
Learning to Rank using Gradient Descent

Chris Burges cburges@microsoft.com

Tal Shaked∗
tal.shaked@gmail.com

Erin Renshaw erinren@microsoft.com

Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399

Ari Lazier ariel@microsoft.com

Matt Deeds madeeds@microsoft.com

Nicole Hamilton nicham@microsoft.com

Greg Hullender greghull@microsoft.com

Microsoft, One Microsoft Way, Redmond, WA 98052-6399

Abstract

We investigate using gradient descent meth-
ods for learning ranking functions; we pro-
pose a simple probabilistic cost function, and
we introduce RankNet, an implementation of
these ideas using a neural network to model
the underlying ranking function. We present
test results on toy data and on data from a
commercial internet search engine.

1. Introduction

Any system that presents results to a user, ordered
by a utility function that the user cares about, is per-
forming a ranking function. A common example is
the ranking of search results, for example from the
Web or from an intranet; this is the task we will con-
sider in this paper. For this problem, the data con-
sists of a set of queries, and for each query, a set
of returned documents. In the training phase, some
query/document pairs are labeled for relevance (“ex-
cellent match”, “good match”, etc.). Only those doc-
uments returned for a given query are to be ranked
against each other. Thus, rather than consisting of a
single set of objects to be ranked amongst each other,
the data is instead partitioned by query. In this pa-
per we propose a new approach to this problem. Our
approach follows (Herbrich et al., 2000) in that we
train on pairs of examples to learn a ranking function
that maps to the reals (having the model evaluate on

Appearing in Proceedings of the 22 nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

pairs would be prohibitively slow for many applica-
tions). However (Herbrich et al., 2000) cast the rank-
ing problem as an ordinal regression problem; rank
boundaries play a critical role during training, as they
do for several other algorithms (Crammer & Singer,
2002; Harrington, 2003). For our application, given
that item A appears higher than item B in the out-
put list, the user concludes that the system ranks A
higher than, or equal to, B; no mapping to particular
rank values, and no rank boundaries, are needed; to
cast this as an ordinal regression problem is to solve an
unnecessarily hard problem, and our approach avoids
this extra step. We also propose a natural probabilis-
tic cost function on pairs of examples. Such an ap-
proach is not specific to the underlying learning al-
gorithm; we chose to explore these ideas using neural
networks, since they are flexible (e.g. two layer neural
nets can approximate any bounded continuous func-
tion (Mitchell, 1997)), and since they are often faster
in test phase than competing kernel methods (and test
speed is critical for this application); however our cost
function could equally well be applied to a variety of
machine learning algorithms. For the neural net case,
we show that backpropagation (LeCun et al., 1998) is
easily extended to handle ordered pairs; we call the re-
sulting algorithm, together with the probabilistic cost
function we describe below, RankNet. We present re-
sults on toy data and on data gathered from a com-
mercial internet search engine. For the latter, the data
takes the form of 17,004 queries, and for each query,
up to 1000 returned documents, namely the top docu-
ments returned by another, simple ranker. Thus each
query generates up to 1000 feature vectors.

∗Current affiliation: Google, Inc.

Learning to Rank using Gradient Descent

Notation: we denote the number of relevance levels (or
ranks) by N , the training sample size by m, and the
dimension of the data by d.

2. Previous Work

RankProp (Caruana et al., 1996) is also a neural net
ranking model. RankProp alternates between two
phases: an MSE regression on the current target val-
ues, and an adjustment of the target values themselves
to reflect the current ranking given by the net. The
end result is a mapping of the data to a large num-
ber of targets which reflect the desired ranking, which
performs better than just regressing to the original,
scaled rank values. Rankprop has the advantage that
it is trained on individual patterns rather than pairs;
however it is not known under what conditions it con-
verges, and it does not give a probabilistic model.

