing the parent first (i.e., in an inverted format) that the names of related chemical substances are listed together in the printed indexes.
314. Deriving a chemical structural diagram from a $C A$ index name proceeds by taking each name fragment sequentially, converting it into a structural fragment, and then placing each structural fragment in its proper position in the diagram, using the appropriate positional information. The complete derivation of a chemical structural diagram may require up to four steps, depending upon the complexity of the chemical substance, each based on one of the four possible $C A$ index name fragments. This process is illustrated in the remaining paragraphs of this section.
315. Index heading parents include the largest or most important molecular skeleton and (when present) the highest function in a chemical substance (see IIII 130, 164).
I. Index heading parents that stand alone.

The simplest index heading parents may be illustrated by examples such as the following:

## Butane

## Chlorine

## 2-Hexene

## Nickel

The names of acyclic hydrocarbons are discussed in If 141 and the multiplicative terms that indicate the number of carbon atoms in a hydrocarbon are listed in II 311. Element names are discussed in II 219.

Some index heading parents are made up of two parts: a basic skeleton name and a principal functional suffix. Principal functional suffixes are discussed in detail in Section C (IIII 164-177).

Example:

$\mathrm{MeNH}_{2}$
${ }^{1}$ A. L. Goodson, "Graphical Representation of Chemical Structures in Chemical Abstracts Service Publications", J. Chem. Inf. Comput. Sci. 1980, 20, 212-217.
$\begin{array}{lr}\text { Substituent prefixes } & \text { II } 316 \\ \text { Modifications } & 317\end{array}$
Modifications
Stereochemistry 318

The basic skeleton is the one-carbon unit "Methane" (II 141), the final "e" being elided before a vowel. The principal (here, the only) functional group is the amine (II 176).

Example:


The Chemical Substance Index contains the following entry for pyridine.
Pyridine


The carbothioamide principal function suffix is discussed in detail with other amide groups in IIII 171 and 233. The locant, 2, indicates where the carbothioamide group is attached to the pyridine ring (II 115).

Another type of two-part name, known as a "conjunctive name" (see 9[ 124), is a combination of the name of a cyclic molecular skeleton and the name(s) of one or more identical, saturated acyclic hydrocarbon chains, each terminated by the same functional group.

Example:


The structure of the phenyl group is found in the Illustrative List of Substituent Prefixes (II 294). That "ter" is a Latin prefix meaning "three" is found in II 311. The first set of locants $\left(1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}\right)$ indicates that the three benzene rings are connected as shown. The second set of locants $\left(4,4^{\prime \prime}\right)$ shows that the two methanethiol groups (see GIIII 141 and 175) are attached as shown to the first and third benzene rings. Such "ring assembly" names are described in 9[ 157.

Polymers are named either on the basis of the monomers from which they are formed (see $\mathbb{I}$ 317) or on the basis of their structure, as represented by a structural repeating unit (compare If 222). In the latter, the multivalent radicals are cited in sequence, following the term "Poly", and can be drawn from left to right. Each radical retains its own numbering and is oriented, if possible, so that the point of attachment at the left of the radical is assigned the lowest possible locant.

Example:
Poly[(4,4-dimethyl-2,5-dioxo-1,3-imidazolidinediyl)-1,4-phenyl-eneoxy-1,4-phenylene]


In this chemical structural diagram, the multivalent radicals are separated by dashed vertical lines and the numbering of each radical is shown, where appropriate. The structures of the radicals (e.g., oxy, phenylene) are found in II 294 or can be inferred from the chemical structural diagrams associated with parent names (e.g., imidazolidine) in the Ring Systems Handbook or the Chemical Substance Index. The meanings of the methyl and oxo terms can also be determined from I[ 294.
II. Index heading parents with synonym line formulas.

Synonym line formulas are molecular formulas which follow the index heading parent. They are printed in boldface and are enclosed in parentheses. They are often useful for resolving ambiguity, where two or more substances, usually inorganic (see If 219), have the same name.

Examples:

## Aluminum calcium titanium oxide $\left(\mathbf{A l}_{2} \mathbf{C a T i O} \mathbf{6}\right)$

Aluminum calcium titanium oxide $\left(\mathbf{A l}_{\mathbf{2}} \mathbf{C a}_{\mathbf{4}} \mathbf{T i}_{\mathbf{2}} \mathbf{O}_{\mathbf{1 1}}\right)$
Lack of a synonym line formula in such a case means that the author did not provide the necessary specificity in the original document.

Example:

## Aluminum calcium titanium oxide

III. Index heading parents with chemical structural diagrams.

A chemical structural diagram is provided in the Index Guide and Chemical Substance Index where the structure of an inorganic substance (II 219) may not be readily apparent from the name.

Example:
Phosphorodihydrazidothioic acid


A similar procedure is followed for other types of index heading parents such as cage parents, ring parents, and stereoparents. Here, however, the structural diagrams are published in the Ring Systems Handbook as well as the Chemical Substance Index.

Examples:

## Cage Parent:

1,12-Dicarbadodecaborane(12)


## Ring Parent:

## Phenanthrene



As stated in II 313, the complexity of chemical substances generally dictates the complexity of $C A$ index names. This is particularly true for natural products whose names must imply standard orientation and stereochemical representation as well as structure and numbering (compare "If 318). Such complexity makes it desirable to use a simple, nonsystematic ("trivial") name, or stereoparent name, as the index heading parent and to define the stereoparent name by means of a chemical structural diagram.

Examples:

## Acyclic stereoparent:

## $\psi, \psi$-Carotene

(( $6 E, 8 E, 10 E, 12 E, 14 E, 16 E, 18 E, 20 E, 22 E, 24 E, 26 E)-$
2,6,10,14,19,23,27,31-octamethyl-2,6,8,10,12,
14,16,18,20,22,24,26,30-dotria-contatridecaene)


## Cyclic stereoparent:

Rifamycin ((2S, 12Z, 14E, 16S, 17S, 18R, 19R,20R,21S,22R, 23S,24E)-21-(acetyloxy)-5,6,9,17.19-pentahydroxy-23-methoxy-2-4,12-16,18,20,22-heptamethyl-2,7-(ep-oxypentadeca[1,11,13]trienimino)naphtho[2,1-b]fu-ran-1,11(2H)-dione)

316. Substituent prefixes (see II 10A) follow the "comma of inversion" (see II 104) in $C A$ index names and their structures can be determined from II 294, the Illustrative List of Substituent Prefixes.

Example:

## 2H-Pyran-2,4(3H)-dione <br> -, 3-[[(4-aminophenyl)amino]phenylmethylene]-6-phenyl-

The structure of the chemical substance represented by this name is derived by first obtaining the structure of $\mathbf{2 H}$-Pyran from the Chemical Substance Index or, better, from the Ring Systems Handbook. The Ring Name Index of the 1993 edition of the Ring Systems Handbook reveals that the Ring File (RF) number for $\mathbf{2 H}$-Pyran is RF 2133. Entry RF 2133 in the Ring Systems Handbook is as follows:

## RF 2133 <br> 2 H -Pyran <br> $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}$

289-66-7


The index heading parent contains two functional groups which II 174 identifies as ketone groups. However, putting an oxygen on position 4 requires "adding" a hydrogen at position 3. The indicated and added hydrogen terms (see IIII 135 and 136) in the index heading parent thus define the bonding in the ring (the bonding could also be defined by "3,4-dihydro" but that would be part of the substituent fragment of the name and not of the index heading parent, which must be able to stand alone). The complete index heading parent ( 2 H -Pyran-2,4(3H)-dione) is therefore:


The substituent fragment of the name indicates that a simple substituent (i.e., "phenyl", see $\mathbb{T}[294$ ) is attached to the ring at position 6 :


A complex substituent is attached to the ring at position 3. The second phenyl group is attached through the methylene group (see II 294) to position 3 to yield:


The third phenyl group has an amino group (II 294) attached to the 4-position and is itself attached through an amino group to the methylene group of the partial structure. The complete structure is therefore:

317. Modifications of the principal functions or other groups follow the substituent(s) (II 104). Where derivatives of more than one functional group must be named, the derivative terms are cited in the order described in ๆI 113 . Example:

## 2H-Benzo[g]indazole-2-propanamine

, 3,3a,4,5-tetrahydro- $N, N$-dimethyl-3-phenyl-
trihydrochloride
Only the form $\mathbf{1 H}$-Benzo[g]indazole is illustrated in the Chemical Substance Index and the Ring Systems Handbook:

## 1H-Benz[g]indazole



The structure is converted into the 2 H -isomer and the propanamine group (IIII 141 and 176) is attached at the 2-position. (It should be noted that, in conjunctive nomenclature, the function is located at the end of the saturated, acyclic chain furthest from the ring system of the index heading parent (see $\mathbb{I}$ 124).)


The four hydrogens are added to the $3,3 \mathrm{a}, 4$, and 5 positions to saturate the two double bonds; then, when the phenyl and two methyl substituents (see If 294) are attached, the structure becomes:


The "trihydrochloride" modification completes the structure:
?

The modification is also used in naming polymers (II 222) on the basis of the monomers from which they are formed.

Example:

## 1-Butene

, 2,3-dimethyl-
homopolymer
The structure of 1-Butene is deduced from 9I 141. When the two methyl groups (II 294) are attached at positions 2 and 3, the structure becomes:

$$
\begin{gathered}
\mathrm{Me} \\
\stackrel{\mathrm{I}}{\mathrm{Ce}} \\
\underset{4}{\mathrm{Me}} \mathrm{H}-\underset{2}{\mathrm{C}}=\underset{1}{\mathrm{C}} \mathrm{H}_{2}
\end{gathered}
$$

The homopolymer is represented as follows:

$$
\left(\mathrm{Me}_{2} \mathrm{CHCMe}=\mathrm{CH}_{2}\right)_{\mathrm{x}}
$$

318. Stereochemistry for the heading parent is the last structural information described in a $C A$ name. The various symbols used to describe the spatial arrangement of atoms are discussed in II 203.

Example:

## 8-Azabicyclo[3.2.1]octan-3-ol <br> -, 8-methyl- <br> (3-ехо)-

The structure corresponding to the basic skeleton name, principal functional suffix, and substituent is determined as described above. The stereochemistry of the hydroxy group (the methyl group rocks back and forth about the nitrogen atom, eliminating the effects of asymmetry there) is denoted by "(3-exo)-", the meaning of which is determined from II 203 I. The structure is therefore:


As stated in If 315, stereoparent names (see II 203 II) in the Chemical Substance Index imply (in the absence of cited stereochemical descriptors) a standard structure, including specific stereochemistry, as illustrated by an accompanying structural diagram complete with the numbering system from which locants for substituents and derivatives are derived. With the exception of monosaccharide and some peptide stereoparents, italicized systematic names (and in some cases one or more trivial names) appear as synonyms in parentheses immediately following the (preferred) boldface stereoparent name. In the following examples these systematically named synonyms (1) illustrate the various types of stereochemical descriptors found in $C A$ indexes and (2) show how the use of stereoparents as the preferred $C A$ names for many natural products avoids citation of (often necessarily complicated) stereochemical descriptors.

Stereochemical descriptors in the CA index names of coordination compounds reflect the geometry of ligand attachments around one or more central metal atoms (compare If 215).

Example:
Nickel(1+)
——, bis[[2-(diphenylstibino)phenyl]diphenylarsine-As,Sb]iodo-
(T-4)-tetraiodonickelate(2-) (2:1)
In this example, the central atom is nickel. The structure of the two large ligands can be determined by reference to II 294. The italicized element symbols ( $A s, S b$ ) identify the ligating atoms. The stereochemistry symbol ( $T-4$ ) indicates that the anion is tetrahedral (see II 203 III). The structure of this coordination compound is therefore:


## M. INDEX

The references are to paragraphs, not to pages. Trivial and former $C A$ names, general terms and name fragments are listed along with current $C A$ index names. Locants and other numerals, etc., have generally been omitted.

