"S5~

3

X

IS0/TE Tre1/scad /weai/seoo]
X3T% /9 -00%9

C++: as close as possible to C—but no closer 8 9-9s5- 1

Andrew Koenig
Bjarne Stroustrup

AT&T Bell hi)oratories
Murray Hill, New Jersey 07974

1. Introduction
ANSI C and the C subset of C++ serve subtly different purposes.

The purpose of X3]11 is to provide a standard: to codify existing practice and resolve
inconsistencies among existing implementations. The purpose of C++ is to provide C
programmers with a tool they can use to shape their thinking in fundamentally different ways.
Both aimed at compatibility with “‘Classic C"* and came close to hitting their mark.

The two goals have necessarily resulted in some fundamental differences of approach between
the two languages. In a few cases C+ departed slightly from “Classic C* - always with
knowledge of the cost of doing so and always with the aim to gain something well worth that
cost. X3J11 did the same according to its aims and constraints. Wherever possible, C++ has
adopted the X3]11 modifications and resolutions. .

The purpose of this note is to summarize the remaining differences between the draft ANSI C
standard and C++, explain their motivation, and point out cases where these differences are
less important than they might appear at first. '

Below, C refers to C as defined by the draft ANSI C standard and C++ refers to C++ as defined
in the 1989 draft C++ reference manual. We use the word “difference” to refer to something

that is C but not C++. Things that can be done in C++ but not C are not interesting in this
context unless they also somehow restrict C++ from expressing something that is C.

Note that in this context pure extensions of C provided by C++ are not incompatibilities.

2. Namespaces

C puts variables and structure tags in separate name spaces; C++ uses a single name space.
The reason for this, of course, is that abstract data types - classes - are a crucial part of the
foundation of C++ and it is important to be able to use them as naturally as if they were built-
in types. Essentially every C++ program depends on this.

The place where it matters most - at least the place where people have complained the most -
is when a library function deals with a structure with the same name. For instance:

struct stat {
/* member declazations */
}z ;
int stat(const char *, struct stat *);

The G+ language definition therefore has a compatibility wart to allow precisely this kind of
thing. We believe this will smoothly accommodate most existing C usages while still allowing
the economical expression G+ programmers have come to appreciate and depend on..
The only remaining difference between C and C++ in the name space area is that Ce+ does not
anowammpbedec!amdubothasm;cmhgmdl(diﬁmt)trpndummhnhe_
same scope. For example: e

struct stat {

/*‘a bunch of stuff */

)i

typedef int stat: -
Allowing this construct in C++ would create serious problems with composition of header files

¢ :



describing libraries since declarations of functions, variables, and classes then could
undetectably change meaning as the result of header file inclusions. Note that C++ spedifically
does allow the following common C usage:

typedef struct A {
/* member definitions */
1 A;
3. Linkage
The maijor difference here is that C allows

extern void £();

main()
{
£(3,4); /* legal C, illegal C++ */
g(5,6): /* legal C, illegal C++ ®/
)
and C++ does not.

In C++, a function prototype with no arguments means that the function has no arguments,
and it is an error to call it with arguments. The draft ANSI C standard lists this (mishuse of
function declarations as obsolescent (3.94). We think C#+ is an excellent place to institute this

disappearance.

To declare a function £ with no arguments in a mythatummbiguouslymmthemtmng
in C and C++, say something like this:

int getcount (void);

Furthermore, in C++, a prototype is required for any call; an undeclared function cannot be
called. This is absolutely fundamental to the type safety of C++; C requires a prototype only
for varadic functions such as pzintf ().

&. Linkage Consistency

Cﬂmquirumetypeofnnobjecumdfuncﬁonswithexmﬂlinhgetobemsismum
separate compilations - and enforces this requirement. This implies that all prototypes for a
functionmustagree(mctly)mdﬂntmyswcmreugusedinﬂ\etypeofmyobiector
function withutumllinkagemustmfutomemmm(mthﬁ\emmu)innu
files.