(Herbrich et al., 2000) cast the problem of learning to
rank as ordinal regression, that is, learning the map-
ping of an input vector to a member of an ordered set
of numerical ranks. They model ranks as intervals on
the real line, and consider loss functions that depend
on pairs of examples and their target ranks. The po-
sitions of the rank boundaries play a critical role in
the final ranking function. (Crammer & Singer, 2002)
cast the problem in similar form and propose a ranker
based on the perceptron (’PRank’), which maps a fea-
ture vector x ∈ Rd to the reals with a learned w ∈ Rd

such that the output of the mapping function is just
w · x. PRank also learns the values of N increasing
thresholds1 br = 1, · · · , N and declares the rank of x

to be minr{w · x − br < 0}. PRank learns using one
example at a time, which is held as an advantage over
pair-based methods (e.g. (Freund et al., 2003)), since
the latter must learn using O(m2) pairs rather than
m examples. However this is not the case in our ap-
plication; the number of pairs is much smaller than
m2, since documents are only compared to other doc-
uments retrieved for the same query, and since many
feature vectors have the same assigned rank. We find
that for our task the memory usage is strongly dom-
inated by the feature vectors themselves. Although
the linear version is an online algorithm2, PRank has
been compared to batch ranking algorithms, and a
quadratic kernel version was found to outperform all
such algorithms described in (Herbrich et al., 2000).
(Harrington, 2003) has proposed a simple but very ef-
fective extension of PRank, which approximates find-
ing the Bayes point by averaging over PRank mod-

1Actually the last threshold is pegged at infinity.
2The general kernel version is not, since the support

vectors must be saved.

els. Therefore in this paper we will compare RankNet
with PRank, kernel PRank, large margin PRank, and
RankProp.

(Dekel et al., 2004) provide a very general framework
for ranking using directed graphs, where an arc from A
to B means that A is to be ranked higher than B (which
here and below we write as A B B). This approach
can represent arbitrary ranking functions, in particu-
lar, ones that are inconsistent - for example A B B,
B B C, C B A. We adopt this more general view, and
note that for ranking algorithms that train on pairs,
all such sets of relations can be captured by specifying
a set of training pairs, which amounts to specifying the
arcs in the graph. In addition, we introduce a prob-
abilistic model, so that each training pair {A,B} has
associated posterior P (A B B). This is an important
feature of our approach, since ranking algorithms often
model preferences, and the ascription of preferences is
a much more subjective process than the ascription of,
say, classes. (Target probabilities could be measured,
for example, by measuring multiple human preferences
for each pair.) Finally, we use cost functions that are
functions of the difference of the system’s outputs for
each member of a pair of examples, which encapsulates
the observation that for any given pair, an arbitrary
offset can be added to the outputs without changing
the final ranking; again, the goal is to avoid unneces-
sary learning.

RankBoost (Freund et al., 2003) is another ranking al-
gorithm that is trained on pairs, and which is closer in
spirit to our work since it attempts to solve the prefer-
ence learning problem directly, rather than solving an
ordinal regression problem. In (Freund et al., 2003),
results are given using decision stumps as the weak
learners. The cost is a function of the margin over
reweighted examples. Since boosting can be viewed
as gradient descent (Mason et al., 2000), the question
naturally arises as to how combining RankBoost with
our pair-wise differentiable cost function would com-
pare. Due to space constraints we will describe this
work elsewhere.

3. A Probabilistic Ranking Cost

Function

We consider models where the learning algorithm is
given a set of pairs of samples [A,B] in Rd, together
with target probabilities P̄AB that sample A is to be
ranked higher than sample B. This is a general for-
mulation: the pairs of ranks need not be complete (in
that taken together, they need not specify a complete
ranking of the training data), or even consistent. We
consider models f : Rd 7→ R such that the rank order

Learning to Rank using Gradient Descent

of a set of test samples is specified by the real values
that f takes, specifically, f(x1) > f(x2) is taken to
mean that the model asserts that x1 B x2.