Abeo, 212
Acenaphthylene, 148, 152
Acetaldehyde, 173
hydrate, 192
oximes, 195
Acetals, 169, 196
of carbohydrates, 208
retrospective index searching for, 226
of stereoparents, 202
Acetamide, 171
Acetate fibers, 222
Acetates
of amines, 198
Acetato, 215
Acetic acid, 165
anhydride-esters, 186
anhydrides, 179
esters, 185
hydrazides, 189
locants for substituents, 117
molecular addition compds., 192
multiplication of, 118
order of precedence of, 106
polymers containing, 222
Acetoacetic acid, 167
Acetone, 174
hydrazone, 190
retrospective index searching for, 262
Acetonitrile, 172
Acetoxy, 175, 283
Acetyl, 134, 168, 174 free radical, 1-oxoethyl as name for, 187
Acetylamino, 134, 171
Acetyl chloride, 170 as substituent, 134
Acetylides, 180
of elements, 219
Acetyloxy, 175, 283
Acid azides, 170
order of precedence of, 106
Acid chlorides. See Acid halides
Acid halides, 170
of arsenic and phosphorus acids, 197
of carbohydrates, 208
inorganic, 219
order of precedence of, 106
retrospective index searching for, 227
Acid isocyanates, 183 order of precedence of, 106
Acid radicals, 134, 168, 287
from amino acids, 205
from arsenic acids, 197
from phosphorus acids, 197, 219, 276
hetero-atom-attached, 163, 171, 174
Acids. See also Carboxylic acids; Imidic acids;
Sulfonic acids; etc.
acyclic, with cyclic substituents, 166
anhydrides-see Anhydrides
of arsenic end phosphorus, 197
of carbohydrates, 208
of chlorine, nitrogen, phosphorus, etc., order of precedence of, 106
Class I and Class II, 185
conjunctive names for, 166
epoxy derivs., 166
expressed as suffixes, 164-177
functional derivs., 169
halogen oxo, 188
inorganic "oxo", 219, 273
isopoly end heteropoly, 219
labeled, 220
ligands from, 215
of metals, 219, 273
order of precedence of, 106, 167
radicals from-see Acid radicals
retrospective index searching for, 228, 273
as substituents, 167
Acinitro, 132, 193
Acridine
analogs, 149
numbering of, 152

ACS. See American Chemical Society
Actinomycins, 206
Acyclic compounds, 141-144
nonfunctional, order of precedence of, 106
Acyl radicals. See Acid radicals
Added hydrogen, 136, 256
in cyclic ketones, 174
in ring assemblies, 157
in spiro systems, 156
Additional index entries
for anions, 198, 281A
for coordination compds., 215
for cyclic peptides, 206
for molecular addition compds., 192, 265A
Addition compounds. See Molecular addition compounds
Additive nomenclature, 123, 228A
Additive terms, 113
locants for, 119
Adducts, 192
Adenine, 122
Adenosine, 210
Adenosine triphosphatase, 218
Adenylic acid, 210
homopolymer, 222
Agar, 208
-al, 173
Alanine, 205
peptides containing, 206
Alanine aminotransferase, 218
Alcohols, 175
carbohydrates as, 208
Class 1, 185
esters, 185
labeled, 220
metal salts, 198
order of precedence of, 106
retrospective index searching for, 229
Aldaric acids, 208
Aldehydes, 173
order of precedence of, 106
oximes, 195
retrospective index searching for, 230
Aldehydic acids, 167, 228
Alditols, 208
Aldonic acids, 208
Aldoses, 208
Alkaline earth metals, 219
Alkaloids, 204
retrospective index searching for, 231
stereochemistry of, 202
steroidal, 211
Alkanes, 141
Alkenes, 141 locants for, 113
Alkenyl radicals
locants for, 116
Alkoxy radicals
elision in names of, 107
Alkyl radicals, 161
1 -imino and 1-oxo derivs., 134, 168
allo, 209
Alloys, 214
labeled, 220
retrospective index searching for, 232
$\alpha$ (alpha), 203, 208, 212
Alphabetization
of index names, 121
Alpha particle, 217
Alternating polymers, 222, 277
Aluminate, 215, 219
Aluminum
labeled complexes, 220
Aluminum chloride
and dimer, 215, 219
Alums, 219
American Chemical Society nomenclature reports of, 302
nomenclature rules of, 296-300
American Mineralogist, 219
Amic acids, 167, 228

Amides, 171
of amino acids, 205
of arsenic and phosphorus acids, 197
of carbohydrate acids, 208, 240
$N$-hydroxy, 193
order of precedence of, 106
oxides, 268
oximes, 171
peptides, 206
radicals from, 134, 171
retrospective index searching for, 233
tautomerism with imidic acids, 122, 165
unexpressed, 171
Amidines. See Imidamides
Amidine tautomerism, 122
Amido, 215
Amidodiphosphoric acid, 219
Amidodiphosphoryl chloride, 219
Amidogen, 187, 219
Amidoimidodisulfuric acid, 219
Amidoimidosulfurous chloride, 219
Amidoselenic acid, 219
Amidoselenonyl fluoride, 219
Amidosulfenyl chloride, 200, 219
Amidosulfoxylic acid, 219
Amidothiodiphosphoric acid, 219
Amidoximes, 171
Amines, 176
boron complexes, 182
$N$-hydroxy, 193
order of precedence of, 106, 271
retrospective index searching for, 235
salts with acids, 198
Aminium compounds, 184
hydroxides, inner salts, 112
present and former indexing rules for, 270
salts, 198
ylides, 201
Amino, 176
Amino acids, 205
ACS rules for, 302
amides of, 171
homopolymers, 206
polymers, 222
IUPAC-IUB tentative nomenclature rule for, 297
retrospective index searching for, 236
Aminobutyryl
in peptide names, 206
Aminocarbonyl, 134
Amino group
tautomerism of, 122
Ammines, 215
labeled, 220
Ammonia, 219
Ammoniates, 192
of inorganic salts, 219
Ammonio, 184
Ammonium chloride, 219
Ammonium salts
inorganic, 219
organic, 184, 270
Ammoniumyl, 184, 219
Amylopectin, 208
-an
in mineral names, 219
Androstane, 211
Androstanol
esters, 202
-ane, 146
Aneurine, 224
Angiotensins, 206
Anhydride-esters, 186
Anhydrides, 179
of amino acids, 205
of carbohydrates, 208
of carbonic acid derivs., 183
of cyanic acid, 183
of halogen oxo acids, 188
of inorganic with organic acids, 219
as modification terms, 112, 113
with partial esters, 186
retrospective index searching for, 237
anhydro, 208
Anhydro, 139
Anhydrosulfides, 179, 197, 200
"bis" and parentheses used with, 110
of inorganic acids, 219
of thiocyanic acid, 183
Anilic acids, 167, 228
Anilides, 171, 233
Anils, 176
Anions, 180
additional index entries, 198, 281A
citation in modifications, 113
common, 198, 281A
complex, 215
of elements, 219
in modifications, 198
-anium, 184
"a" nomenclature. See Replacement nomenclature
Anthracene
in fused systems, 148, 151
numbering of, 152
preferred to phenanthrene, 138
Anthracenedione, 136
anti, 203
Antielements, 217
Antihelium, 217
Antimonate, 215
Antimonide, 180
Antimony
defined as metal, 101, 181, 215, 219, 257
Antimony compounds, 181
monocyclic, 146
order of precedence of, 106
Von Baeyer systems, 155
Antimony hydroxide, 181, 219
Antiparticles, 217
Antiproton, 217
Apamin, 206
Apiose, 208
Apocarotenes, 212
Aqua, 219
ar, 120
Arabinan, 208
arabinose, 208
Arrow nomenclature, 208, 210
Arsenamldic acid, 197
Arsenenic acid, 197
Arsenenous acid, 197
Arsenic acids, 197, 273
anhydrides, 179
inorganic, and salts, 219
Arsenic compounds, 197
order of precedence of, 106
tautomeric, 122
Arsenic triamide, 197
Arsenides, 180
of elements, 219
Arsenido, 215
Arsenous acid, 197
Arsindole, 149
Arsine, 143, 197
Arsine selenide, 197
Arsine sulfide, 197, 200
Arsinic acid, 197
Arsino, 161, 197
Arsinous acid, 197
Arsinous cyanide, 197
Arsinyl, 197
Arsonic acid, 197
derivs., 271
Arsonimidous acid, 129
Arsonium compounds, 184
Arsonous acid, 197
Arsorane, 140, 143, 197
as, 108
Ascorbic acid, 208, 224
-ase, 218
Asparaginase, 218
Aspartic acid
peptides containing, 206
Aspartoyl, 205
Assumptions
for amino acid end peptide stereochemistry, 205, 206
for biline stereochemistry, 223
for coordination stereochemistry, 203
for polymer SRU names, 222
-ate, 219
Atisane, 212
-ato ligands, 215
Aurate, 215
Aza, 128
Azacycloundecane, 146
Azahomoandrostane, 211
Azete, 146
Azi, 161
Azides
acid, 170
acid, order of precedence of, 106
Azidodisulfuric acid, 219
Azidosulfuric acid, 219
Azines, 190
Azino, 161, 193
Aziridine, 146
Azo, 161, 193
Azo compounds, 193, 218
dyes, 216
retrospective index searching for, 238
Azomethines, 176
Azonia, 184
Azoxy compounds, 193 retrospective index searching for, 238

Balata, 222
Barbituric acid, 122
Baryon, 217
Base components
carbocyclic, of fused systems, 148
heterocyclic, of fused systems, 149, 281
selection of, 150
Benzaldehyde, 173
Benzenamine, 176
Benzenaminium
hydroxide, inner salts, 201
Benzene
alkoxy derivs., 196
in fused systems, 149,151
multiplication of, 118
preferred to cyclohexane, 138
radicals from, 161
ring assemblies of, 157, 163
Benzenecarbothioic acid
hydrazide, 189
Benzenecarbothioyl chloride, 170
Benzenecarboximidic acid, 129, 165
Benzenediacetic acid derivs., 124
Benzenediazonium compounds, 198
Benzenedicarboxylic acid polymers, 222
Benzenedipropanoic acid, 166
Benzenemethanol, 124
derivs., 131
Benzenepropanal hydrazones, 190
Benzenesulfonamide, 171
Benzenesulfonic acid anhydrides, 179
Benzenethiol
esters, 185
Benzenide, 180
Benzeno, 154
Benzimidazole
tautomers, 122
Benzimidazolium compounds, 184
Benzindene, 150
Benzisothlazole abnormal valency in, 158
Benzo, 149
elision of, 107
Benzodioxaborole, 182
Benzofuran, 149
Benzogermole, 194
Benzoic acid, 165
anhydrides, 179
derivs., 131
esters, 185
order of precedence of, 106
Benzonitrile, 172
Benzopyran
as fusion component, 152
Benzopyranol vitamin E derivs., 224
Benzopyranone, 185
Benzothiazolium compounds, 184
dyes, 216
Benzothienyl, 161

Benzoxazine, 149
Benzoxazole, 149
Benzoyl, 134, 168, 174
Benzoyl isocyanide, 170
Benzyl alcohol, 124
derivs., 131
Benzyne, 145
Beryllium chloride, 219
$\beta$ (beta), 203, 208, 212
Beta particle, 217
Bibicyclo, 157
Bibliography
of nomenclature of chemical substances,
295-308
Bicyclodecasilane, 155
Blcycloheptyl
"bis" and parentheses used with, 110
Bicyclohexadienyldiylidene, 161
Bicyclohexenyl, 157
Bicyclohexyl, 157
Bicyclo systems. See Von Baeyer systems
Bicyclotetrasilazane, 155
Bicyclotetrasiloxanyl, 157
Bicycloundecane, 155
Biguanidine, 251
Biisoquinoline, 157
Bile pigments, 223
retrospective index searching for, 278
Biline, 223, 278
"Bimol."
in anhydride names, 179
Bi names. See Ring assemblies
Binaphthalene, 157, 266, 281
Binaphthalenediyl, 161
Binary compounds, 219
Biochemistry
nomenclature of, history and development of, 305
nomenclature rules for, 297
Bipentaborane, 159
Biphenyl, 114, 157, 281
locants in, 113
Biphenyldlyl, 125, 161
Biphenylyl, 161
punctuation for, 109, 110
Biphenylylcarbonyl, 168
Bipiperidine, 157
Bipyridinedlyl, 161
Bis, 110, 266
alphabetization rules for names containing, 121
enclosing marks following, 109
in multiplicative names, 125
in ordering of substituents, 121
Bismuth compounds, 181
monocyclic, 146
order of precedence of, 106
Bismuth hydroxide, 181
Bismuthine, 143, 181
Bismuthine imide, 181
Bismuthine oxide, 181
Bismuthino, 161, 181
Bisulfite addition compounds, 192
Bithiazole
polymers, 222
Bithiazolyl, 161
Bitriazole, 157
Block polymers, 222,277
Bohrium, 219
Bonds
metal-metal, 203
multiple-see Unsaturated compounds
Bora, 128
Boranamine, 182
Borane, 159, 182
free radicals from, 187
order of precedence of, 106
oxybis-, derivs., 179
trifluoro-, 257
Boranetriamine, 182
Boranthrene, 149
Borate (1-), 106, 182
Borates
aminium, 201
complex, 215
Borazine, 146, 182
Boric acid, 182, 219
anhydride-esters, 186
anhydrides, 179
Borinic acid, 182

