
Speedy Sketching

Kenneth Pak-Kiu Lam

Supervised by Toby Howard

University of Manchester

27 April 2009

Abstract
Speedy Sketching by Kenneth Pak-Kiu Lam
Supervised by Toby Howard

27 April 2009

Nowadays, a lot of applications exist for the purpose of constructing 3D models. However, many
of them put too much emphasis on detail and bog down usability and the speed of construction.
Speedy Sketching aims at providing a very simple interface for sketching simple shapes quickly,
preferably with a pen or mouse interface, which will provide freedom and naturalness for the
users. The lack of details will encourage quick iterative adjustments, and designers will focus
more on the overall structure.

The idea behind Speedy Sketching is that any complex shape can be composed of simple shapes.
After drawing simple 2D silhouettes, the user will be able to convert them to 3D shapes one by
one as they draw, or altogether after drawing. It is hoped that this will greatly increase the speed
and user-friendliness of 3D model construction.

Contents

1 Introduction...1
1.1 Aims and Objectives...1
1.2 Target Audience...1
1.3 Project Proposal...1

1.3.1 Interface Basics...1
1.3.2 Drawing Panel...2
1.3.3 Scene Panel...4
1.3.4 Model Importing/Exporting...4

2 Background...5
2.1 Sketch Interfaces..5

2.1.1 Introduction..5
2.1.2 Sketching and Creativity..5

2.2 Cartographic Generalization...6
2.2.1 Introduction..6
2.2.2 Line Simplification and Smoothing...6

2.3 Previous Work..7
2.3.1 Teddy/SmoothTeddy...7
2.3.2 3D Journal..9
2.3.3 Google SketchUp...10

3 Research Methods..12
3.1 Choice of Platforms..12
3.2 Data Structure..12
3.3 Line Generalization...13

3.3.1 Line Simplification...13
3.3.2 Line Smoothing...14

3.4 Shape Selection..16
3.5 Pulling/Pushing of Polygons...16
3.6 Drawing Common Shapes...17

3.6.1 Sketching a Circle/Sphere...18
3.6.2 Sketching a Cylinder...18

3.7 Evaluation of Work..19
3.7.1 Survey...19
3.7.2 Criteria of Success..19

3.8 Project Plan..20
4 References...21

1 Introduction

1.1 Aims and Objectives
What makes a perfect drawing application? In the author's opinion, it is one that gives the illusion
that you are drawing freely with a pen and a piece of paper. When we were small, we used to
draw everything based on its front view, which is the easiest way to represent the object. With
these two ideas in mind, Speedy Sketching will allow users to sketch objects in their front, top, or
side view on a flat surface, then convert them to 3D shapes by pushing or pulling. By clicking
specific icons, users will also be able to convert front views of common 3D shapes to a 3D shape
(Figure 1). By combining simple 3D shapes, the user can obtain the desired 3D object, and place
it into the scene.

The interface will be designed with a strong focus on simplicity – most users should be able to
understand the software fully within 5 minutes of use. The number of key strokes required for an
operation will be reduced to a minimum. It is hoped that with a simple interface, users will spend
most of their time drawing but not switching between views and modes.

1.2 Target Audience
Speedy Sketching is directed to any discipline which needs quick brainstorming and sketching of
ideas in 3D models. E.g., Computer animators who need to make 3D storyboards to express their
ideas. It can also be used in art classes in school curriculum. It should be noted that Speedy
Sketching is not intended for extremely detailed final models. Instead, we focus on the first step
of the creative process – generating and comparing variations of design models quickly. These
models are crude, alignment is not perfect but they stimulate thinking and discussions.

1.3 Project Proposal
Speedy Sketching will be developed based on the following aims and objectives:

1.3.1 Interface Basics
The interface will be so simple a user of any age can pick it up in a fairly short amount of time.

1

Figure 1: 2D silhouette to 3D conversion

The application will be operational with just a mouse or pen interface. Keyboard shortcuts will be
available for advanced users but not as a requirement for operation, because a keyboard is not
always available in a Tablet PC. All possible operations will be shown as buttons in the GUI and
achievable with one click. The icons will be relatively bigger than those found in a common
application, because users will often found themselves carrying a Tablet PC and sketching in an
unstable environment.