Denote the modeled posterior P (xi Bxj) by Pij , i, j =
1, . . . ,m, and let P̄ij be the desired target values for
those posteriors. Define oi ≡ f(xi) and oij ≡ f(xi) −
f(xj). We will use the cross entropy cost function

Cij ≡ C(oij) = −P̄ij log Pij − (1 − P̄ij) log (1 − Pij)
(1)

where the map from outputs to probabilities are mod-
eled using a logistic function (Baum & Wilczek, 1988)

Pij ≡
eoij

1 + eoij
(2)

Cij then becomes

Cij = −P̄ijoij + log(1 + eoij) (3)

Note that Cij asymptotes to a linear function; for
problems with noisy labels this is likely to be more ro-
bust than a quadratic cost. Also, when P̄ij = 1

2 (when
no information is available as to the relative rank of
the two patterns), Cij becomes symmetric, with its
minimum at the origin. This gives us a principled way
of training on patterns that are desired to have the
same rank; we will explore this below. We plot Cij as
a function of oij in the left hand panel of Figure 1, for
the three values P̄ = {0, 0.5, 1}.

3.1. Combining Probabilities

The above model puts consistency requirements on the
P̄ij , in that we require that there exist ’ideal’ outputs
ōi of the model such that

P̄ij ≡
eōij

1 + eōij
(4)

where ōij ≡ ōi − ōj . This consistency requirement
arises because if it is not met, then there will exist no
set of outputs of the model that give the desired pair-
wise probabilities. The consistency condition leads to
constraints on possible choices of the P̄ ’s. For exam-
ple, given P̄ij and P̄jk, Eq. (4) gives

P̄ik =
P̄ijP̄jk

1 + 2P̄ijP̄jk − P̄ij − P̄jk

(5)

This is plotted in the right hand panel of Figure 1,
for the case P̄ij = P̄jk = P . We draw attention to
some appealing properties of the combined probabil-
ity P̄ik. First, P̄ik = P at the three points P = 0,
P = 0.5 and P = 1, and only at those points. For
example, if we specify that P (A B B) = 0.5 and that

P (B B C) = 0.5, then it follows that P (A B C) = 0.5;
complete uncertainty propagates. Complete certainty
(P = 0 or P = 1) propagates similarly. Finally con-
fidence, or lack of confidence, builds as expected: for
0 < P < 0.5, then P̄ik < P , and for 0.5 < P < 1.0,
then P̄ik > P (for example, if P (A B B) = 0.6, and
P (B B C) = 0.6, then P (A B C) > 0.6). These con-
siderations raise the following question: given the con-
sistency requirements, how much freedom is there to
choose the pairwise probabilities? We have the follow-
ing3

Theorem: Given a sample set xi, i = 1, . . . ,m
and any permutation Q of the consecutive integers
{1, 2, . . . ,m}, suppose that an arbitrary target pos-
terior 0 ≤ P̄kj ≤ 1 is specified for every adjacent pair
k = Q(i), j = Q(i + 1), i = 1, . . . ,m − 1. Denote the
set of such P̄ ’s, for a given choice of Q, a set of ’adja-
cency posteriors’. Then specifying any set of adjacency
posteriors is necessary and sufficient to uniquely iden-
tify a target posterior 0 ≤ P̄ij ≤ 1 for every pair of
samples xi, xj .

Proof: Sufficiency: suppose we are given a set of ad-
jacency posteriors. Without loss of generality we can
relabel the samples such that the adjacency posteriors
may be written P̄i,i+1, i = 1, . . . ,m − 1. From Eq.
(4), ō is just the log odds:

ōij = log
P̄ij

1 − P̄ij

(6)

From its definition as a difference, any ōjk, j ≤ k,

can be computed as
∑k−1

m=j ōm,m+1. Eq. (4) then
shows that the resulting probabilities indeed lie in
[0, 1]. Uniqueness can be seen as follows: for any i, j,
P̄ij can be computed in multiple ways, in that given
a set of previously computed posteriors P̄im1

, P̄m1m2
,

· · · , P̄mnj , then P̄ij can be computed by first com-
puting the corresponding ōkl’s, adding them, and then
using (4). However since ōkl = ōk − ōl, the intermedi-
ate terms cancel, leaving just ōij , and the resulting P̄ij

is unique. Necessity: if a target posterior is specified
for every pair of samples, then by definition for any Q,
the adjacency posteriors are specified, since the adja-
cency posteriors are a subset of the set of all pairwise
posteriors. �

Although the above gives a straightforward method
for computing P̄ij given an arbitrary set of adjacency

3A similar argument can be found in (Refregier & Val-
let, 1991); however there the intent was to uncover under-
lying class conditional probabilities from pairwise proba-
bilities; here, we have no analog of the class conditional
probabilities.