We are not convinced ﬂutt}mrequinmmtisnctuauydiffumfromeutmmmvinced
that actual C practice is such that enforcing the requirement would be unacceptable because it
would break too much code.

S. Linkage of const

Global variables declared const have external linkage by default in C; in Ca+ such consts
have internal linkage by default. The reason for this is to avoid having to allocate memory for
things that, in our experience, are usually intended as the equivalent of preprocessor macros
and to allow systematic use of integer'consts$ in constant expressions. For

const SIZE = 100:
int table[SIZE): /* legal C++, illegal C */

Again this is not as much of a problem as one might expect. It makes no difference, of course,
if a constant is only defined and used in a single file or if the const is local. If the same
constant is defined in several files, the programmer will have to declare it static anyway to

L]



avoid multiple definition errors from the linker or declare it extern in all files but one. All
uses of const where explicit static or extern is used are compatible as are all uses of local
consts.

The only case to look out for is:

filel:
const a = 1;

£file2:
extern const a;

which will not link in C++ because no definition will be found for the a referenced in file2.
The following modification makes the C program acceptable to a C++ compiler:

filel:
extern const a = 1;

file2:
extern const a;

6. Keywords

G+ has a few extra keywords: asm, catch, class, delete, friend, inline, new,
operator, private, protected, public, template, this, and viztual. This can’t be
helped; one cannot add fundamental concepts to a language in a reasonable way without
introducing words to refer to those concepts. To avoid chaos, such words must be reserved in
languages such as C and C++.

7. Miscellaneous

The differences mentioned above are the most important because they affect the interface
between C and C++ programs and limit - if only insignificantly = what can be expressed in
header files shared by the the two languages. The relative insignificance of these limitations
can be seen from the fact that all the ANSI C standard library header files are also legal C++
header files.

Other differences are limited to individual source files and are less important since no
significant C++ program can pass a C compiler anyway.
71 Assignment of void®

C not only allows any object pointer to be assigned to a void* but also a void* to be
- assigned to any object pointer. This opens a blatant hole in the type system that was not
present in classic C.

We surmise that the reason this is considered acceptable is that C already has a worse hole in
its type system in the form of unchecked function arguments and because it provides the C
programmer the convenience of not having to cast the results of calling mallec(), calloc(),
etc. Opening this hole is not acceptable in C++ where reliance on the type system is greater.
In C++, only the harmless assignment of any object pointer to a void* (and not the opposite
assignment) is accepted. Furthermore, since C++ programmers use operator new in preference
to using malloc(), etc, directly, the hole in the type system would provide no extra
convenience in C++.

In a similar vefn, C+~ does not allow a pointer to a const object to be assigned to void*: the
program must use a const voide instead. This is to catch things like: -



extern "C" {

int read(int, wvoid*, int);:

int write(int, const veoid*, int):
}

const char filename([] = "/etc/passwd";

void £()

{
read (0, filename, sizeof(filename)); // read into a const?
}

If an arbitrary const pointer could be freely assigned to voia, there would be no way for
the compiler to detect that this program fragement tries to read into a constant array.

Of course a C++ program can use a cast to convert a void* to or from any other kind of
pointer.

72 Typeof ‘a’

The type of character constants in C++ is char instead of int. However, since the rules for
determining the integer value of a character constant are identical in C and C++ the only way
to detect this in a C program is with an expression like sizeof(‘a’). In G+, however, it is
essential for the overloaded function resolution mechanism to resolve ‘a’ as a char so that

cout << ‘a’;
can print a instead of 97.

For the same reason, the type of an enumerator is the type of its enumeration. This may lead
to an incompatibility since, given

enum e { A, B };

sizeof (A)==sizeof (enum e¢) and sizeof (enum e) are not guaranteed to be equal to
sizeof (int) in either C or Ci+.