Borole, 182
Boron acids, 182
anhydrides, 179,182
esters, 185
hydrazides, 182
Boron complexes, 201
Boron compounds, 159, 182
inorganic, IUPAC report on, 298
molecular skeletons, 159
order of precedence of, 106
retrospective index searching for, 239 zwitterionic, 201
Boronic acid, 182
Boron metaphosphate, 219
Boron phosphate, 219
Boroxin, 146
Borthiin, 146
Boryl, 161
Boson, 217
Boughton system
for isotopes, 220
Brackets, 109
around complex radicals, 132
around locants in spiro names, 156
in multiplicative names, 125
Bradykinin, 206
Brass, 214
Bridged fused systems, 154
Bridged systems, 140, 147, 155
choice between, 138
fused, 154
indicated hydrogen in, 135
Von Baeyer names for, 155
Bromic acid, 188
Bromo, 131
Bromous acid, 219
Bronze, 214
Bufanolide, 211
Butanedioic acid anhydride-esters, 186
Butanediol
fibers from dioic acids and, 222
Butenone, 137
Butyne
metal derivs., 219
Butyryl
in peptide names, 206
${ }^{14} C, 220$
CA. See Chemical Abstracts
Cadinane, 212
Caerulein, 206
Caffeine, 122
Cahn-Ingold-Prelog rule. See Sequence rule
Calciferol, 224
Calcitonin, 206
Calcium carbide, 219
Camphor, 212
Carbaboranes, 160, 182
Carbamic acid, 183
conjunctive names not formed from, 124
as elided name, 107
esters, 185
hydroxy, 193
multiplication of, 118
Carbamic chloride, 183
Carbamimidic acid, 183
Carbamoyl, 134
Carbapolyboranes order of precedence of, 106
Carbazole
numbering of, 152
Carbide, 219
Carbocyclic compounds, 145, 147, 148
monocyclic, radicals from, 161
order of precedence of, 106 spiro, 156
Carbodiimide, 177, 191
Carbodithioic acids, 165, 200
Carbohydrates, 208
ACS nomenclature rules for, 302
IUPAC tentetive nomenclature rules for, 296
retrospective index searching for, 240
Carbohydrazide, 252
Carbohydrazones, 190
Carbohydrazonic acids, 165
Carbon compounds. See also Carbocyclic compounds
acyclic, 141
acyclic and cyclic, order of precedence of, 106
ions, 180, 184, 219
Carbon dioxide, 219
Carbon disulfide, 219
Carbonic acid, 183
cyclic esters, 196
anhydrides, 179
anhydride with silicic acid, 199
derivs., retrospective index searching for, 241
order of precedence of, 106, 271
and related compounds, 183
replacement names from, 129
Carbonic bromide chloride, 183
Carbonic dihydrazide, 183, 189
Carbonimidic acid, 183
Carbonimidoyl, 134, 168, 174
in multiplicative names, 125
Carbonitriles, 172
Carbonium compounds, 184
Carbon monoxide, 219
Carbonochloridic acid, 183
Carbonochloridothioic acid anhydrosulfides, 170
Carbonodiperoxoic acid, 129, 183
Carbonodithioic acid
anhydrosulfides, 200
Carbonohydrazonic acid, 129
Carbonohydrazonoyl, 134
Carbonothioic dichloride, 183
Carbonothioyl, 134, 168, 174
in multiplicative names, 125
Carbon oxide sulfide, 219
Carbon tetrachloride, 272
Carbonyl, 134, 168, 174
free radicals containing, 187
hetero-atom-attached, 163
in multiplicative names, 125
Carbonyldiimino, 134
Carbonyls
metal, 215, 219
Carbostyril, 122
Carbothioamides
elision in names of, 107
Carbothioic acids, 165
Carboxaldehydes, 173, 230
Carboxamides, 171, 233
tautomerism of, 122
Carboximides, 191
Carboximidic acids, 129, 165
tautomerism of, 122
carboxy, 220
Carboxy, 134
Carboxyamino, 183
Carboxylato, 215
Carboxylic acids, 165
acyclic with cyclic substituents, 166
aminium salts, 198
anhydrides with inorganic acids, 219
of carbohydrates, 208
esters, 185
free radicals from, 187
functional derivs., 169
labeled, 220
molecular addition compds., 192
order of precedence of, 106, 167
retrospective index searching for, 228
salts, 198
as substituents, 167
Cardanolide, 211
Carotene, 212
Carotenoids, 212
ACS report on nomenclature of, 302
IUPAC tentative nomenclature rules for, 296
Carrageenan
mixtures containing, 221
Cast iron, 214
Categories
for elements, 219
Catena compounds, 192
Cations, 184
complex, 215
elementary and inorganic, 219
order of precedence of, 106
present and former indexing rules for, 270
salts, 198
Cellulose, 208, 240
Centrality
in amines, 176
in index name selection, 138, 255
Cephalosporins
stereochemistry of, 203
Cermets, 214
Cevane, 211
Chemical Abstracts
index nomenclature for, reports on, 301
Chicle, 222
Chirality. See Stereochemistry
chiro, 209
Chloramido, 215
Chloramine, 219
Chloric acid, 219
metal salts, 219
Chlorides
of arsenic and phosphorus acids, 197
of elements, 219
glycosyl, 208
Chlorine compounds, 188
Chlorine nitrate, 219
Chlorine oxide, 219
Chloro, 132
Chlorocarbonyl, 131
Chloroimidosulfuric acid, 219
Chloronium, 219
Chlorophylls, 233
Chlorosulfuric acid, 129, 219
Chlorosyl, 219
Chloryl, 188, 219
Chloryl fluoride, 219
Chloryloxy, 188
Cholane, 211
Cholecalciferol, 224
Cholestane, 211
Chromates
complex, 215
Chromatite, 219
Chrome alums, 219
Chromic acid, 219, 273
Chromium carbonyl, 219
Chromium hydroxide, 219
Chromyl, 219
Chymotrypsin, 218
cis, 203, 209
C.I. names, 216

Cinchonanol
salts, 202
Cinnoline, 149
${ }^{35} \mathrm{Cl}, 220$
Class I acids, 185, 247
Class I alcohols and thiols, 185, 247
Cluster compounds, 203, 215, 219
Cobalamin, 224
Cobalt labeled complexes, 220
Cobaltate, 219
Cobalt nitrate sulfate, 219
Cobamic acid, 224
Cobamide, 224
Cobinamide, 224
Cobinic acid, 224
Cobyrinic acid, 224
Cocarboxylase, 224
Coenzyme A, 210
Colons, 108
in coordination names, 215
in index names, 108
Colour Index, 216
Commas, 108
of inversion, 104
in modifications, 108
Common components
of addition compds., 192, 265A of salts, 198, 281A
Complexes. See Coordination compounds
Complexity
principle of, discontinuance of, 255
Compound classes
order of precedence of, 106
Compound radicals, 133, 162
Conanine, 211
Configuration. See Stereochemistry
Configuration numbers for coordination compds., 203
Conjugate acids, 184 labeled, 220
Conjunctive nomenclature, 124, 315 for acids, 166
present and former policies of, 255
Constitutional repeating units, 222
Coordination compounds, 215
amino acid transition metal salts as, 205
labeled, 220
order of precedence of, 106
polymers of, 222
porphyrin complexes, 223
retrospective index searching for, 242
stereochemistry of, 203
structural diagram derivation for, 318
sulfur complexes as, 200
Copolymers, 222
Copper
monocysteine complex, 205
Corrin, 224
Corrinoids. See also Vitamin $B_{12}$
IUPAC-IUB tentative nomenclature rules

$$
\text { for, } 297
$$

Corticotropins, 206
Coumarins, 185
Cuprates
complex, 215
Cyanamide, 183, 267
Cyanates
of arsenic and phosphorus acids, 197
Cyanato, 183, 188, 215
Cyanic acid, 183, 188, 219
anhydrides, 170, 179
esters, 185, 188
Cyanides
of arsenic and phosphorus acids, 197
Cyanine dyes, 216
Cyano, 172
Cyanocobalamin, 224
Cyanosulfurous acid, 219
Cyclic(glycylglycylglycyl), 206
Cyclitols, 209
IUPAC tentative nomenclature rules for, 296
Cycloalkanes, 145
Cycloalkenes, 145
Cycloalkenyl radicals locants for, 116
Cycloandrostane, 211
Cyclodisilazane, 146
Cyclohexadienyne, 145
Cyclohexanamine
salts, 198
Cyclohexane, 130
benzene preferred to, 138
polyhydroxy derivs., 209
terpene derivs., 212
Cyclohexasiloxane, 146
Cyclohexastannane, 199
Cyclohexene, 145
no locant used with, 113
Cyclohexenone, 174
Cyclohexenylylidene, 161
Cyclohexyl, 161
Cyclopentadiene, 145
Cyclopentadienide, 180
Cyclopentadienyl, 161
in metal complexes, 215
Cyclopentane
fused derivs., 151
Cyclopentaphenanthrene
bridged derivs., 154
derivs., 211
and derivs., numbering of, 152
Cyclopregnane, 211
Cyclopropenyl, 161
Cyclosecopregnane, 211
Cyclosiloxanes, 146
Cyclotrisiloxanol, 199
Cysteine, 205
Cytidine, 210
Cytidylic acid, 210
Cytochalasan, 202
Cytochrome c, 207
Cytosine, 122

## d

in deuterium-labeled compds., 220
D, 108, 205, 208, 209
De, 206
Decaborane, 159
Decaborano, 159
Decyl
"tris" and parentheses used with, 110
Dehydro, 139, 146, 158, 208
in phorbine names, 223
Dehydrogenase, 218
Deoxo, 204
Deoxy, 139, 204, 208
Depsipeptides, 206
Derivatives. See Functional derivatives
Desulfo, 206
Deuterium, 220
Di, 110
Diarsene, 143
Diarsine, 197
Diarsonous acid, 179
Diazadiphosphetidine, 197
Diazane. See Hydrazine
Diazaporphine, 223
Diazene
and derivs., 193
order of precedence of, 106
Diazenecarboxaldehyde
hydrazones, 190
Diazenecarboxylic acid
hydrazides, 189
Diazenyl, 161
Diazenyloxy
free radical, 187
Diazo, 132
"bis" and parentheses used with, 110
Diazoamino tautomerism, 122
Diazo compounds, 193
retrospective index searching for, 243
Diazonio, 184
Diazonium compounds, 184
double salts, 216
salts, 198
Dibismuthine, 143
Diborane, 159, 182
Dicarbadodecaborane, 160, 182
Dicarbaheptaborane, 160
Dicarbonic acid, 179
Dicarbonic dichloride, 183
Dicarboxylic acids
esters and hydrazides, 119
Didehydro, 139, 146, 208
in phorbine names, 223
Diels-Alder adducts, 192
Diene adducts, 192
Diethylamino
alphabetization of, 121
Digermaselenane, 144
Diimidotricarbonimidic acid, 183
Diimidotriphosphoramide, 197
Dilmidotrisulfuric acid, 219
Dimers
of aluminum chloride, 215, 219
of boranamines, 182
Dinorcholestanoic acid, 211
Dioic acids, 165
Diols
esters, 119, 185
Diones, 174
cyclic, 136
derivs., 119
Dioxaazadispirododecene, 156
Dioxacyclopentindene, 153
Dioxagermanin, 199
Dioxastannin, 146
Dioxy, 196
in free radical names, 187
Diphosphine, 197
order of precedence of, 106
sulfides, 200
Diphosphinediyl, 161
Diphosphinium, 219
Diphosphinyl, 161, 197
Diphosphonic acid, 179
Diphosphorane, 143
Diphosphoric acid, 197, 219
esters, 119
nucleotide esters, 210
Diphosphoric(III,V) acid, 219
Diphosphorous acid, 219
Diphosphorous tetramide, 219
Diphosphoryl, 219
Diphosphoryl, chloride, 197
Diphosphoryl chloride fluoride, 219
Diplumboxane, 199
Diselenides, 200
Diselenious acid, 219
Disilane, 199
order of precedence of, 106

Disilanehexol, 219
Disilathiane, 199
order of precedence of, 106
Disilazane, 144, 199
radicals from, 144
Disilazanedlyl, 161
Disilanyl, 199
Disilazanyl, 144, 199
Disilene, 143
Disiloxane, 199 order of precedence of, 106
Disiloxanediol, 131
Disiloxanediyl, 125
as hetero unit, 127
Disiloxanyl, 161
Distannane, 140
Distannazane radicals from, 144
Distibene, 181
Distibenediyl, 161
Distibine, 181
Disulfamide, 219
(Disulfate), 109
Disulfides, 200
acyl, 179
chloro, 170
order of precedence of, 106
phosphono sulfo, 219
Disulfones
order of precedence of, 106
Disulfonothioic acids, 165
Disulfonyl, 219
Disulfoxides, 200
order of precedence of, 106
Disulfuric acid and salts, 109, 219
Dithiastibabicyclononatriene, 155
Dithiazine, 146
Dithiin, 135
Dlthio
as hetero unit, 127
Dithiocarboxy, 134
Dithioperoxoic acids, 165, 200
Diylidene, 161
Diyl, 161
DL, 108, 205, 208
Double bonds. See Unsaturated compounds
Double salts, 219
Dyes, 216
retrospective index searching for, 244
E, 203
report on, 301
Earliest index position
principle of, 122
of radical names, 133
of total index names, 138
E.C., 218
-ecane, 146
-ecin, 146
-ecine, 146
Egg White
mixtures containing, 221
Element, 104, 219
Element, 105, 219
Elementary particles, 217
retrospective index searching for, 245
Elements, 219
of atomic number 104 and higher, 101
isotopes of, 220
Elision
of vowels and syllables, 107, 283
enantio, 206
Enclosing marks, 109
in complex radicals, 132
in indefinite names, 132
in labeled radicals, 220
in ligand names, 215
in uninverted multiplicative names, 192
endo, 154, 203, 206
-ene, $139,141,155$
no elision of "a" before, 142
-enyl, 161
Enzymes, 218
retrospective index searching for, 246
-epane, 146
epi, 209
Epidioxy, 154, 211
-epin, 146
-epine, 146