Learning to Rank using Gradient Descent

oi-oj

Cij

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

P=0.0
P=0.5
P=1.0

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �
�

���

���

���

���

���

���

��	

��

���

�

�
���
���

���

Figure 1. Left: the cost function, for three values of the target probability. Right: combining probabilities

posteriors, it is instructive to compute the P̄ij for the
special case when all adjacency posteriors are equal to
some value P . Then ōi,i+1 = log(P/(1−P)), and ōi,i+n

= ōi,i+1 + ōi+1,i+2 + · · · + ōi+n−1,i+n = nōi,i+1 gives
Pi,i+n = ∆n/(1 + ∆n), where ∆ is the odds ratio ∆ =
P/(1−P). The expected strengthening (or weakening)
of confidence in the ordering of a given pair, as their
difference in ranks increases, is then captured by:

Lemma: Let n > 0. Then if P > 1
2 , then Pi,i+n ≥ P

with equality when n = 1, and Pi,i+n increases strictly
monotonically with n. If P < 1

2 , then Pi,i+n ≤ P
with equality when n = 1, and Pi,i+n decreases strictly
monotonically with n. If P = 1

2 , then Pi,i+n = 1
2 for

all n.

Proof: Assume that n > 0. Since Pi,i+n = 1/(1 +
(1−P

P
)n), then for P > 1

2 , 1−P
P

< 1 and the de-
nominator decreases strictly monotonically with n;
and for P < 1

2 , 1−P
P

> 1 and the denominator in-
creases strictly monotonically with n; and for P = 1

2 ,
Pi,i+n = 1

2 by substitution. Finally if n = 1, then
Pi,i+n = P by construction. �

We end this section with the following observation.
In (Hastie & Tibshirani, 1998) and (Bradley & Terry,
1952), the authors consider models of the following
form: for some fixed set of events A1, . . . , Ak, pairwise
probabilities P (Ai|Ai or Aj) are given, and it is as-

sumed that there is a set of probabilities P̂i such that
P (Ai|Ai or Aj) = P̂i/(P̂i + P̂j). In our model, one

might model P̂i as N exp(oi), where N is an overall
normalization. However the assumption of the exis-
tence of such underlying probabilities is overly restric-
tive for our needs. For example, there exists no un-

derlying P̂i which reproduce even a simple ’certain’
ranking P (A B B) = P (B B C) = P (A B C) = 1.

4. RankNet: Learning to Rank with

Neural Nets

The above cost function is quite general; here we ex-
plore using it in neural network models, as motivated
above. It is useful first to remind the reader of the
back-prop equations for a two layer net with q output
nodes (LeCun et al., 1998). For the ith training sam-
ple, denote the outputs of net by oi, the targets by ti,
let the transfer function of each node in the jth layer of
nodes be gj , and let the cost function be

∑q
i=1 f(oi, ti).

If αk are the parameters of the model, then a gradi-
ent descent step amounts to δαk = −ηk

∂f
∂αk

, where the
ηk are positive learning rates. The net embodies the
function

oi = g3





∑

j

w32
ij g2

(

∑

k

w21
jkxk + b2

j

)

+ b3
i



 ≡ g3
i

(7)
where for the weights w and offsets b, the upper indices
index the node layer, and the lower indices index the
nodes within each corresponding layer. Taking deriva-
tives of f with respect to the parameters gives

∂f

∂b3
i

=
∂f

∂oi

g′3i ≡ ∆3
i (8)

∂f

∂w32
in

= ∆3
i g

2
n (9)

Learning to Rank using Gradient Descent

∂f

∂b2
m

= g′2m

(

∑

i

∆3
i w

32
im

)

≡ ∆2
m (10)

∂f

∂w21
mn

= xn∆2
m (11)

where xn is the nth component of the input.