The application will have 2 main windows, one for showing the main scene (Scene View) and the
other for drawing objects (Drawing Panel), which will be introduced in the next section.

1.3.2 Drawing Panel
The Drawing Panel will handle all object editing and sketching in Speedy Sketching. With the left
mouse button (or the equivalent), users can draw shapes consisting of one or more line strokes.
As they draw, all lines drawn on the Drawing Panel will be smoothed and simplified automatically
to reduce unwanted fluctuations. A colour panel will allow users to change the colour of 2D and
3D shapes to be drawn, and a grid can be toggled to allow snapping of points so users can worry
less about precision. All drawing will take place in the x-y plane and the drawing panel can be
slid in the z-axis to cover all space (Figure 2). It will be semi-transparent and so will the objects
in front, allowing the user to see the panel and the objects behind.

Speedy Sketching will feature two 2D to 3D conversion modes. Firstly, any closed 2D shape can
be pulled/pushed to form a 3D prism (Figure 3). The user will have the option to centre the shape
at the Drawing Panel regardless of it being pushed/pulled. Secondly, the user can select the basic
3D shape they want, and draw the front views in 2D (Figure 4). Speedy Sketching will
automatically determine the parameters (size, width, height, radii) of the 3D shape, increasing
the sketching speed and also providing a way to fix human errors (straighten lines, fix wobbly
curves). As with pulling and pushing of shapes, the resulting 3D shapes can be placed in front,
behind or centred at the Panel. Additionally, users will be able to draw a destructive shape and
remove parts of other shapes already created (Figure 5).

2

Figure 3: Turning a 2D shape into a 3D prism. If pushing, the
3D prism will lie behind the Drawing Panel, otherwise it will
lie in front of the Drawing Panel

Figure 2: Movement of the Drawing Panel in 3D space

The Drawing Panel will save a small list of previously drawn shapes. The user will only need to
rotate the scene or move the used object in the x-y plane to reuse the shape. This will be useful
when there are multiple shapes of the same size.

After drawing and constructing, the user will be asked to place the object in the scene. This will
be passed on to the Scene Panel.

Editing can be performed using the right mouse button at any time during construction.
Individual shapes (2D/3D) can be selected and merged, scaled, moved or rotated. Also, by
double-clicking on an object, individual faces can be selected then pulled or deleted (Figure 6).
Additionally, users can use a scissors tool to cut and remove parts of a 3D shape. A grouping
operation will be available to join shapes together, which will help defining parts of objects.

3

Figure 4: Speedy Sketching automatically converts common 3D shapes from 2D silhouettes

Figure 6: Plane removal operation

Figure 5: Destructive cube removing parts of created volumes

Camera

The camera is designed that users will be able to rotate the scene/objects in the x, y and z axes
quickly with 3 sliders even when drawing. Unlike virtual track ball, sliders will make sure only one
axes is rotated each time. Users will be able to rotate the scene quickly without worrying about
accuracy. The sliders will allow rotation of -180 to 180 degrees and snap angles to the nearest
predefined minimum angle. Sliders will bounce back to 0º position after each movement, so each
time the movement is relative to the current orientation. Unlike popular software, Speedy
Sketching will not feature 3 views of an object under construction because it is potentially
confusing and restricts the user to 3 views only. Also, we want the users to feel that they are
drawing on a piece of paper.

1.3.3 Scene Panel
The Scene Panel is for showing the entire scene which consists of different separate objects. The
whole scene can be rotated, zoomed or panned freely. Individual objects can be selected by
hovering on them, and a bounding box will appear. Buttons will appear for rotating or scaling the
object.

Single clicking on an object will activate a pop-up window featuring a zoomed-in view of the
object, which can be rotated in several predefined directions. Double-click will activate the
Drawing Panel for editing the object.