Epithio, 154, 208
Epoxides
oxirane names for, 166
Epoxy, 154, 211
Ergocalciferol, 224
Ergostane, 211
erythro, 108, 208
Ester-anhydrides, 186
Esters, 185. See also Functional derivatives
of amino acids, 205
anions of, 180
of carbohydrates, 208
of halogen oxo acids, 188
of hetero-atom-attached hydroxyl groups, 175
as modification terms, 112, 113
of polyalkylene glycols, 222
retrospective index searching for, 247
of stereoparents, 202
of thio acids, 200
$\eta$ (eta)
for pi-bonded ligands, 215
-etane, 146
-ete, 146
Ethanamine, 131
Ethane, 130, 163
Ethanedinitrile, 172
Ethanedioic acid, 165
Ethanediol
esters, 185
Ethanedione, 190
Ethanedithioic acid, 129
Ethane(dithioperoxoic) acid, 129
Ethanediyl, 125
Ethanethioamide
$S$-oxide, 200
Ethanimidic acid, 165
Ethanimine, 177
Ethano, 154
Ethanol, 175
esters, 185
Ethanylylidene, 154
Ethenol
polymers, 222
Ethenone, 174
Ethers, 196
"a" names for poly, 142
of polyalkylene glycols, 222
retrospective index searching for, 248, 271 Ethoxy
elision in spelling of, 107
free radical, 187
Ethyl, 161
free radical, 187
Ethylene glycol
polymers, 222
Ethylides, 201
Ethylium, 184
Ethyne
metal derivs., 219
-etidine, 146
Eudesmane, 212
Ewens-Bassett numbers, 215, 219
in vitamin $\mathrm{B}_{12}$ names, 224
exo, 203
Farnoquinone, 224
Fermion, 217
Ferrates, 215
porphine complexes, 223
Ferrobyrinic acid, 224
Ferrocene, 215
order of precedence of, 271 retrospective index searching for, 264
Fibers
synthetic, 222
Fibrinopeptide B, 206
Fluoresceins, 216
Fluorimide, 219
Fluorine compounds, 117, 188
Fluorocarbons locants for, 117
Fluoroselenious acid, 219
Formaldehyde, 183 oximes, 195 polymers, 222
Formamide, 183
Formamidine, 234, 280
Formazan, 193 retrospective index searching for, 249

Formazano, 193
Formazanyl, 193
Formic acid, 183
anhydrides, 179
order of precedence of, 106
replacement analogs, 183
formyl, 220
Formyl, 134, 173
Formyl isocyanate, 183
Free radicals, 187
cationic, 184
Friedo, 212
Fructose, 208
valine deriv., 202
Fullerenes, 163A
Fulminic acid, 188, 219
Functional compounds
described by suffixes, 164-177
Functional derivatives
of acids, 169
of amino acids, 205
commas between names of, 108
locants for, 119
order of citation of, 113
retrospective index searching for, 250
of stereoparents, 202, 204
of steroids, 286
Functional parent compounds, 130, 131
acids, order of precedence of, 106
Functions
order of precedence of, 106
Furan, 146
in fused systems, 149, 151
Furandione
polymers containing, 222
Furandiylidene, 161
Furanimine, 185
Furanium compounds, 184
Furano, 154
-furanose, 208
Furanosides, 208
Furazan, 281
Furostan, 211
Furylium compounds, 184
Fused ring systems, 147, 148
Fused systems
base components for, $148,149,150,281$
boron-containing, 159
bridged, 154
carbocyclic, 148, 151
heterocyclic, 149, 151, 281
numbering of, 152
replacement nomenclature for, 153
Galactitol, 208
Galactose, 208
Gammacerane, 212
Gastrin, 206
Geometry
of coordination complexes, 203
Germanamine, 199
Germanate, 215
Germane, 143, 199, 219
Germanium compounds, 199
cyclic, 146, 194
order of precedence of, 106
Germanium hydroxide, 199
Germaselenanes, 144
Gibbane, 212
Glucagon, 206
Glucitol, 208
gluco, 208
Gluconoyl chloride, 208
Glucopyranose, 208
Glucopyranosyl, 208
Glucopyranosylamine, 208
Glucopyranuronic acid, 208
Glucose, 208
mixtures containing, 221
polymers, 222
Glucosides, 208
Glucuronan, 208
Glutamic acid, 205 peptides containing, 206
Glutamoyl, 205
Glycerides, 185
glycero, 208
Glycerol
esters, 185

Glycine, 205
peptides containing, 206
Glycols
polymers, 222
Glycolic acid, 167
Glycosides, 208, 240
Glycosylamines, 208
Glycosyl halides, 208
Glycosyl radicals, 208
in nucleosides and nucleotides, 210
Glycyl, 205
Gonane, 211
Gonatriene, 211
Gorgostane, 211
Graft polymers, 222, 277
Gramicidin S, 206
Graphite, 219
Graphite nitrate, 219
Graphitic acid, 219
Greek letters
alphabet, 310
order of citation of, 113
Guanidine, 183
derivs., retrospective index searching for 251
Guanine, 122
Guanosine, 210
Guanylic acid, 210

$$
\text { polymers, } 222
$$

polymers, 222
gulo, 208
Gutta-percha, 222
H. See Added hydrogen; Indicated hydrogen

Hadron, 217
Hahnium, 219
Halides. See also Acid halides of germanium, lead, etc., 272
of metals, 219
of silicon, 282
Halogen compounds, 188
Halogenoid compounds, 188
Halogens, 219
Hantzsch-Widman system, 146
order of precedence of, 138
Helium-group gases, 219
Hematin, 223
Hemi, 192, 265A, 311
Hemiacetals of carbohydrates, 208
Heptene polymers, 222
Hetero-atom chains
acyclic, 142
acyclic, radicals from, 161
heterogeneous, 144
homogeneous, 143
homogeneous, breaking of, avoided, 138
Hetero atoms
lowest locants for, 137
order of precedence of compds. containing, 106, 138
Heterocyclic compounds
fused, 149, 281
numbering of, 152
spelling of names of, 107
order of precedence of, 106 preferred to carbocycles, 138
Heterogeneous hetero chains, 144
Heteropoly acids, 219
Hetero polyboranes, 160
Hetero units, 127, 176, 196, 279
Hexaborane, 159
Hexadiene, 141
Hexanedioic acid polymers with diols, 222
Hexapropylene glycol, 222
Hexene
polymers, 222
Hexodialdose, 208
Hexopyranosulose, 208
Hexoses, 208
Hexosulofuranose, 208
Hexosulose, 208
Hexulose, 208
Hexyne, 141
Histidine numbering of, 205
Homo, 204, 211
Homocysteine, 205
Homogeneous hetero chains, 143

Homoglycans, 208
Homonorpregnane, 211
Homonorursene, 212
Hormones, 206
Hydantoin, 122
Hydrates, 192, 265A, 311
citation in modification, 113
labeled, 220
of metal salts, 219
Hydrazi, 161, 211
Hydrazide
as index parent, 180, 219
Hydrazides, 189. See also Functional derivatives
of amino acids, 205
of arsenic and phosphorus acids, 197
of boron acids, 182
of elements, 219
Hydrazine, 143, 193, 219
acyl-see Hydrazides
alkylidene-see Hydrazones
alkylthio, 189
boryl, 182
derivs., 189, 193
derivs., retrospective index searching for, 252
order of precedence of, 106
Hydrazinecarbothioamide
derivs., 190
Hydrazinecarboxamide
derivs., 193, 202
Hydrazinecarboxylic acid, 183, 189, 193
Hydrazinedicarboxylic acid, 165
Hydrazinedisulfonyl dichloride, 219
Hydrazinium, 184, 219
Hydraziniumyl, 184
Hydrazino, 161, 189, 193
tautomerism of, 122
Hydrazinosulfonyl, 189
Hydrazinylylidene, 161, 193
Hydrazo, 161, 193
Hydrazoic acid, 219
Hydrazonamides, 171
Hydrazones, 190. See also Functional derivatives
of carbohydrates, 208
of stereoparents, 204
tautomerism of, 122
Hydrazonic acids, 165, 169, 190 hydrazides, 122 tautomerism with hydrazides, 165
Hydrazono, 161, 190, 193
Hydrazyl, 187
Hydride
as index parent, 219
Hydrides, 219 labeled, 220
Hydriodic acid, 219
Hydro
abnormal-valency ring systems, 158 locants for, 117
Hydrobromic acid, 219
Hydrocarbons acyclic, 141
fused systems, 148, 152
labeled, 220 monocyclic, 145 monocyclic, radicals from, 161 order of precedence of, 106 polycyclic, 147 spiro, 156
Hydrochloric acid and dimer, 219
Hydrochlorides, 198
Hydrocyanic acid, 183
Hydrodisulfides, 200
Hydrofluoric acid, 219
Hydrogen
added-see Added hydrogen indicated-see Indicated hydrogen isotopes of, 220 in partial ester names, 185 subtraction of, from ring systems, 139
Hydrogenase, 218
Hydrogenobyrinic acid, 224
Hydrogen peroxide, 219
Hydrogen sulfide, 219
Hydrogen triiodide, 219
Hydrogen trioxide, 219
Hydroisocyanic acid, 219

Hydrolytic polymers, 222, 277
Hydroperoxides, 126, 196
of elements, 219
order of precedence of, 106
Hydroperoxo, 219
free radical, 187
Hydroperoxy, 196
Hydrotrioxides, 196
Hydrotrioxo, 219
Hydrotrisulfides, 200
Hydroxamic acids, 167, 228
Hydroxides
inner salts, 293A inorganic, 219
Hydroximic acids, 167, 228
Hydroxyl, 219
free radical, 187
hetero-atom-attached, 163, 175
Hydroxylamine, 193, 219
0 -acyl, 171
N -alkyl and N -aryl, 176
N -alkylidene-see Oximes
derivs., retrospective index searching for, 253
order of precedence of, 106
Hydroxylaminesulfonic acid, 193, 195
Hydroxylase, 218
Hypernuclei, 217
Hyperon, 217
Hyphens, 108
in hydroperoxide names, 126
Hypoboric acid
esters, 182, 185
Hypochlorous acid, 188, 219
Hypofluorous acid, 188
Hypoiodous acid anhydrides, 188
Hyponitric acid, 219
Hyponitrous acid
and metal salts, 219
Hypophosphoric acid, 197, 219
-ian
in mineral names, 219
-ide, 219
ido, 208
Illustrated structural diagrams, 135
for stereoparents, 204, 211
Imidamides, 171
$N$-hydroxy, 171
radicals from, 134
retrospective index searching for, 234 tautomerism of, 122
Imidazole, 146
Imidazolidine, 146
Imides, 191
of arsenic and phosphorus acids, 197 oxides, 268
Imidic acids, 129, 183, 228
amides preferred to, 122
radicals from, 134
tautomerism of, 122, 165
Imido, 215
Imidodicarbonic acid, 129
Imidodiphosphoric acid, 197, 219
Imidodiselenic diamide, 219
Imidodisulfuryl fluoride
metal salts, 219
Imidogen, 187
Imidosulfamic acid, 219
Imidosulfamide, 129, 219
Imidosulfurous acid, 200
Imidotetraphosphoric acid, 219
Imidotriphosphoric acid, 129
-imine
in fused systems, 154
Imines, 177
N -alkyl derivatives, 176
order of precedence of, 106
retrospective index searching for, 254
Iminio, 184
Iminium compounds, 184
Imino
as bridge, 154
in multiplicative nomenclature, 125
as substituent, 177
in tautomers, 122
Iminodiimidotriphosphoramide, 219
Iminomethyl, 168, 177
-in, 146, 149