Turning now to a net with a single output, the above
is generalized to the ranking problem as follows. The
cost function becomes a function of the difference
of the outputs of two consecutive training samples:
f(o2 − o1). Here it is assumed that the first pattern
is known to rank higher than, or equal to, the second
(so that, in the first case, f is chosen to be monotonic
increasing). Note that f can include parameters en-
coding the weight assigned to a given pair. A forward
prop is performed for the first sample; each node’s ac-
tivation and gradient value are stored; a forward prop
is then performed for the second sample, and the acti-
vations and gradients are again stored. The gradient of
the cost is then ∂f

∂α
=
(

∂o2

∂α
− ∂o1

∂α

)

f ′. We use the same
notation as before but add a subscript, 1 or 2, denoting
which pattern is the argument of the given function,
and we drop the index on the last layer. Thus, denot-
ing f ′ ≡ f ′(o2 − o1), we have

∂f

∂b3
= f ′(g′32 − g′31) ≡ ∆3

2 − ∆3
1 (12)

∂f

∂w32
m

= ∆3
2g

2
2m − ∆3

1g
2
1m (13)

∂f

∂b2
m

= ∆3
2w

32
m g′22m − ∆3

1w
32
m g′21m (14)

∂f

∂w21
mn

= ∆2
2mg1

2n − ∆2
1mg1

1n (15)

Note that the terms always take the form of the differ-
ence of a term depending on x1 and a term depending
on x2, ’coupled’ by an overall multiplicative factor of
f ′, which depends on both4. A sum over weights does
not appear because we are considering a two layer net
with one output, but for more layers the sum appears
as above; thus training RankNet is accomplished by a
straightforward modification of back-prop.

5. Experiments on Artificial Data

In this section we report results for RankNet only, in
order to validate and explore the approach.

4One can also view this as a weight sharing update for
a Siamese-like net(Bromley et al., 1993). However Siamese
nets use a cosine similarity measure for the cost function,
which results in a different form for the update equations.

5.1. The Data, and Validation Tests

We created artificial data in d = 50 dimensions by con-
structing vectors with components chosen randomly in
the interval [−1, 1]. We constructed two target rank-
ing functions. For the first, we used a two layer neural
net with 50 inputs, 10 hidden units and one output
unit, and with weights chosen randomly and uniformly
from [−1, 1]. Labels were then computed by passing
the data through the net and binning the outputs into
one of 6 bins (giving 6 relevance levels). For the sec-
ond, for each input vector x, we computed the mean of
three terms, where each term was scaled to have zero
mean and unit variance over the data. The first term
was the dot product of x with a fixed random vector.
For the second term we computed a random quadratic
polynomial by taking consecutive integers 1 through d,
randomly permuting them to form a permutation in-
dex Q(i), and computing

∑

i xixQ(i). The third term
was computed similarly, but using two random per-
mutations to form a random cubic polynomial of the
coefficients. The two ranking functions were then used
to create 1,000 files with 50 feature vectors each. Thus
for the search engine task, each file corresponds to 50
documents returned for a single query. Up to 800 files
were then used for training, and 100 for validation, 100
for test.

We checked that a net with the same architecture as
that used to create the net ranking function (i.e. two
layers, ten hidden units), but with first layer weights
initialized to zero and second layer initialized ran-
domly in [−0.1, 0.1], could learn 1000 train vectors
(which gave 20,382 pairs; for a given query with ni

documents with label i = 1, . . . , L, the number of
pairs is

∑L
j=2(nj

∑j−1
i=1 ni)) with zero error. In all

our RankNet experiments, the initial learning rate
was set to 0.001, and was halved if the average er-
ror in an epoch was greater than that of the previ-
ous epoch; also, hard target probabilities (1 or 0) were
used throughout, except for the experiments in Section
5.2. The number of pairwise errors, and the averaged
cost function, were found to decrease approximately
monotonically on the training set. The net that gave
minimum validation error (9.61%) was saved and used
to test on the test set, which gave 10.01% error rate.

