PRINCE

modern password guessing algorithm

FUTURE OF PASSWORD HASHES

Future of modern password hashes

Feature Effect

* High iteration count * Slow

e Salted * Rainbow-Tables resistance
* Memory-intensive * GPU resistance

* Configurable parameters * Slow

 Anti-Parallelization e Slow

Algorithms used for password hashing,
by performance*

Name speed

NTLM, MD5, SHA1-512, Raw-Hashes 1 BH/s - 10 BH/s
Custom (Salt): VBull, IPB, MyBB 100 MH/s - 1 BH/s
DEScrypt 10 MH/s - 100 Mh/s
MD5crypt 1 MH - 10 MH/s
TrueCrypt, WPA/WPA2 (PBKDF2) 100kH/s - 1 MH/s
SHA512crypt, Berypt (Linux/Unix) 10kH/s - 100 kH/s
Custom (Iteration): Office, PDF, OSX 1kH/s - 10 kH/s

Scrypt (RAM intensive): Android 4.4+ FDE <1 kH/s

* Performance oclHashcat v1.32
Single GPU
Default settings for configurable algorithms

08.12.2014 Jens Steube - PRINCE algorithm 4

Effects of modern password hashes

e Obsolete attack-modes:
— Brute-Force-attack
— Rainbow-Tables

REMAINING ATTACK VECTORS

Remaining attack vectors

 Hardware (FPGA/ASIC)
e Extract keys from RAM
e Efficiency

Remaining attack vectors

 Hardware (FPGA/ASIC) Easier to cool

* Lower power
consumption

* Easier to cluster

* Clustering only linear

* Expensive development
* Unflexible?

08.12.2014 Jens Steube - PRINCE algorithm

Remaining attack vectors

* Highest chance of

* Extract keys from RAM SUccess
* Requires physical access

to the System
* System must run

08.12.2014 Jens Steube - PRINCE algorithm

Remaining attack vectors

e Exploit human

weakness:
. Efficiency — Psychology aspects

— Password reuse
— Pattern

* Limited keyspace
e Using rules:

— Limited pattern
— Takes time to develop

08.12.2014 Jens Steube - PRINCE algorithm

10

Features and advantages compared to previous attack modes

PRINCE ATTACK

08.12.2014 Jens Steube - PRINCE algorithm

11

Advantages over other Attack-Modes

* Simple to use, by design
* Smooth transition

* Makes use of unused
optimizations:
— Time works for attacker
— Personal aspects

Advantages over other Attack-Modes

* Simple to use, by design ¢ No monitoring required
* No extension required
* No syntax required

Advantages over other Attack-Modes

* Primary goal of the
algorithm

e Starts with highest
efficiency
— Wordlist
— Hybrid

— Keyboard walks /
Passphrases

— Brute-Force + Markov

* Not a scripted batch

e Smooth transition

Advantages over other Attack-Modes

e Does not run out of
(good) wordlists

— Time-consuming
monitoring

e Makes use of unused
optimizations:

— Time works for attacker Does not need ideas

— Time-consuming
extension

Advantages over other Attack-Modes

* Personal Aspects
— Religion

 Makes use of unused — Political wing

optimizations: — Red car
 Not hobbies, friends,
— Personal aspects dates, ...

— Already covered with
Wordlist-Attack

— Common knowledge not
to use them

PRINCE ATTACK

PRobability
INfinite
Chained
Elements

PRINCE-attack

Attack basic components

e Element

L

e Chain

U

* Keyspace

08.12.2014 Jens Steube - PRINCE algorithm

19

Attack basic components

e Element

Y
U

Smallest entity

An unmodified line
(word) of your wordlist
No splitting /
modification of the line

Sorted by their length
into element database

Element example

123456 * Table: 6
password Table: 8
1 * Table: 1
gwerty * Table: 6

Attack basic components

e Sum of all elements

lengths in a chain =

@ chain output length

e Chain * Fixed output length
e Best view on thisis in

@ reverse order, eg. a
chain of length 8 can
not hold an element of
length 9

Chains example, general

* Chains of output length 8 consists of the
elements
8
*2+6
*3+5

*1+1+1+1+1+1+1+1
* Number of chains per length = 2 * (length - 1)

