Nuts and bolts of building Al applications using Deep Learning

Andrew Ng

Major categories of DL models

- 1. General neural networks
- 2. Sequence models (1D sequences)
 - RNN, GRU, LSTM, CTC, attention models,
- 3. Image models
 - 2D and 3D convolutional networks
- 4. Advanced/future tech:
 - Unsupervised learning (sparse coding, ICA, SFA,
 - ...), Reinforcement learning,

Machine Learning Strategy

Often you will have a lot of ideas for how to improve an AI system, what do you do?

Good strategy will help avoid months of wasted effort.

Automatic data synthesis examples

- OCR
 - Text against random backgrounds

- Speech recognition
 - Synthesize clean audio against different background noise
- NLP: Grammar correction
 - · Synthesize random grammatical errors

Sometimes synthesized data that appears great to human eyes is actually very impoverished in the eyes of ML algorithms, and covers only a minuscule fraction of the actual distribution of data. E.g., images of cars extracted from video games.

Different training and test set distributions

Say you want to build a speech recognition system for a new in-car rearview mirror product. You have 50,000 hours of general speech data, and 10 hours of in-car data. How do you split your data? This is a **bad** way to do it:

Training Dev

General speech data (50,000 hours)

In-car data (10 hours)

Having mismatched dev and test distributions is not a good idea. Your team may spend months optimizing for dev set performance only to find it doesn't work well on the test set.

Human level performance

You'll often see the fastest performance improvements on a task while the ML is performing worse than humans.

- Human-level performance is a proxy for Bayes optimal error, which we can never surpass.
- Can rely on human intuition: (i) Have humans provide labeled data. (ii) Error analysis to understand how humans got examples right. (iii) Estimate bias/variance. E.g., On an image recognition task, training error = 8%, dev error = 10%. What do you do? Two cases:

Quiz: Medical imaging

Suppose that on an image labeling task:

Experienced doctor 0.7% error

Team of experienced doctors 0.5% error

What is "human-level error"?

Answer: For purpose of driving ML progress, 0.5% is best answer since it's closest to Bayes error.

Al Product Management

The availability of new supervised DL algorithms means we're rethinking the workflow of how to have teams collaborate to build applications using DL. A Product Manager (PM) can help an AI team prioritize the most fruitful ML tasks. E.g., should you improve speech performance with car noise, café noise, for low-bandwidth audio, for accented speech, or improve latency, reduce binary size, or something else?

What can AI do today? Some heuristics for PMs:

- If a typical person can do a mental task with less than one second of thought, we can probably automate it using Al either now or in the near future.
- For any concrete, repeated event that we observe (e.g., whether user clicks on ad; how long it takes to deliver a package;), we can reasonably try to predict the outcome of the next event (whether user clicks on next ad).

Al Product Management

How should PMs and AI teams work together? Here's one default split of responsibilities:

Product Manager (PM) responsibility

- Provide dev/test sets, ideally drawn from same distribution.
- Provide evaluation metric for learning algorithm (accuracy, F1, etc.)

This is a way for the PM to express what ML task they think will make the biggest difference to users.

Al Scientist/Engineer responsibility

- · Acquire training data
- Develop system that does well according to the provided metric on the dev/test data.

Machine Learning Yearning

Book on AI/ML technical strategy.

Sign up at http://mlyearning.org

Thank you for coming to this tutorial!