Table 1 shows the test error corresponding to minimal
validation error for variously sized training sets, for
the two tasks, and for a linear net and a two layer net
with five hidden units (recall that the random net used
to generate the data has ten hidden units). We used
validation and test sets of size 5000 feature vectors.
The training ran for 100 epochs or until the error on
the training set fell to zero. Although the two layer net

Learning to Rank using Gradient Descent

gives improved performance for the random network
data, it does not for the polynomial data; as expected,
a random polynomial is a much harder function to
learn.

Table 1. Test Pairwise % Correct for Random Network
(Net) and Random Polynomial (Poly) Ranking Functions.

Train Size 100 500 2500 12500
Net, Linear 82.39 88.86 89.91 90.06
Net, 2 Layer 82.29 88.80 96.94 97.67
Poly, Linear 59.63 66.68 68.30 69.00
Poly, 2 Layer 59.54 66.97 68.56 69.27

5.2. Allowing Ties

Table 2 compares results, for the polynomial ranking
function, of training on ties, assigning P = 1 for non-
ties and P = 0.5 for ties, using a two layer net with
10 hidden units. The number of training pairs are
shown in parentheses. The Table shows the pairwise
test error for the network chosen by highest accuracy
on the validation set over 100 training epochs. We
conclude that for this kind of data at least, training
on ties makes little difference.

Table 2. The effect of training on ties for the polynomial
ranking function.

Train Size No Ties All Ties
100 0.595 (2060) 0.596 (2450)
500 0.670 (10282) 0.669 (12250)
1000 0.681 (20452) 0.682 (24500)
5000 0.690 (101858) 0.688 (122500)

6. Experiments on Real Data

6.1. The Data and Error Metric

We report results on data used by an internet search
engine. The data for a given query is constructed from
that query and from a precomputed index. Query-
dependent features are extracted from the query com-
bined with four different sources: the anchor text, the
URL, the document title and the body of the text.
Some additional query-independent features are also
used. In all, we use 569 features, many of which are
counts. As a preprocessing step we replace the counts
by their logs, both to reduce the range, and to al-
low the net to more easily learn multiplicative rela-
tionships. The data comprises 17,004 queries for the

English / US market, each with up to 1000 returned
documents. We shuffled the data and used 2/3 (11,336
queries) for training and 1/6 each (2,834 queries) for
validation and testing. For each query, one or more
of the returned documents had a manually generated
rating, from 1 (meaning ’poor match’) to 5 (meaning
’excellent match’). Unlabeled documents were given
rating 0. Ranking accuracy was computed using a nor-
malized discounted cumulative gain measure (NDCG)
(Jarvelin & Kekalainen, 2000). We chose to compute
the NDCG at rank 15, a little beyond the set of docu-
ments initially viewed by most users. For a given query
qi, the results are sorted by decreasing score output by
the algorithm, and the NDCG is then computed as

Ni ≡ Ni

15
∑

j=1

(2r(j) − 1)/ log(1 + j) (16)

where r(j) is the rating of the j’th document, and
where the normalization constant Ni is chosen so that
a perfect ordering gets NDCG score 1. For those
queries with fewer than 15 returned documents, the
NDCG was computed for all the returned documents.
Note that unlabeled documents does not contribute to
the sum directly, but will still reduce the NDCG by
displacing labeled documents; also note that Ni = 1 is
an unlikely event, even for a perfect ranker, since some
unlabeled documents may in fact be highly relevant.
The labels were originally collected for evaluation and
comparison of top ranked documents, so the ’poor’ rat-
ing sometimes applied to documents that were still in
fact quite relevant. To circumvent this problem, we
also trained on randomly chosen unlabeled documents
as extra examples of low relevance documents. We
chose as many of these as would still fit in memory
(2% of the unlabeled training data). This resulted in
our training on 384,314 query/document feature vec-
tors, and on 3,464,289 pairs.

6.2. Results

We trained six systems: for PRank, a linear and
quadratic kernel (Crammer & Singer, 2002) and
the Online Aggregate PRank - Bayes Point Machine
(OAP-BPM), or large margin (Harrington, 2003) ver-
sions; a single layer net trained with RankProp; and
for RankNet, a linear net and a two layer net with
10 hidden units. All tests were performed using a
3GHz machine, and each process was limited to about
1GB memory. For the kernel PRank model, train-
ing was found to be prohibitively slow, with just one
epoch taking over 12 hours. Rather than learning
with the quadratic kernel and then applying a reduced
set method (Burges, 1996), we simply added a fur-
ther step of preprocessing, taking the features, and

Learning to Rank using Gradient Descent

Table 3. Sample sizes used for the experiments.