Indefinite compounds, 120
cationic, 184
coordination compds., 215
Indene, 135
Index names
choice of, 101, 103, 105, 138
with functional suffixes, 164-177
inversion of, 104
preferred, definition of, 192
retrospective searching of, 225-293
structural diagrams from, 312-318
Index name selection. See also Order of precedence
CAS policies (previous and present) for, 255, 301
CAS policy revision for, 101, 255
for compds., 138
for fused ring systems, 151
necessity of rules for, 103
principles of, 105
for radicals, 133
Index parents
definition of, 130, 164, 315
inversion of substituent prefixes at, 104
nonfunctional, molecular skeletons as, 140, 163
nonfunctional, order of precedence of, 106, 271
structural diagrams from, 312-318
Indicated hydrogen, 135, 317
in abnormal-valency ring systems, 158
to accommodate bridges, 154
ACS report on, 302
for cyclic ketones, 174
for cyclic sulfur compds. with abnormal valencies, 158
of fusion components, ignored, 152
lowest locants for, 122, 137, 138
present and former rules for, 256
in ring assemblies, 157
in spiro systems, 156
Indole
analogs, 149
Indolylidene, 161
-ine, 146, 149
Inner salts, 112, 201, 224, 293A
vitamin $B_{12}$ derivs., 224
Inorganic compounds, 219
indexing policy changes for, $225,239,257$, 273
labeled, 220
nomenclature of, history and development of, 306
nomenclature rules for, 298
Inosine, 210
Inosinic acid, 210
Inositols, 209
retrospective index searching for, 258
Inosose, 209
Insulins, 206, 274
Intermetallic compounds, 219
labeled, 220
International Mineralogical Association, 219
International Union of Biochemistry, 218
nomenclature rules of, 296-297
International Union of Pure and Applied
Chemistry, 101, 219
nomenclature rules of, 296-300
Inversion
of index names, 104
Iodate
dichloro, 219
Iodic acid, 219
Iodine
as index parent, 188
Iodine acids, 219
anhydrides, 188
Iodine compounds
with abnormal valencies, 259
addition compds., 192
cyclic, 158
retrospective index searching for, 259
Iodonium, 184
Iodyl, 188
Ion(1-)
as modification term, 113, 198
Ions
complex, 215
inorganic, 219
negative, 180
negative, in modifications, 198
negative, of elements, 219
order of citation of, in modifications, 113
positive, 184, 219, 270
-io radicals
from metals, 215
-irane, 146
-irene, 146
-iridine, 146
-irine, 146
Iron compounds, 215, 219
hemes, 223
Iron oxide, 219
Iron zinc oxide, 219
Iso
in boron-compd. names, 159
Isobenzofurancarboxylic acid, 186
Isobenzofurandione, 179
Isocyanates
acid, 170
acid, order of precedence of, 106
Isocyanato, 183, 188
Isocyanides, 188
of arsenic and phosphorus acids, 197
retrospective index searching for, 260
Isocyano, 188
Isocytidylic acid, 210
Isoguanylic acid, 210
Isohypophosphoric acid, 197, 219
Isoindole
in fused systems, 149, 151
Isoneuraminic acid, 208
Isopoly acids, 219
Isoselenazole, 146
Isosemicarbazones, 190
Isothiazole, 146
Isotopes, 220
in alloys, 214
compds. labeled with, 220
elementary particles, 217
of hydrogen, ACS report on, 302
metastable, 220
Isoxazole, 146
Italics, 108
-ite, 219
-itol, 208
IUB. See International Union of Biochemistry
Ium compounds, 184, 215
borates, 201
retrospective index searching for, 270
salts, 198
zwitterionic, 201
-iumdiyl, 184
-iumyl, 184
IUPAC. See International Union of Pure and Applied Chemistry

Kaurane, 212
Ketenes, 174
thio, 183
retrospective index searching for, 261
Keto-enol tautomers
stereochemistry of, 203
Ketones, 174
added hydrogen in cyclic, 136
hetero-atom-attached, 163
indicated hydrogen in cyclic, 135
nitrogen-containing cyclic, 171
of nitrogenous heterocycles, 122
order of precedence of, 106
oximes, 195
retrospective index searching for, 262
Ketoses, 208
Kraystay K, 221
Kromycin, 202
Krypton fluoride, 219
L, 108, 205, 208, 209
Labeled compounds. See Isotopes
Lactam-lactim tautomerism, 122

## Lactams

carbohydrates, 208
Lactate dehydrogenase, 218
Lactoflavine, 224
Lactones, 185
of amino acids, 205
of carbohydrate acids, 208
cyclic peptides, 206
steroidal, 211
Lactose, 208

Lactoyl
in peptides, 206
Ladder polymers, 222
Lakes, 216
$\lambda$ (lambda)
in heterocyclic ring systems, 158
Langham, Cecil C., 102
Lanostane, 212
Latin prefixes, 311
Lead compounds, 199
cyclic, 158
monocyclic, 146
order of precedence of, 106
Lepton, 217
Leptonic molecules, 217
Letter locants
in coordination names, 215
in labeled compds., 220
order of citation of numerals and, 114
Leucomycin V, 202
Ligands, 215, 242
Like treatment of like things, discontinuance of, 138, 255
Linearity
of bridged fused systems, 154
of fused systems, 138, 150
Line formulas
with binary names, 219
for carbonic anhydride sulfur analogs, 183
containing isotope symbols, 220
for inorganic compds., 219, 257, 315
with polyphosphorus acids, 197
synonym line formulas, 109, 129
Lipids
IUPAC-IUB tentative rules for nomenclature of, 297
Lithian, 219
Lithio, 215
Lithium compounds
organic, 194
Locants, 114
all cited when one is needed, 117, 119
in "a" names, 128
effect on alphabetization, 121
for bridged fused systems, 154
capital italic letters, in coordination nomenclature, 215
enclosing marks between like, 132
in ester names, 185
for functional derivs., 119
for fused systems, 115, 152
for indefinite compds., 120
for isotopes, 220
lowest, definition of, 137
lowest, principle of, 255
in modifications, 185
for molecular skeletons, 137, 138
in multiplicative nomenclature, 118
present and former rules for, 263
primed, 114, 151, 152
in radicals, 116, 133
in rings and chains, 137
for suffixes, 115
for sulfides of hetero atoms, 200
Lowest locants, 137, 255
for indicated hydrogen, 122, 135, 152
for multiple bonds, 138
in radicals, 133
in tautomers, 122
Lupane, 212
Lysozyme, 218
Macromolecular chemistry
nomenclature of, history and development of, 307
nomenclature rules for, 299
Magnesate
phorbine complexes, 223
Magnesium
cations, 219
Magnesium compounds chlorophylls, 223
Malonic acid. See Propanedioic acid
Manganese hydroxide oxide, 219
Manganic acid, 219, 273
Mannan, 208
Mannopyranosyl bromide, 208
Maximum substitution, 122, 133, 138
Melamine, 122
polymers with formaldehyde, 222

Melanocyte-stimulating hormone, 206
Menthane, 212
Mercapto
free radical, 187
hetero-atom-attached, 175
Mercury
organic derivs., 194
Mercury chloride, 219
Meso-ionic compounds, 201, 293A
Meson, 217
Mesonic atom, 217
Metaborates
cyclic, 219
Metal complexes. See Coordination compounds
Metal carbonyls, 215
Metallic compounds
organo-, 194
monocyclic, 146
retrospective index searching for, 272
Metallocenes, 215
retrospective index searching for, 264, 271
stereochemistry of, 203
Metal-metal bonds, 203, 215
Metal oxides
radicals from, 219
Metal radicals, 215
Metals, 215
complexes of, 215
definition of, 219
hydroxides and oxides, 219
isotopes, 217
Metal salts, 198
of amino acids, 205
Metaphosphinic acid, 197
Metaphosphoric acid, 197, 219
Metaphosphorous acid, 197
Methanamine, 176
boron complexes, 182
Methanaminium, 184
salts, 198
ylides, 201
Methane, 130, 140, 141 multiplication of, 118
Methanediimine, 177
Methane(dithioic) acid, 183
Methaneperoxoic acid, 183
Methanethial, 183
Methanethioamide, 183
Methanethione, 174, 183
Methanimidoyl isocyanate, 183
Methanimine, 183
Methano, 154
Methanoic acid replacement analogs, 183
Methanone, 174, 183
oximes, 195
Metheno, 154
Methines, 216
Methiodides, 184
Methoxides, 180
Methoxy, 107, 287
free radical, 187
Methyl, 161
free radical, 187
Methylene, 125, 161 parentheses around, 110
Methylethyl, 162
Methylides, 201
Methylidyne, 161
free radical, 187
Methylium, 184
Methyliumyl, 184
Methylthio
free radical, 187
Methylphenyl, 162
Minerals, 219
labeled, 220
(-) (minus), 203
Mixed salts, 219
Mixtures, 221
of dyes, 216
order of citation of, in modifications, 113
retrospective index searching for, 265
of stereoisomers, 203
Modifications
enclosing marks in, 109
format of, 104, 317
locants for terms in, 119
order of citation of terms in, 113
Molecular addition compounds, 192, 265A

See also Salts
of amino acids, 205
of borane, 182, 239
citation in modification, 113
of polymers, 222
stereochemistry of, 203
of stereoparents, 202
Molecular skeletons, 140-163
boron, 159
definition of, 140, 315
as index parents, 130
numbering of, 137
order of precedence of, 106, 271
radicals from, 161
Molybdate
iron sodium oxide, 219
Mono, 111, 120, 192, 311
in anhydride names, 179
in ester names, 185
Monoprotonated
as modification term, 184
Morpholine, 146
Morpholinyl, 161
$\mu(m u), 215$
in polyborane names, 182
тисо, 209
Multiple bonds. See also Unsaturated
compounds
maximum number of, in parent radicals, 133
Multiplicative nomenclature, 125
brackets around parent in, 109
for ester names, 185
locants in, 118
for fused systems, 151
preferred, 138
retrospective index searching for, 255
ylidene radicals in, 125, 255
Multiplicative prefixes, 110, 311
alphabetization rules for, 121
present and former ruleo for, 266
Muonic molecule, 217
Muonium, 217
Muramic acid, 208
myo, 209
N, 108
order of citation of, in locant sets, 114
${ }^{15} N, 220$
Name selection. See Index name selection
Naphthacene
numbering of, 152
Naphthalene
in fused systems, 148,151
numbering of, 137
Naphthalenedione
vitamin K derivs., 224
Naphthalenimine, 154
Naphthaleno, 154
Naphthalenone
added hydrogen in, 136
Natural products. See Stereoparents
neo, 209
Neo
in boron compd. names, 159
in terpene names, 212
Neogammacerane, 212
Neoonocerane, 212
Neuraminic acid, 208
Neutrino, 217
Neutron, 217
Nickelibyrinic acid, 224
Nielsbohrium, 219
Ninth Collective Index
substance name revision in, 101
Niobate, 215
Nitramide, 219
Nitrate
as index parent, 219
Nitric acid
and metal salts, 219
Nitric acidium, 219
Nitrides
of arsenic and phosphorus acids, 197
Nitrido, 215
Nitridotriphosphoric acid, 219
Nitriles, 172
of carbohydrate acids, 208
order of precedence of, 106
retrospective index searching for, 267
Nitrilimine, 172, 201, 267

Nitrilio, 184
Nitrilo, 125
aci-Nitro, 193
Nitrogen acids, 219
Nitrogen compounds, 193
$N$-glycosyl derivs., 208
heterocyclic, $N$-acyl derivs., 171
monocyclic, 146
order of precedence of, 106
peptides as, 206
phosphorus-, 197
order of precedence of, 106
quaternary, 184, 270
salts, 198
tautomeric, 122
Nitrogen hydrides, 219
Nitrolic acids, 167, 228
Nitrone
retrospective index searching for, 268
Nitrosamide, 219
Nitrosolic acids, 228
Nitrososulfonyl fluoride, 219
Nitrosyl, 219
Nitrosyl chloride, 219
Nitrosyl (disulfate), 219
Nitrosyls
metal, 215
Nitrous acid, 219
anhydrides, 179
Nitroxide, 187
Nitryl, 219
NNO, 193
Nomenclature
history of chemical, 303-308
IUPAC, IUB, and ACS rules of chemical, 296-300
retrospective index searching of CAS, 225
Nonfunctional compounds
order of precedence of, 106
Nor, 139
in alkaloid names, 204
in peptide names, 206
in steroid names, 211
in terpene names, 212
Norcholenedioic acid, 211
Norlupane, 202
Normalization
of tautomeric structures, 122, 184
Nucleon, 217
Nucleosides, 210
retrospective index searching for, 269
Nucleotides, 210
polymers, 222
retrospective index searching for, 269
Numbering. See also Locants
of fused systems, 152
of molecular skeletons, 137
Numerals
in alphabetization, 121
order of citation of letters and, 114
Nylon, 222
0
elision of, 107
0, 108
${ }^{17} O, 220$
-oan
in mineral names, 219
-ocane, 146
Occurrences
maximum number of parent, 122, 125, 138
-ocin, 146
-ocine, 146
Octaphene, 148
-oic acids, 165
-olane, 146
-ol, 175
-ole, 146
Oleanane, 212
-olidine, 146
Oligomers, 222
of arsenic and phosphorus acids, 197
of boranamines, 182
of carbohydrates, 208
clusters, 219
of nucleotides, 210
Oligonucleotides, 210
Oligosaccharides, 208
-onane, 146
-one, 174
elision of "e" before, 107
-onin, 146
-onine, 146
Onium compounds, 184. See also Cations
inner salts, 112, 293A
present and former indexing rules for, 270
salts, 198
ylides, 201
ONN, 193
Ophiobolane, 212
Optical rotation. See Stereochemistry
or, 120
Order of citation. See also Alphabetization
of locants, 114
of modification terms, 113
of substituent prefixes, 121
Order of precedence
of acids, 167
of arsenic and phosphorus acids, 197
of base components in ring systems, 148, 281
of carbonic acid and related compds., 183
of cations, 184
of compd. classes, 106
in index name selection, 105
present and former, 271
of ring systems, 138
of silicon compds., 106, 199
Organic chemistry
nomenclature of, history and development of, 304
nomenclature rules for, 296
Organic hetero chains, 142
Organometallic compounds, 194
monocyclic, 146
retrospective index searching for, 272
Orientation. See also Linearity
of fused ring systems, 152
Orotidylic acid, 210
Ortho acids
esters, 185
Ortho-fusion, 148
Ortho-peri fusion, 148
Osazones, 190
-osyl, 208
Oxa, 128
"Oxa-aza" nomenclature. See Replacement
nomenclature
Oxadiazolidinone, 201
Oxaspirodecane, 156
Oxatetragermolane, 146
Oxathiaazabicyclohexane, 155
Oxathiadisilaoctane, 142
Oxathiolane, 146
Oxatricycloheptane, 155
Oxazole, 146
Oxetane, 196
Oxetanone, 196
Oxidase, 218
Oxides. See also Additive terms
of amides and imides, 268
of amines, 176
of azo compds., 193
of cyclic nitrogen and sulfur compds., 158
of cyclic phosphorus compds., 185
of cyclic sulfur compds., 171, 179
of elements, 219
of hetero atoms, 158
locants for, 119
of nitrogen atoms, 113, 176, 193, 268
of phosphorus compds., 175
of thioacids, thioamides and thiones, 200
of thio esters, 185
Oximes, 195. See also Functional derivatives of amides, 171
of carbohydrates, 208
of stereoparents, 204
tautomerism of, 122
Oxirane, 196
polymers, 222
Oxirene, 146