Attack basic components

e Number of candidates
that is getting

@ produced, per chain

e Different for each chain
 The product of the

@ count of the elements
which build the chain

* Keyspace

Element example (rockyou)

ength 1: 45
ength 2: 335
ength 3: 2461
ength 4: 17899

Keyspaces of chains of length 4

(rockyou)
Chain JElements [Keyspace
4 17,899 17,899
1+1+1+1 45 * 45 * 45 * 45 4,100,625
1+1+2 45 * 45 * 335 678,375
1+2+1 45 * 335 * 45 678,375
1+3 45 * 335 15,075
2+1+1 335 * 45 * 45 678,375
2+2 335 * 335 112,225
3+1 335 * 45 15,075

08.12.2014 Jens Steube - PRINCE algorithm 26

Keyspaces of chains of length 4

(rockyou)
Chain JElements |Keyspace 1
3+1 335 * 45 15,075
1+3 45 * 335 15,075
4 17,899 17,899
2+2 335 * 335 112,225
2+1+1 335 * 45 * 45 678,375
1+2+1 45 * 335 * 45 678,375
1+1+2 45 * 45 * 335 678,375
1+1+1+1 45 * 45 * 45 * 45 4,100,625

08.12.2014 Jens Steube - PRINCE algorithm 27

Keyspace selection, general

* Sorting by lowest keyspace creates the
floating effect inside the prince attack-mode:

— Wordlist

— Hybrid

— Keyboard walks / Passphrases
— Brute-Force + Markov

Candidate output length selection

* The Algorithm has to
chose the order of the
output length for
candidates

* Word-length

\ RockYou.com

20% Il > 32 million passwords

length distribution

distribution in a \\
wordlist is a known & } N
Structu re o 0 ‘: j : r: ; EI T-:' ;3 % 1ID 1I1 1I2 1I3 1‘:'1 1I-5:| 1'5 1'? 1;8 1‘; ;I:'I
. Password length (in number of characters
* The algorithm recreates it/ blog.enrtasec con/

its own stats from the
input wordlist

08.12.2014 Jens Steube - PRINCE algorithm 29

Personal aspects

* To make use of this feature, you need a
specific wordlist

— Use a tool like wordhound to compile such a
wordlist (grabs data from URL, twitter, reddit, etc)

* Cookbook phase:

— Decide yourself if you want to use the raw list or
* Preprocess the wordlist with some rules applied
* Mix in like top 10k from rockyou
* Mix in some single chars for late BF

Problems of the attack

Elements in the wordlist
requires all lengths

Chain-count for long
outputs

Generated dupes

Problems of the attack

 Elementsin the wordlist ¢ For calculation length
requires all lengths distribution

Problems of the attack

* Can be suppressed with
divisor parameter

e Chain-count for long
outputs

Problems of the attack

* Generated dupes

Princeprocessor internal

Load words from wordlist
Store words in memory

Generate element chains for each password length

— Reject chains that does include an element which points to
a non-existing password length

Sort chained-elements by keyspace of the chain

Iterate through keyspace (mainloop)

— Select the next chain of that password length
— Generate password with chain

— Print

PRINCE ATTACK

How to use it from users view

 Download princeprocessor
* Choose an input wordlist which could be:

— One of your favourite wordlist (rockyou, etc...)
— Target-specific optimized wordlist

* Pipe princeprocessor to your cracker
— ./pp64 < wordlist.txt | ./oclHashcat hash.txt

How to use it from users view

e Optionally

hoose password min / max length
hoose character classes to pass / filter
hoose start / stop range -> Distributed
hoose minimum element length

hoose output file, otherwise written to STDOUT

LIVE DEMO 1

* Wordlist
— Top 100k of rockyou.txt

e Hashlist
— Public leak ,stratfor® 822k raw MD5 hashes

* Preparation
— Removing raw dictionary hits first

LIVE DEMO 2

e Wordlist

— Generated by scraping stratfor site

e Hashlist
— Public leak ,stratfor® 822k raw MD5 hashes

* Preparation
— Removing raw dictionary hits first

Download from: https://hashcat.net/tools/princeprocessor/
- Linux
- Windows
- OSX

PRINCEPROCESSOR V0.10 RELEASE

08.12.2014 Jens Steube - PRINCE algorithm

41

Email: jens.steube@gmail.com
IRC: freenode #hashcat

THANKS! QUESTIONS?

08.12.2014 Jens Steube - PRINCE algorithm

42