Number of Queries Number of Documents
Train 11,336 384,314
Valid 2,834 2,726,714
Test 2,834 2,715,175

every quadratic combination, as a new feature set. Al-
though this resulted in feature vectors in a space of
very high (162,734) dimension, it gave a far less com-
plex system than the quadratic kernel. For each test,
each algorithm was trained for 100 epochs (or for as
many epochs as required so that the training error did
not change for ten subsequent epochs), and after each
epoch it was tested on the 2,834 query validation set.
The model that gave the best results were kept, and
then used to test on the 2,834 query test set. For
large margin PRank, the validation set was also used
to choose between three values of the Bernoulli mean,
τ = {0.3, 0.5, 0.7} (Harrington, 2003), and to choose
the number of perceptrons averaged over; the best val-
idation results were found for τ = 0.3 and 100 percep-
trons.

Table 4. Results on the test set. Confidence intervals are
the standard error at 95%.

Mean NDCG Validation Test
Quad PRank 0.379 0.327±0.011
Linear PRank 0.410 0.412±0.010
OAP-BPM 0.455 0.454±0.011
RankProp 0.459 0.460±0.011

One layer net 0.479 0.477±0.010
Two layer net 0.489 0.488±0.010

Table 5. Results of testing on the 11,336 query training set.

Mean NDCG Training Set
One layer net 0.479±0.005
Two layer net 0.500±0.005

Table 3 collects statistics on the data used; the NDCG
results at rank 15 are shown, with 95% confidence in-
tervals5, in Table 4. Note that testing was done in
batch mode (one query file tested on all models at a
time), and so all returned documents for a given query

5We do not report confidence intervals on the validation
set since we would still use the mean to decide on which
model to use on the test set.

Table 6. Training times.

Model Train Time
Linear PRank 0hr 11 min

RankProp 0hr 23 min
One layer RankNet 1hr 7min
Two layer RankNet 5hr 51min

OAP-BPM 10hr 23min
Quad PRank 39hr 52min

were tested on, and the number of documents used in
the validation and test phases are much larger than
could be used for training (cf. Table 3). Note also
that the fraction of labeled documents in the test set
is only approximately 1%, so the low NDCG scores
are likely to be due in part to relevant but unlabeled
documents being given high rank. Although the differ-
ence in NDCG for the linear and two layer nets is not
statistically significant at the 5% standard error level,
a Wilcoxon rank test shows that the null hypothesis
(that the medians are the same) can be rejected at the
16% level. Table 5 shows the results of testing on the
training set; comparing Tables 4 and 5 shows that the
linear net is functioning at capacity, but that the two
layer net may still benefit from more training data. In
Table 6 we show the wall clock time for training 100
epochs for each method. The quadratic PRank is slow
largely because the quadratic features had to be com-
puted on the fly. No algorithmic speedup techniques
(LeCun et al., 1998) were implemented for the neural
net training; the optimal net was found at epoch 20
for the linear net and epoch 22 for the two-layer net.

7. Discussion

Can these ideas be extended to the kernel learning
framework? The starting point is the choice of a suit-
able cost function and function space (Schölkopf &
Smola, 2002). We can again obtain a probabilistic
model by writing the objective function as

F =
m
∑

i,j=1

C(Pij , P̄ij) + λ‖f‖2
H (17)

where the second (regularization) term is the L2 norm
of f in the reproducing kernel Hilbert space H. F dif-
fers from the usual setup in that minimizing the first
term results in outputs that model posterior probabil-
ities of rank order; it shares the usual setup in the sec-
ond term. Note that the representer theorem (Kimel-
dorf & Wahba, 1971; Schölkopf & Smola, 2002) applies
to this case also: any solution f∗ that minimizes (17)

Learning to Rank using Gradient Descent

can be written in the form

f∗(x) =

m
∑

i=1

αik(x,xi) (18)

since in the first term on the right of Eq. 17, the
modeled function f appears only through its evalua-
tions on training points. One could again certainly
minimize Eq. 17 using gradient descent; however de-
pending on the kernel, the objective function may not
be convex. As our work here shows, kernel methods,
for large amounts of very noisy training data, must
be used with care if the resulting algorithm is to be
wieldy.