1.3.4 Model Importing/Exporting
Speedy Sketching can save unfinished scenes in XML format for specific information about
common 2D/3D shapes. It will be also able to import and export 3D scenes and models in .obj
format which is commonly used in design software. This allows designers to modify their
sketched objects in detail in after the initial creation process.

4

2 Background

2.1 Sketch Interfaces
2.1.1 Introduction

Traditionally, computers have been more machine-oriented and worry less about the convenience
for users. But as computing power improves two-folds every 2 years [2], computer scientists have
more in stock for boosting user experience. Nowadays, the computer can process properties like
ambiguity, creativity and informal communications, thereby allowing support for user-oriented
tasks like drawing, speech and design [1]. This gives rise to sketch interfaces which allows users
to scribble ideas at will with minimum constraints.

2.1.2 Sketching and Creativity
With minimum constraints comes great innovations. It is shown that sketching and gesturing are
2 modes of informal and perceptual interaction which are valuable for creative design tasks [3]. It
is argued that the ability to rapidly sketch objects with uncertain types, sizes, shapes and
positions is important to the creative process. The ambiguity encourages designers to explore
different ideas without being burdened by colours, fonts, precise alignment and formality. In a
study performed by V. Goel [4], designers were asked to solve design problems either by
sketching on paper or using traditional computer design applications. It is found that designers
quickly created variations of an idea in free-hand sketch. In contrary, designers who used a
computer-based drawing program spent more time fiddling with the initial design, thus limiting
creativity.

The above study does not imply computers should be avoided for creative design work. Instead,
we should combine the freedom provided by a sheet of paper and the efficiency of computers to
create powerful applications – electronic sketching systems. The strength of such systems lies in
the ability to recognise graphical elements common to a particular domain when they are drawn
[1]. For example, in MathPad2, mathematical equations, numbers, functions, trigonometry
scribbles and even simple diagrams can be recognised (Figure 7) [5]. With a paper-like sketch
interface, users are more encouraged to brainstorm. It does not matter if a mistake has been
made, because a gesture is provided to easily rub out sketches [6]. The fault-friendly interface
enhances scientific discussions where different ideas are expressed.

5

2.2 Cartographic Generalization
2.2.1 Introduction

Cartography – the making of maps – has close relationship with sketch interfaces. It is because
they both deal with arbitrary input in the form of points, lines and shapes. Digitalisation of maps
allows applications to display them at different scales, sizes and levels of detail according to
requirements. However, it would make sense to display the map at a lower resolution only if the
amount of data processed is reduced correspondingly. Otherwise, computing time would not be
significantly improved. Traditionally, map generalization is a tedious task for cartographers, who
have now turned to technology to automate the process. With the help of computers, map
generalization can be achieved more uniformly, precisely, rapidly and with lower cost [7].

2.2.2 Line Simplification and Smoothing
A number of generalization techniques are used by cartographers, but only 2 of them are of
interest to Speedy Sketching – line simplification and smoothing. Line simplification refers to a
reduction of density by selecting a subset of the original point pairs, retaining points most
representative of a line [8], which will reduce computing time and storage. Smoothing, on the
other hand, relocates or shifts coordinate pairs in an attempt to plane away small perturbations
and capture the most significant trends of a line, which will result in a more aesthetically pleasing
representation [9]. These two techniques are useful for reducing the human errors introduced
when using a pen interface and increasing the speed of calculations. Figure 8 below illustrates

6

Figure 7: Mathematical equations, symbols and diagrams can be recognised in MathPad2 (image from [5])

line simplification and smoothing operations.

2.3 Previous Work
2.3.1 Teddy/SmoothTeddy

Teddy is a Java application by Takeo Igarashi (1999) which allows drawing of rotund 3D models
in a sketch-based environment. Despite with a very simple user interface, Teddy detects user's
free-form strokes and presents a number of complex operations like extrusion, cutting, digging,
line painting, and erasing of lines. Initially, the engine takes a circular 2D shape and predicts the
thickness of the object. In general, wide areas become flat and narrow areas become thin [10].
Figure 9 demonstrates a number of operations in Teddy.