## Oxirenol

and derivs., no locants used with, 117
Oxireno systems, 281
Oxo, 174
in terminal positions, 173
Oxo acids. See Acids
Oxonia, 184
Oxonium chloride, 219
Oxonium compounds, 184

Oxy, 125
free radical, 187
Oxygen compounds, 196
monocyclic, 146
order of precedence of, 106
Oxytocin, 206
Ozonides, 192
of elements, 219
$P-, 108,219$
Papain, 218
Pantothenic acid, 224
Paraformaldehyde, 222
Parent compounds, 130
Parentheses, 109
around compound radicals, 132
Particle resonances, 217
Pectic substances
ACS report on nomenclature of, 302
Penicillins
stereochemistry of, 203
Pentaborane, 159
Pentacene, 148
Pentacyclooctasiloxane, 155
Pentalene, 148
Pentanedioic acid, 165
Pentaoxaheptadecanediol, 222
Pentasilane, 143
Pentazadienyl, 161
Pentoses, 208
Pentuloses, 208
Pentyloxy, 132
Peptides, 206, 222
"a" names not used for, 127
IUPAC-IUB tentative rules for nomenclature of, 297
retrospective index searching for, 274
Perchlorato, 215
Perchloric acid
and ammonium salt, 219
esters, 185
Perchloryl, 188, 219
Perhalic acids, 188
Periodic acid, 219
Periods
in spiro and Von Baeyer names, 108
Permanganic acid, 219, 273
Peroxides, 126, 131, 196
carboxy, 179
of elements, 219
order of precedence of, 106
retrospective index searching for, 275
Peroxoic acids, 165
Peroxy acid halides, 170
Peroxy acids, 165
of arsenic and phosphorus, 197
from carbonic acid, 183
esters, 185, 196
inorganic, 219
order of precedence of, 106, 167
retrospective index searching for, 271, 280 of sulfur, 200
Peroxychromic acid, 219
Peroxydicarbonic acid, 183, 219
Peroxydicarbonic difluoride, 196
Peroxydiphosphonic acid, 196
Peroxydiphosphoramide, 219
Peroxydisulfuric acid, 219
Peroxyhypofluorous acid
esters, 196
Peroxymonosulfuric acid, 219
Perylene
in fused systems, 148, 151
Phenanthrene
anthracene preferred to, 138
numbering of, 152
Phenazine, 149
amino derivs., 216
Pheno, 149
Phenol
polymers with formaldehyde, 222
Phenolphthalein, 216
Phenols, 175
Class I, 185
metal salts, 198
order of precedence of, 106
retrospective index searching for, 229, 271 salts, 198
Phenolsulfonephthalein, 216
Phenothiazine
amino derivs., 216
Phenothiazinium, 184
Phenoxasilin, 149
Phenoxazine
amino derivs., 216
Phenoxide, 180
Phenoxy
elision in spelling of, 107
Phenylalaninamide, 206
Phenylalanine, 205
peptides containing, 206
Phenylalanyl, 205
Phenylazo, 131
Phenylene, 125
Phenylenedicarbonyl, 168
Phenylsulfinyl
free radical, 187
Phenylsulfonyl, 168
Phenylthio, 168
Phorbine, 223
Phospha, 128
Phosphaborocine, 182
Phosphatase, 218
Phosphate, 180
as index parent, 219
as modification term, 180
Phosphazines, 190
Phosphenic acid, 197
Phosphenimidous chloride, 197
Phosphenous acid, 197
Phosphide
as modification term, 180
Phosphides
of elements, 219
Phosphido, 215
Phosphine, 130, 143, 197
order of precedence of, 106, 271
Phosphinecarboxylic acid, 197
Phosphine imide, 197
order of precedence of, 106, 271
Phosphine oxide, 197
order of precedence of, 106, 271
Phosphine sulfide, 200
order of precedence of, 106, 271
Phosphinic acid, 197
Phosphinic cyanate, 179
Phosphinidene, 161
Phosphinidyne, 161
Phosphinimine, 177
Phosphino, 161, 197
free radical, 187
Phosphinyl, 197
Phosphinothioyl, 197
Phosphinous acid, 197
Phosphonate, 180
Phosphonia, 184
Phosphonic acid, 197
anhydrides, 179
Phosphonium, 184
inorganic, 219
mercury derivs., 194
salts, 198
ylides, 201, 276
Phosphonium cyanide, 219
Phosphonocyanatidic acid, 179
Phosphonous acid, 197
Phosphorane, 143, 197
order of precedence of, 106, 271
and phosphonium ylides, 201
Phosphoranyl, 161
Phosphoric acid, 197
anhydrides, 179
esters, 185
inorganic salts, 219
replacement names from, 129
Phosphorin, 146
Phosphorochloridic acid, 129
Phosphorodiamidic acid, 197
Phosphorodithioic acid esters, 185
Phosphorothioic acid esters, 185
Phosphorothioic triamide, 129
Phosphorous acid, 197, 219 esters, 185
Phosphorous trichloride, 197
Phosphorus(1+), 215
Phosphorus acids, 197, 219
anhydride-esters, 186
anhydrides, 179
inorganic, and salts, 219
nucleotide esters, 210
replacement names for, 129
salts, 198
Phosphorus compounds, 197
monocyclic, 146
order of precedence of, 106, 271
retrospective index searching for, 276
spiro, abnormal valency in, 158
tautomeric, 122
Phosphoryl, 276
Phosphoryl chloride, 276
Phthaleins, 216
Phthalocyanine, 223, 278
copper complex, 215
Phylloquinone, 224
Physicochemical units
manual of, 300
Pi-bonded ligands, 215
Picrasane, 202
Picrates, 180, 192
Pigments
organic, 216
Pinane, 212
Piperazine, 146
Piperazinium, 184
Piperidine
pyridine preferred to, 138
Platinum metals, 219
Plumba, 158
Plumbane, 143, 199
iodo derivs., 219
Plumboxanes, 199
(+) (plus), 203
Plutonyl ion, 219
Polyalkylene glycols, 222
Polyamides
"a" names for, 171
fibers, 222
Polyboranes, 159
hetero, 160
radicals from, 161
Polycyclic systems, 147. See also Ring systems
Poly(dioxobutanediyl), 222
Polyesters, 222
Polyethylene glycols, 222
Polymers, 222
of amino acids, 206
"a" names not used for, 127
of carbohydrates, 208
of coordination compds., 215
nomenclature of, history and development of, 307
order of citation of, in modifications, 113
retrospective index searching for, 277
stereochemistry of, 203
structural diagram derivation for, 315
Poly(methylene), 220
Polynucleotides, 222
IUPAC-IUB recommendations for nomenclature of, 297
Poly(oxyethanediyl), 222
Poly(oxymethylene), 222
Polyphenyls, 157
branched, 163
functional derivs., 163
radicals from branched, 162
radicals from unbranched, 161
Polypropylene glycols, 222
Polysaccharides, 208
Polysulfides, 200
order of precedence of, 106
Polyvalent radicals
in multiplicative names, 125
Porphine, 223
Porphyrazine, 223
Porphyrins, 223
retrospective index searching for, 278
Positron, 217
Positronium, 217
Potassium phosphate sulfate, 219
$P, P^{\prime}, 219$
Precedence
order of-see Order of precedence
Preferred index names
definition of, 192
Prefixes
miscellaneous, 309
multiplicative-see Multiplicative prefixes
substituent-see Substituent prefixes
Pregnane, 211
and derivs., stereochemistry of, 203
Pregnenedione
mixtures containing, 221
Primary components
in fused systems, 151
Primed locants, 114
in fused systems, 151, 152
Principal chemical groups, 104, 164-177
esters of, 185
hetero-atom-attached, 163
lowest locant for, 137
as suffixes, 131
Proline, 205
salts, 202
Pronunciation
of chemical words, ACS report on, 302
Propadiene, 141
Propanamine, 176
Propanebis(thioic) acid, 165
Propanedioic acid
anhydride-esters, 186
anhydrides, 179
cyclic esters, 185
esters, 185
hydrazides, 189
Propanesulfonic acid, 131
Propanetriol
esters, 185
Propanimine, 177
Propanoic acid, 131, 165
anhydrides, 179
Propanone, 174
hydrazone, 190
retrospective index searching for, 262
Propene(dithioic) acid, 165
Propenoic acid
polymers containing, 222
Propenol, 141
Propoxide, 180
Prostaglandins, 202
Prostane, 202
Proteinases, 218
Proteins, 207
enzymes, 218, 246
Proton, 217
Punctuation, 108
Purinamine
derivs., 210
glycosyl, 208
Purine
nucleoside and nucleotide derivs., 210
numbering of, 152
tautomeric derivs. of, 122
Purinium, 184
Purinone
derivs., 210
Pyran, 135, 146
Pyranone, 135, 136
Pyranoses, 208
Pyranosides, 208
Pyrazine, 146
Pyrazole, 146
tautomeric derivs., 122, 180
Pyrazolidine, 146
Pyrene
numbering of, 152
Pyridazine, 146
Pyridine, 146 preferred to piperidine, 138
Pyridinecarboxamide, 224
Pyridinium, 184
acyloxy derivs., 185
ylides, 201
Pyridinone
hydrazones and oximes, 122
Pyridinyl, 161
Pyridoxal, 224
Pyridoxamine, 224
Pyridoxol, 224
Pyrimidine, 146
nucleoside and nucleotide derivs., 210 tautomeric derivs., 122
Pyrindine, 281
Pyrophosphoric acid, 197, 273
Pyrrole, 135, 146
Pyrrolidine, 135, 146
Pyrylium, 184

Quark, 217
Quater, 157
Quaterphenyl
radicals from, 162
Question marks, 120
Quinoline
analogs, 149
Quinolinium, 184
Quinolizinium, 184
Quinoxaline
in fused systems, 149, 151
Quinquephenyl, 157
radicals from, 162
R, 203, 212
Radical ions, 180
Radicals. See Free radicals; Substituent prefixes
Radicofunctional nomenclature, 126
Ratios
in addition-compd. names, 192
in anhydride names, 179
in ester names, 185
Rayon, 222
Reductase, 218
Replacement nomenclature for acids, 165
for acyclic skeletons, 127, 140, 142
for amides, 171
for amines, 176
for anhydrides, 179
for arsenic and phosphorus acids, 197
for boron compds., 182
for cations, 184
in cocarboxylase names, 224
for esters, 185
for ethers and peroxides, 196
for functional groups, 129
for fused systems, 149, 153
for hetero chains, 142, 144
for heterosteroids, 211
for hydrazides, 189
for ketones, 174
lowest locants in, 137
for minerals, 219
prefixes for, 128
present and former rules for, 279, 280
for radicals, 133, 161, 287
for silicon (etc.) compds., 199
for spiro systems, 156
for sulfur compds., 200
for urea derivs., 183
for Von Baeyer systems, 155
Replacement prefixes, 128
elision of "a" in, 146
Resonance-stabilized compounds
anions, 180
cations, 184
phenazine and phenothiazine amino derivs., 216
Retinoic acid, 212
Retinol, 212
retro, 206, 211, 212
Retrocarotenes, 212
Retrospective searching
for index names, 225-293
Retrosteroids, 211
Ribitol, 208
riboflavin deriv., 224
ribo, 208
Riboflavin, 224
Ribofuranosyl, 210
Ribonic acid, 208
Ribonuclease A, 207
Ribose, 208
Ring assemblies, 147, 157, 266, 281
added hydrogen in, 136
indicated hydrogen in, 135
locants for, 114
punctuation for, 109
radicals from, 161, 287
retrospective index searching for, 281
Ring contraction
in alkaloids, 204
in steroids, 211
in terpenes, 212
Ring expansion
in alkaloids, 204
in steroids, 211
in terpenes, 212