8. Conclusions

We have proposed a probabilistic cost for training sys-
tems to learn ranking functions using pairs of training
examples. The approach can be used for any differen-
tiable function; we explored using a neural network
formulation, RankNet. RankNet is simple to train
and gives excellent performance on a real world rank-
ing problem with large amounts of data. Comparing
the linear RankNet with other linear systems clearly
demonstrates the benefit of using our pair-based cost
function together with gradient descent; the two layer
net gives further improvement. For future work it will
be interesting to investigate extending the approach to
using other machine learning methods for the ranking
function; however evaluation speed and simplicity is a
critical constraint for such systems.

Acknowledgements

We thank John Platt and Leon Bottou for useful dis-
cussions, and Leon Wong and Robert Ragno for their
support of this project.

References

Baum, E., & Wilczek, F. (1988). Supervised learn-
ing of probability distributions by neural networks.
Neural Information Processing Systems (pp. 52–61).

Bradley, R., & Terry, M. (1952). The Rank Analysis of
Incomplete Block Designs 1: The Method of Paired
Comparisons. Biometrika, 39, 324–245.

Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., Le-
Cun, Y., Moore, C., Sackinger, E., & Shah, R.
(1993). Signature Verification Using a ”Siamese”
Time Delay Neural Network. Advances in Pattern
Recognition Systems using Neural Network Tech-
nologies, World Scientific (pp. 25–44)

Burges, C. (1996). Simplified support vector decision
rules. Proc. International Conference on Machine
Learning (ICML) 13 (pp. 71–77).

Caruana, R., Baluja, S., & Mitchell, T. (1996). Us-
ing the future to “sort out” the present: Rankprop
and multitask learning for medical risk evaluation.
Advances in Neural Information Processing Systems
(NIPS) 8 (pp. 959–965).

Crammer, K., & Singer, Y. (2002). Pranking with
ranking. NIPS 14.

Dekel, O., Manning, C., & Singer, Y. (2004). Log-
linear models for label-ranking. NIPS 16.

Freund, Y., Iyer, R., Schapire, R., & Singer, Y. (2003).
An efficient boosting algorithm for combining pref-
erences. Journal of Machine Learning Research, 4,
933–969.

Harrington, E. (2003). Online ranking/collaborative
filtering using the Perceptron algorithm. ICML 20.

Hastie, T., & Tibshirani, R. (1998). Classification by
pairwise coupling. NIPS 10.

Herbrich, R., Graepel, T., & Obermayer, K. (2000).
Large margin rank boundaries for ordinal regression.
Advances in Large Margin Classifiers, MIT Press
(pp. 115–132).

Jarvelin, K., & Kekalainen, J. (2000). IR evaluation
methods for retrieving highly relevant documents.
Proc. 23rd ACM SIGIR (pp. 41–48).

Kimeldorf, G. S., & Wahba, G. (1971). Some results on
Tchebycheffian Spline Functions. J. Mathematical
Analysis and Applications, 33, 82–95.

LeCun, Y., Bottou, L., Orr, G. B., & Müller, K.-R.
(1998). Efficient backprop. Neural Networks: Tricks
of the Trade, Springer (pp. 9–50).

Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000).
Boosting algorithms as gradient descent. NIPS 12
(pp. 512–518).

Mitchell, T. M. (1997). Machine learning. New York:
McGraw-Hill.

Refregier, P., & Vallet, F. (1991). Probabilistic ap-
proaches for multiclass classification with neural
networks. International Conference on Artificial
Neural Networks (pp. 1003–1006).

Schölkopf, B., & Smola, A. (2002). Learning with ker-
nels. MIT Press.