In 2003, an update to Teddy – SmoothTeddy – was released. Apart from the original features of
Teddy, it now automatically generates a hierarchical structure of the object, which can be
exported in VMRL format and used in animation software like Alice [11]. A main improvement is
that polygon meshes which are originally rough and with uneven triangulations are refined to
increase the smoothness [12]. Figure 10 shows a screenshot of SmoothTeddy.

7

Figure 8: Demonstration of line simplification and smoothing. Note the change in number of points.

Advantages

• The prediction algorithm is quite robust for natural objects like rocks and cartoon animals

• The application truly turns 3D modelling into 2D. Users have no need to worry about the
depth of the objects, and can paint directly on a 3D surface

• The interface is extremely easy to learn as gestures are available

• It allows exporting of models to animation packages

8

Figure 10: SmoothTeddy features much
smoother models

Figure 9: Basic operations of Teddy

Disadvantages

• Although SmoothTeddy was developed 6 years ago, it is still premature. Error messages are
seen on the provided console almost every time the application is run

• It only works for rotund 3D objects. It is impossible to draw cubes, cylinders, rectangular
prisms and the like with sharp edges in Teddy

• All objects must be connected. It is impossible to create an object with a “floating”
component

• As shown in Figure 9, the body of the “apple” appears to be flat and there is no way to
make it spherical

2.3.2 3D Journal
3D Journal is an interactive tool for freehand sketching developed by Cornell University (2005). It
aims at combining the ease and speed of freehand sketching with the flexibility and analytical
abilities of Computer-aided design (CAD) tools. To sketch a 3D model, the user will draw 2D
sketches of straight and curved strokes, which will contain all edges as if the object is
transparent. An algorithm will then determine the angular distribution of the strokes and offer a
z-value to each vertex to create an orthogonal 3D axis system [13]. New strokes can be added
onto constructed objects, which increases the flexibility of the system. This flexibility allows the
initial sketch, reconstruction and adding detail to be done in a consistent interface, which
improves efficiency. Moreover, an eraser tool can erase edges, a cut tool can remove parts of a
face, and the stiffness of the material can be changed.

Advantages

• The system is extremely robust as small objects with about 20 strokes take only 0.2
second to construct

• It combines sketching and analysis which benefits the efficiency of CAD process

• It uses the average angular distribution of edges to determine the orientation of the object,
which is generally accurate

9

Figure 11: Constructing a 3D shape from 2D edges in 3D Journal (image from [14])

Disadvantages

• The system can only detect shapes with perpendicular strokes and cannot be used for
drawing spheres and cones

• Curves may be misinterpreted as one 2D view may represent 2 different orientations in
space [14]

• For more complex objects, the amount of intersecting and overlapping edges may confuse
the user

• For a small object with limited number of strokes, the output of the object may be affected
by human errors

2.3.3 Google SketchUp
Google SketchUp is a powerful 3D modelling software which can be used for architecture and
design, engineering, construction and digital entertainment. It is the pioneer of the patented
push/pull technology, which will be incorporated into Speedy Sketching. To create a circle, you
simply need to place the centre and drag the length of the radius. The snapping tool is also
extremely powerful as it makes suggestions to snap lines to the nearest plane. It allows sharing
of models with users worldwide and can be linked to Google Earth.

10

Figure 12: Pulling of an arbitrary polygon

Advantages

• Ease of use. According to Mortenson Construction, cost and speed of construction of 3D
models have been vastly reduced [15] because it does not require experienced CAD
designers to operate

• The innovative push/pull technology saves time and effort and removes the need to draw
all vertices in 3D space

Disadvantages

• It is difficult to draw polygons on an arbitrary plane. As shown in Figure 13, a seemingly
planar polygon is snapped wrongly to the main planes (x/y/z)

• Drawing of cones and spheres requires rotation of a 2D object or downloading of existing
models from the web, which are slow

• Freehand drawing requires clicking the mouse button to create points. This reduces
redundant points, but it is unnatural and users do not get the feeling that they are drawing
with pen and paper