73 Repeated definition

In C++, a “plain” global object declaration (without extern or an initializer) is a definition.
Two of those in a file give a double definition error. For example:

int 1i:
int 4i:

In C, this is accepted. The reason for the difference is again the uniform treatment of built-in
and user-defined types. Suppose Int is a class for which a constructor taking no arguments
has been declared:

Int 4i;
Int i;

Eachded:ntionrequiruaallofﬂ\econsuucloru\dud\phmﬂutantnﬁuenequenceof
such calls to be executed for the file. Deciding that only one of the declarations is “real” and
ignoring the other not only adds complexity to C+ compilers and/or linkers but can also
introduce dependency errors into the dynamic initialization. .

74 Char Army Initialization
For some reason C has come to allow the previously illegal initialization
char v[3] = "asd";

Allowing this violates the rule that strings are terminated by *\0’ so C++ still rejects it. The



way to initialize a bounded character array that is not intended to be used as a string is to
initialize the individual elements:

char v([3) = { *a’, 's’, 'd’ };
7.8 goto Skipping Initalization
The following is legal C, but not C+:

void £()
{
/* . e */
goto 11;
{
int a = 7;
String b = "asdf"~;
11:
/- LI .,
}
I* can %/

}

In C, this is merely dangerous and bad style. In G+, it would with great regularity cause core
dumps; that innocuous looking String might be a class for which a destructor will be called
on exit from £().

746 enum Assignment
In C, an int may be assigned to a variable of an enumeration type. For example:

enum @ { A, B };
enum @ objl = 7;

enum @ ob42 = 257; /* what if an ‘e’ is represented by a char? */

C leaves the meaning of many such assignments implementation dependent and the ANSI C
manual recommends a warning against all such assignments. C++ prohibits them. As usual,
casting can defeat type checking:

enum @ obj3 = (enum e) 7: /* caveat emptor */
7.7 Local enums

In C, an enum declared within a struct is essentially useless and the enumerators are given
the same scope as the st ruct enclosing them. For example: '

struct 8 {
enum ¢ { a, b ]} ee;
}:

int a: /* C ezror: ‘a’ in scope */
int aa = b; /* C++ errozr: ‘b’ not in scope */

In G++, with its notion that a class establishes a scope, they are very useful, kept in the scope

of their class, and accessible elsewhere - subject to access control - by explicit qualification
with their clasg name:



class X |
public:
enum state | good, bad, fail };
e readstate():;
/...
private:
some_operation() { state s = good; /* ... */ }
Ll s
)z

void £(X& x)
{

while (x.readstate() == X::goed) // ...
) :

Note that although the emumerators are kept in the scope of a class, the name of the
enumeration itself is exported into the surrounding scope. This permits a class to define and
export an enumerated type whose enumerators are kept secret from the users of the class.

78 Comments

It was believed that the introduction of // comments in C++ did not lead to any
incompatibilities. Here is a counter example:
main()
{
int a = 4;
int b = 8//* divide by a*/a;
+a;

}

Notethattheuseofapreﬂxopentorstarﬁngﬁxelineisessenﬁ&ub&eabsemof
whitespace. We do not consider this incompatibility serious enough to abandon either style of
comments.

We note in passing that it is important to cater to // comments in the preprocessor too, lest
the following evoke surprising preprocessor complaints:
#include <stdio.h>

int flag; // remember if we have called getc()

8. Conclusion

We have tried to summarize the differences between ANSI C and C++. In the design of C++,
we have been trying to keep the differences as minor as possible. We believe that we have
succeeded in this beyond reasonable expectations and that differences that remain are
unimportant to C programmers, essential to C++ programmers and stem from the somewhat
different purposes behind C and C++.

9. Acknowledgements

We would like to thank the many C and C++ users who have commented on the relationship
between C and C++ and made suggestions about both the ideals and the thorny details of this
sensitive topic, In particular we would like to thank Doug Mcliroy, David Prosser, and
Margaret Quinn.