Ring-size descriptors, 108
Ring systems
additional index entries for, $138,163,281$
base components of fused, 150, 281
bridged fused, 154
carbocyclic fused, 148
with functional side chains, 124
fused steroidal, 211
heterocyclic, 199
arsenic- and phosphorus-containing, 197
cyclic esters named as, 185
fused, 149
imides named as, 191
oxygen-containing, 196
indicated hydrogen in, 135
locants for, 137
metal-containing, 194
monocyclic hetero, 146
monocyclic hydrocarbon, 145
nitrogenous, $N$-acyl derivs., 171
order of precedence of, 138
polycyclic, 147
preferred to acyclic skeletons, 138, 271
radicals from, 161
replacement names for fused, 153
retrospective index searching for, 281
Von Baeyer, 155
Roman letters
as locants, order of citation of, 114
Rotaxanes, 192
Rubber, 222
s, 108
S, 203, 212
${ }^{35} S, 220$
$S^{\mathrm{IV}}, 140,158$
Saccharides, 208
in nucleosides and nucleotides, 210
Salamandra alkaloids, 211
Salt-type parents, 219
Salts, 198. See also Molecular addition
compounds
of amino acids, 205
of cations, 180
citation of, in modifications, 113
common anions of, 198, 281A
double and mixed, 219
of germanium, lead, and tin, 199
inorganic, 219
locants not used for, 119
of stereoparents, 202
Sanbornite, 219
Schiff bases, 176
scyllo, 209
Searching
retrospective, for index names, 225-293
Seco, 204, 212
Secocholestanol, 211
Secocholestatrienol, 224
Secoergostatetraenol, 224
Secostrychnidinoic acid, 204

## Selection

of index names-see Index name selection
Selenals, 173
order of precedence of, 106
Selenic acid, 219
Selenic diamide, 219
Selenides, 200, 271
di and poly, order of precedence of, 106
of elements, 219
Seleninic acids, 165
Selenious acid, 219
Selenium compounds, 200 order of precedence of, 106
Seleno, 200
Selenols, 175
order of precedence of, 106
Selenonic acids, 165
Selenonyl chloride, 219
Selenophene, 146
Selenosulfuric acid, 129
Selenotelluroarsenious acid, 219
Selenoxo, 174
Selenyl, 219
free radical, 187
Selones, 174
order of precedence of, 106
Semicarbazones, 190
of stereoparents, 202

Semicolons, 108
Semioxamazones, 190
Septanoses, 208
Sequence rule, 203
Sesqui, 192, 265A, 311
Sigma-bonded ligands, 215
Sila, 128
Silabenzene, 146
Silacyclopentane, 199
Silacyclopropane, 146
Silanamine
derivs., 144, 176
multiplication of, 118
$N$-silyl, 199
Silane, 143, 199
acyl derivs., 163
order of precedence of, 106
polymers, 222, 277
tetrachloro, 257
Silano, 154
Silanol, 175, 199
multiplication of, 118
Silathianes, 199, 282
Silazanes, 144, 146, 199
Spiro systems, 156
Von Baeyer systems, 155
Silica, 219
Silicic acids, 199, 282
Silicide
as index parent, 180
Silicon compounds, 199, 282
"a" names for acyclic, 142
fused systems, 149
monocyclic, 146
order of precedence of, 106
polymers, 222, 277
retrospective index searching for, 282
Von Baeyer systems, 155
Siloxanes, 144, 199
cyclic, 146
polymers, 222, 277
ring assemblies, 157
Spiro systems, 156
multiplicative radicals from, 125 Von Baeyer systems, 155
Silylene
free radical, 187
Silylidyne, 161
Sodio, 215
Sodium chloride, 219
labeled, 220
mixtures containing, 221
Sodium chloride sulfate, 219
Sodium hydride, 219
Sodium oxide, 219
Sodium peroxide, 219
Solanidane, 211
Solanidenol, 211
Solanidine, 211
Solasodine, 211
Solid solutions of inorganic compds., 219
Solvates, 192
Spaces in uninverted names, 108
Species names
for peptides, 206
Spelling, 107 present and former rules for, 283
Spirobi, 156
Spirohexasiloxane, 156
Spirooctane, 156
Spirosolane, 211
Spirostan, 211
Spiro systems, 140, 147, 156
added hydrogen in, 136
cationic, 184
indicated hydrogen in, 135
punctuation in names of, 108, 109
radicals from, 161
steroidal, 211
SRUs, 222
Stainless steel, 214
Stannane, 130, 143, 199
Stannanetetrayl, 161
Stannate
dipotassium, 219
Stannathianes, 144
Stannazanes, 144

Stannoxanes, 199
Starch, 208
Steel, 214
Stereochemical descriptors, 203, 284, 318
for alkaloids, 204
for amino acids and peptides, 205, 206
for carbohydrates, 208
chirality symbols, 203
for inositols, 209
for polymers, 222
for steroids, 211
for terpenes, 212
Stereochemistry, 202-212, 284, 318
ACS reports on, 302
assumptions, 205
of biline, 223
at double bonds, reports on, 301, 302
of inositols, 209
IUPAC tentative rules for, 296
of octahedral inorganic compds., IUPAC tentative proposals for, 298
of polymers, IUPAC nomenclature report on, 299
present and former rules for, 284
Stereoparents, 101, 202-212, 285, 318
addition compds. of, 192
copolymers, 222
definition of, 202
mixtures containing, 221
midified stereochemistry cited for, 203
present and former indexing rules for, 285
Steroids, 211
with modified stereochemistry, 203
retrospective index searching for, 286
Stibinamine, 181
Stibine, 143, 181
boryl derivs., 182
Stibine oxide, 181
Stibine sulfide, 181, 200
Stibino, 161, 181
Stibole, 181
Stibylene, 161
Stigmastane, 211
Stock numbers, 219
in vitamin $\mathrm{B}_{12}$ names, 224
Streptamine, 209
Structural diagrams, 135
in $C A$ indexes, 315
derivation from index names, 312-318
Structural repeating units, 222
Strychnidine, 204
Subdivisions
of large index headings, 104
Substituent prefixes, 161, 294, 316
from acids-see Acid radicals
alphabetic list of, 294
"a" names for, 128
cationic, 184
compound and complex, 133, 162
elision in, 283
enclosing marks for, 109
ester groups as, 112
functional groups expressed as, 250
inversion of, 104
locants for, 117
locants in, 116
lowest locants for, 137
maximum number of, 122, 133, 138
from metals, 215
multivalent, as structural repeating units, 222
order of citation of, 121
polyvalent, in multiplicative names, 125
present and former rules for, 287
from steroids, 211
Substituent suffixes, 131
locants for, 115
order of precedence of, 106
principal groups as, 131, 164-177, 315
Substitutive nomenclature, 130, 139, 16
Substitutive parent compounds, 130
Subtractive nomenclature, 139
Succinic acid. See Butanedjoic acid
Sucrose, 208
Suffixes. See Substituent suffixes
Sugars. See Carbohydrates
Sulfamic acid, 219
as elided name, 107
metal salts, 219

Sulfamide, 219
derivs., 219
as elided name, 107
Sulfanilic acid, 167
Sulfato, 215
Sulfenic acids, 165 esters, 196
Sulfenoselenoic acids, 200
Sulfenothioic acids, 165, 188, 196, 200
Sulfides, 200, 271
of elements, 219
di and poly, order of precedence of, 106 of hetero atoms, 158 of nitrogen and phosphorus compds., 200 retrospective index searching for, 288
Sulfilimine, 200
Sulfimide, 200, 219
Sulfinic acids, 165
Sulfinimidic acids, 165, 200
Sulfinyl, 168, 200, 219
Sulfinylamino, 200
Sulfinylsulfonyl, 200
Sulfonamides, 171
Sulfonefluorescein, 216
Sulfonephthaleins, 216
Sulfones
retrospective index searching for, 289 di and poly, order of precedence of, 106
Sulfonic acids, 165
acyclic with cyclic substituents, 166 anhydrides with inorganic acids, 219 esters, 185
free radicals from, 187
order of precedence of, 106, 167
Sulfonimidic acids, 165
Sulfonimidoyl, 200
Sulfonium, 184, 219
ylides, 201
Sulfoniumyl, 184
Sulfonohydrazonic acids, 165
Sulfonohydrazonimidic acids, 129
Sulfonothioic acids
esters, 200
Sulfonyl, 168, 200, 219
Sulfonyl halides, 170
Sulfonyloxy
in free radical names, 187
Sulfoxides, 200
retrospective index searching for, 289
Sulfoximine, 200
Sulfoxylic acid, 219
selenium analogs not recognized, 219
Sulfur
coordination complexes, 131, 200
tetravalent, in ring systems, 140
Sulfur acids, 219 order of precedence of, 106
Sulfur compounds, 200
cyclic, with abnormal valencies, 158
dyes, 216
retrospective index searching for, 288 thio carbohydrates, 208
Sulfur diimide, 106, 200
Sulfur dioxide, 219
Sulfuric acid, 219
ammonium iron salt, 219
anhydrides, 179
esters, 185
and metal salts, 219
uranium complex, 219
Sulfurous acid, 219
monosodium salt, addition compds., 192
Sulfur oxides, 219
Sulfur trilmide, 200
Sulfur trioxide, 219
Sulfuryl, 219
Sulfuryl chloride, 219
Superoxides of elements, 219
Superoxido, 215
Superscripts abnormal valency indicated by, 158 in Von Baeyer names, 155
Superscripts, 114, 137
Sydnones, 201, 293A
syn, 203
Synonym line formulas. See Line formulas
Synthetic fibers, 222
System indicators
for coordination compds., 203
$t$
in tritium-labeled compds., 220
Tachyon, 217
Tacticity
of polymers, 222
Tantalate
heptapotassium, 219
Tartaric acid
addition compds. of, 192
Tautomeric compounds, 122
acetoacetanilide and pyrazolinone dyes, 216
amides and imidic acids, 165
anions, 180
cations, 184
cyclic amines and imines, 177
histidine, 205
hydrazides and hydrazonic acids, 165
tropolones, 122, 180
urea and carbamimidic acid, 183
Tellones, 174
order of precedence of, 106
Tellurals
order of precedence of, 106
Tellurenic acids, 165
Telluric acid, 219
Tellurides, 200, 271
of elements, 219
order of precedence of, 106
Tellurinic acids, 165
Tellurinyl, 200
Tellurium compounds, 200
order of precedence of, 106
Telluro, 200
Tellurols, 175
order of precedence of, 106
Tellurophene, 146
Telluroxo, 174
Telomers, 222
Tercyclopropane, 157
Terpenes, 212
ACS proposed system of nomenclature for, 302
retrospective index searching for, 290
Terphenyl, 157
Terphenylcarboxylic acid, 163
Terphenyldiyl, 161
Terphenylyl, 162
Terpyrazolidine, 157
Tetra, 110
tetrahedro, 108
Tetrakis, 110
Tetraoxatetradecapentaene, 142
Tetraoxatetradecene, 142
Tetraoxatridecane, 142
Tetraoxatridecyl, 161
Tetraoxides, 196
Tetrapyrroles, 223
Tetrasiladecenylidene, 161
Tetrasilatetradecane, 142
Tetrasiloxane, 199
Tetrazadiene, 143
Tetrazane, 143
Tetrazene, 143
Theophylline, 122
Thia, 128
Thiaandrostane, 211
Thiadiazole
abnormal valency in, 158
Thials, 173
order of precedence of, 106
Thiamine, 224
Thiaporphine, 223
Thiazolium
vitamin $B_{12}$ deriv., 224
Thiireno systems, 281
Thio, 200
Thio acids, 165, 200
of arsenic and phosphorus, 197
esters, 200
esters, $S$-oxides, 185
retrospective index searching for, 280
Thioamides, 171
$S$-oxides, 200
Thioboric acid, 219
Thiocyanic acid, 183, 219
anhydrosulfides, 183, 188
Thiodicarbonic acid, 129, 200
Thiodiphosphonic acid, 179