11

Figure 13: A supposedly planar polygon (left) and the scene rotated (right)

3 Research Methods

3.1 Choice of Platforms
C++/OpenGL have been the choice of computer graphics and gaming industries for years. C++
is known to be extremely efficient and has a speed advantage over the increasingly popular Java.
On the other hand, OpenGL is designed to be full featured and runs efficiently on a wide range of
graphics architectures. The package is available for free and is compatible with Apple Macintosh,
Microsoft Windows as well as Linux and embedded devices. The scalability and availability make
OpenGL an industry standard for graphics applications [17]. The OpenGL API is also commonly
known as the easiest graphics API for computer scientists to learn and use. For these reasons, the
C++/OpenGL combination is chosen for the implementation of Speedy Sketching.

However, for a GUI-based application like Speedy Sketching, a powerful GUI toolkit is required for
maximum usability. The GLUT API only provides minimal interaction support, i.e. callback
methods for keyboard and mouse key presses and a simple pop-up menu. Hence, the author has
turned to QT for the production of a powerful GUI. QT is a cross-platform integrated
development environment (IDE) for GUI design. It provides a widget to render graphics with the
OpenGL API [18] so the time required for embedding an OpenGL application in a GUI will be
reduced.

3.2 Data Structure
The data structure will be object-oriented which is the common approach of modern software
engineering. The following objects will be stored and manipulated in the application:

Point – 3 coordinate values (x, y, z)

Line/Stroke – must contain at least 2 points

Face – must contain at least 3 lines, all lines must lie in the same plane, stores normal vector

Shape (2D) – must contain only 1 face

Shape (3D) – must contain at least 4 faces

Group (2D and/or 3D) – user defined groups of shapes

When shapes are being created, a bounding volume will be actively maintained by storing the
maximum and minimum coordinates of the x, y and z axles (Figure 14).

12

3.3 Line Generalization
As mentioned in Section 2.2.2, line generalization techniques are needed for reducing data to be
processed by an application, and to provide an aesthetically appealing appearance of shapes.
Given the real time nature of line generalization, the choice of line generalization algorithms is
bounded by their time and space complexities.

3.3.1 Line Simplification
In digital cartography, line simplification techniques are often used to remove points from a line
that represents a feature on a map, for example, a stream. However, in Speedy Sketching, we can
use a different approach to limit data size. Since user input can be tracked, data can be reduced
as soon as the user draws on the Drawing Panel and before storage or displaying. If data is
pruned early, the later stages of any type of processing or storage will be sped up. To determine
whether to create a new point when mouse movement is detected, the following pseudo code will
be used:

if previous point exists in the same line OR previous stroke for the same shape{

find distance between current point and previous point

if distance is smaller than threshold

discard current point

else create point

}

else create point

Angular Tolerance Algorithm [9]

Although the above method is capable of reducing the amount of data created, it does not
remove points which are collinear or supposedly so. Angular tolerance algorithm solves this
problem by connecting point n with point n+2, and finding the angle between lines n/n+2 and
n/n+1. If the angle is smaller than a tolerance value, then point n+1 does not make an impact on
the shape of the line and it will be removed. Otherwise, the point will be retained. By setting a
high tolerance value, we can eliminate unwanted fluctuations from the line and hence the amount
of data is effectively reduced. A special use of this algorithm will be introduced in Section 3.6.2 -
Sketching a Cylinder.

13

Figure 14: A bounding volume for a round object

3.3.2 Line Smoothing
McMaster's Slide Averaging Algorithm [9]

This algorithm has low time and space complexities as it is only taking the average of every 5
points and sliding the third point halfway towards it. The new value of the third point is saved
until all points are considered. Figure 16 explains the Slide Averaging Algorithm in detail. Using
this algorithm, the number of memory locations required will be twice the length of the line –
O(N). Likewise, the number of divisions will be equal to the number of points minus the 4 end
points – O(N).

14

Figure 15: Angular tolerance algorithm explained

Test program

To test the competence of the McMaster algorithm, a sample application has been built. As seen
in the left screenshot in Figure 17, the number 6 drawn with a mouse looks very wobbly and
unnatural. The smoothed number is shown in the image on the right, which looks better than
before. A number of tests have been done and they show that about 5 iterations of McMaster's
algorithm has to be applied for a line to be smoothed adequately. However, this may change in
the actual Speedy Sketching application. Also, users may be allowed to adjust the number of
iterations done.

15

Figure 16: McMaster's Slide Averaging Algorithm [9]

3.4 Shape Selection
In Speedy Sketching, users will frequently need to select shapes and objects for editing and
pushing/pulling. This requires a projection of 2D coordinates on the screen to the 3D space for
intersection tests, so the application can determine the user's choice. This is done by shooting a
“ray” perpendicularly from the screen pixel and determining if the ray intersects with faces on
either a 2D or 3D object.

As mentioned before, each 2D or 3D shape should maintain a bounding area/volume, which is
crucial for the first stage of collision detection – broad phase detection – needed for pruning
most of the objects in the scene quickly [19]. More research will be needed to determine the best
method for shape selection.

3.5 Pulling/Pushing of Polygons
When pulling/pushing a shape, the face polygons on two ends are identical. To push/pull
properly, we need to know the normal of the original face, which should have been stored during
shape creation. Then, when the user creates a height for the 2D shape, we will be able to project
the points of the face to the pulled location. However, the operation is not complete, as for a
solid shape, we need walls on its sides as well as the “roof” and “floor”. For an n-sided polygon,
the number of walls to be created will be n. See Figure 18 for an example.

In this way, any arbitrary 2D shape drawn by freehand draw can be pulled into a 3D prism. Care
will be taken because OpenGL only guarantees correct rendering of convex polygons [20].
Tessellation may be required by calling the built-in method in OpenGL or using an external API.
Samples of convex and concave polygons are provided in Figure 19. For a convex polygon,
straight lines can be drawn from any vertex to any other vertex without leaving the polygon [21].

16

Figure 17: 5 iterations of McMaster's Slide Averaging Algorithm have been applied to the left image to obtain the right
one

3.6 Drawing Common Shapes
The introduction of default shapes will speed up the creation process and improve accuracy, as
users can rely less on freehand draw. To simplify the design, Speedy Sketching will firstly be
equipped with icons for default shapes. When user clicks on them, the recognition engine will be
expecting that particular shape. If time allows, Speedy Sketching may be improved to detect any

17

Figure 18: Pulling/pushing operation explained

Figure 19: Convex and concave polygons

default shape without the user specifying.

3.6.1 Sketching a Circle/Sphere
To determine the parameters of a default shape, we need to analyse the points data drawn on the
Drawing Panel. Take the example of sketching a circular disk or sphere, which can be done by
drawing a circle. Firstly, we can average all points to find the centre of the circle. With the centre
found, we can estimate the radius by calculating the average distance from all points to the
centre (Figure 20). If efficiency is found to be poor, we can reduce the number of samples taken.
For n points in the circle, we can take the average for 1st, n/4th, n/2th, 3n/4th and nth points.

This approach is different from that in Google SketchUp where users select the centre point and
then drag out the radius of the circle. We believe this is a better method because it does not
require users to estimate the centre of the circle (which is difficult) and allows them to draw
naturally and freely like they are given a pen and a piece of paper.

3.6.2 Sketching a Cylinder
As aforementioned, sketching a cylinder can be achieved by sketching its side view – a rectangle.
As with circles, we can find the centre of the shape by averaging all points. However, we cannot
determine the radius of the cylinder or the height by simple averaging, as a cylinder is not
symmetric. Despite so, we can simplify the data points to obtain the 4 vertices of the rectangle.
This is achieved by the angular tolerance algorithm (Section 3.3.1), where insignificant points are
removed and corner vertices will remain. With only (about) 4 points left, we can easily determine
the width and length of the rectangle, which are the radius and height of the cylinder
respectively. Figure 21 illustrates the detection of a cylinder.