Thiodiphosphoric acid, 219
Thiohydroperoxides, 129, 196
Thiohypochlorous acid
anhydrosulfides, 170, 188
Thiohydroxylamine, 129
order of precedence of, 106
Thioic acids, 129, 165
Thiols, 175
Class I, 185
order of precedence of, 106
retrospective index searching for, 291
Thiometaphosphimic acid, 197
Thiomorpholine, 146
Thiones, 174
order of precedence of, 106
$S$-oxides, 200
thiono, 108
Thionyl, 219
Thionyl chloride cyanide, 219
Thionyl imide, 200
Thioperoxides, 129, 196
Thioperoxy acids
esters, 185
Thioperoxydicarbonic acid, 183
Thioperoxydicarbonic diamide, 200
Thioperoxydiphosphoric acid, 197, 219
Thioperoxydiphosphoric tetrafluoride, 200
Thioperoxymonosulfuric acid, 219
and esters, 200
Thiophene, 146
abnormal valency in, 158
Thiophene-ol, 175
Thiopheniumyl, 184
Thiophosphoryl chloride, 276
Thiosemicarbazones, 190
Thiosilicic acid, 199, 219
Thiosulfuric acid
anhydrosulfides, 200
Thiosulfuric acidium, 219
Thiosulfurous acid, 219
Thiosulfuryl chloride, 219
Thiotrithiazyl, 219
Thiourea, 129, 183
Thioxanthene, 149
Thioxo, 131, 174
in terminal position, 173
Thioxomethyl, 134, 173, 174
Thorium hydride iodide, 219
threo, 208
Thromboxane, 202
Thymidine, 210
Thymidylic acid, 210
Tin chloride, 219
Tin compounds, 199
cyclic, 139
monocyclic, 146
order of precedence of, 106
Titanyl, 219
Tocopherols, 224
TomatidIne, 211
Trade names
for polymers, 222
trans, 203
Transition metals, 219
amino acid salts of, 205
Tri, 110
Triazane, 143, 193 order of precedence of, 106
Triazanium, 184
Triazanyl, 161
Triazatriphosphorine, 158, 197
Triazenyl, 193
tautomerism of, 122
Triazinetriamine
polymers with formaldehyde, 222
Tribismuthine, 181
Triborane, 159
Trichlorodiphosphoric acid, 219
Trichothecane, 212
Tricyclododecane, 155
Triguanide, 280
Triiodides
of elements, 219
Trimers
of sulfimide, 219
Trioxatriphosphorinane, 197, 219
Trioxides, 196
order of precedence of, 106
Trioxopropanediyl, 168
Triphenylene, 148

Triphosphonic acid, 179
Triphosphoric acid, 219
Triple bonds. See Unsaturated compounds
Tris, 110
Trisilane
order of precedence of, 106
Trisiloxane, 140, 144
Trisiloxanetriyl, 161
Tristannane, 143
Tristannathiane, 144
Tristannoxane, 199
Trisulfides, 200
order of precedence of, 106
Trisulfones, 200
order of precedence of, 106
Trisulfuric acid, 219
Trisulfuryl chloride, 219
Trithiaazatetradecenediyl, 161
Trithiatristannacyclohexane, 146
Trithiatriazine
hexaoxide, 219
Tritium
compds. labeled with, 220
Trivial names, 101
for monocyclic hetero systems, 146
Tropine, 204
Tropolones, 122, 180
Tyrosine
peptides containing, 206
Ulosaric acids, 208
Ulosonic acids, 208
Ulosuronic acids, 208
-ulosyl, 208
Uninverted index names, 104, 108
brackets around index parent in multiplicative, 109
of esters, 104
of salts, 198
Unnilpentium, 219
Unsaturated compounds
acyclic, 141
carbohydrates, 208
conjunctive names not formed from acyclic, 124
double $v s$. triple bonds in, 138
greater number of multiple bonds in parent of, 138
locants for, 114, 137
monocyclic hydrocarbons, 145
spiro systems, 156
steroids, 211
Von Baeyer systems, 155
Ununnilium fluoride, 219
Uracil, 122
Uranate, 219
Uranium
complexes, 219
Uranium chloride oxide, 219
Uranyl, 219
Urea, 183
derivs., retrospective index searching for, 292
hydroxy, 193
no locants for monosubstituted, 117
polymers with formaldehyde, 222
tautomerism of, 183
Urethanes, 185
Ureylene
carbonyldiimino as name for, 134
Uric acid, 122
Uridine, 210
Uridylic acid, 210
Uronamides, 208
-uronamidosyl, 208
Uronic acids, 208
-uronosyl, 208
Ursane, 212
Valency
abnormal, in ring systems, 158, 161, 163
Valine, 205
peptides containing, 206
Vanadyl, 219
Vasopressin, 206
Veratraman, 211
Veratrum alkaloids, 211
Vinyl acetal polymers, 222
Vinyl alcohol polymers, 222
Vitamin A, 212, 224

Vitamin $\mathbf{B}_{12}$, 224. See also Corrinoids
Vitamins, 224
IUPAC-IUB tentative rules for, 297
retrospective index searching for, 293
Von Baeyer systems, 140, 155
cationic, 184
choice between, 138
oxygen-containing, 196
punctuation in, 108, 109, 155
radicals from, 161
Vowels
elision of, 107, 146
Water, 219
in coordination compds., 219
hydrates, 113, 192, 265A, 311
labeled, 220
Willemite, 219

Xanthene, 149
amino derivs., 216
numbering of, 152
Xanthic acids, 185
Xanthine, 210
derivs., 122
Xanthophylls, 212
Xanthosine, 210
Xanthylic acid, 210
Xenonate, 219
Xenon compounds, 219
-yl, 161
-ylene, 161
Ylic acids
nucleotides, 210
-ylidene, 161
added hydrogen for cyclic, 136
in multiplicative names, 125, 255
Ylides, 201, 276
-ylidyne, 161
-ylium, 184
-ylylidene, 161
-yne, 139, 141, 155
-ynyl, 161
Z, 203
report on, 301
Zincate
dye derivs., 216
Zinc chloride
double salts with dyes, 216
Zinc sulfide, 219
Zirconyl, 219
Zwitterionic compounds, 201, 293A

## NOTES


[^0]:    ${ }^{2}$ Webster's New World Dictionary of American English, 3rd college ed., Webster's New World, N.Y., 1988.
    ${ }^{3}$ Webster's Third New International Dictionary of the English Language, unabridged. Merriam, Springfield, Massachusetts, 1961.

[^1]:    ${ }^{1}$ The symbols denoting the ring sizes for $3,4,7,8,9,10$ members are derived from numerical prefixes as follows: "ri" from tri; "et" from tetra; "ep" from hepta; "oc" from octa; "on" from nona; and "ec" from deca.
    ${ }^{2}$ Corresponds to the maximum number of noncumulative double bonds when the hetero atoms have the substituent valencies given in Table I, $\mathbb{I} 128$.
    ${ }^{3}$ When the Hantzsch-Widman prefixes "phospha," "arsa," or "stiba" are immediately followed by the Hantzsch-Widman stems "-in" or "-ine," they are replaced by the prefixes "phosphor," "arsen," or "stibin," respectively.

[^2]:    ${ }^{4}$ Saturation is expressed by detachable prefixes such as "tetrahydro-," "hexahydro-," etc. The prefix "perhydro-" is not used.
    ${ }^{5}$ This stem is not used for saturated hetero systems based on the elements silicon, germanium, tin, or lead. Saturation of these rings is indicated by detachable prefixes such as "tetrahydro-," "-hexahydro-," etc., when HantzschWidman names are used.
    ${ }^{6}$ Saturation of six-membered hetero systems based on the elements boron or phosphorus is denoted by the stem "-inane."

[^3]:    ${ }^{1}$ Inorg. Chem. 1968, 7(10), 1945-65; Pure Appl. Chem. 1972, 30(3-4), 683-710.

[^4]:    ${ }^{2}$ Science 1988, 242, 1017-22; 1139-1145
    3"Fullerene" has also been defined as a closed, hollow network of 12 pentagonal and $m$ hexagonal faces for a $\mathrm{C}_{20+2 m}$ molecule (Science 1991, 254, 1768-1770), but CAS also includes structures with 3 -, 4 -, and 7 - through 10 sided faces as fullerenes for purposes of naming.

    4"Character Tables for Chemically Important Symmetry Groups". In: F. A. Cotton, Chemical Applications of Group Theory. 3rd ed., John Wiley \& Sons, 1990. Appendix IIA, pp. 426-435.

[^5]:    ${ }^{5}$ International Union of Pure and Applied Chemistry, Nomenclature of Organic Chemistry, Sections A,B,C,D,E,F, and H, 1979 ed., Pergamon Press, Oxford (England), 1979. Rules C-0.1 and C-32.

[^6]:    ${ }^{1}$ For a more extensive discussion of the stereochemical descriptors found in CA index names, see J. E. Blackwood and P. M. Giles, Jr., J. Chem. Inf. Comput. Sci. 1975, 15, 67-72; M. F. Brown, B. R. Cook, and T. E. Sloan, Inorg. Chem. 1975, 14, 1273-1278; ibid. 1978, 17, 1563-1568.

[^7]:    ${ }^{2}$ International Union of Pure and Applied Chemistry. Nomenclature of Organic Chemistry, Section, A, B, C, D, E, F and H, 1979 ed., Pergamon Press, Oxford (England) 1979, Section E, Appendix 2, pp. 486-490.
    ${ }^{3}$ R. S. Cahn, C. K. Ingold, and V. Prelog, Angew. Chem., Int. Ed. Engl. 1966, 5, 385-415 (errata: 1966, 5, 511). For a modification in the treatment of cyclic pathways, see V. Prelog and G. Helmchen, ibid. 1982, 21, 567-583.

[^8]:    ${ }^{6}$ M. F. Brown, B. R. Cook, and T. E. Sloan, Inorg. Chem. 1978, 17, 1563-1568.

[^9]:    ${ }^{1}$ IUPAC, Nomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publications, Oxford (England), 1990.

[^10]:    ${ }^{2}$ Colour Index, Society of Dyers and Colourists, Bradford, Yorkshire; and American Society of Textile Chemists and Colorists, Research Triangle Park, N.C., 3rd ed., 5 vols., 1971; vol. 6 (supplement to vols. 1-4), 1975; vol. 7 (supplement to vols. 1-4 and 6); 1982; vol. 5 (3rd revision) and vol. 8 (supplement to vols. 1-4, 6, and 7), 1987.

[^11]:    3"Review of Particle Properties" published by the Particle Data Group is recognized as an authority in this field. It appears in alternate years in Physics Letters B and Review of Modern Physics (for example, see Physics Letters B, 1990, 239, I.6-I.11).

[^12]:    ${ }^{4}$ Enzyme Nomenclature, 1992. Academic Press, Orlando, Florida, 1992, 862 pp. Supplements 1-3, Eur. J. Biochem. 1994, 223, 1-5; 1995, 232, 1-6; 1996, 237, 1-5.

[^13]:    5"A Structure-based Nomenclature for Linear Polymers", Macromolecules 1968, 1(3), 193-198. The IUPAC recommendations (Pure Appl. Chem. 1976, 48, 373-385; 1993, 65 (7), 1561-1580) are in full agreement with CAS practice. The IUPAC term "constitutional repeating unit" (CRU) corresponds to CA's SRU.

[^14]:    Derivatives are named in accordance with the rules for carbohydrates (II 208), e.g., L-Ascorbic acid, 5,6-O-(1-methylethylidene)-; L-threo-2,3-Hexodiulosonic acid, $\gamma$-lactone (cross-reference from L-Dehydroascorbic acid).Vitamin $\mathbf{D}$ is an index heading used for vitamin D activity in general. Vitamin $D_{1}$ is a molecular addition compound of Vitamin $D_{2}$ and ( $3 \beta, 9 \beta, 10 \alpha$ )-ergosta-5,7,22-trien-3-ol (lumisterol). Vitamins $D_{2}$ and $D_{3}$ are indexed in accordance with the rules for secosteroids (II 211).

[^15]:    ${ }^{1}$ This prefix is used in peptide nomenclature.
    ${ }^{2}$ This prefix may be used in a generic sense, e.g., aldoxime.
    ${ }^{3}$ This prefix is only used as a multiplying radical and in structural repeating units of polymers.
    ${ }_{5}^{4}$ This prefix is used only when unsubstituted.
    ${ }^{5}$ This prefix is used when both free valencies are attached to the same atom.

[^16]:    ${ }^{1}$ Known as the International Union of Biochemistry (IUB) prior to 1992.
    ${ }^{2}$ K L. Loening, "International Cooperation on Scientific Nomenclature", $J$. Chem. Doc. 1970, 10, 231-236; "Terminology Guidelines and Their Application in the International Union of Pure and Applied Chemistry" in International Co-operation in Terminology Work, M. Krommer-Benz and K. G. Saur, eds. Munich, 1986, pp. 92-116 (Infoterm Series 8).
    ${ }^{3}$ International Union of Pure and Applied Chemistry, "Guidelines for Drafting IUPAC Technical Reports and Recommendations (2002)" in IUPAC Handbook, 2002-2003, IUPAC, 2002, pp. 344-353; "Procedure for Publication of IUPAC Technical Reports and Recommendations", ibid., pp. 341-343.

[^17]:    ${ }^{1}$ International Union of Pure and Applied Chemistry, Organic Chemistry Division, Commission on Nomenclature of Organic Chemistry, "Extension of Rules A-1.1 and A-2.5 Concerning Numerical Terms Used in Organic Chemical Nomenclature (Recommendations 1986)", Pure Appl. Chem. 1986, 58, 1693-6.