Other sketching operations include triangle to cone and square to cube. As they will be done by
similar methods, they are left out from this initial report.

18

Figure 20: Finding the parameters for a circular object. In the second picture, Pythagoras' Theorem is used.

3.7 Evaluation of Work
3.7.1 Survey

Since Speedy Sketching aims at providing a quicker interface for generating 3D models, the
survey will be conducted with designers who have used 3D design packages before. They will be
required to compare Speedy Sketching with traditional software packages and comment on the
improvements made. Also, after familiarising with the interface, they may be required to draw a
3D scene in both software they are used to and Speedy Sketching. The processes will be timed
and the statistics will be used to evaluate the effectiveness of the application. A questionnaire will
also raise similar questions like the following:

• How long did you take to understand Speedy Sketching's interface?

• Do you think Speedy Sketching has enhanced your creative design process? If so, how?

A formal questionnaire will be designed when the application is completed.

3.7.2 Criteria of Success
If the majority of people surveyed agree that Speedy Sketching is faster than traditional software
packages, and that it stimulates creative design, the project will be deemed to be a success. If so,
it will form a stepping stone for future 3D modelling software.

19

Figure 21: Determining the parameters for a cylinder

3.8 Project Plan
The project will begin with GUI design because it is the only possible way for data input. Also, to
test various algorithms, the designer will be required to draw diagrams for evaluation and
viewing the results. Moreover, it is best for the designer to use the GUI as a user as much as
possible, so it can be improved continuously.

20

Figure 22: Gantt chart for the development of Speedy
Sketching

4 References
[1] Launday, J. A., University of California, Myers, B. A., Carnegie Mellon University (2001). IEEE

Computer, vol 34, no. 3 (March 2001), pp 56-64

[2] Excerpts from A Conversation with Gordon Moore: Moore’s Law (Video Transcript),
Intel Corporation (2005). From ftp://download.intel.com/museum/Moores_Law/Video-
Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf Accessed April 11, 2009
16:45

[3] Gross, M. D. and Do, E. Y. (1996). Ambiguous Intentions: A Paper-like Interface for
Creative Design, Proc. ACM Symp. User Interface Software and Technology, ACM Press, New
York, pp. 183-192. Cited in [1]

[4] Goel, V. (1995). Sketches of Thought, MIT Press, Cambridge, Mass. Cited in [1]

[5] LaViola, J. J. (n.d.). MathPad2: A System for the Creation and Exploration of Mathematical
Sketches, from http://www.cs.brown.edu/~jjl/mathpad/ Accessed April 12, 2009 15:30

[6] LaViola, J. J. (2007). University of Florida “An Initial Evalution of MathPad2:A Tool for
Creating Dynamic Mathematical Illustrations”, Computers & Graphics: An International
Journal of Systems & Applications in Computer Graphics: Algorithms & Techniques for
Interaction, Multimedia, Modelling and Visualization, Elsevier Ltd., vol 31, Issue 4 (Aug
2007), pp 540-553

[7] Buttenfield, B. P. and McMaster, R. B. (1991). Map Generalization: Making rules for
knowledge representation, Longman Group UK Limited, pp 3-10

[8] Jenks, G. F. (1981). Lines, Computers and Human Frailities, Annals of the Association of
American Geographers, vol 71(1), pp 1-10. Cited in [9]

[9] McMaster, R. B., and Shea, K.S. (1992). Generalization in Digital Cartography, Association
of American Geographers, pp 27-58 Cited in [16]

[10] Igarashi, T., Matsuoka, S., Tanaka, H. (1999). Teddy: A Sketching Interface for 3D Freeform
Design, ACM Siggraph, University of Tokyo, Tokyo Institute of Technology

[11] Igarashi, T. (2003). SmoothTeddy: Quick 3D Modelling and Painting, from http://www-
ui.is.s.u-tokyo.ac.jp/~takeo/java/smoothteddy/index.html Accessed April 14, 2009 17:30

[12] Igarashi, T., Hughes, J.F. (2003). Smooth Meshes for Sketch-based Freeform Modelling,
University of Tokyo and Brown University, pp 1-2

[13] Masry, M., Kang, D., Lipson, H. (2005). A freehand sketching interface for progressive
construction of 3D objects, Computers & Graphics: An International Journal of Systems &
Applications in Computer Graphics: Algorithms & Techniques for Interaction, Multimedia,
Modelling and Visualization, Elsevier Ltd., vol 29, Issue 4 (Aug 2005), pp 563-575

[14] Lipson, H. (n.d.). Cornell CCSL – Research - 3D Sketching, from
http://216.139.212.17/mae/ccsl/research/sketch/index.html Accessed April 20, 2009

21

ftp://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
ftp://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
http://216.139.212.17/mae/ccsl/research/sketch/index.html
http://www-ui.is.s.u-tokyo.ac.jp/~takeo/java/smoothteddy/index.html
http://www-ui.is.s.u-tokyo.ac.jp/~takeo/java/smoothteddy/index.html
http://www.cs.brown.edu/~jjl/mathpad/

20:00

[15] Google Inc. (2009). SketchUp Blog, from
http://sketchupdate.blogspot.com/search/label/User%20Stories Accessed April 21, 2009
18:20

[16] Ellis, F. (n.d.). Line Generalisation Algorithms – Lang Visualisation, from
http://www.sli.unimelb.edu.au/gisweb/LGmodule/LGMcMastersVisualisation.htm,
University of Melbourne, Accessed March 23, 2009 13:47

[17] McReynolds T. and Blythe D. (2005). Advanced Graphics Programming Using OpenGL,
Elsevier Ltd, Preface, pp xxiv

[18] Nokia (n.d.), Qt – A cross-platform application and UI framework, from
http://www.qtsoftware.com/products/library/modular-class-library#advanced-3d-
graphics-opengl Accessed April 23, 2009 23:10

[19] Erleben, K., Sporring, J., Henriksen, K., Dohlmann, H. (2005). Physics-Based Animation,
Charles River Media, Inc.

[20] OpenGL Architecture Review Board (n.d.). OpenGL Programming Guide: The Official Guide
to Learning OpenGL (The Red Book) v1.1, from
http://glprogramming.com/red/chapter11.html Ch. 11. Accessed April 25, 2009 21:45

[21] Howard T. (2009). An Introduction to Graphics Programming with OpenGL: Tutorial and
Reference Manual, University of Manchester, pp 41

22

http://glprogramming.com/red/chapter11.html
http://www.qtsoftware.com/products/library/modular-class-library#advanced-3d-graphics-opengl
http://www.qtsoftware.com/products/library/modular-class-library#advanced-3d-graphics-opengl
http://www.sli.unimelb.edu.au/gisweb/LGmodule/LGMcMastersVisualisation.htm
http://sketchupdate.blogspot.com/search/label/User%20Stories

	1 Introduction
	1.1 Aims and Objectives
	1.2 Target Audience
	1.3 Project Proposal
	1.3.1 Interface Basics
	1.3.2 Drawing Panel
	1.3.3 Scene Panel
	1.3.4 Model Importing/Exporting

	2 Background
	2.1 Sketch Interfaces
	2.1.1 Introduction
	2.1.2 Sketching and Creativity

	2.2 Cartographic Generalization
	2.2.1 Introduction
	2.2.2 Line Simplification and Smoothing

	2.3 Previous Work
	2.3.1 Teddy/SmoothTeddy
	2.3.2 3D Journal
	2.3.3 Google SketchUp

	3 Research Methods
	3.1 Choice of Platforms
	3.2 Data Structure
	3.3 Line Generalization
	3.3.1 Line Simplification
	3.3.2 Line Smoothing

	3.4 Shape Selection
	3.5 Pulling/Pushing of Polygons
	3.6 Drawing Common Shapes
	3.6.1 Sketching a Circle/Sphere
	3.6.2 Sketching a Cylinder

	3.7 Evaluation of Work
	3.7.1 Survey
	3.7.2 Criteria of Success

	3.8 Project Plan

	4 References

